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Today we conclude with our study with one-time message authentication codes. In
Lecture 1, we defined one-time secure MACs and constructed these MACs using δ − AXU

functions. Furthermore, we showed that the security of this construction lost security
exponentially with as the min-entropy of the key decreased. We show that the constructions
achieved in Lecture 1 were essentially tight. We will do this by showing that any one-time
secure MAC must have a certain amount of entropy in its key (regardless of the key length).
We then transition to our first privacy application: one-time encryption. We then move
to privacy applications and encryption. We then discuss information theoretic notions of
distance and show a generalized version of Shannon impossibility [6, 1].

1 Last Time

We recall the definition of a one-time MAC:

Definition 1 Let function Tag : {0, 1}m × {0, 1}n → {0, 1}λ be a function and let Gr

parameterized by r ∈ {0, 1}m. There are two players: a challenger C who receives r as
input, and an adversary E who receives no input. Gr has the following three steps.

1. E chooses x ∈ {0, 1}n and sends x to C.

2. C computes and sends t := Tagr(x) to E.

3. E outputs (x′, t′) ∈ {0, 1}n × {0, 1}λ.

We say that E wins Gr if x′ 6= x and Tagr(x
′) = t′, and write AdvE(r) := Pr[E wins Gr] to

denote E’s advantage. Let R be a distribution on {0, 1}m and δ > 0. Tag is a (R, δ)-secure
one-time MAC if for every E,

Er←R[AdvE(r)] ≤ δ.

When R ≡ Um, we simply say δ-secure. ♦
Recall we constructed one-time MACs from δ-AXU functions. Furthermore, we showed

that reducing the min-entropy of the key reduces security only exponentially:

Theorem 1 (Theorem 3 from Lecture 1) If Tag is a δ-secure MAC with key length m,
then for every R,H∞(R) = k ≤ m it is also a (R, 2m−kδ)-secure MAC.

2 Optimality of one-time MACs

We begin by recalling Theorem 4 from last lecture using our δ-AXU construction:
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Theorem 2 (Theorem 4 from Lecture 1) For any k such that m/2 + log n < k ≤ m,
there is an efficient function Tag : {0, 1}m×{0, 1}n → {0, 1}λ that is a (k, n ·2m/2−k)-secure
MAC with tag length λ = m/2.

In other words, for every n and δ, every m ≥ 2 log(n/δ), and every k such that m/2 +
log(n/δ) ≤ k ≤ m, there exists a (k, δ)-secure MAC with tag length λ = m/2.

Today we will show that the result of Theorem 2 is optimal (for n = 1).

Theorem 3 Let Tag : {0, 1}m×{0, 1} → {0, 1}λ be a function. For any k ≤ m there exists
R with H∞(R) ≥ k and an attacker E such that:

a) If k ≤ m/2 then AdvE(R) = 1.

b) If k > m/2 then AdvE(R) ≥ 2m/2−k

Proof: Our proof will visualize TagR(·) as creating a bipartite graph. The left nodes (de-
noted as Λ0) will be the values of TagR(0), the right nodes (denoted Λ1) will be the values of
TagR(1). We will draw an edge between a left node, tℓ, and a right node, tr if there exists an
R such that tℓ = TagR(0) and tr = TagR(1). If there exists r, r′ such that Tagr(0) = Tagr′(0)
and Tagr(1) = Tagr′(1), then we have a bipartite multigraph. For convenience, we will re-
move vertices that have degree 0. We present an example graph below:
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We note that |Λ0|, |Λ1| ≤ 2λ. For convenience, we denote the number of edges by
M = 2m. We now consider two possible cases:

1) There are few values in Λ0 and thus E can predict the value of Λ0

2) There are many values in Λ0 but knowing Λ0 gives significant information about Λ1.

• Case 1: Λ0 ≤
√

M . Since there at most
√

M nodes in Λ0 the average degree of a
node tℓ ∈ Λ0 is at least

√
M (since there are M edges in total). We consider the two

conditions of Theorem 3 in turn.

a) k ≤ m/2 or equivalently 2k ≤
√

M . Since the average degree is at least
√

M ,
there is a node tℓ with deg(tℓ) ≥

√
M . We define the set R as R = {r ∈

{0, 1}m|Tagr(0) = tℓ}, so that |R| = deg(tℓ) ≥
√

M . Without possibility of
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confusion we also denote by R the uniform distribution over this set. Note
that H∞(R) ≥ m/2 ≥ k, but E can simply output tℓ as TagR(0) and achieve
AdvE(R) = 1.

b) k > m/2. We can no longer assume there is a single node that is of high enough
degree. We take the largest degree nodes t1, ..., tℓ such that

∑ℓ
i=1 deg(ti) ≥ 2k.

Since Et←Λ0
deg(t) ≥

√
M the number of needed nodes is ℓ ≤ 2k√

M
. As before

define R = {r|Tagr(0) = ti for some 1 ≤ i ≤ ℓ} and the uniform distribution
over this set. Then E randomly selects 1 ≤ i ≤ ℓ and outputs ti as TagR(0).
Then AdvE(R) ≥ 1/ℓ ≥

√
M/2k = 2m/2−k.

• Case 2: Λ0 ≥
√

M . Now given TagR(0), E will be able to forge TagR(1). As before
we consider the two statements of the theorem:

1. k ≤ m/2. For all t ∈ Λ0 select an arbitrary incident edge e and add e to R and let
R be uniform over these |Λ0| ≥

√
M edges. Note that H∞(R) ≥ m/2 ≥ k. Now

E given TagR(0) traverses the unique edge that was included in R and outputs
the corresponding element in Λ1. Note that AdvR(E) = 1.

2. k > m/2 or equivalently 2k ≥
√

M . Take a subset S of size exactly 2k edges,
that contains at least

√
M vertices (denote these vertices as V ) in Λ0 and let R

be the uniform distribution over this set S. Then given t = TagR(0) output a
random TagR(1) adjacent to t according to S. Then Pr[Success E|t] ≥ 1/deg(t).
Averaging over t one has:

AdvR(E) =

|V |
∑

t=1

deg(t)

2k

1

deg(t)
=
|V |
2k
≥
√

M

2k
= 2m/2−k.

We have as an immediate corollary:

Corollary 1 If Tag : {0, 1}m × {0, 1} → {0, 1}λ is a δ-secure MAC then m ≥ 2 log 1/δ

Proof: Suppose that k = m in Theorem 3. Then δ ≥ 2m/2−m = 2−m/2. This implies that
m ≥ 2 log 1/δ.

One can also show a stronger statement that (R, δ)-security implies Hsh(R) ≥ 2 log 1/δ.
This leads to the following tempting conjecture:

Conjecture 4 Let Tag : {0, 1}n × {0, 1} → {0, 1}λ be a function. If Tag is (R, δ) secure
then H∞(R) ≥ 2 log 1/δ.

In fact, we can even provide the following tempting “proof”:
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Tempting (but false) Proof of Conjecture: To argue that H∞(R) ≥ 2 log 1/δ we
would like to make the following (invalid) argument:

2−k = Pred(R) ≤ Pred(TagR(0), TagR(1)) ≤ Pred(TagR(0))·Pred(TagR(1)|TagR(0)) ≤ δ·δ = δ2

Unfortunately, this line of reasoning crucially relies on the “chain” rule for min-entropy
H∞(A, B) ≥ H∞(B) + H∞(A|B), which is not true. In fact, we can actually explicitly
disprove the conjecture, by giving the following counter-example of (R, δ)-secure MAC where
H∞(R) ≈ log 1/δ (which is clearly the lowest it can get, since obviously H∞(R) ≥ log 1/δ,
as otherwise one can guess R with probability δ and forge both TagR(0) and TagR(1)). Take
a 2−m/2-secure MAC where m ≫ 2 log (1/δ). Let be R be such that Pr[R = 0m] = δ and
otherwise R is uniform over {0, 1}m \0m. Then H∞(R) = log 1/δ, but the resulting MAC is
still δ′ ≈ max(δ, 2−m/2) = δ secure, since Eve can either win (for sure) if R = 0m (but this
happens with probability only δ), or otherwise can win with probability at most (essentially)
2−m/2 by the original 2−m/2 security of our MAC under the uniform distribution.

Fortunately, we can use a related notion of entropy called Collision or Rényi entropy.
We will denote this notion as H2(R) and can show that H2(R) ≥ 2 log 1/δ in our set-
ting. Furthermore, unlike Shannon entropy, a bound between H2(R) and H∞(R) is known,
namely:

Hsh(R) ≥ H2(R) ≥ H∞(R) ≥ H2(R)

2
.

Interestingly (and unfortunately), Collision entropy will still not satisfy the natural variant
of the “chain rule” (except in an important special case; see below). Fortunately, it will
satisfy a weak form of the chain rule, which will suffice for our goal to recover the tempting
argument above.

Theorem 5 Let Tag : {0, 1}n×{0, 1} → {0, 1}λ be a function. If Tag is (R, δ)-secure then
H2(R) ≥ 2 log (1/δ).

We now define everything formally, study properties of Rényi entropy, and then return
to the above Theorem.

Definition 2 We define the collision probability of a random variable R, denoted as Col(R)
as Col(R) = Prr,r′←R[r = r′] =

∑

r∈{0,1}m Pr[R = r]2. Then, the Collision entropy of R, is
H2(R) = log 1/Col(R). ♦
Properties of Collision entropy:

1. H2(R) ≥ H∞(R) ≥ H2(R)/2:

Proof: H2(R) ≥ H∞(R). Suffices to show that Col(R) ≤ Pred(R).

Col(R) =
∑

r∈{0,1}m
Pr[R = r]2 ≤

∑

r∈{0,1}m
max

r′∈{0,1}m
Pr[R = r′] Pr[R = r]

= max
r′∈{0,1}m

Pr[R = r′]
∑

r∈{0,1}m
Pr[R = r] = max

r′∈{0,1}m
Pr[R = r′] = Pred(R)

Lecture 2, Page 4



H2(R) ≤ 2H∞(R). Suffices to show that Col(R) ≥ Pred(R)2. One has

Col(R) =
∑

r∈{0,1}m
Pr[R = r]2 ≥ max

r′∈{0,1}m
Pr[R = r′]2 = Pred(R)2.

2. 0 ≤ H2(R) ≤ m with equality on the left only for a point distribution and equality
on the right only for the uniform distribution.

Since H2(R) is a sum of probabilities all of which are in [0, 1] it is nonnegative. The
equations:

∑M
r=1 p2

r = 1,
∑M

r=1 pr = 1, pr ∈ [0, 1] are satisfiable if and only some pr = 1
that is if Pr[R = r′] = 1 for some r′.

The fact that H2(R) ≤ m follows from the Cauchy-Schwartz inequality as
∑M

r=1 p2
r ≥

(
∑M

r=1 pr)
2/M (here pr = Pr[R = r] and M = 2m). Finally, Col(Um) =

∑

r∈{0,1}m Pr[Um =

r]2 =
∑

r∈{0,1}m 2−2m = 2m

22m = 2−m.

3. Let f : {0, 1}m → {0, 1}m′

be a function. Then H2(f(R)) ≤ H2(R). It suffices to
show that Col(f(R)) ≥ Col(R). One has:

Col(f(R)) = Pr[f(R) = f(R′)] ≥ Pr[R = R′] = Col(R)

Conditional Rényi Entropy. Define Col(A|B) = Eb←B[Col(A|B = b)] and H2(A|B) =
log(1/Col(A|B)).

We start with a “positive” property of this definition: H2(A) ≥ H2(A|B) ≥ H∞(A|B).
(The proof is left as an exercise.)

Moving to the “negative”, it is very tempting to make the following incorrect claim,
which would be the (false) chain rule for Rényi entropy:

H2(A, B) = H2(B) + H2(A|B) ⇐⇒ Col(A, B) = Col(B) · Col(A|B)

To show this fallacy, we could proceed as follows:

Col(A, B) = Pr[A = A′ ∧ B = B′]

= Pr[B = B′] · Pr[A = A′ | B = B′]

(incorrectly) = Col(B) · E
b←B

[Pr[A = A′|B = B′ = b]]

= Col(B) · E
b←B

[Col(A|B = b)]

= Col(B) · Col(A|B)

The mistake come from the fact that the following two experiments are not the same in
general.

Experiment 1: sample independent b ← B and b′ ← B, until b = b′. Sample random
A conditioned on B = b. Sample random A′ conditioned on B = b.

Experiment 2: sample b← B once. Sample random A conditioned on B = b. Sample
random A′ conditioned on B = b.
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Indeed, while the last two steps of both experiments are the same, the first step gives
possibly different marginal distributions on B. While the second distribution is the original
marginal of B, the first re-assignes the probability of B = b to Pr[B = b]2/

∑

b′ Pr[B = b′]2,
which could be different from the original Pr[B = b].

We leave it as an exercise to find examples where Experiments 1 and 2 are very different
(and, in particular, it is possible for either H2(A, B) > H2(B) + H2(A|B) or H2(A, B) <
H2(B)+H2(A|B)). However, we would like to point out one very useful special case where
the Experiments are indeed the same. This happens when the marginal distribution of B is
uniform. Indeed, in this case

Pr[B = b]2
∑

b′ Pr[B = b′]2
=

1

|B| = Pr[B = b]

We get the following very useful lemma.

Lemma 2 Assume the joint distribution (A, B) is such that the marginal on B is uniform.
Then

H2(A, B) = H2(B) + H2(A|B) (or) Col(A, B) = Col(B) · Col(A|B)

For general (A, B), we now state the following form of a “weak chain rule” for Rényi
entropy:

Lemma 3 H2(A, B) ≥ H2(A|B) + H∞(B).

Proof:

Col(A|B) · Pred[B] = (
∑

b

Pr(B = b)
∑

a

Pr[A = a|B = b]2) ·max
b

Pr[B = b] ≥
∑

a,b

Pr(B = b)2 Pr[A = a|B = b]2 =
∑

a,b

Pr[A = a, B = b]2 = Col(A, B).

We can now use this weak chain rule to establish Theorem 5.

Proof: Using the monotonicity and the weak chain rule (Lemma (3)) of Rènyi entropy,
coupled with H2(A|B) ≥ H∞(A|B), we get

H2(R) ≥ H2(TagR(0), TagR(1))

≥ H2(TagR(1)|TagR(0)) + H∞(TagR(0))

≥ H∞(TagR(1)|TagR(0)) + H∞(TagR(0))

Indeed, the δ-security of the MAC and the definition of predictability of the MAC
immediately imply that Pred(TagR(1)|TagR(0)), Pred(TagR(0)) ≤ δ.
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Remark 1 We now consider MACs that are secure for more than one use. One can show
that if Tag : {0, 1}n × {0, 1} → {0, 1}λ is a (R, δ)-secure c-time MAC then δ ≥ 2

cm

c+1
−k and

k ≥ cm
c+1 . These bounds can be achieved by using a (c + 1)-wise independent hash function.

Another related result (using weak chain rule) is that m ≥ H2(R) ≥ (c + 1) log 1
δ .

We now present several questions related to information theoretic MACs.

Quesject 1 Can the construction of one-time secure MACs be improved by using inter-
action instead of non-interactive (x, t) format? In particular, (a) is it still true that δ ≥
2

m

2
−k?; and (b) for uniform R, is it still true that m ≥ H2(R) ≥ 2 log 1

δ?
Interestingly, Naor, Segev, and Smith [5] show that Hsh(R) ≥ 2 log 1/δ, but in part (b)

we are asking for such a bound of H2(R), which is stronger than Hsh(R). Also, Gemmell
and Naor [4] show an interactive MAC construction where m = 2 log 1/δ + O(1) removing
the log n term from prior constructions. However, there construction requires perfect local
randomness to be sampled by Alice and Bob. Interestingly, once local randomness is allowed,
one can show that (i) δ ≥ 2

m

2
−k is still true for non-interactive protocols; (ii) one can

achieve non-trivial message authentication in two rounds for any k = Ω(log (1/δ)), which
is optimal, and totally beats the k > m/2 bound (meaning that question (a) is false for
interactive protocols with local randomness). We will study point (ii), proved by Dodis and
Wichs [3], later in the course, but mention that the following questions remain open for
interactive MACs: (b’) for uniform R, is it still true that m ≥ H2(R) ≥ 2 log 1

δ even if local
randomness is allowed?; (c) can we match Gemmell and Naor [4] bound m = 2 log 1/δ+O(1)
(i.e., save log n) without using local randomness?

Quesject 2 The counterexample presented in Theorem 3 the adversary E used a distri-
bution that was not efficiently sampleable and E itself was not efficient. The question is
whether we can present an E that is efficient given oracle access to Tag. A good midpoint
is making only the sampler or E efficient (but not the other).

3 Privacy Applications

We will now move from predicting applications (MACs) to a distinguishing application (en-
cryption). In this area, we will have much stronger impossibility results when we try and
reduce the entropy of the key. Before beginning we will cover notions of distance, as our
security definitions will use these notions.

3.1 Notions of Distance

We want to ask what is the best way to distinguish two random variables A and B (possibly
given C).

Definition 3 The statistical distance between random variables A and B, denoted SD(A, B)
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is

SD(A, B) = max
Eve
|Pr[Eve(A) = 1]− Pr[Eve(B) = 1]|

= max
T⊆{0,1}m

Pr[A ∈ T ]− Pr[B ∈ T ]

=
1

2

∑

r∈{0,1}m
|Pr[A = r]− Pr[B = r]|

♦
We could also use a game based definition where a challenge picks a bit c← {0, 1}, and

if c = 0 then samples a← A and gives a to E, else if c = 1, sample b← B and give b to E.
Then, SD(A, B) = maxE Pr[E guesses c]− 1

2 . This is equivalent to the above definition.

Definition 4 We will define conditional statistical distance between A and B condi-
tioned on C, denoted SD(A, B|C) as SD(A, B|C) = SD((A, C), (B, C)) = Ec←C [SD(A|C =
c, B|C = c)]. ♦

Small statistical distance says that the additive difference between outcomes in A and B
cannot be two large. We can also define a distance measure with respect to multiplication.
Two distributions are close if Pr[A = y]/ Pr[B = y] ≈ 1 for all y. This definition is inspired
by differential privacy [2]. We make the notion formal below.

Definition 5 We say that the relative distance between A and B is ε, denoted RD(A, B) =
ε if ε is the smallest number such that ∀y ∈ {0, 1}m:

Pr[B = y] ∈ [e−ε · Pr[A = y]; eε · Pr[A = y]].

More generally, conditional relative distance between A and B conditioned on C, denoted
RD(A, B|C), is defined as RD(A, B|C) = RD((A, C), (B, C)). ♦

For small values of ε < 1/10 we can approximate e±ε ≈ 1±ε. For notational convenience
we will Pr[B = y] ∈ [e−ε Pr[A = y], eε Pr[A = y]] as Pr[B = y] ∈ [e±ε Pr[A = y]].

As an easy exercise, we can also restate this definition in terms of an adversary Eve as
follows:

Lemma 4 RD(A, B) ≤ ε if and only if ∀E, Pr[E(A) = 1] ∈ [e±ε Pr[E(B) = 1]].

Notice, for statistical distance restricting E to a computationally efficient machine pro-
duces a new notion of computational distance that is weaker than statistical distance. In-
deed, most of modern cryptography is based thus this new computational distance. How-
ever, for relative distance, there is some singleton event y that maximally splits the two
distributions. Thus, for non-uniform E the computational and unbounded versions of rela-
tive distance are equivalent. On the other hand, relative distance is a stricter notion than
statistical distance. As an example, two distributions must have equal supports for relative
distance to be bounded. This is formalized below (simple proof omitted).

Lemma 5 If RD(A, B) ≤ ε then SD(A, B) ≤ eε − 1 ≈ ε.
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We also remark that both notions are well defined distances (obeying the triangle in-
equality):

SD(A, C) ≤ SD(A, B) + SD(B, C)

RD(A, C) ≤ RD(A, B) + RD(B, C)

To discuss privacy we will want to say that a ciphertext does not reveal much information
about the underlying plaintext. Thus, we define the statistical/relative independence of two
random variables.

Definition 6 The statistical/relative independence of A and B is SI(A; B)
∆
= SD((A, B), A×

B) (resp. RI(A; B)
∆
= RD((A, B), A×B)). ♦

Notice that RI(A; B) = 0⇐⇒ SI(A; B) = 0⇐⇒ (A, B) ≡ A×B.
Also, RI(X, C) = RD((X, C), X × C) ≤ ε if and only if ∀x, c we have Pr[X = x ∧ C =

c] ∈ [e±ε Pr[X = x] Pr[C = c]. This easily implies

Exercise 1 If RI(C, X) ≤ ε then H∞(C, X) ≥ H∞(C) + H∞(X)− ε ln 2.

Remark 2 This is comparable to the average case notion of mutual information I(A; B)
for Shannon’s entropy:

I(A; B) =
∑

a∈A

∑

b∈B

Pr[A = a ∧B = b] log
Pr[(A, B) = (a, b)

Pr[A = a] Pr[B = b]
.

Indeed, this quantity can be stated in terms of Shannon entropy: I(A; B) = Hsh(A) +
Hsh(B)−Hsh(A, B), which is similar to the RI definition above.

Finally, the following exercise shows that low relative information implies closeness for
both the min-entropy and collision entropy, as follows.

Exercise 2 If RI(A, B|C) ≤ ε then

• Pred(A|C) ∈ [e±εPred(B|C)]. Equivalently, H∞(A|C) ∈ H∞(B|C)± ε ln 2.

• Col(A|C) ∈ [e±2εCol(B|C)]. Equivalently, H2(A|C) ∈ H2(B|C)± 2ε ln 2.

3.2 Generalized Shannon Bounds for Encryption

We will now define an encryption scheme. We will have a correctness and privacy require-
ment.

Definition 7 Let Enc : {0, 1}m × {0, 1}n → {0, 1}λ and Dec : {0, 1}m × {0, 1}λ → {0, 1}n
be functions. For convenience we write Enc(r, x) as Encr(x) and Dec(r, c) as Decr(c). We
say pair of functions are a correct encryption scheme if ∀r, x,Decr(Encr(x)) = x. Let R, X
be distributions and define C = EncR(X). We say that (Enc, Dec) is (R, ε)-relatively (resp.
statistically) secure on X if RI(X; C) ≤ ε (resp. SI(X; C) ≤ ε). ♦
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By Lemma 5 we know that any (R, ε)-relatively secure scheme X is (essentially) (R, ε)-
statistically secure on X. Also, the more entropy X has, the harder it is to satisfy our
definition. We will omit “on X” if a scheme is secure for all distributions X, but for our
lower bounds security for (only) the uniform distribution will suffice. Also, it is easy to see
that to achieve security for all distributions it suffices to achieve security for all min-entropy
1 distributions (i.e., uniform distributions over any two messages x0 and x1). Finally, we
will simply say “secure” to mean statistically secure (this is the more standard notion).

We now have the following theorem about the difficulty of encryption with imperfect
randomness:

Theorem 6 If (Enc, Dec) is

a) (R, ε)-relatively secure on X then H∞(R) ≥ H∞(X) − ε ln 2. In particular, if X ≡ Un

then H∞(R) ≥ n− ε ln 2. Furthermore, the adversary that breaks (R, ε) relative security
when H∞(R) < n− ε ln 2 is efficient.

b) (R, ε)-secure, then 2m ≥ 2H∞(X)(1 − ε) or equivalently, m ≥ H∞(X) − log
(

1
1−ε

)

≥
H∞(X)− 2ε. In particular, if X ≡ Un then m ≥ n− 2ε.

This shows the efficiency of the one-time pad Encr(x) = x⊕ r is essentially tight as it is
(Um, 0)-secure on {0, 1}m.

Proof: Proof of a). Recall for security, RI(X; C) ≤ ε. We will construct an E that separates
(C, X), C ×X). By Lemma 4 this provides a upper bound on security. Let r∗ be the most
likely value of R, that is Pr[R = r∗] = 2−H∞(R). Define E(x, c) to output 1 iff Decr∗(c) = x.
This yields,

Pr[E(X, C) = 1] = Pr[Decr∗(EncR(X)) = X] ≥ Pr[R = r∗] = 2−H∞(R)

Now we consider the distribution C ×X where C and X are sampled independently,

Pr
(x,c)←X×C

[E(x, c) = 1] = Pr
(x,c)←X×C

[Decr∗(c) = x] ≤ 2−H∞(X)

because Decr∗(C) is independent of X. By relative security 2−H∞(R) ≤ eε2−H∞(X) or
equivalently, H∞(R) ≥ H∞(X)− ε ln 2.

Proof of b) consider the following (inefficient) E: E(x, c) = 1 if and only if there exists
r ∈ {0, 1}m such that Decr(c) = x. Then Pr[E(X, C) = 1] = 1 as the properly sampled key
exists. Thus means by statistical security:

1− ε ≤ Pr
(x,c)←X×C

[∃r∗ s.t. Decr∗(c) = x]

≤
∑

r∈{0,1}m
Pr

x,c←X×C
[Decr(c) = x] ≤ 2m · 2−H∞(X)

where again Prx,c←X×C [Decr(c) = x] ≤ 2−H∞(X) since C is independent of X. Rearranging
terms, 2m ≥ (1− ε)2H∞(X).
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We also present an alternate proof of part a) that only uses the properties of indepen-
dence and entropy established above:

Proof:

H∞(R) = H∞(R, X)−H∞(X)

≥ H∞(C, X)−H∞(X)

≥ H∞(C)− ε ln 2

≥ H∞(C|R)− ε ln 2

≥ H∞(X|R)− ε ln 2

= H∞(X)− ε ln 2.

The equality proceeds by independence of R and X. The first inequality because (C =
EncR(X), X) is a deterministic function of (R, X), the second inequality because of relative
security and Exercise 1, the third inequality since conditioning on R can only reduce the
min-entropy, the fourth inequality because X = DecR(C) is deterministic function of R and
C, and the last equality is again because X is independent of R.

We will conclude by considering the implication of this result for modern cryptography.
In modern cryptography, we restrict E to be computationally bounded and allow E to
have a ε advantage in distinguishing the two distributions. We will consider the strongest
starting conditions for Theorem 6, when we have have perfect randomness R ≡ Um. We
then consider part a) of Theorem 6 with ε = 0 (where relative and statistical security are
the same) and part b) with nonzero ε.

Corollary 6 Consider (Enc, Dec) as above.

1. (Um, 0)-security with efficient E implies that m ≥ n.

2. (Um, ε)-security with inefficient E implies that m ≥ n− 2ε.

This means if we want to encryption with keys significantly shorter than messages we need to
consider both efficient E and allow E nonzero probability of winning. These two restrictions
will lead us to modern cryptography.
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