
Randomness in Cryptography March 25, 2013

Lecture 11: Key Derivation without entropy loss

Lecturer: Yevgeniy Dodis Scribe: Abhishek Samanta

In reality, perfect source of randomness is hard to find. So, for real life applications, an
imperfect source X of min-entropy k is converted into usable m-bit cryptographic key for
some underlying application P . If P has security δ (against some class of attackes) with
uniform random m-bit key, our goal is to design a key derivation function (KDF) h that
allows us to use R = h(x) as the key for P and results in comparable δ′ ≈ δ. This lower
bound is known to be tight in general. In todays class we explore new areas to design KDFs
with less waste for important special classes of sources of X and applications P .

1 Last Class

Before delving into technical details, let us refresh our memory with some important defi-
nitions and few important results we proved in last lecture.
Definition 1 (H2 Condenser) We say that an effcient function Cond : {0, 1}n×{0, 1}v →

{0, 1}m is a (kn →
m−d
m)2-condenser if for H2(X) ≥ k and uniformly random S we have

H2(Cond(X;S)|S) ≥ m− d.

Theorem 1 If an application P is (T, ε)-secure and (T, σ)-square secure (in the ideal model)
and Cond is (kn →

m−d
m)2-condenser, then using R = Cond(X;S) as a key makes P (T, ε′)-

secure in the (k, n)2-real model, where

ε′ ≤ ε+
√

σ · (2d − 1).

Lemma 1 Universal hash function hs : {0, 1}n → {0, 1}m is (kn →
m−d
m)2-condenser where,

2d − 1 = 2m−k.

Corollary 2 If key derivation function (KDF) is universal hash function, then

ε′ ≤ ε+
√
σ · 2m−k

Remark 1 For square friendly applications, σ ≈ ε, thus,

ε′ ≈
√
ε · 2m−k.

Remark 2 For square friendly applications σ ≈ ε. So, with entropy loss of log 1
ε (k =

m+ log 1
ε), we get,

ε′ ≈ 2 · ε.

With no entropy loss (k = m), ε′ ≈
√
ε.

Lecture 11, Page 1

2 Key derivation without entropy waste

2.1 Heuristic bound

In practice, one would typically use so called cryptographic hash function h, such as SHA or
MD5, for key derivation. The reason behind this is the common belief that cryptographic
hash functions achieve excellent security δ′ ≈ δ, when k ≈ m. This can be easily justified in
the random oracle model; assuming the KDF h is a random oracle which can be evaluated
on at most q points (where, q is the upper bound of the attacker’s running time), one can
upper bound δ′ ≤ δ+q/2k, where q/2k is the probability the attacker evaluates h(X), where
X is a source. In turn, in time q the attacker can also test about q out of 2m possible m-bit
keys, and hence achieve advantage q/2m. This means that the ideal security δ of P cannot
be lower than q/2m for most applications P . Thus, q ≤ δ · 2m. Plugging this bound on q
in the bound of δ′ ≤ δ + q/2k above,we get that using a random oracle (RO) as a KDF
achieves “real security”,

δ′ ≤ δRO
def
= δ + δ · 2m−k (1)

In particular, δ′ < 2δ even when k = m. For example, to derive a 128-bit key for a CBC-
MAC with security δ ≈ δ′ ≈ 2−64, one needs k ≈ 128 bits of min-entropy.

Main questions Can one find reasonable application scenarios where one can design a
provably-secure KDF achieving “real security” δ′ ≈ δ when k ≈ m (matching the heuristic
bound in Equation (1))? More generally, for a given (class of) applications P ,
(A) What is the best (provably) achievable security δ′ when k = m?
(B) What is the smallest (provable) entropy threshold k to achieve security δ′ = O(δ)?

2.2 Using Leftover Hash Lemma (LHL)

In theory, the cleanest way to design a general KDF is by using famous Leftover Hash Lemma
(LHL) [4], which achieves security ε =

√
2m−k. This gives the following very general bound

on δ′ for all applications P ,

δ′ ≤ δALL
def
= δ +

√
2m−k (2)

As we can see, this provable (and very general) bound is much worse than the heuristic
bound in Equation (1). In particular, we get no meaningful security when k = m (giving
no answer to Question (A)), and must assume k ≥ m+ 2 log(1/δ) to ensure that δ′ = O(δ)
for Question (B). For example, to derive a 128-bit key for a CBC-MAC with security
δ ≈ δ′ ≈ 2−64, one needs k ≈ 256 bits of min-entropy.

2.3 Using square friendly(SF) applications

The idea here is that for SF applications one can argue that the derived keyR = hs(X) is still
“good enough” for P despite not being statistically close to Um (given s). Intuitively, while
any traditional application P demands that the expectation (over the uniform distribution
r ← Um) of the attacker’s advantage f(r) on key r is at most δ, square-friendly applications
additionally require that the expected value of f2(r) is also bounded by δ. Additionally,
for all such square-friendly applications P , it was shown that universal (and thus also the

Lecture 11, Page 2

stronger pairwise independent) hash functions {hs} yield the following improved bound on
the security δ′ of the derived key R = hs(X),

δ′ ≤ δSQF
def
= δ +

√
δ · 2m−k (3)

This provable and still relatively general bound lies somewhere in between the idealized
bound Equation (1) and the fully generic bound Equation (2): in particular, Equation (3)
achieves security δ′ ≈ δ when k = m (giving partial answer to Question (A)), or, alterna-
tively, we get full security δ′ = O(δ) provided k ≥ m+ log(1/δ) (giving a partial answer to
Question (B)). For example, to derive a 128-bit key for a CBC-MAC having ideal security
δ = 2 − 64, we can either settle for much lower security δ′ ≈ 2−32 with k = 128, or get
full security δ′ ≈ 2−64 with k = 192. However, both bounds are still far from the expected
bound δ′ ≈ 2−64 with k = 128, raising the question if further improvements are possible.
But, unfortunately this bound is tight, for SF applications. Consider the following counter
example,

2.3.1 Counter example P

A C(r)
α · z

b′

Figure 1: Counter example to show that Equation (3) is tight

Let us consider an SF application P as follows,

• The challenger has a random source r and is represented by C(r) and the attacker is
called A

• The challenger (C(r)) flips a coin α ∈ {0, 1}, s.t. Pr(α = 1) =
√
δ

• Challenger flips b ∈ {0, 1}.

• The challenger generates z to send to the attacker. z can have two values as follows,

– If b = 0, z = r.

– Otherwise, z = U (fresh uniformly random variable)

• The challenger sends α · z.

• The attacker in return sends back b′. The attacker wins iff b = b′.

Note that, for the above application ideal security is 0.

Claim 1 If σ is the square security of the above mentioned application P , then σ ≤ δ.

Lecture 11, Page 3

Proof: It is to be noted that, if α = 0, challenger sends 0 to the attacker. So, if attacker
receives 0, it best for the attacker to simply output a random guess b′ ← {0, 1}. If it receives
some r ∈ {0, 1}m, then it outputs 1 if PrX(hs(X) = r) ≥ 2−m and 0, otherwise.So, the
attacker can win the game iff α = 1. Thus, for all r and A,

f(r) ≤
√
δ, where f(r) is advantage of A

⇒ f2(r) ≤ δ

Note 1 SRT bound [1] implies that using a universal hash function {hs : {0, 1}n → {0, 1}m}
as a key derivation function (KDF), there exists an efficiently samplable (polynomial in n)
distribution X, and a (generally inefficient) distinguisher D, s.t. ∆D((S, hs(X)), (S,U)) ≥√
2k−m

Thus, for above mentioned P ,
δ′ ≤ δ +

√
δ · 2m−k

Definition 2 (H∞-condenser) A function Cond : {0, 1}n × {0, 1}v → {0, 1}m is (kn
ε→

m−d
m)∞-condenser ((k, d, ε)-condenser) if for all (n, k)-source X, and a uniformly random

and independent seed S ← {0, 1}v, the joint distribution (S,Cond(X,S))
ε
≈ (S, Y) such

that H∞(Y |S) ≥ m− d, where Y is a random variable. ♢

Note 2 d = 0, generalizes extractor.

We can think of our (k, d, ε)-condenser as a way to hash 2k items (out of a universe of size
2n) into 2m bins, so that the load (number of items per bin) is not too much larger than
the expected 2k−m for “most” of the bins. More concretely, it boils down to analyzing a
version of average-load: if we choose a random item (and a random hash function from the
family) then the probability that the item lands in a bin with more than 2d · 2k−m items
should be at most ε.

2.4 Using unpredictability applications

Definition 3 (Unpredictability extractor) We say that a function D : {0, 1}m×{0, 1}d →
{0, 1} is a δ-distinguisher if Pr[D(Um) = 1] ≤ δ, where Um is uniform random over {0, 1}m.
A function UExt : {0, 1}n × {0, 1}d → {0, 1}m is (k, δ, ε)-unpredictability extractor if for
any (n, k)-source X and any δ-distinguisher D, we have Pr[D(UExt(X;S), S) = 1] ≤ ε
where S is uniform over {0, 1}d. ♢
Definition 4 (Condenser) A function Cond : {0, 1}n × {0, 1}d → {0, 1}m is a (k, l, ε)-

condenser if for all (n, k)-sources X, and a uniformly random and independent seed S over
{0, 1}d, the joint distribution (S,Cond(X;S)) is ε-statistically-close to some joint distribu-
tion (S, Y) such that, for all S ∈ {0, 1}d, H∞(Y |S = s) ≥ m− l. ♢

Lemma 3 (Condenser ⇒ UExt). Any (k, l, ε)-condenser is a (k, δ, ε∗)-UExt where ε∗ =
ε+ 2l · δ

Lecture 11, Page 4

Proof: Let Cond : {0, 1}n×{0, 1}d → {0, 1}mbe a (k, l, ε)-condenser and let X be an (n, k)-
source. Let S be uniform over {0, 1}d, so that, by definition, there is a joint distribution
(S, Y) which has statistical distance at most ε from (S,Cond(X;S)) such that H∞(Y |S =
s) ≥ m− l for all s ∈ {0, 1}d. Therefore,for any δ-distinguisher D, we have,

Pr[D(Cond(X;S), S) = 1] ≤ ε+ Pr[D(Y, S) = 1]

= ε+
∑
y,s

Pr[S = s] · Pr[Y = y|S = s] · Pr[D(y, s) = 1]

≤ ε+
∑
y,s

2−d2H∞(Y |S=s) · Pr[D(y, s) = 1]

≤ ε+ 2l ·
∑
y,s

2−(m+d) · Pr[D(y, s) = 1]

≤ ε+ 2l · δ

Definition 5 (Balanced Hashing). Let h = {hs : {0, 1}n → {0, 1}m}s∈{0,1}d be a hash

function family. For X ⊆ {0, 1}n, s ∈ {0, 1}d, x ∈ X we define LoadX (x, s) = |{x′ ∈ X :
hs(x

′) = hs(x)}|. We say that the family h is (k, t, ε)-balanced if for all X ⊆ {0, 1}n of size
|X | = 2k, we have,

Pr[LoadX (X, s) > t · 2k−m] ≤ ε,

where S,X are uniformly random and independent over {0, 1}d, X , respectively. ♢

Lemma 4 (Balanced ⇒ Condenser). Let H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}d be a

(k, t, ε)-balanced hash function family. Then the function Cond : {0, 1}n×{0, 1}d → {0, 1}m
defined by Cond(x; s) = hs(x) is a (k, l, ε)-condenser for l = log(t).

Proof: Without loss of generality, we can restrict ourselves to showing that Cond satisfies
the condenser definition for every flat source X which is uniformly random over some
subset X ⊆ {0, 1}n, |X | = 2k. Let us take such a source X over the set X , and define a
modified hash family h̃ = {h̃s : X → {0, 1}m}s∈{0,1}d , which depends on X and essentially

“rebalances” h on the set X . In particular, for every pair (s, x) such that LoadhX (x, s) ≤
t·2k−m, we set h̃s(x) = hs(x), and for all other pairs (s, x) we define h̃s(x) in such a way that

Loadh̃X ≤ t ·2k−m(the super-script is used to denote the hash function with respect to which
we are computing the load). It is easy to see that this “re-balancing” is always possible.
We use the re-balanced hash function h̃ to define a joint distribution (S, Y) by choosing S
uniformly at random over {0, 1}d, choosing X uniformly/independently over X and setting
Y =h̃S(X). It is easy to check that the statistical distance between (S,Cond(X;S)) and
(S, Y) is at most Pr[hS(X) ̸=h̃S(X)] ≤ Pr[LoadhX (X,S) > t · 2k−m] ≤ ε. Furthermore, for

Lecture 11, Page 5

every s ∈ {0, 1}d, we have,

H∞(Y |S = s) = − log(max
y

Pr[Y = y|S = s])

= − log(max
y

Pr[X ∈ h̃
−1
s (y)])

≥ − log(t · 2k−m/2k)

= m− log t

Thus, Cond is a (k, l = log t, ε)-condenser.

Lemma 5 (UExt ⇒ balanced). Let UExt : {0, 1}n × {0, 1}d → {0, 1}m be a (k, δ, ε)-UExt
for some, ε > δ > 0. Then the hash family H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}d defined by

hs(x) = UExt(x; s) is (k, ε/δ, ε)-balanced.

Proof: Let, t = ε/δ and assume that H is not (k, t, ε)-balanced. Then there exists some set
X ⊆ {0, 1}n, |X | = 2k, s.t. ε′ = Pr[LoadX (X,S) > t · 2k−m] > ε, where X is uniform over
X and S is uniform over {0, 1}d. Let Xs ⊆ X be defined by Xs = {x ∈ X : LoadX (X,S) >

t · 2k−m} and let εs
def
= |X |/2k. By definition ε′ =

∑
s 2

−dεs. Define Ys ⊆ {0, 1}m via
Ys = hs(Xs). Now by definition, each y ∈ Ys has atleast t · 2k−m pre-images in Xs, and

therefore δs
def
= |Ys|/2m ≤ |X∫ |/(t · 2k−m · 2m) ≤ εs/t and δ =

∑
s 2

−d · δs ≤ ε′/t.
Define the distinguisher D via D(y, s) = 1 iff y ∈ Ys. The D is a δ-distinguisher for

δ ≤ ε′/t ≤ ε/t, but Pr[D(hS(X), S) = 1] = ε′ ≥ ε. Thus, UExt is not a (k, ε/t, ε)-UExt.

Summary Taking Lemma 3, Lemma 4, and Lemma 5, together, we see that they are
close to tight. In particular, for any ε > δ > 0, we get,

(k, δ, ε)− UExt⇒ (k, ε/δ, ε)− balanced [Using Lemma 5]

⇒ (k, log(ε/δ), ε)− Cond [Using Lemma 4]

⇒ (k, δ, 2 · ε)− UExt [Using Lemma 3]

2.4.1 Constructing Unpredictability Extractors

Theorem 2 There exists an efficient (k, δ, ε)-unpredictablity extractor UExt : {0, 1}n ×
{0, 1}d → {0, 1}m for the following parameters,

• When k = m (no entropy loss), we get ε = (1 + log(1/δ)) · δ

• When k ≥ m+ log log(1/δ) + 4, we get ε = 3 · δ

• In general, ε = O(1 + 2m−k · log(1/δ)) · δ

In all cases, the function UExt is simply a (log(1/δ)+O(1))-wise independent hash function
and the seed length is d = O(n log(1/δ))

We prove Theorem 2 by constructing “good” balanced hash functions and using our con-
nections between balanced hashing and unpredictability extractors.

Lecture 11, Page 6

Lemma 6 Let H = {hs : {0, 1}n → {0, 1}k} be (t + 1)-wise independent. Then it is
(k, t, ε)-balanced where ε ≤ (et)

t and e is the base of the natural logarithm.

Proof: Fix any set X ⊆ {0, 1}n of size |X | = 2k. Let X be uniform over X and S be
uniform/independent over {0, 1}d. Then

Pr[LoadX (X,S) > t] ≤ Pr[∃C ⊆ X , |C| = t, ∀x′ ∈ C : hS(x′) = hS(X) ∧ x′ ̸= X]

≤
∑

X⊆X ,|C|=t

Pr[∀x′ ∈ C : hS(x′) = hS(X) ∧ x′ ̸= X]

≤
(
2k

t

)
2−tk

≤
(e · 2k

t

)t
· 2−tk

≤
(e
t

)t

Corollary 7 For any 0 < ε < 2−2e, any δ > 0, a (log(1/ε) + 1)-wise independent hash
family H = {hs : {0, 1}n → {0, 1}k}s∈{0,1}d is, (k+log(1/ε), ε)-balanced, (k, log log(1/ε), ε)-

condenser, (k, δ, log(1/ε) · δ+ ε)-UExt. Setting δ = ε, we get a (k, δ, (1+ log(1/δ)) · δ)-UExt

Proof: Set t = log(1/ε) in Lemma 6 and notice that (et)
t ≤ 2−t ≤ ε as long as t ≥ 2e.

This establishes part(1) of Theorem 2. Next we look at a more general case where k may
be larger than m. This also covers the case k = m but gets a somewhat weaker bound. It
also requires a more complex tail bound for q-wise independent variables.

Lemma 8 Let H = {hs : {0, 1}n → {0, 1}m}s∈S be (q + 1)-wise independent. Then, for

any α > 0, it is (k, 1 + α, ε)-balanced where ε ≤ 8 ·
(

q·2k−m+q2

(α·2k−m−1)2

)q/2
.

Proof: Let X ⊆ {0, 1}n be a set of size |X | = 2k, X be uniform over X , and S be
uniform/independent over {0, 1}d. Define the indicator random variables C(x∗, x) to be 1
if hS(x) = hS(x

∗) and 0, otherwise. Then,

Pr[LoadX (X,S) > (1 + α) · 2k−m] =
∑
x∗∈X

Pr[X = x∗] · Pr[LoadX (x
∗, S) > (1 + α) · 2k−m]

= 2−k ·
∑
x∗∈X

Pr

[∑
x∈X\{x∗}

C(x∗, x) + 1 > (1 + α) · 2k−m

]

≤ 8 ·

(
q · 2k−m + q2

(α · 2k−m − 1)2

)q/2

Where the last line follows from the tail inequality [3] with random variables {C(x∗, x)}x∈X\{x∗}
which are q-wise independent and have expected value µ = E[

∑
x∈X\{x∗}C(x∗, x)] = (2k −

1) · 2−m ≤ 2k−m, and by setting A = (1 + α) · 2k−m − 1 − µ ≥ α · 2k−m − 1; recall that
C(x∗, x∗) is always 1 and C(x∗, x) for x ̸= x∗ is 1 with probability 2−m.

Lecture 11, Page 7

Corollary 9 For any 0 < ε < 2−7, k ≥ m + log log(1/ε) + 4, a (log(1/ε) + 4)-wise in-
dependent hash function family H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}d is, (k, 2, ε)-balanced,

(k, 1, ε)-condenser, (k, δ, 2δ + ε)-UExt for any δ > 0. Setting δ = ε, it is a (k, δ, 3δ)-UExt.

Proof: Set q = log(1/ε) + 3, α = 1 and 2k−m = 5q. Then we apply Lemma 8,

8 ·

(
q · 2k−m + q2

(α · 2k−m − 1)2

)q/2

≤ 8 ·

(
6 · q2

(5q − 1)2

)q/2

≤ 8

(
1

4

)q/2

≤ 8(2−q) ≤ ε.

The second step assumes q > 10 meaning that ε < 2−7.

The above corollary establishes part (2) of Theorem 2. The next corollary gives us a general
bound which establishes part (3) of the theorem. Asymptotically it implies both Corollary 7
and Corollary 9 but with worse constants.

Corollary 10 For any ε > 0 and q = log(1/ε)+3, a (q+1)-wise independent hash function
family H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}d is (k, 1 + α, ε)-balanced for

α = 4 ·
√

q · 2m−k + (q · 2m−k)2 = O(2m−k · log(1/ε) + 1).

By setting δ = ε, a (log(1/δ) + 4)-wise independent hash function is a (k, δ,O(1 + 2m−k ·
log 1/δ) · δ)-UExt.

Proof: The first part follows from Lemma 8 by noting that,

8 ·

(
q · 2k−m + q2

(α · 2k−m − 1)2

)q/2

≤ 8 ·

(
6 · q2

(5q − 1)2

)q/2

≤ 8

(
1

4

)q/2

≤ ε.

For the 2nd part, we can consider two cases. If q ·2m−k ≤ 1, then α ≤ 4
√
2 and we are done.

Else, α ≤ 4
√
2 · (q · 2m−k) = 4

√
2(log(1/ε) + 3) · 2m−k.

References

[1] Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin. Computa-
tional Extractors and Pseudorandomness in TCC 2012

[2] Yevgeniy Dodis, Krzysztof Pietrzak, Daniel Wichs.Key derivation without entropy waste

[3] M. Bellare and J. Rompel. Randomness-effcient oblivious sampling In 35th Annual Sym-
posium on Foundations of Computer Science, pages 276-287. IEEE, 1994.

[4] J. Hastad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of pseudorandom
generator from any one-way function. In SIAM Journal on Computing, 28(4):1364-1396,
1999.

Lecture 11, Page 8

