Randomness in Cryptography January 10, 2013

Lecture 1: One-Time MACs, (XOR)Universal hashing, Weak Keys
Lecturer: Yevgeniy Dodis Scribe: Eric Miles

In today’s lecture we study one-time message authentication codes (MACs) which are
secure in an information-theoretic sense. We will see that, compared to information-
theoretically secure encryption, significantly better parameters can be achieved. We will
also study such MACs in the setting of imperfect randomness, i.e. when the secret key
is not drawn from the uniform distribution but rather is only guaranteed to have some
min-entropy.

1 Class Organization

Before starting the technical material, we make two remarks on the class itself.

First, all registered students will be expected to scribe roughly two lectures, and all
visitors are encouraged to scribe one lecture.

Second, throughout the lectures there will be a number of problems to be solved outside
of class time, with varying levels of difficulty. FEzercises are simple problems which will
usually just involve a routine calculation. Questions will require slightly more work, but
will still be on the easier end of the spectrum. At the other end of the spectrum we have
projects, which will be more open-ended and for which the solution may not be known.
Finally quesjects will be somewhere in between the latter two, still requiring work but with
a somewhat clearer path to a solution.

2 One-time MACs

We start by defining a (one-time) message authentication code (MAC). The setting is the
following: we have two parties, A(lice) and B(ob), who share a secret key r € {0,1}™. A
wants to send a message = € {0, 1}" to B along with a tag t € {0, 1}* that allows B to verify
that the message came from A. To do so, they use a function Tag : {0,1}™ x {0,1}" —
{0,1}*; specifically, A sends = and ¢ := Tag(r,z), and B receives (2/,t') and verifies that
t' = Tag(a’,r). Throughout, we will use Tag, to denote the function Tag(r,-).

In general one can (and does) consider randomized MACs, but today we will only
consider deterministic MACs. As a result, the correctness property, namely that B will
always accept a message with a valid tag, is immediate.

To define the security of a MAC, consider the following game G, parameterized by
r € {0,1}"™. There are two players: a challenger C' who receives r as input, and an
adversary F/(ve) who receives no input. G, has the following three steps.

1. E chooses z € {0,1}" and sends z to C.
2. C computes and sends t := Tag,.(z) to E.
3. E outputs (z/,t') € {0,1}" x {0,1}*.

Lecture 1, Page 1

We say that E wins G, if 2’ # x and Tag,(2’) = t/, and write Advg(r) := Pr[E wins G,] to
denote E’s advantage. In general we write Advy"(r) if we need to specify the game.

Our goal in this lecture is to obtain an efficient function Tag such that, for every com-
putationally unbounded adversary E, Advg(r) is negligible in . Clearly if r is fixed, this
is impossible as we can consider an E that has r hardwired. Thus, the following security
definition considers secret keys r that are chosen probabilistically.

Here and throughout the lecture notes, U,, denotes the uniform distribution on {0, 1}".
We will use capital letters to denote random variables and/or the distributions from which
they are sampled, and lower-case letters to denote specific values.

DEFINITION 1 Let R be a distribution on {0,1}™ and § > 0. A function Tag : {0,1}" X
{0,1}" — {0,1}* is a (R, §)-secure one-time MAC if for every E,

E, r[Adve(r)] <6,

When R = U,,, we simply say d-secure. &
This definition captures what we intuitively want from a (one-time) MAC, because any

eavesdropper F who overhears one message from A to B does not gain enough information
to then forge any message to B from A.

In constructing MACs, there are two general goals. The first is to minimize the tag
length A and the error ¢ for given key and message lengths m, n. The second, more common
goal is to minimize the tag and key lengths A, m for a given message length n and error 4.

We will construct MACs from a certain type of hash functions, defined next.

DEFINITION 2 Let n,A\,p € N and § > 0. A family of functions H = {h, : {0,1}" —
{0,1}* | @ € {0,1}P} is d-almost XOR-universal (5-AXU) if Vo # 2’ € {0,1}™,y € {0,1}:

Pr [ha(z) ® ha(z') =y] <. (1)

AUy

If § = 27> (which is optimal when A\ < n), we say H is XOR-universal (XU). If (1)
holds only for y = 0™, namely

p = Nl <. 2
P Dhala) = haa)] < 5 2)
we say &-almost universal (5-AU) (or universal when § = 27*), respectively. O

2.1 Constructing MACs from)-AXU functions

Before constructing -AXU functions, we show how to construct MACs from them.

Theorem 1 Let H = {h, : {0,1}" — {0,1}*|a € {0,1}P} be a 6-AXU function family.
Then, parsing r = (a,b) € {0,1}? x {0,1}*, the function

Tag, (z) := he(z) ® b

is a d-secure one-time MAC with key length m =p+ .

Lecture 1, Page 2

Exercise 1 Find a counterexample to Theorem 1 if instead Tag,(z) := hq(x) (i.e. if ®b is
omitted).

Recall the game G, that defines the security of a given MAC Tag,. We now prove
Theorem 1 by defining another game G, with the following properties: first, any adversary
with advantage € in G, implies the existence of an adversary with advantage ¢ in G7; second,
every adversary has advantage bounded by ¢ in G when H is §-AXU. (In fact, as a syntactic
convienience we will define two games G.., G/ with these properties.)

Proof: We first restate the game G when R < U,,. Throughout the proof, we assume
wlog that the adversary E is deterministic and computationally unbounded, and also that
E never outputs X’ = X (as then she loses the game for sure).

Gpr =
1. E chooses and sends X € {0,1}" to C.
2. C samples (A4, B) <- U, x Uy and sends T' = Tag4 py(X) = ha(X) @ B to E.
3. E computes and outputs (X’,T"), and wins if X # X’ and Tag4 p)(X') = T".

We define the game G’; to be the same as G with the following change to step 3:
computes X', 7" but instead outputs (X', Y =T @& T), and wins if ha(X) @ ha(X') =
Notice, this is only a syntactic change, since

E
Y.
ha(X" Yo B=T" iff (ha(X')® B)® (ha(X)®B)=T' & T iff ha(X)Dha(X') =Y

Hence, clearly we have
Gr _ Gr
max (AdvE (R)) = max (AdvE (R)>

when R < U,,.
We now define a third game G, which is only different from G’ in the way the tag T
is computed.

Gl =
1. E chooses and sends X € {0,1}" to C.
2. C samples T < Uy and sends it to E.
3. E computes and outputs (X', Y).
4. C samples A < U, and E wins if hq(X) @ ha(X') =Y.

Notice, because B is sampled uniformly in game G’, we have that T is distributed
uniformly in both G, and G%. Moreover, T is independent from A, which justifies the
“delayed” sampling of A in step 4 of game G’,. Thus the changes from G'; to G'; preserve
the distribution of each random variable, and we have

max (Advg%’(R)) = max (Advg}% (R)) .

Lecture 1, Page 3

Furthermore, because A is sampled at random after X # X’ and Y are defined, the fact
that H is §-AXU implies that

max (Advg% (R)) <46
which implies the theorem. L]

Note the importance of sampling B uniformly at random in the proof of this theorem.

2.2 Constructing 6-AXU functions

We now turn to constructing 6-AXU function families H = {h, : {0,1}" — {0,1}*|a €
{0,1}P}. But first, we note the following lower bounds on the key size p.

’ if H is... ‘ then... ‘
XU p>n

0-AXU | p>log(1/6) + log(n/N)

universal | p > n — A

-AU | p>1log(1/9) +log((n—A)/X)

The first construction we consider is trivially XU, but has very poor key length p = nA.
Construction 1 Let the key a € {0,1}**™ be a matriz, and define hq(x) := a - x.

We now observe that by instead letting a come from the set of so-called Hankel matrices,
we can save on the key length.

DEFINITION 3 A matrix a € {0,1}"" is a Hankel matriz if each reverse diagonal is
constant. That is, for each 2 <7 < Aandeach 1 <j <n—1, a;; = a;j—1,j+1. O

Construction 2 Let the key a € {0,1}**™ be a Hankel matriz, and define hq(v) :==a - x.
Question 1 Prove that Construction 2 is XU.

Note that a Hankel matrix is specified by giving a single bit for each of the n + A — 1
reverse diagonals. Thus we have p = n + A — 1, which is < 2n when A < n and thus within
a constant factor of the XU lower bound.

The next construction uses finite fields and achieves p = n, matching the XU lower
bound. We assume some implicit bijection between {0,1}"™ and the finite field GF(2")
defined by an irreducible G F(2)-polynomial of degree n.

Construction 3 Let the key a € GF(2"), and define hq(z) to be the lower-order X bits of
a-x (where multiplication is in GF(2")).

Question 2 Prove that Construction 8 is XU.

Our final XU construction achieves the same key length, but uses inner products over
the finite field GF(2*) and will be more convenient to modify later.

Lecture 1, Page 4

Construction 4 Assume that n = b\ for some b € N. Let the key a = (a1,...,ap) €
GF(2M)°. Then parse x as (z1,...,7) € GF(2N), and define hq(z) := (a,x) = >, a;;.

Lemma 1 Construction 4 is XU.
Proof: Fix x # 2’ € GF(2*)? and y € GF(2"). Define z = — 2’ # 0°. Then we have

Prlha(2) @ ha(e') = o] = Prl(a,) © (a,2') = y] = Pr((a, 2) = 4]

because addition and subtraction in GF(2") both correspond to bit-wise @. We claim that
the latter probability equals 2=, which implies the lemma. To see this this, assume wlog
that z1 # 0, and note that for any setting of as, ..., a; we have

Pri(a.) =] = Prias = ¢ =27

where ¢ 1= (y — > ;55 ai2;) - ot e GF(2Y). O

To achieve only universality as opposed to XOR-universality, we can save A bits in the
key (and thus match the lower bound) by fixing a; = 1 € GF(2).

We now modify Construction 4 to obtain a 6-AXU family for § < n -2~ while reducing
the key length to A. This is done by replacing (a1, ...,ay) with (a,a?,...,a?) for a single
a € GF(2).

Construction 5 Assume that n = b\ for some b € N. Let the key a € GF(2"). Then
parse x as (z1,...,1) € GF (2N, and define hq(z) :== >, a* - z;.

Lemma 2 Construction 5 is (27 -n/\)-AXU.

Proof: Fix x # 2’ and y as before, and let z = 2 — 2’ # 0°. Then, if we define 2z := ¥y, we
have

a

b
Pr[ha(z) @ ha(2') = y] = l?lr [Z at-z; = 0] .
=0

Thus he(x) ® ha(x') = y only for those a that are roots of the polynomial ¢ (s) :== Y, zi-s".
Since ¢ is of degree < b and thus has < b = n/\ roots, this implies the lemma. L]

Letting 6 = 27 - n/\, we see that Construction 5 achieves key length p = A < logn +
log (1/6). (In general one can have constructions that decouple p from A, but we will not

consider those here.) The following corollary is immediate.

Corollary 3 For every n and 0, there is a 6-AXU family with p = XA = log(n/J).

Lecture 1, Page 5

2.3 Putting it together

Combining the results of the preceding subsections, the following main theorem is proved.
Recall that for a MAC, n denotes the message length, m denotes the key length, A denotes
the tag length, and § denotes the maximum advantage of any adversary.

Theorem 2 There exist §-secure one-time MACs in each of the following parameter regimes.
1. Foranyn and \, m =2\ and § =n -2~ =n.27™/2,
2. For anyn and m, A =m/2 and § =n -27"/2,

3. For any n and 6, m = 2log(n/d) and A = log(n/§).

It is interesting to note that if one only cares about message authentication rather than
encryption, Shannon’s well-known lower bound in the setting of one-time statistical security,
namely that key length > message length, does not hold.

We remark on the optimality of this MAC construction. First, there is a lower bound
by Alon (unpublished) which shows that any MAC must satisfy

m > logn + 2log (1/0) — loglog (1/9) . (3)

The construction in Theorem 2 essentially achieves this bound up to the constant factor 2
on logn. Second, a paper by Gemmell and Naor [2] notes that the existence of a MAC with
m = logn+2log (1/9) can be proved non-constructively, which again improves on Theorem
2 only by the constant factor 2 on logn.

Quesject 1 Prove either or both of the above bounds, namely the lower bound (3) and the
(non-constructive) MAC that achieves m =logn + 2log (1/4).

Before moving on, we note the following two simple lower bounds. First, the tag length
A must be at least log (1/d); this is because an adversary can correctly guess a tag with
probability 27*. Second, the key length m > 2log (1/6) (even when n = 1). We will not
prove it now (see next lecture), but the intuition is that when R < Usje(1/5), Tagg(®)
has log (1/§) bits of entropy, and for any z’ # z the value Tagp(z’) has log (1/0) bits of
entropy even conditioned on Tagp(z). Note that when the message length n = 1, this
can be achieved by parsing 7 = (rg,71) € {0,1}21°6(/9) and defining Tag,(z) = r, where
x €{0,1}.

3 MACs with imperfect randomness

We now begin to study a question which we will continue in the next lectures, namely: is
it possible to build a MAC from an imperfect source of randomness?

To make sense of this question we must formalize what is meant by “imperfect”. This
is done by defining the notion of the entropy of a given distribution R. There are multiple
types of entropy that one can define; the most common form is Shannon entropy, denoted
H,; (R), which we will not define here. Shannon entropy is typically not the “right” notion

Lecture 1, Page 6

of entropy for cryptography, because it is possible to define pathological distributions that
have high Shannon entropy but are useless to cryptographic algorithms. The main type of
entropy that we will consider is min-entropy, denoted Ho(R) and defined next. Later we
will also consider collision entropy, which is denoted Ho(R). For any distribution R, these
three types of entropy satisfy Hoo(R) < Ho(R) < Hg,(R).

DEFINITION 4 Let R be a distribution. The predictability of R is defined by Pred(R) :=
max, (Pr[R = r]), and the min-entropy of R is defined by Hy (R) := log(1/Pred(R)). When
H. (R) > k we say that R is a k-source. &

Note that R is a k-source if and only if Pr[R = r] < 27F for every r in the support of
R. Also, the value Pred(R) is equal to the maximum, over all computationally unbounded
adversaries F, of Prr[E guesses R).

With this definition in hand, we now define MACs with imperfect randomness and prove
a general transformation from perfect randomness to imperfect randomness.

DEFINITION 5 A function Tag is a (k,0)-secure one-time MAC' if it is an (R, d)-secure
one-time MAC for all k-sources R. &

Theorem 3 If Tag is a §-secure MAC with key length m, then for every k < m it is also
a (k,2m7F . §)-secure MAC.

Informally speaking, a theorem such as this one holds for any cryptographic task which
deals with “unpredictability” (as opposed to the stronger notion of “indistinguishability”).
Theorem 3 follows immediately from the next lemma, where f(r) = Advg(r) is indeed
non-negative.

Lemma 4 For every function f:{0,1}™ — R=Y and every k-source R on {0,1}™,
E[f(R)] <27 " -E[f(Un)].
Proof: Because Pr[R = r| < Pred(R) for all r by definition, we have
E[f(R)] = Y Pr[R=r] f(r)

1

< Pred(R)-2™- Z om

r

2) [(U,)].

- f(r)

Notice, the inequality crucially used the fact that f > 0. Indeed, the result is wrong for
general f, as we will see later. L]

Combining Theorems 1, 2, and 3, we obtain the following.
Theorem 4 For any k such that m/2+logn < k < m, the function Tag defined in Theorem
1is a (k,n-2™/2F)_secure MAC with tag length A = m/2.

In other words, for every n and 0, every m > 2log(n/d), and every (m >) k > m/2 +
log(n/d), there exists a (k,d)-secure MAC with tag length A = m/2.

Lecture 1, Page 7

3.1 Conditional Min-Entropy and Direct Proof of Theorem 4

We conclude today’s lecture by giving a more direct proof of Theorem 4 that in particular
does not use the general transformation of Theorem 3. To do so we need some simple facts
about min-entropy, as well as the following notion of conditional min-entropy which comes
from [1].

DEFINITION 6 Let A, B be two jointly-distributed random variables, and define

Pred(A| B) i= By p[Pred(A | B = b)] = max <EE[E(B) - A]) .

)

Then, the conditional min-entropy of A given B is Ho (A | B) := log(1/Pred(A | B)). &

Note that Ho (A | B) is not equivalent to Ey.p[log(1/Pred(A | B = b)] (which has the E
and log switched). This latter definition turns out not to be very useful for cryptography,
since 27 Heo(AIB) = Pred(A|B) = maxy(Pr(E(B) = A) measures the best probability E can
guess A given B.

Lemma 5 For every distribution Z and every deterministic function g: Hoo(Z) > Hoo(9(Z2)).

Proof: This is equivalent to Pred(Z) < Pred(g(Z)), which holds because applying g to the
output of any predictor for Z gives a predictor for g(Z). L]

Lemma 6 For all distributions A, B with |Support(B)| < L, the following two (equivalent)
statements hold.

1. Hoo(A) > HOO(A|B) > HOO(A7B) —IOgL > HOO(A) —logL.

2. Pred(A) < Pred(A|B) < L-Pred(4,B) < L-Pred(A).

Proof: The statements are equivalent by definition. The only non-trivial inequality is
Pred(A|B) < Pred(A, B) - L, which we now prove following [1, Lem. 2.2].

Pred(A|B) = Eu_p[Pred(A|B =1b)]
= ngx(Pr[A:MB:b]) - Pr[B = b
b

= ngx(Pr[A:a/\B:b])
b

< Yomax(PrlA=anB=1V))
— ",

= L- max (Pr[A=aAB=1V]) = L-Pred(4, B).
A more “algorithmic” way to prove this result is to turn any predictor E(b) for A given
b + B into a predictor E’ for (A, B) as follows. FE’ samples uniformly random b <+
Support(B), and then runs a < E(b), and outputs (a,b). Intuitively, irrespective of the
actual distribution B, the random sample of b from Support(B) is “correct” (call this
event Cor) with probability at least 1/L. Moreover, it is easy to see (exercise) that
conditioning on Cor does not affect the marginal distribution of “real” (A, B). Thus,
Advg (A, B) > 1 - Advg(A|B). O

Lecture 1, Page 8

We now turn to the direct proof of Theorem 4. Recall that the MAC we are considering
is defined by

Tag(qp) (© —b—l—le

where a,b € GF(2*) and = € {0,1}" is parsed as (z1,...,2q) € GF(2M) for d := n/\.
Observe that for any z # 2’ € GF(2*)? and any t,t' € GF(2"), the system of equations

d

b+ mi-d =t
=1
d

b+ af-a =t
=1

has < d solutions for a, and these solutions are the same for each b € GF(2}). We define the
position of a given (a,b), denoted Pos,) (z,2') € {1,...,d}, as follows. Let t = Tag, ()
and t' = Tagap) ('), and let aq,as, ... be the lexicographically-ordered set of solutions to
the above system with this ¢,#’. Then define Pos,) (7, 2") := i where a = a;.

Proof: Let E be a computationally unbounded adversary, and assume wlog that E is
deterministic. Recall the following game between E and the challenger C' that defines Tag’s
security; here we split the final step into two parts as a technical convenience.

Gap) =
1. E chooses and sends z € (GF(2*)) to C.
2. C samples (A, B) + GF(2}) x GF(2*) and sends T = Tag(a,p)(7) to E.
3. E computes X’ (as a function of T') and sends it to C.

4. E computes T" (as a function of T') and sends it to C.

E wins G4 p) if X' # x and Tag(A’B)(X’) =T.

For the X' that E outputs, let T := Tag4 p)(X') denote its real tag. Because X' is
a function of T' only, it is clear that the strategy that maximizes Advg(A, B) is to try to
compute in step 4 this value 7%, given only T". Thus denoting ¢ := maxg(Advg(A, B)), we
must have log (1/§) > Hoo(T™ | T), and so it suffices to prove Hoo(T* | T) > k — A —logd as
follows.

Hoo(T*|T) > Hoo(T",T)-
> H(T", TPosAB)(a: X)) =X —logd
> Hw(A,B) — A —logd
= k—)\—logd.

The first two inequalities hold by Lemma 6 since the support size of T" and Pos 4 p) (x, X")
is 2% and d, respectively. The third inequality holds by Lemma 5, because there is a
deterministic g such that g(T7™, T, Pos 4 g)(x, X)) = (A, B); note that g can compute = and
X' because the former is fixed and the latter depends only on 7. L]

Lecture 1, Page 9

References

[1] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
how to generate strong keys from biometrics and other noisy data. In FUROCRYPT
2004.

[2] Peter Gemmell and Moni Naor. Codes for interactive authentication. In CRYPTO 1993.

Lecture 1, Page 10

