On Extractors,
Error-Correction and
Hiding All Partial

Information

Yevgeniy Dodis W

i New York University |

Based on several joint works with the following co-authors:
Xavier Boyen, Jonathan Katz, Rafail Ostrovsky, Leonid Reyzin and Adam Smith

Imperfect Random Sources

* Randomness is crucial in many areas

- Especially cryptography (i.e., secret keys)

» Usually, assume a source of truly random bits

+ However, often deal with imperfect randomness
- Physical sources

- Biometric data

- Partial knowledge about secrets

* Necessary assumption: must have (min-)entropy
- (Min-entropy) A-source: Pr[X=x]<2%, forall x

+ Can we extract (nearly) perfect randomness
from such realistic, imperfect sources?

Extractors: 15t attempt

- A function Ext : {0,1}" — {0,1}" such that
V k-source X, Ext(X) is “close"” to uniform.

‘ k-source of length n ‘

!

EXT
'

lm almost-uniform bi’rs‘

- Impossible! 3 set of 2! inputs x on which first bit of
Ext(x) is constant = “flat" (n-1)-source X, bad for Ext.

3

Modern Extractors [Nz]

- Def: (k,&)-extractor is Ext: {0,1}"x{0,1}¢ — {0,1}"
s.t. V k-source X, Ext(X,U)) is e-close to U,

‘ k-source of length n ‘

“seed” 1

‘d random bits |—' EXT
!

lm almost-uniform bi’rs‘

- Key point: seed can be much shorter than output.
* Goals: minimize seed length, maximize output length.

Strong Extractors

» Output looks random even after seeing the seed
- Very handy in some applications |
- Ex: only "remember” biometric secret X, publish seed I

is and use Ext(X, /) as the "effective” secret key.

- Def: Extis a (k,£) strong extractor if

Ext/(x:i) = 1 o Ext(x, 1) is a (k,€)-extractor

- Optimal: d =~ log(n-k) + log(1/e), m ~ k—2log(1/¢)

- In many crypto applications, OK to have d = O(n)

Leftover Hash Lemma
» Universal Hash Family { 2:{0,1}"—{0,1}™}:

Ve =y, Pri(hi(z) =hi(y)) =277
 Leftover Hash Lemma [HILL]: universal

hash functions {&} yield strong extractors:
(I,h;(X)) ~, (I,U,)

- optimal output length: m =k — 2 log(1/¢)

- seed length: d = O(n)

» Ex: Ext(x;a) = first m bits of a-x in GF(2")
* Many generalizations known (stay tuned !)

7

Arent We Cheating?

* Need truly random seed to extract randomness??
- Remember, extract much more than invest |

- In some applications have "“local randomness”

- Sometimes go over all seeds for derandomization

* Indeed, many applications !

- Derandomization [Sip,GZ MV ,STV ,NZ INW RR,GW,..]
- Distributed and Network Algorithms [WZ,Zuc,RZ, Ind]
- Hardness of Approximation [Zuc,Uma,MU]

- Data Structures [Ta]

- Pseudorandom number generation [BH]

- Cryptography |
[CDHKS,DSS KZ,6RS,MW Lu,Vad,Din,DS1,DS2,DRS,BDKOS...]

When to Use Extractors?

The obvious usage is for extracting
good randomness (key derivation)

Less known: for arquing privacy |

. Output of extractor hides the actual
distribution on X

. [DS1]): in fact, it “hides every
deterministic function of X*!
Some applications need both usages !

9

Entropic Security [CMR,RW]

+ Amap S() is called (k,e)-entropically secure
if V k-source X, V predictors, d simulator,

V functions f, seeing S(X) "does not help":

Pr{S(X) B Predictor 8 f(X): < Pr[--> f(X)J + £

» Also say S() hides all functions of X
* Notice, S() must be probabilistic (f = S)
* S() must also be one-way (f = identity)

» Identical to semantic security [GM], but
for high-entropy distributions

10

Comparing to Shannon

» Shannon Security: S(X) is independent of X
- Very strong, hides all "a-posteriori” functions

- As such, S(X) can't be "useful” for anything

» E-security "only” hides "a-priori” functions
- Can leak "useless” info while still being "useful”
» Equivalent without min-entropy constraint

* Warning: E-security does not compose well

- Like most i.t. notions, can only be used once
(e.g., S(X;ry), S(X;r,) might potentially leak X)

11

High-Entropy Indistinguishability

+ Amap S() is called (k€)-indistinguishable if
V k-sources X, Y, S(X) is e-close to S(Y)
- In particular, all of them are e-close to S(U)
- (k,e)-extractors are also (k,z¢)-indistinguishable
» Thm [DS1]: If S() is (k,e)-indistinguishable
then it is (k+2,8¢)-entropically secure

* Corollary: extractors for min-entropy k hide
all functions for sources of min-entropy k+2

* Punchline: to argue entropic security, enough
to construct a “special-purpose” extractor

12

"Special-Purpose” Extractors

+ Sometimes, plain extractors are not enoughl!
- Need extractors with "extra properties”

- Scenario 1: more robust key derivation
- Local computability (bounded storage model)
- Noise-tolerance (biometrics)

- Scenario 2: when extraction is merely a convenient
tool for arguing entropic security

- Invertibility (for encryption)

- Collision-resistance (for hash functions)

- Error-correction (for information-reconciliation)

- Unforgeability (for message authentication)

- Scenario 3: combination of scenarios 1 & 2

13

Adding Invertibility:
Entropically-Secure
Encryption

Symmetric Encryption
Key K (d bits long)

/ \.

E E(M;K) R D

| l

message M (n bits long) Evve message M

» Shannon: Symmetric Encryption without
computational assumptions requires d > 7

(achieved by one-time pad)
* Russell and Wang [RW]: What can be said when
the message is guaranteed to have high entropy?

15

Entropically-Secure Encryption

* Require E to be (k,e)-entropically secure
- Ciphertext hides all functions of plaintext
- Note: Shannon security corresponds to k =1

* [RW]: can beat Shannon's bound when k > 1

- Pretty ad-hoc and complicated

- [DS1]: suffices to construct E(M;K) which is
an extractor for min-entropy k-2 !

- Leads to better (optimal) constructions

- Much simpler to understand/analyze than [RW]

 Thus, need (k,)-extractor whose source can
be recovered from its output and its seed.

16

Invertible Extractors

If C=E(M; K), then we want

1. € # random, if K random and M has entropy k
2. One can recover ("decrypt”) M from C and K
3. Goal: minimize d = [K]|

Note, |C| > |M| = n (by invertibility)

Also, C has |C|> n bits of entropy (since
it is random)

Since M only has k bits of entropy, we
must have key length |K| >n -k
Can we achieve i1???

17

Using Graphs for EncrypTuon

» Graph on 2" vertices of degree 2¢

+ Consider E M,K) =N (M,K)

- Random step from M

- Decryption assumes labeling is
“invertible”, which is easy to get
(Cayley graphs)

+ Goal: get to uniform from any min-

entropy > k distribution on M

- Expansion | Want any set of size > 2*
to expand to all vertices in 1 stepl

+ Can achieve d =n —k + 2 log(1/¢)
(using the Ramanujan expanders)

19

Sparse One-Time Pad

» For r.v. X over {0,1}" and o € {0,1}", let

bias (X) = 2(Pr[aeX = 0] - 3) = E[(-1)* X]
- X is 8-biased if |bias (X)| <6 for all =0
- Can sample o-biased X with 2log(n/5) bits

» Fact: If X is 8-biased, M is k-source then
M @& X ~_ uniform, where ¢ = § . 2(n-k)/2

» Use optimal 6-biased sets and get "sparse
one-time pad” withd =n —k + 2 log(n/¢)

20

Probabilistic One-Time Pad

- Modified L

L:

~EM K =(I M h(K))

- probabilistic encryption (I is not part of K)

- Here {4 :{0,1}9—{0,1}"} is "XOR-universal":
Va € {0,1}" x #y, Pri(hi(z)®h;(y) =a) = 27"

» LHL' [new]:

If {Ah}is XOR-universal and

k >n-d+ 2log(1/¢) then
(L. M h(K))=.(L,U,)
Probabilistic one-time pad: d = n — k + 2log(1/¢)

21

Invertible Extractors

* Theorem [DS1]: three constructions

- From expander graphs, achieve optimal
d=n—-k+2log(l/¢), where ¢ is the “error”
- "Sparse One-time Pad: E(M; K) = M® S(K),
where d =n —k + 2 log(n/¢)
+ 5(K) is a point sampled from (e - 2(-)/2)-biased set
- "Probabilistic OTP": get d = n — k + 2log(1/¢)
rEM K)=(I, MO A (K))
- probabilistic encryption (I is not part of K)
- Here {A. :{0,1}9—{0,1}"} is "XOR-universal"

22

Adding
Collision-Resistance:
Perfectly One-Way
Hash Functions

Collision-Resistant Extractors

» Collision: (w,i)#(w',i") s.t. Ext(w;i) = Ext(w';i")
- Strong extractors: i, w=w' s.t. Ext(w;i)=Ext(w';i)
+ "Commit" o w by publishing (i, Ext(w;i))

- Great decommitment: simply present w |

» Entropic Security: if entropy of W is at
least k, then (I, Ext(W.I)) hides all
functions of W (weaker than usual hiding)

* Note: don't need full power of extractors,
suffices to have (k)-indistinguishability

25

Construction

 Yet another variant of LHL:

- Ext(W ; I) = f(4, (W)

- £:{0,1}¥—={0,1}™ is arbitrary function

- {A.:{0,1}"—{0,1}"} are pairwise independent:
Vo #y, (hp(z),hr(y)) = (Un,Un)

- LHL" [Ds2]): If {A} is pairwise independent

and k >m+ 2log(1/¢) then
(L, (A (W)~ (I, f(Uy))

(gives an extractor if f(Uy) is uniform)
26

Construction

» LHL": If {A} is pairwise independent and
k >m+ 2log(1/¢) then
(L, f(h(W))) =~ (I, f(y))
» Apply with f = CRHF and family of pairwise
independent permutations (e.g., {ax+bla=0})
- Permutations ensure collision-resistance
» Gives Perfectly One-Way Hash Functions

and Obfuscators for Equality for inputs
with entropy > output of CRHF + 2log(1/¢)

27

Adding Locally
Computable Aspect:
Key Derivation in

Bounded Storage
Model

Bounded Storage Model [Mau]

- Setting:
- Alice and Bob share a short random key K
(have local randomness, although not needed)

- A huge random (high entropy enough) string X
of length N is broadcast to them

- Eve is allowed to store any function Z = f(X) of
length YN, for some y< 1

- Thus, from Eve's perspective, X is imperfect,
although still has high entropy

29

Bounded Storage Model

* Goal 1: Key Agreement
- extract a much longer random key R from X using K
- R is secret from Eve, for any storage function f

* Goal 2: Key Reuse

- keep using the same K with subsequent (new) X's
* Goal 3: Everlasting security

- R should be secure even if K is leaked later

+ Simple solution: apply a strong extractor to X
with seed K

+ Satisfies goals 1-3, but requires Alice and Bob to
read the entire X, which even Eve cannot do ® |

30

Locally Computable Extractors

R = “Ext(w,K)” &
»+ Example [AR]:

- K consists of ¢ random indices ij,...,i, € {1...N}
—w = X[i{] ... X[i,], extract bitR=w; ® .. ® w,

- Can argue secure if y< 1/5 and 7 "large enough”

- Rate inefficient, but illustrates the point
(indeed, improved by [DM, Lu, Vad])

31

Locally Computable Extractors

—
——_
-
—

R — “EXt(W, K)”
"Sample-then-Extract” [Lu,Vad]

- K= (KK, K¢ & K, - sampling & extraction keys
- Use K, to sample small subset of bits w from X

- If "good" K. is used, w still has high min-
entropy from Eve's point of view

- Use K, as a seed to any good strong extractor

32

Locally Computable Extractors

Alice W oo =T
222257777y = “Sample(X,K)”
S R = “Ext(w,K)” R = “Ext(w,K)” i

"Sample-then-Extract” [Lu,Vad]
- K= (KK, K¢ & K, - sampling & extraction keys

* With optimal sampler and extractor:
- can have key |K| = O(log N + log 1/¢)
- extract m bits by reading O(m) bits w from X

33

Adding
Noise-Tolerance:
Fuzzy Extractors

and

Secure Sketches

Biometrics

- Setting:
- Want to use imperfect biometric data W as
your secret key

- Have local randomness, but can't "remember” it

+ Simple Solution:
- Apply strong randomness extractor
- Store seed I for strong extractor in the public
- Use Ext(W. I) as your "actual” secret key

* Problem: noisy nature of biometrics

- Two different readings of W are likely to be
different, although "close”

35

New Primitive: Fuzzy Extractor

» Reliably extract randomness out of w
* First time: generate random R from w (+ seed)

W ——»

seed —

—>R

Gen |,

+ Subsequently: reproduce R from P and any w’ = w

W —»

Rep —R

P—

* R is nearly uniform given P if w has sufficient
min-entropy (can put usual n, m, k, 1,"€) disfance

- Punchline: trade-off |R| = m for error-tolerance
(distance 7) and non-uniformity (min-entropy k)_

What does "Close” mean?

» Depends on the "natural” metric space for the
underlying applicationl

- Hamming Metric (feature-extraction systems)

- Set Difference ("favorite” set in a large universe)

- Edit Metric (handwriting / typing)

- Permutation Metric (ranking-based preferences)
_w " %/\ . ;‘ I

Real" Metrics: o Sl - (complicated) (=)
- Different me’rrlcs require dlfferen’r techniques!

+ [DORS]: General framework, specific algorithms

37

Building Block: Secure Sketch

* Add reliability by publicly storing sketch S(w)

w——>| S |—Sw)

- Recover w from S(w) and any w’ = w (w’ close to w)

W——>»

S(w)—» Rec [——w

* w has "high" min-entropy even given S(w)
- Entropy loss: how much entropy S(w) revealed about w
- Note, Entropy loss <1S(w)l (good to have short sketch)

* Punchline: trade-off entropy for error-tolerance

39

Secure Sketch in Hamming Space

- Idea: what if w is a codeword in an ECC?
* Decoding finds w from w’

41

Secure Sketch in Hamming Space

- Idea: what if w is a codeword in an ECC?

* Decoding finds w from w’
- ITf w not a codeword,
simply shift ECC to
contain w and just o o o o

remember the shift | . oWie

W://'S
+Sf dec.
® ®

S (wz/‘

42

Code-Offset Construction
S(w) = syndrome(w) OR S(w;r)=w @ ECC(r)

» If ECC expands a bits — n bits and has
distance d:

- Correct t = d/2 errors
—S(w) has n — a bits = entropy loss at most n —a
- Optimal if code is optimal (sketch = ECC)

- Works for non-binary alphabets too (i.e., RS
codes give optimal entropy loss = 21 log ¢)

» Appears in [BBR88, Cré97, JW02] under
various guises

- [DORS]: also sketches for other metrics

3

Using Secure Sketches

» SS + strong extractor = fuzzy extractor
. Namely, set P=(Sw),I), R=Extiw;I)
» Extract |R| = residual min-entropy - 2log(1/¢)

> Information-Reconcils
W o _Bob
prsa Can we design °©

ske’rche“s which leak o0
ho “useful" o

information about w? But T <till '
- =~ learned S Derf
O

Still high
uncertainty
about w

| o0
¢ Eve

45

Correcting Errors
Without Leaking
Partial Information:
Entropically-Secure
Sketches

Entropically-Secure Sketches
» Design sketch S(w) such that

- Can recover w from S(w) and any w’ close to w
—S() is (k,g)-entropically secure

* Notice, implies residual entropy > log(1/¢)
+ Converse false: code-offset leaked syn(w)

- Suffices to construct (k,)-extractor which
is also a sketch |

- Goal: minimize number of "extracted” bits

47

Error-Correcting Extractors

w

|

random coins —

S

T E
uniform

'
S(w)

X

» We want to optimize

extraction error

s Want to minimize

output length!

v

| Recover

—w

Theorem [DS2]: If min-entropy k =Q(n), then 3 (strong)
extractor S(-) (for Hamming errors) such that

+ Can correct t = Q(n) errors efficiently

- Error ¢ = 2-9(), 1y, particular, H_(W | S(W)) = Q(n)

- Output "only" k (1-Q(1)) bits

Compare with invertible extractors:

* not having w’ & w "forces" to extract >n bits |

49

Error-Correcting Extractors

Recently constructed

if X i
by Shpilka’05
* Idev— (pad params though) od
sket¢ . / 4 good code

» Can we achieve bot smuHaneou@?Q

- Yes for non-linear codes, but no explicit constructs ®

- No for linear codes (any o in the dual has «c©X =0) ®

» Idea 3: use a family of (carefully chosen)
linear codes to get the best of both worlds |

50

Construction
» Design family of codes {ECC;} and set

S(w;i) = (i syn, (w)) OR S(w;i,r) = (i, w ® ECC, (r))

W
l
i— S w’

Y
. | Recover — w
uniform

Theorem [DS2]: There exist efficiently
decodable codes with "needed parameters”

» for “large” alphabets get optimal parameters!

51

Construction
» Design family of codes {ECC;} and set

S(w;i) = (i,syn,(w)) OR S(w;i,r) = (i,w ® ECC, (r))

* Theorem [DS2]: If entropy k =Q(n), there
exists codes giving (strong) extractors s.t.

- Can efficiently correct t =Q(n) errors
- Have (entropic) error ¢ = 2-%()

- Output “only” 7 (1-Q(1)) bits

» Compare with invertible extractors:

- not having w’ & w "forces" to extract >n bits |

52

App: Private Fuzzy Extractors

» Recall, SS + strong extractor = fuzzy
extractor:set P=(Sw), 1), R=Extiw;I)
- Let's use "extractor-sketches"” instead !

+ Get FE where (P, R) ~.(U,, U,)
- Even joint pair (P, R) hides all functions of W'!

» Called Private Fuzzy Extractors:

- As opposed to usual fuzzy extractors, public
data P does not reveal anything "useful” about
the biometric W, even if the key R is leaked !

53

App: Fuzzy POWHFs

* Recall, POWHFs allow to publish a value
Z = “Commit(w)” s.t. given input w’
— Verity(Z,w’) accepts if and only if w=w’
- Moreover, Z is (k,€)-entropically secure

* What if want to test if distance(w,w’) <1 ?

+ Attempt: use secure sketch and publish (Z, S(w))
- Preserves collision-resistance ©
- Does not preserve entropic security ®

» Solution: use entropically-secure sketch. Get

- Fuzzy POWHFs
- Equivalently, (weak) obfuscators for proximity queri5e55

App: Bounded Storage Model

Solves the
main open
problem from
[Ding’05]

* Goal: "'(Wsk I S(Wsk),
“Everlasting security”: cpaweTe-use sk?

[Ding]: Not with usual s?ches!

- S(W,,) leaks info on sk o

Extracting sketch: S(W,, ;) ~ S(W,.,) !,

Adding
Authentication:

entropically-secure
MACs,
Robust FE/SS, ..

: Bounded Storage Model

___‘__’l Recover |\
Eve (a2 check WAL

- Need to authenticaté S of S

* No problem: add MAC key // to sk
- send MAC (S) together with S

* But which MAC???
- Computational: lose information-theoretic security ®

- Information-theoretic: cannot reuse 1/ ®
59

App: Bounded Storage Model

—
—
— o M

—-—
-
-

Recover |, 1y
0QA 1don’t |
Eve check MAC
®

of &
+ Idea [DKRS]: authenticate w instead of S i
- send MAC (w) instead of MAC (S)

 Why does this help?
+ Because W has high entropy for Eve !
- "extractor-MAC": MAC (W) ~ random
- OK to reuse u (if can build extractor-MACs) !!

60

Extractor-MACs

» Strong Extractor: (I,Ext(X,I)) ~, (U,,U,,)if X
has min-entropy at least k
- Goal 1: minimize d (note: opt = O(log n + log(1/¢))),
- Goal 2: maximize m (note: opt = k —2log(1/e) —O(1))
* (Strong) One-time MAC: forany x # x’,y,y’
Pr,(Ext(x’,)=y’ | Ext(x,]) =y)| <8
- Goal 1: minimize d (note: opt = O(log n + log(1/9))),
- Goal 2: minimize m (note: opt = log(1/0) + O(1))
» Together: Extractor-MAC

- Goals 1 & 2: minimize d, minimize m (MAC "wins")
- Goal 3: minimize k (since want small 71)

62

Extractor-MACs

» Strong Extractor: (I,Ext(X,I)) ~, (U,,U,,)if X

has min-entropy at least k

- Goal 1: minimize d (note: opt = O(log n + log(1/¢))),

- Goal 2: maximize m (note: opt = k —2log(1/¢) —O(1))

* (Strong) One-time Mf/::/for any x #x’,y,y’

Pr,(Ext(x’,)£y’ | Ext(x,]) =¥)| <8

- Goal 1: minimize d/ (note: opt = O(log n + log(1/9))),

2 opt = log(1/0) + O(1))

* Together: Exjractfor-MAC. We a

—d = O(log n + log(1/0) + log(1/€)),/m = log(1/0) + O(1),
f k2 m +2log(1/e) + O(1) = log(1/8) + 2log(1/e) +O(1)

- Goal 2: minimiz

ieve optimal

Extractor-MACs

* Idea 1. pairwise independent hash functions are
both extractors (universality) and one-time MACs
- Optimal m = log(1/0) ®©, but longd = n +1og(1/0) ®

+ Idea 2: compose with "almost universal” hash
function before pairwise independence

- Extractor part: OK if collision probability < 277¢*> (so
total < 27*(1+€?) and can still apply LHL),

- MAC part: OK since pairwise independent MAC
composes well with universal hash

+ Optimize parameters to get the result

65

Robust Sketches & Extractors

* If the user can store only biometric w, how can
he be sure that P or S(w) are correct [BDKOS] ?

- Robust Secure Sketches / Fuzzy Extractors

- Server can only refuse to help or give correct P/S(w)

- Applications to biometric authenticated key-exchange
secure against man-in-the-middle attacks

» Idea: add "authentication information” H(pub,w)
to the public information pub, for a special H

- most work: finding H that works w/o leaking much info
66

Robust Sketches & Extractors

* Which H(pub,w) will produce a good MAC?
- [BDK*O5]:

- H = Random Oracle. Works (still tricky)

+ [DKRSO6]: recall, pub=(S(w),h)

- Use "interconnected” extractor h and MAC H

- Works only if k > /2 (inherent in this model ®)
- Extract (much) less than in "non-robust” case ®

+ [CDF*08]: regain optimality using a CRS!
- Idea: set pub=S(w), CRS = h and ... more tricks

67

Concluding

» Randomness extractors are useful for
- Key derivation
- Privacy (entropic security!)
- Many Combinations
* In many cases plain extractors not enough
- Need "special-purpose” extractors

73

Special Purpose Extractors
» Adding Invertibility:

- Entropically-Secure Encryption

» Adding Collision-Resistance:

- Perfect one-way hash functions (POWHF)

» Adding Error-Correction:

- Fuzzy extractors (FE), secure sketches (SS)

» Correcting errors w/o leaking partial info
- Private FEs and SSs, fuzzy POWHFs
- Error-correction in the bounded storage model

» Adding Authentication, Local Computability..

74

Concluding

- Randomness extractors are useful for

- Key derivation

- Privacy (entropic security!)

- Many Combinations

* In many cases plain extractors not enough

- Need "special-purpose” extractors

* Variants of leftover hash lemma very useful
» Unexpected tools, connections, subtleties

» Elegant techniques, nice insights

+ Exciting area, many open questions left Il

75

76

