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Imperfect Random Sources
• Randomness is crucial in many areas 

– Especially cryptography (i.e., secret keys) 

• Usually, assume a source of truly random bits

• However, often deal with imperfect randomness
– Physical sources

– Biometric data

– Partial knowledge about secrets

• Necessary assumption: must have (min
)entropy
– (Min
entropy) k
source: Pr[X=x] ≤≤≤≤ 2
k,    for all x

• Can we extract (nearly) perfect randomness 
from such realistic, imperfect sources?
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Extractors: 1st attempt
• A function Ext : {0,1}n →→→→ {0,1}m such that       

∀ ∀ ∀ ∀ k
source X, Ext(X) is “close” to uniform.

• Impossible!  ∃∃∃∃ set of 2n-1 inputs x on which first bit of 
Ext(x) is constant ⇒⇒⇒⇒ “flat” (n-1)-source X, bad for Ext.

EXT

k-source of length n

m almost
uniform bits
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Modern Extractors [NZ]

• Def: (k,ε)
extractor is Ext : {0,1}n××××{0,1}d →→→→ {0,1}m

s.t. ∀∀∀∀ k
source X, Ext(X,Ud) is ε
close to Um.

• Key point: seed can be much shorter than output.

• Goals: minimize seed length, maximize output length.

d random bits

“seed”

EXT

k-source of length n

m almost
uniform bits
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Strong Extractors
• Output looks random even after seeing the seed

– Very handy in some applications !

– Ex: only “remember” biometric secret X, publish seed I 

is and use Ext(X, I) as the “effective” secret key.

• Def: Ext is a (k,ε) strong extractor if 

Ext′′′′(x;i) = i ◦◦◦◦ Ext(x, i) is a (k,ε)
extractor 

• Optimal: d ≈≈≈≈ log(n-k) + log(1/ε), m ≈≈≈≈ k− 2log(1/ε)

– In many crypto applications, OK to have d = O(n)
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Leftover Hash Lemma
• Universal Hash Family { hi:{0,1}n→{0,1}m }:

• Leftover Hash Lemma [HILL]: universal 
hash functions {h} yield strong extractors: 
( I , hI (X ) ) ≈≈≈≈εεεε ( I , Um )

– optimal output length: m = k − 2 log(1/ε)

– seed length: d = O(n)

• Ex: Ext(x;a) = first m bits of a



x in GF(2n)

• Many generalizations known (stay tuned !)
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Aren’t We Cheating?
• Need truly random seed to extract randomness??

– Remember, extract much more than invest !

– In some applications have “local randomness”

– Sometimes go over all seeds for derandomization

• Indeed, many applications !
– Derandomization [Sip,GZ,MV,STV,NZ,INW,RR,GW,…]

– Distributed and Network Algorithms [WZ,Zuc,RZ,Ind]

– Hardness of Approximation [Zuc,Uma,MU]

– Data Structures [Ta]

– Pseudorandom number generation [BH]

– Cryptography ! 
[CDHKS,DSS,KZ,GRS,MW,Lu,Vad,Din,DS1,DS2,DRS,BDKOS…]
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• The obvious usage is for extracting 
good randomness (key derivation)

• Less known: for arguing privacy !

1. Output of extractor hides the actual 

distribution on X

2. [DS1]: in fact, it “hides every 
deterministic function of X“ !

• Some applications need both usages !

When to Use Extractors?



10

• A map S() is called (k,ε)–entropically secure
if ∀∀∀∀ k
source X, ∀∀∀∀ predictors, ∃∃∃∃ simulator, 
∀∀∀∀ functions f, seeing S(X) “does not help”:

• Also say S() hides all functions of X

• Notice, S() must be probabilistic (f = S)

• S() must also be one
way (f = identity)

• Identical to semantic security [GM], but 
for high
entropy distributions

Entropic Security [CMR,RW]

�PredictorS(X) f(X)Pr Simulator f(X)Pr +ε
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• Shannon Security: S(X) is independent of X
– Very strong, hides all “a
posteriori” functions

– As such, S(X) can’t be “useful” for anything

• E
security “only” hides “a
priori” functions
– Can leak “useless” info while still being “useful”

• Equivalent without min
entropy constraint 

• Warning: E
security does not compose well
– Like most i.t. notions, can only be used once 

(e.g., S(X;r1), S(X;r2) might potentially leak X)

Comparing to Shannon
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• A map S() is called (k,ε)–indistinguishable if 
∀∀∀∀ k
sources X, Y, S(X) is ε
close to S(Y)
– In particular, all of them are ε
close to S(U)

– (k,ε)–extractors are also (k,2ε)–indistinguishable

• Thm [DS1]: If S() is (k,ε)–indistinguishable 
then it is (k+2,8ε)–entropically secure

• Corollary: extractors for min
entropy k hide 
all functions for sources of min
entropy k+2

• Punchline: to argue entropic security, enough 
to construct a “special
purpose” extractor

High
Entropy Indistinguishability
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• Sometimes, plain extractors are not enough!
– Need extractors with “extra properties”

• Scenario 1: more robust key derivation
– Local computability (bounded storage model)

– Noise
tolerance (biometrics)

• Scenario 2: when extraction is merely a convenient 
tool for arguing entropic security
– Invertibility (for encryption)

– Collision
resistance (for hash functions)

– Error
correction (for information
reconciliation)

– Unforgeability (for message authentication)

• Scenario 3: combination of scenarios 1 & 2

“Special
Purpose” Extractors
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Adding Invertibility: 

Entropically
Secure 

Encryption
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Symmetric Encryption

• Shannon: Symmetric Encryption without 
computational assumptions requires  d  ≥ n
(achieved by one
time pad)

• Russell and Wang [RW]: What can be said when 
the message is guaranteed to have high entropy?

E D

Key K (d bits long)

message M (n bits long) message M
Eve

E(M;K)
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• Require E to be (k,ε)–entropically secure
– Ciphertext hides all functions of plaintext
– Note: Shannon security corresponds to k = 1

• [RW]: can beat Shannon’s bound when k > 1
– Pretty ad
hoc and complicated

• [DS1]: suffices to construct E(M;K) which is 
an extractor for min
entropy k−2 !
– Leads to better (optimal !) constructions
– Much simpler to understand/analyze than [RW]

• Thus, need (k,ε)–extractor whose source can 
be recovered from its output and its seed.

Entropically
Secure Encryption
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Invertible Extractors
• If C = E(M; K), then we want

1. C ≈ random, if K random and M has entropy k
2. One can recover (“decrypt”) M from C and K
3. Goal: minimize d = |K|

• Note, |C| ≥ |M| = n (by invertibility)

• Also, C has |C|≥ n bits of entropy (since 
it is random)

• Since M only has k bits of entropy, we 
must have key length |K| ≥ n − k

• Can we achieve it???
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Using Graphs for Encryption
• Graph on 2n vertices of degree 2d

• Consider E (M,K) = N (M,K)

– Random step from M

– Decryption assumes labeling is 
“invertible”, which is easy to get 
(Cayley graphs)

• Goal: get to uniform from any min

entropy ≥ k distribution on M
– Expansion ! Want any set of size ≥ 2k

to expand to all vertices in 1 step!

• Can achieve d = n −−−− k + 2 log(1/ε)
(using the Ramanujan expanders)

G

M

N(M,1)

N(M,2)

N(M,2d)

N(M,K)

C
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• For r.v. X over {0,1}n and α ∈ {0,1}n, let 

biasα(X) = 2( Pr[α⊙X = 0] – ½ ) = E[(
1)α⊙ X]

– X is δ
biased if |biasα(X)|� δ for all α ≠ 0

– Can sample δ
biased X with 2log(n/δ) bits 

• Fact: If X is δ
biased, M is k
source then

M ⊕⊕⊕⊕ X  ≈≈≈≈εεεε uniform, where ε = δ 
 2(n–k)/2

• Use optimal δ
biased sets and get “sparse 

one
time pad” with d = n −−−− k + 2 log(n/εεεε)

Sparse One
Time Pad
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Probabilistic One
Time Pad
• Modified LHL:

– E(M; K) = ( I,  M ⊕ hI (K ) )

– probabilistic encryption (I is not part of K )

– Here {hi :{0,1}d→{0,1}n } is “XOR
universal”: 

• LHL’ [new]:  If {hi } is XOR
universal  and  
k ≥ n – d + 2log(1/ε) then

( I , M ⊕ hI (K ) ) ≈ε ( I , Un )

Probabilistic one
time pad: d = n – k + 2log(1/ε)
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Invertible Extractors
• Theorem [DS1]: three constructions

– From expander graphs, achieve optimal             

d = n −−−− k + 2 log(1/ε), where ε is the “error”

– “Sparse One
time Pad: E(M; K) = M ⊕ S(K ), 
where d = n −−−− k + 2 log(n/εεεε)

• S(K) is a point sampled from (ε 
 2(k–n)/2)
biased set

– “Probabilistic OTP”: get d = n – k + 2log(1/ε)

• E(M; K) = ( I,  M ⊕ hI (K ) )

• probabilistic encryption (I is not part of K )

• Here {hi :{0,1}d→{0,1}n } is “XOR
universal”



24

Adding 

Collision
Resistance: 

Perfectly One
Way 

Hash Functions
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Collision
Resistant Extractors
• Collision: (w,i) ≠ (w’,i’) s.t. Ext(w;i) = Ext(w’;i’)

– Strong extractors: i, w≠w’ s.t. Ext(w;i)=Ext(w’;i)

• “Commit” to w by publishing (i, Ext(w;i))
– Great decommitment: simply present w !

• Entropic Security: if entropy of W is at 
least k, then (I, Ext(W;I)) hides all 
functions of W (weaker than usual hiding)

• Note: don’t need full power of extractors, 
suffices to have (k,ε)–indistinguishability
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Construction
• Yet another variant of LHL:

– Ext(W ; I ) = f(hI (W))

– f:{0,1}N→{0,1}m is arbitrary function

– {hi :{0,1}n→{0,1}N } are pairwise independent: 

• LHL’’ [DS2]:  If {hi} is pairwise independent 
and k ≥ m + 2log(1/ε) then

( I , f(hI (W)) ) ≈≈≈≈εεεε ( I , f(UN) )
(gives an extractor if f(UN ) is uniform)
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Construction
• LHL’’:  If {hi} is pairwise independent and 

k ≥ m + 2log(1/ε) then

( I , f(hI (W)) ) ≈ε ( I , f(UN) )

• Apply with f = CRHF and family of pairwise 
independent permutations (e.g., {ax+b|a≠ 0})
– Permutations ensure collision
resistance

• Gives Perfectly One
Way Hash Functions
and Obfuscators for Equality for inputs 
with entropy > output of CRHF + 2log(1/ε)
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Adding Locally 
Computable Aspect: 

Key Derivation in 
Bounded Storage 

Model
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Bounded Storage Model [Mau]

• Setting:

– Alice and Bob share a short random key K 

(have local randomness, although not needed)

– A huge random (high entropy enough) string X

of length N is broadcast to them

– Eve is allowed to store any function Z = f(X) of 

length γN, for some γ < 1

– Thus, from Eve’s perspective, X is imperfect, 

although still has high entropy 
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Bounded Storage Model 
• Goal 1: Key Agreement

– extract a much longer random key R from X using K

– R is secret from Eve, for any storage function f 

• Goal 2: Key Reuse
– keep using the same K with subsequent (new) X’s

• Goal 3: Everlasting security
– R should be secure even if K is leaked later

• Simple solution: apply a strong extractor to X
with seed K

• Satisfies goals 1
3, but requires Alice and Bob to 
read the entire X, which even Eve cannot do � !
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Locally Computable Extractors

• Example [AR]:

– K consists of t random indices i1,…,it ∈ {1...N}

– w = X[i1] … X[it], extract bit R = w1 ⊕ … ⊕ wt

– Can argue secure if γ < 1/5 and t “large enough” 

– Rate inefficient, but illustrates the point 
(indeed, improved by [DM, Lu, Vad])

Bob

R = “Ext(w,K)”

Alice

XK K

w = “Sample(X,K)”

w

R = “Ext(w,K)”

w

f(X)
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Locally Computable Extractors

• “Sample
then
Extract” [Lu,Vad]
– K = (Ks,Ke), Ks & Ke – sampling & extraction keys

– Use Ks to sample small subset of bits w from X

– If “good” Ks is used, w still has high min

entropy from Eve’s point of view

– Use Ke as a seed to any good strong extractor

Bob

R = “Ext(w,K)”

Alice

XK K

w = “Sample(X,K)”

w

R = “Ext(w,K)”

w

f(X)
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Locally Computable Extractors

• “Sample
then
Extract” [Lu,Vad]
– K = (Ks,Ke), Ks & Ke – sampling & extraction keys

• With optimal sampler and extractor:

– can have key |K| = O(log N + log 1/ε)

– extract m bits by reading O(m) bits w from X

Bob

R = “Ext(w,K)”

Alice

XK K

w = “Sample(X,K)”

w

R = “Ext(w,K)”

w

f(X)
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Adding 
Noise
Tolerance: 
Fuzzy Extractors 

and

Secure Sketches
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Biometrics 
• Setting:

– Want to use imperfect biometric data W as 
your secret key

– Have local randomness, but can’t “remember” it

• Simple Solution: 
– Apply strong randomness extractor
– Store seed I for strong extractor in the public
– Use Ext( W; I ) as your “actual” secret key 

• Problem: noisy nature of biometrics
– Two different readings of W are likely to be 

different, although “close”
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New Primitive: Fuzzy Extractor
• Reliably extract randomness out of w

• First time: generate random R from w (+ seed)

• Subsequently: reproduce R from P and any w’ ≈ w

• R is nearly uniform given P if w has sufficient 
min
entropy (can put usual n, m, k, t, ε)

• Punchline: trade
off |R| = m for error
tolerance 
(distance t) and non
uniformity (min
entropy k)

P
RRep

w’

w R
Gen Pseed

distance
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What does “Close” mean?
• Depends on the “natural” metric space for the 

underlying application!

– Hamming Metric (feature
extraction systems)

– Set Difference (“favorite” set in a large universe)

– Edit Metric (handwriting / typing)

– Permutation Metric (ranking
based preferences)

– “Real” Metrics:                                     (complicated)

• Different metrics require different techniques!

• [DORS]: General framework, specific algorithms
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• Add reliability by publicly storing sketch S(w)

• Recover w from S(w) and any w’ ≈ w (w’ close to w)

• w has “high” min
entropy even given S(w)

– Entropy loss: how much entropy S(w) revealed about w

– Note, Entropy loss ≤ |S(w)| (good to have short sketch)

• Punchline: trade
off entropy for error$tolerance

Building Block: Secure Sketch

w S(w)S

S(w)
wRec

w’
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Secure Sketch in Hamming Space
• Idea: what if w is a codeword in an ECC?

• Decoding finds w from w’

w’

w



42

Secure Sketch in Hamming Space
• Idea: what if w is a codeword in an ECC?

• Decoding finds w from w’

• If w not a codeword,
simply shift ECC to 
contain w and just 
remember the shift !

w
w’

S(w)

-s
+s dec
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Code
Offset Construction

• If ECC expands a bits → n bits and has 
distance d:
– Correct t = d/2 errors

– S(w) has n – a bits ⇒ entropy loss at most n – a

– Optimal if code is optimal (sketch ⇒ ECC)
– Works for non
binary alphabets too (i.e., RS 

codes give optimal entropy loss = 2t log q)

• Appears in [BBR88, Cré97, JW02] under 
various guises

• [DORS]: also sketches for other metrics

S(w) = syndrome(w) OR S(w;r) = w ⊕ ECC(r)
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Using Secure Sketches

� SS + strong extractor ⇒ fuzzy extractor
• Namely, set  P = ( S(w), I ), R = Ext(w ; I )

• Extract |R| ≈ residual min
entropy – 2log(1/ε)

� Information
Reconciliation

w ≈ w’

“Sketch”    S(w)
Recover w

Still high 
uncertainty 

about w

w

BobAlice

w’

Eve

But I still 
learned S(w)!

Can we design 
sketches which leak 

no “useful” 
information about w?

I think we 
can !!!
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Correcting Errors 
Without Leaking 

Partial Information: 
Entropically
Secure 

Sketches
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Entropically
Secure Sketches
• Design sketch S(w) such that 

– Can recover w from S(w) and any w’ close to w

– S() is (k,ε)
entropically secure

• Notice, implies residual entropy ≥ log(1/ε) 

• Converse false: code
offset leaked syn(w)

• Suffices to construct (k,ε)
extractor which 

is also a sketch !

– Goal: minimize number of “extracted” bits
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Error
Correcting Extractors
w

w’Srandom coins

S(w)
Recover

noise (� t flipped bits)

w
uniform

≈ε

Theorem [DS2]: If min
entropy k =Ω(n), then ∃ (strong) 
extractor S(
)   (for Hamming errors) such that

• Can correct t = Ω(n) errors efficiently
• Error ε = 2–Ω(n). In particular, H∞(W | S(W)) = Ω(n)

• Output “only” k (1
Ω(1)) bits

Compare with invertible extractors: 
• not having w’ ≈ w “forces” to extract ≥ ≥ ≥ ≥ n bits !

• We want to optimize 

extraction error

• Want to minimize 

output length!
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Error
Correcting Extractors
• Idea 1: Recall, S( W; X ) = W ⊕ ⊕ ⊕ ⊕ X ≈≈≈≈εεεε uniform,   

if X is (ε 
 2(k–n)/2)
biased

• Idea 2: Recall, S( W; X ) = W ⊕ ⊕ ⊕ ⊕ X, is a good 

sketch if X is a random codeword in a good code

• Can we achieve both simultaneously?
– Yes for non
linear codes, but no explicit constructs �

– No for linear codes (any α in the dual has α⊙X ≡ 0) �

• Idea 3: use a family of (carefully chosen) 

linear codes to get the best of both worlds !

Recently constructed 
by Shpilka’05 

(bad params though)
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Construction
• Design family of codes {ECCi}  and set

S(w;i) = (i, syni (w)) OR S(w;i,r) = (i, w ⊕ ECCi (r))

w

w’Si

syni(w)
Recover w

uniform

≈ε

i

Theorem [DS2]: There exist efficiently 
decodable codes with “needed parameters”
• for “large” alphabets get optimal parameters!
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Construction
• Design family of codes {ECCi}  and set

• Theorem [DS2]: If entropy k =Ω(n), there 
exists codes giving (strong) extractors s.t. 

– Can efficiently correct t =Ω(n) errors

– Have (entropic) error ε = 2–Ω(n)

– Output “only” t (1
Ω(1)) bits

• Compare with invertible extractors: 

– not having w’ ≈ w “forces” to extract ≥ ≥ ≥ ≥ n bits ! 

S(w;i) = (i, syni (w)) OR S(w;i,r) = (i, w ⊕ ECCi (r))
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App: Private Fuzzy Extractors

• Recall, SS + strong extractor ⇒ fuzzy 
extractor: set  P = ( S(w), I ), R = Ext(w ; I )

– Let’s use “extractor
sketches” instead !

• Get FE where (P, R) ≈≈≈≈εεεε (U1, U2)

– Even joint pair (P, R) hides all functions of W !

• Called Private Fuzzy Extractors: 
– As opposed to usual fuzzy extractors, public 

data P does not reveal anything “useful” about 

the biometric W, even if the key R is leaked !
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App: Fuzzy POWHFs
• Recall, POWHFs allow to publish a value      

Z = “Commit(w)” s.t. given input w’

– Verify(Z,w’) accepts if and only if w=w’

– Moreover, Z is (k,ε)
entropically secure

• What if want to test if distance(w,w’) < t ?

• Attempt: use secure sketch and publish (Z, S(w))
– Preserves collision
resistance ☺

– Does not preserve entropic security �

• Solution: use entropically
secure sketch. Get 
– Fuzzy POWHFs 

– Equivalently, (weak) obfuscators for proximity queries



56

App: Bounded Storage Model

• Shared secret sampling key sk
• Goal: H(Wsk | S(Wsk), sk) “high” for Eve
• “Everlasting security”: can we re
use sk?
• [Ding]: Not with usual sketches!

– S(Wsk) leaks info on sk

• Extracting sketch: S(Wsk1) ≈≈≈≈ S(Wsk2) !

“Sketch”    S(wsk)
Recover wsk

Bob

wsk

Alice

w’sk

X

Eve
???

noise

sk sk

Solves the 
main open 

problem from 
[Ding’05]

f(X)
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Adding 
Authentication: 

entropically
secure 
MACs, 

Robust FE/SS, …
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App: Bounded Storage Model

• Need to authenticate S

• No problem: add MAC key µ to sk
– send MACµ(S) together with S

• But which MAC???
– Computational: lose information
theoretic security �

– Information
theoretic: cannot reuse µ   �

S(w)
Recover w

Bob

w

Alice

w’

X

Eve
Change

!

noise

sk sk

S’

???

µ µ

MACµ(S)

I Lost… check MAC
of S
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I know S
☺☺☺☺

MACµ(S)

App: Bounded Storage Model

• Idea [DKRS]: authenticate w instead of S !!!
– send MACµ(w) instead of MACµ(S)

• Why does this help?

• Because W has high entropy for Eve !
– “extractor
MAC”: MACµ(W) ≈ random

– OK to reuse µ (if can build extractor
MACs) !!

S(w)
Recover w

Bob

w

Alice

w’

X

Eve

noise

sk skµ µ

I don’t
know w

����

check MAC
of S

MACµ(w)

check MAC
of w
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Extractor
MACs
• Strong Extractor: ( I , Ext(X, I) ) ≈≈≈≈εεεε (Ud , Um ) if X

has min
entropy at least k

– Goal 1: minimize d   ( note: opt = O(log n + log(1/ε)) ), 

– Goal 2: maximize m ( note: opt = k − 2log(1/ε) − O(1) )

• (Strong) One
time MAC: for any x ≠≠≠≠ x’ , y , y’

PrI ( Ext(x’, I) = y’ | Ext(x, I) = y)| ≤ δ

– Goal 1: minimize d  ( note: opt = O(log n + log(1/δ)) ), 

– Goal 2: minimize m ( note: opt = log(1/δ) + O(1) )

• Together: Extractor
MAC

– Goals 1 & 2: minimize d, minimize m (MAC “wins”)

– Goal 3: minimize k ( since want small m )
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Extractor
MACs
• Strong Extractor: ( I , Ext(X, I) ) ≈≈≈≈εεεε (Ud , Um ) if X

has min
entropy at least k

– Goal 1: minimize d   ( note: opt = O(log n + log(1/ε)) ), 

– Goal 2: maximize m ( note: opt = k − 2log(1/ε) − O(1) )

• (Strong) One
time MAC: for any x ≠≠≠≠ x’ , y , y’

PrI ( Ext(x’, I) = y’ | Ext(x, I) = y)| ≤ δ

– Goal 1: minimize d  ( note: opt = O(log n + log(1/δ)) ), 

– Goal 2: minimize m ( note: opt = log(1/δ) + O(1) )

• Together: Extractor
MAC. We achieve optimal

– d = O(log n + log(1/δ) + log(1/ε)), m = log(1/δ) + O(1), 

if k ≥ m + 2log(1/ε) + O(1) = log(1/δ) + 2log(1/ε) +O(1)
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Extractor
MACs

• Idea 1: pairwise independent hash functions are 

both extractors (universality) and one
time MACs

– Optimal m = log(1/δ) ☺, but long d  = n + log(1/δ) �

• Idea 2: compose with “almost universal” hash   

function before pairwise independence

– Extractor part: OK if collision probability ≤ 2-mε2 (so 

total ≤ 2-m(1+ε2) and can still apply LHL), 

– MAC part: OK since pairwise independent MAC 
composes well with universal hash

• Optimize parameters to get the result
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Robust Sketches & Extractors

• If the user can store only biometric w, how can 

he be sure that P or S(w) are correct [BDKOS] ?

– Robust Secure Sketches / Fuzzy Extractors

– Server can only refuse to help or give correct P/S(w)

– Applications to biometric authenticated key
exchange 

secure against man
in
the
middle attacks

• Idea: add “authentication information” H(pub,w)

to the public information pub, for a special H

– most work: finding H that works w/o leaking much info
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Robust Sketches & Extractors
• Which H(pub,w) will produce a good MAC?

• [BDK+05]: 
– H = Random Oracle. Works (still tricky) 

• [DKRS06]: recall, pub=(S(w),h)
– Use “interconnected” extractor h and MAC H

– Works only if k ≥ n/2 (inherent in this model �)

– Extract (much) less than in “non
robust” case �

• [CDF+08]: regain optimality using a CRS! 
– Idea: set pub=S(w), CRS = h and … more tricks 
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• Randomness extractors are useful for
– Key derivation

– Privacy (entropic security!)

– Many Combinations

• In many cases plain extractors not enough
– Need “special
purpose” extractors

Concluding
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• Adding Invertibility: 
– Entropically
Secure Encryption

• Adding Collision
Resistance:
– Perfect one
way hash functions (POWHF)

• Adding Error
Correction: 
– Fuzzy extractors (FE), secure sketches (SS)

• Correcting errors w/o leaking partial info
– Private FEs and SSs, fuzzy POWHFs 

– Error
correction in the bounded storage model

• Adding Authentication, Local Computability…

Special Purpose Extractors
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• Randomness extractors are useful for
– Key derivation

– Privacy (entropic security!)

– Many Combinations

• In many cases plain extractors not enough
– Need “special
purpose” extractors

• Variants of leftover hash lemma very useful

• Unexpected tools, connections, subtleties

• Elegant techniques, nice insights

• Exciting area, many open questions left !!!

Concluding
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