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Imperfect Random Sources
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1 ldeal randomness is crucial in many areas

Especially cryptography (i.e., secret keys) [MP21,DOPS04,BD07]

1 However, often deal with imperfect randomness

physical sources, biometric data, partial knowledge about

secrets, extracting from group elements (DH key exchange),...
1 Necessary assumption: must have (min-)entropy
H_(X) = kif Pr[X=x]<2%* forall x

0 Can we extract (nearly) perfect randomness from

such realistic, imperfect sources?



Extractors

secret: X >

Problem: can’t hand

Let X<—Ext'(const).

Ext

. extracted key: R

e general entropy sources

High entropy, but Ext(X)=const
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Seeded Extractors [NZ96]

secret: X

. extracted key: R
random seed: S Ext exiracied key

R is uniformly random even conditioned on the seed S
(Ext(X; S), S) = (Uniform, S) ™
Advantages: (:t

Can extract (almost) all entropy from all k-sources

Efficient constructions (leftover hash lemma, no “crypto”)

Seed can be reused

In theory, can make seed very short (often not critical)



Disadvantages

5 |
1 Need a (truly randoml) seed in the first place

Defenses: can arrange in most settings, can be reused

0 Must lose some entropy due to extraction

Defenses: pretty small, can use PRG to stretch, provably less

than we thought for many applications [BDK™11]

0 This work: seed must be independent from the source

Main Defense: OK for many applications (e.g., DH exchange)
® But not all (e.g., RNG computation affects physical source it uses)
® May find new unexpected applications (stay tuned!)

® The question is obviously intriguing, let’s move on !



Seed-Dependent Extractors

o (Ext(X; S), S) = (Uniform, S), as long as{H_(X|S) = k

1 Impossible ®: same X<—Ext!(const; S) argument
- What if X is efficiently samplable (+ Ext'is “hard”)?

g
: Ext

S«$

— R

0 [TVOO]: only possible if complexity of i is
(roughly) less than that of the extractor ®
S’: keep picking random X until first bit of Ext(X; S)=0



The Attack is Not So Bad !

"You're paralyzed from the
knuckle of your left big toe down
— it could have been a lot worse."

71 Assume use R = Ext(X; S) as a secret key

If R=0|random, then only lost factor of 2 in security!

-1 Generalization: pick X<—$ until Ext(X; S) is “weak”

Sampling time t = % , Where € = fraction of weak keys
Super-polynomial if € = negligible !
1 Is this the best attack?

1 Can we formalize a sufficient security notion?

RANDOMNESS CONDENSERS!
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7 Same syntax as Extractor:

S _ ,;@3%
secret: XE {O,] }n > extracted key:
seed: SE {O,] }p Cond R € {O,] }m

- Standard Definition: Cond is (- — ), _—condenser if

HL(X)

>k = H_(Cond(X; S)| §) >
Note: no restriction on X being efficiently samplable

Non-triviality: want entropy deficiency m — v < n —k




! THE CONDENSER !

SKKD- DEPENDENT
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7 Same syntax as Extractor:

secret: XE {O,] }n

é% ) =
e i
> J extracted key:
seed: SE {O,] }p Con R € {O,] }m

-1 Definition: Cond is (% — %, t)..—seed-dependent (SD)

condenser, if for all A producing X <— A(S) in time ¢,

H_(X|S) > k = H_(Cond(X;S)|S) >
As before, want entropy deficiency d = m —v &K n —k

Unlike Extractors, Cond can be much faster than A



Condensers and Key Derivation
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1 Setting: application P needs a m—bit secret key R

Ideal Model: R <— U, is uniform
Real Model: R <~ Cond(X; S), where H_(X|S) > k

-1 Assumption: P is €é=secure in the ideal model

1 Desired Conclusion: P is €' —secure in the real model

11 Observation: if Cond is (% - %, t)..~SD-condenser

and X < A(S) is sampled in time at most £, then
€'< [ security of P with key Rs.t. H_(R) = v ]

Reduces key derivation to analysis of P under weak keys!

Ahead: generic bounds on €’ from € and |2V = 2¢
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| ~well, not so much

Pedantic Viewpoint

| i ot |6
n ;Eet":nsof :
o Fix P and any “legal” attacker B — i

0 Let f(r) = [Advantage of B on key r]
Unpredictability apps: f(r)e[0,1]
Indistinguishability apps: f(r) €[-2, /2]

“ldeal adv. of B =|E[f(U, )]| = zrzim-f(r)‘

7 Real adv. of B =|E[f(R)]|= |2, p() - f(1)]

1 Goal: upper bound real advantage of B




Unpredictability Applications | _ [
- L

"Massive unpredictablity
is absolutely certain,
maybe."

7 Lemmal: If f(r) = 0 and H_(R) = m — d then
S f(R) 1< 2% E[f(U,,) ]
1 Proof: Tp(r) £ (1) <2™max, () (X 57 f()

1 Corollary: any (T, €)-secure unpredictability

app. P in the ideal model is also (T, €')-secure
in the (m — d)-real_ model, where|€’ < 20

Exponential loss: OK if negl. € and polyn. 2¢



Indistinguishability Apps

< Col(R) = Pr[R,=R,] = 3. p(r)?

Renyi: IHl,(R) = —log Col(R) = H_(R)
- Lemma?2: For all f and H,(R) = m - d,

CIFR)] ] <4/ 29 -

SF(U,,)°]

-1 Proof: |

11 Cauchy-Schwartz:

< 2" p(r)? [ S f (1)

CfR) = [ Xy p(r)-f ()]




Why is it Nice?

“

- Lemma2: For all f and H,(R) = m — d, m

|E[f(R)]] <4/ 2¢ -

S[f(U,,)°]

Works even if f(r) can be negative

Renyi entropy I, is better than I

Second term is for uniform distribution

1Question: .

LHU, )1=¢€, what is .

SIF(U,,)°12

1 Def ([BDK+1 11): P is (T, O)-square secure

if for any T-bounded B, .

4:[fB( Um)z] <O



Square Security?

[BDK™11]: for many natural apps “c =~ £”
(unpredictability, CPA-encryption, weak PRF)

Corollary: Assume P is (T, €)-secure and
“square-friendly”. Then P is (T, €’)-secure in
the (m — d)-real, model, where| €’ < V24 g

lost sqrt, but more apps and better H, entropy

In fact, using Fl_-condensers + Lemmal got
same bounds than ,-condensers + Lemma?2

so concentrate on I, case



Collisions and Condensers
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1 Theorem: “Strong enough” collision-resistant hash

functions {/i} are “good” IH,-SD-condensers!

Partially explains the use of cryptographic hash for KDF |
- Formally: (2t, “52)-CRHF J( = {h {o 1}7—{0,1}m}
defines a seed-dependent (— > =2 t),-condenser
Cond(x; h) = h(x), where Zd Zm 4+ A1)
o Pr[ha(X,) = h(X,)] < Pr[X, =X,] +
Pr[A(X,) = h(X,) & X, # X,]
<2F+e_.

Otherwise, find collisions by simply sampling X, X, !



Collisions and Condensers

1 Theorem: “Strong enough” collision-resistant hash
functions {/i} are “good” IH,-SD-condensers!

Partially explains the use of cryptographic hash for KDF |
- Formally: (2t, “52)-CRHF J( = {h {0 1}7—{0,1}m}
defines a seed-dependent (— > =2 t),-condenser
Cond(x; h) = h(x), where Zd Zm 4+ A1)
E.g., if A(£)=0(t?) and k = m= 2% = O(t?)
-1 Corollary: I is (2t, %,’?)-CRHF =€ < 0(t-/g)
for all “square-friendly” e—secure applications P,
against any t-samplable X s.t. H, (X' | 7)) = m




Collisions and Condensers

Theorem: “Strong enough” collision-resistant hash
functions {/i} are “good” IH,-SD-condensers!

Partially explains the use of cryptographic hash for KDF |

Asymptotic View: negligible ideal security ¢

+ polynomial sampling time t =
negligible real security €’

Corollary: I is (2t, %’?)-CRHF =€ < 0(t-/g)
for all “square-friendly” e—secure applications P,

against any t-samplable X s.t. H, (X' | 7)) = m



Cond | .p=

S«$ . -
What if g, can pass side information Z to
Require H_(X|S,Z) = k; natural in many settings
Problem: S;cqn now make Z = Cond(X; S) ®

“Solution™: pass Z to condenser! R = Cond((X,Z); S)
Why would S, pass Z to Cond? Stay tuned...




Woarning: Strong Generalization!

0 Conjecture SD-condensers with side info exist, but...

1 CRHF scheme no longer works with side information

0 In fact, already (very?) hard even if X is uniform!

Hard to sample X,, X, conditioned on the same Z
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Cond

Call this important special case Leaky Condenser

0 Leaky Condensers enough to instantiate Fiat-Shamir !



-1 Public-coin (20+1)-round prot. = public-coin 2-round prot.

mqglc function” H

Prover Verifier
O° g
r HHOZD}’% ‘-

- ; ) EHOZ} }fnz)

2 zzz,, % Accept / Reject

1 Assume: £-sound against unbounded Prover (proof)

1 Conclude: £’-sound against bounded Prover (argument)




Soundness of Fiat-Shamir?

True in random oracle model

Not necessarily true for arguments [BarO1,GKO03]

Conjecture [BLVO6]: true for constant-round proofs

Implies no constant-round, public-coin, ZK proofs outside BPP

Our result: soundness of FS on interactive proofs almost

equivalent to existence of non-trivial Leaky Condensers

Entropy deficiency d (for 2b+1rounds) = | € < Zdb° e

E.g., 2% =poly(t) and b = O(1) = | € < poly(t) - €




m =

N

Leaky Condensers and Fiat-Shamir

=N |

1 Use Leaky Condenser Cond to implement H

“longnemgicghihaticn B 1 }"
<1 kd

r; #Godd(X,)Z=z,)

%)

r, =Gord{X;,729,2,)

'v’

Prover Verifier

)0

Zp Zapees Zp Accept / Reject

= Intuition: view each z;...z; as “short leakage” on X

11 Proof + Condenser: soundness increases by < 24 per round



Summary
L

11 Seed-Dependent Condensers against
Efficiently Samplable sources

Unlike extractors, can be faster ’rhan't“*g; !

11 Application to Key Derivation
Importance of Square Advantage
Generic bounds on security degradation

1 Simple construction from CRHF

1 Generalization to Side Information

Application: Fiat-Shamir on proofs

o break vyour |
addiction 20

|
where's Some more handouts

Open: construction from standard assumptions
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