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Abstract

We give the first simple and efficient constructionvefifiable random functionéVRFs). VRFs,
introduced by Micali et al. [MRV99], combine the propertiet regular pseudorandom functions
(PRFs) [GGMS8E6] (i.e., indistinguishability from a random furart) and digital signatures [GMR88]
(i.e., one can provide an unforgeable proof that\fiF value is correctly computed). The efficiency
of our VRF construction is only slightly worse than that of a reguPRF construction of Naor and
Reingold [NR97]. In contrast to ours, the previoURF constructions [MRV99, Lys02] all involved
an expensive generic transformation from verifiable uniptable functions VUFs), while our con-
struction is simple and direct.

We also provide the first construction distributedVRFs. Our construction is more efficient than
the only known construction of distributed (non-verifighiRRFs [Nie02], but has more applications
than the latter. For example, it can be used to distribytivelplement the random oracle model
in a publicly verifiablemanner, which by itself has many applications (e.g., coositrg threshold
signature schemes).

Our main construction is based on a new variant of decisiDiféie-Hellman ODH) assumption
on certain groups where the regul2iDH assumption doasothold. We do not make any claims about
the validity of our assumption (which we calim-freeDDH, or sf-DDH). However, this assumption
seems to be plausible based on ourrent understanding of certain candidate elliptic and hyper-
elliptic groups which were recently proposed for use in twgpaphy [JNO1, Jou00]. We hope that the
demonstrated power of osf-DDH assumption will serve as a motivation for its closer study.
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1 Introduction

As a motivating example for our discussion, consider thélera of implementing theandom oracle moddBR93].
Recall that in this model one assumes the existence of aghubérifiable random functiod (over some suitable
domain and range, e.d0, 1}"). Each valueD(z) is random and independent from the other values, and evalu-
ating O on the same input twice yields the same (random) output. Mieidel has found numerous applications
in cryptography, which we do not even attempt to enumeratef¢iv examples, see [BR93, BR94, BR96, FS86,
GQ88, Sch9l, Oka92, Mic94, PS96, BF01]). It was shown by Giaeteal. [CGH98], though, that no fixed public
function can generically replace the random oracle, so mlafgorate solutions are needed.

PSEUDORANDOM FUNCTIONS. As the first attempt, we may assume the existence of a trstéccomputa-
tionally bounded) partyi’. Since a function is an exponential sized objé&Ctcannot store it explicitly. While
maintaining a dynamically growing look-up table is a po#iih it is very inefficient as it requires large storage
and growing complexity. A slightly better option is to uspseudorandom functiofPRF) Fsx (-) [GGM86]. As
indicated, this function is fully specified by a short sedwey (orseed SK, and yet, usingFis (for randomly
generated K) is computationallyindistinguishable from using exponential-siz&d Put differently,Fs i is com-
putationally indistinguishable from a truly random fuictito any polynomial time adversawho does not know
the secret key K.

Of course PRFs have found numerous more practical applications (e.g[NR97] and the references therein),
primarily in the area of symmetric-key cryptography (ix@hen the valueS K can be shared between mutually
trusted parties). For example, they gives very simple coosbns of symmetric-key encryption and message
authentication codes. In terms of constructiPigFs, there are several options. In principfRFs can be con-
structed from one-way functions [GGM86, HILL99], but thésquite inefficient. Another alternative is to assume
that one already hasRRF of small or fixed size (e.g., a block cipher), and show how temat its domain and
range to get a fully function@®RF. For a simple example, iff : {0,1}* — {0,1}¢ is a collision-resistant hash
function [Dam87] andFs : {0,1}* — R is our fixed-sizedPRF, thenFis;c o H : {0,1}* — R is also aPRF
(many other constructions are possible too; see [BKROO, 88} and the references therein). Of course, we are
still left with the question of constructing the needed draaled PRF.

The last alternative is to construeRFs from some well studied number-theoretic assumption. Tost pop-
ular such construction is due to Naor and Reingold [NR97]iarmhsed on the decisional Diffie-Hellmab@H)
assumption (for related construction based on factorieg [NRRO0OQ]). This assumption in some grddf prime
order ¢ states that given elemengs ¢® and ¢ of (whereg is the generator ofs), it is hard to distinguish the
value g* from a truly random valug® (wherea, b, ¢ are random irZy). The PRF of [NR97] is a tree-based
construction similar to thBRF construction of [GGM86] from a pseudorandom generator. &lgnthe secret key
SK = (g,a1,...ay) consists of a random generatpof G and/ random exponents ifi, (where/ is the length
of the input to oUPRF Fsx : {0,1}¢ — G). Givenz = z; ...z, € {0,1}", thePRF is defined by:

Fg,al,...,ag (371 . wg) déf gH{i\%:l} a; mod g (l)

VERIFIABLE RANDOM FUNCTIONS. Coming back to our motivating application, replacing ramdoracle with
a PRF has several problems. The first one is the question of vailifiahnd transferability. Even if everybody
trustsT' (which we will revisit soon), I" has to be contacted not only when the valuefohas to be computed
for the first time, but even if one party needs to verify thadther party has used the correct valuefof Thus,

it would be much nicer if each value dfsx () would come with a proofrgx () of correctness, so that the
recipient and everybody else can use this proof without gezlrio contaci’ again. As a side product, the ability
to give such proof will also insure thdt himself cannot “cheat” by giving inconsistent valuesiof or denying
a correctly computed value of the function. This leads tortbgon of verifiable (pseudo)random functignsr
VRFs [MRV99].



Slightly more formally, the key generation outputs a pubécification keyP K in addition to the secret evalua-
tion key SK, and the function family{ Fis x } has the following properties: (1) Give¥¥, it is easy to compute the
value of the functiory = Fsx (z) and the corresponding proot i (x); (2) givenPK, z,y, 7, one can efficiently
verify if y = Fsk(x) (and only one such value gfcan be proven for any and PK); (3) given only PK and
oracle access to bothsx () andwsk(-), no adversary can distinguish the valligx () from a truly random
value without explicitly asking one of the oracles on inputthe last property is sometimes callezsidual pseu-
dorandomnegs Put differently, the function remains (pseudo)randonemwtestricted to all inputs whose function
values were not previously revealed (and proved).

VRFs already found several applications. For example, ugiR§s one can reduce the number of rounds for
resettable zero-knowledge proofsdtan the bare model [MRO1]. As another interesting appliagtithey can be
used in a non-interactive lottery system used in micropaysMR02]. The lottery organizer commits tovirF
by publishing the public key’ K. Any participant is allowed to choose his lottery tickdby himself and send it to
the organizer (with the only requirement thatvas not used before). The valye= Fsx (z) somehow determines
whether the user has won the lottery. The organizer sgridshe user together with the proof i (x), which
ensures that the organizer cannot cheat. On the other Handnpredictability ofy ensures that the participant
cannot bias the lottery in his favor. Another set of appia, given by Naor et al. [NPR99] for the case of regular
PRFs (or their distributed variants; see below), can be als@ecéd by the verifiability property ofRFs. For
example VRFs could be used to implement a trusted key distribution cKtBC). For a group of user§ with
“descriptor” zg (which could be the name of the group or a common passworeljalueks = Fsx(zs) can be
used as a common random key used by the membef's 6then a party proves his right to get this key (which is
done by some application dependent mechanism), KDC woolqe this party withks together with the proof
of its correctness. Another application in similar spigtthat of long-term encryption of information [NPR99].
Finally, the pseudorandomness and verifiability &RF immediately imply thalVRF by itself is an unforgeable
signature scheme secure against adaptive chosen medsagd@viR88].

CONSTRUCTIONS OFVRFs. Unfortunately,VRFs are not very well studied yet. Currently, we have two con-
structions ofVRFs: based ofRSA [MRV99], and based on a separation between computatiorthtianisional
Diffie-Hellman problems in certain groups [Lys02]. Both bé&se constructions roughly proceed as follows. First,
they construct a relatively simple and efficient verifiabgredictablefunction Y UF) based on the corresponding
assumption. Roughly, ®UF is the same verifiable object asv&F, except each “new” valué'sx (z) is only
unpredictable (i.e., hard to compute) rather than psendora. FromVUFs, a generic construction ¥RFs is
given, as introduced by [MRV99]. Unfortunately, this canstion is very inefficient and also looses a very large
factor in its exact security. Essentially, first one usesG@uidreich-Levin theorem [GL89] to constructRF
with very small (slightly super-logarithmic) input sizedcanutput sizel (and pretty dramatic security loss tdo).
Then one makes enough such computations to amplify the osigmito roughly match that of the input. Then one
follows another rather inefficient tree-based constructia the resulting/RF to get aVRF with arbitrary input
size and small output size. Finally, one evaluates thetiegudonvolutedVRF several times to increase the output
size to the desired level. In some sense, the inefficienclieofibove construction is expected given its generality
and the fact that it has to convert pure unpredictabilitp mtmuch stronger property of pseudorandomness. Still,
this means that the resultingRF constructions are very bulky and inelegant. In this work wespnt the first
simple, efficient and “direct¥RF construction.

DisTRIBUTED PRFs. Coming back again to our target application of implemantine random oracle, the
biggest problem of botPRF/VRF-based solutions is the necessity to fully trust the honastyd” holding the

secret key forF". Of course VRFs slightly reduced this trust level, bilitstill singlehandedly knows all the values
of F'. Clearly, this approach (1) puts to much trust ifitp(2) makesI is bottleneck of all the computations; (3)

1For example, one needs to assume a super-polynomial harimése giverVUF to make sure that the resultiMRF is polynomially
secure. Is it an interesting open question to improve thigcton.



makesT' is “single point of failure”: compromising@’ will break the security of any application which depends on
the random oracle assumption.

The natural solution to this problem is to distribute theerof T" amongn servers. This leads to the notion of
distributedPRFs (DPRFs) anddistributedVRFs (DVRFs). Since the latter concept was not studied prior to our
work, we start withDPRFs, thus ignoring the issue of verifiability for now. Intuigly, DPRFs with threshold
1 <t < nallow any(t + 1) out of n servers to jointly compute the function using their shangsle no coalition
of up tot servers to be in a better situation that any outside partynéig the function remains pseudorandom to
any such coalition. In the most ambitious form, the compomadf DPRF should benon-interactiveand single-
round. The first requirement means that the servers do nat teeiateract with each other in order to help the
user compute the value of the function. Instead, the onlyrnsonication goes between the user and the servers.
The second requirement means that the entire computatiaidsproceed in one round: the user gives to (at least)
t + 1 honest servers the needed inpueach servei computes the shaug of the outputy = Fsx (x) by using its
secret key shar§ K;, and finally the user combines the shaggand recoverg.

Not surprisingly, DPRFs have a variety of applications, including distributed Kf)@hreshold evaluation of
the Cramer-Shoup cryptosystem [CG99], efficient meterihthe web [NP98], asynchronous Byzantine agree-
ment [Nie02] and several others (see [NPR99, NieOZJRRFs first originate in the work of Micali and Sid-
ney [MS95]. However, their construction (later improved [D§PR99]) can tolerate only a moderate number of
servers or a small threshold, since its complexity is pripoal ton'. The next influential work is that of Naor
et al. [NPR99], who give several efficient constructions @tain weak variants dDPRFs. Ironically, one of the
constructions (namely, that of distributadakPRF) can be turned into an efficieB{PRF by utilizing random or-
acles. Even though this is non-trivial (since nobody shaalishpute the value of BPRF without the cooperation
of t + 1 servers), we would certainly prefer a solution in the plaiodel, since elimination of the random oracle
was one of the main motivation f@PRFs!

The first regulaDPRF was recently constructed by Nielsen [Nie02] by distribgtanslightly modified variant
of the Naor-ReingoldPRF [NR97], given in Equation (1) (in the final version of their kkp [NR97] also give
essentially the same construction). Unfortunately, tisellteng DPRF in highly interactiveand requires a lot of
rounds (proportional to the length of the input). Thus, thestion of non-interactive (and, hopefully, round-
efficient) DPRF construction remained open.

DisTRIBUTED VRFs. Even thouglDVRFs were not explicitly studied prior to this work, they seenptovide

the most satisfactory solution to our original problem oplementing the random oracle. Indeed, distributing the
secret key ensures that no coalition of uptteervers can compromise the security (i.e., pseudorandsshioé

the resulting random oracle. On the other hand, verifighditsures that one does not need to contact the servers
again once the random oracle was computed once: the proafacetnce any other party of the correctness of
the VRF value. For exampledDVRFs by themselves provide an ordinary threshold signaturersehwhich can

be verified without further involvement of the servers. Ocah be used to replace the random oracle in certain
threshold signature schemes (eRSA-based Full Domain Hash due to Shoup [ShoB0Bnd, of course, using
DVRFs is likely to enhance the security, robustness or funclilgnaf many applications originally designed for
plain PRFs,VRFs andDPRFs.

OuUR CONTRIBUTIONS. We give the first simple and direct constructionVi&Fs, based on a neWwDDH-like” as-
sumption which seems to be plausible on certain recentlygaed elliptic and hyper-elliptic groups (e.g., [JNO1]).
We call this assumptiosum-free decisional Diffie-Hellmgsf-DDH) assumption. We will comment more on this
assumption below. We mention, however, that in the propgsedps the regular regul@DH assumption is
false(in fact, this is what gives us verifiability!), and yet teteDDH or some similar assumption seems plausible.
Our construction is similar to the Naor-Reingold (NR) coastion given by Equation (1), except we utilize some

20f course, for the purposes of threshold signatures altwDVRF by itself is more efficient than using it as a building blockeof
more complicated signature scheme. Still, it is very irgdéng that random oracle can be eliminated from such coctstns.
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carefully chosen encoding before applying the NR-construction. SpecificallyCif: {0,1}¢ — {0,1}” is some
injective encoding, we consider the function of the form
def [y, _11a; mod ¢

Foaryar (o1 ... 1) = g L1001 (2)
Identifying the properties of the encodidgand constructing’ satisfying these properties will be one of the main
technical challenges we will have to face. At the end we wiliiave L = O(¢) (specifically, L = 2/ to get a
regularPRF, and L = 3/ + 2 to get aVRF), making our efficiency very close to the NR-constructiam féct,
we might come even closer, since the elliptic groups we meman have a smaller representation than the usual
multiplicative groupZ?; see [BLS01]). We also mention that our construction is \&@milar “in syntax” to the
VUF construction of Lysyanskaya [Lys02]. In fact, the “onlyffdrences are as follows: (1) we build\éRF
while [Lys02] builds avUF (which is a weaker notion); (2) we use different (seemingthagonal to each other)
assumptions, even though suggest the same groups wereagsaptions hold; (3) we use different encoding
functionsC. Specifically, [Lys02] uses any error-correcting code, dnly for the purposes of making a slightly
weaker assumption (i.e., identity with appendediould yield aVUF under a slightly stronger, but reasonable
assumption). On the other hand, we use a very different Kirthcoding, because the fact tHDH is easy in our
group implies that the identitgannotbe used, irrespective of what stronger assumption we makeid@ntally,
by using a second (now error-correcting) code on top of oooeimgC, we can weaken our underling assumption
too, similarly to [Lys02].

Our second main contribution is the first construction of gtrdiutedVRF (DVRF). Namely, we show that
our VRF construction can be made distributed amzh-interactive(although multi-round). This is the first
non-interactive construction of a distributE®RF (let aloneVRF), since the only previouBPRF construction
of [Nie02, NR97] is highly interactive among the serverstfdect, ourDVRF construction is more efficient than the
above mentioDPRF construction, despite achieving the extra verifiabilitye Wready mentioned the big saving
in communication complexity (roughly, from?¢k to nlk, wherek is the security parameter), since the servers do
not have to interact in our construction. Another importahtantage, though, is that we dispense with the need to
perform somewhat expensive (concurrently composable) lkaeowledge proofs for the equality of discrete logs.
This is because in our groups tB®H problem is easy, so it can be locally checked by each partyowitthe need
for the proof. In particular, even though we need to applyaheodingC' to the message, while the construction
of [Nie02, NR97] does not, the lack of ZK-proofs makes ourndwcomplexity again slightly better. We also
remark that our construction can be easily mpamctiveusing standard techniques (see [OY91, +I)).

Finally, we remark that the same distributed constructian be applied to distribute théUF of Lysyan-
skaya [Lys02] (which results in a threshold “unique signatischeme under a different assumption than the one
we propose).

Our NEw sf-DDH AssumpTION  Finally, we elaborate on tref-DDH assumption, putting it in comparison to
the other related assumptions. Recently, Joux and Nguyéi]demonstrated the existence of groups where the
DDH assumption is certainly false, but its computational wer§IDH (i.e., computgy®® from g, g¢, ¢°) still seems

to be hard. These groups with various flavors of the aliobél/DDH separation have already found numerous
applications, e.g. [Jou00, BF01, Lys02, BLSO01]. Intuityy¢he fact thaDDH is easy gives many useful properties
(like verifiability), while the hardness of some appro@i@DH-like assumption can be still put to use in security.
As already observed by [BFO1], our current techniques irh sgroups only allow us to te€dDH relations by
means of a certain bilinear mapping (details are not importéor which we do not know a multi-linear variant.
In fact, Boneh and Silverberg [BS02] observe that a mutiedir variant of such mapping seems unlikely to exist
in the currently proposed groups, and pose as a major opéleprdo exhibit groups where such mappings exist.
This suggests that many natural, but more restrictive flagbDDH seem to hold in the currently proposed groups
(where regulaiDDH is easy). And this is exactly the approach we take. We assureasanable DDH-like”
assumption which seems quite possible even when re@i is false. Intuitively (see formal definition in



Section 2.2), it states that given elements of the far(l) = gllic: @ for various subsets C {1... L}, any other
elementG(J) is pseudorandom unless once can explicitly fin®H-tuple” (G(1,), G(I2), G(I3), G(J)) which
would allow to trivially verify G(J). We notice, however, that we do not make a strong claim thsisth called
sf-DDH assumption is true. Rather, that it seems plausible giveat wh know. Thus, one can view our work as
a strong motivation to study this and relatekisionalassumptions in the above mentioned “gap groups”.

2 Definitions

2.1 \Verifiable Random Functions and Friends

In this section we give the definition of verifiable randomdtions /RFs). For putting our results in perspective
with prior works, we also give definitions of verifiable ungietable functions WUFs) and a new definition of
regular pseudorandom functiorBRFs). Here and everywhereegl|(k) refers to some function negligible in the
security parametek.

Definition 1 A function familyF{.(:) : {0, 1}4k) — {0, 1}™*) is a family of VRFs, if there exists a probabilistic
polynomial time algorithnmGen and deterministic algorithmBrove and Verify such that:Gen(1*) outputs a pair
of keys(PK, SK); Provesk () outputs a paifFsx (z), sk (z)), wherersk () is the proof of correctness; and
Verify p i (x, y, 7) verifies thaty = Fsx (x) using the proofr. More formally, we require the following:
1. Uniquenessno values(PK, x,y1,ys2, 71, 72) can satistWerify p i (z,y1,m) = Verifyp i (x, y2, m2) When
Y1 # Yo

2. Provability: if (y, 7) = Provegk (), thenVerifyp (z,y, ) = 1.
3. Pseudorandomnesfr any PPTA = (A4, A1) who did not call its oracle or: (see below)

(PK,SK) « Gen(1%); (x,s1) = AT/ (PK): yo = Fsc(e)s 1 1, gl (k)
yr = {0,105 b (0,13 0 = A3 gy, 51) =2

Pﬂb:y

Intuitively, the definition states that no value of the fuaotcan be distinguished from a random string, even after
seeing any other function values together with the cormeging proofs.

Definition 2 A function familyF(.(-) : {0, 1}k — {0,1}™k) is a family of VUFs, if satisfies the same syntax,
unigueness and provability propertles as the familyBFs, except pseudorandomness is replaced by the following
weaker property:

3. Unpredictability. for any PPT A; who did not call its oracle om: (see below)
fw[yzzﬁK@g‘(PKgﬂo<—Gmuﬁx@mwe—A?W*RPK) < negl(k)

RegularPRFs form the non-verifiable analogs ¥RFs. Namely,PK = (), msx () = (), there is no algortihm
Verify, no uniqueness and provability properties, and pseudorandss is the only remaining property. Specifi-
cally, it states

1
< = + negl(k)

SK + Gen(1%); (w, st) + A7 (1); yp = Fox(2); ]
2

v {0,130 b {0,135 A7 (g, 5t)
(provided A did not call its oracle o). We notice that the above definition is not the typical d&bnifor PRFs
as given by [GGM86]: namely, that no adversary can distisigiaving oracle access to a truly random function

from having oracle access to a pseudorandom function. Henviews easy to see that our definition is equivalent
to that usual one, so will we use it as the more convenientarctimtext ofVRFs.

P%b:y




2.2 Diffie-Hellman Assumptions

In what follows, it should be understood that all the objditow will be parametrized by the security parameter
k, but we will not explicitly mention this unless needed. Asmbetup(1¥) outputs the description of some cyclic
groupG of prime orderq together with its random generatgr Let L = L(k) be some integer ang, . ..ay, be
random elements df,. Let[L] denote{l...L}, and given a subsdt C [L], we denoter; = [[;.;a; mod g
(Whereay = 1), G(I) = G1 = g*. Also, DLog, stands for the discrete logarithm bas@vhere we often omiy
when clear). For exampl®Log(G;) = a;. Finally, we will often view an element € {0,1}* as either a subset
{i | z; = 1}, or anL-dimensional vector ovef F'(2) (and vice versa).

GENERALIZED DIFFIE-HELLMAN ASUSMPTIONS The security of ours, as well as the previous related con-
structions [NR97, Lys02], will rely on various assumptiaoisthe following common flavor. The adversad/
has oracle access t(-), and tries to “obtain information” about some valG¢.J). The meaning of obtaining
information depends on whether we are making a computdtamra decisional assumption. In the former case,
A has to computé&7(.J), while in the latter casel has to distinguistG(.J) from a random element @& While

the decisional assumption is stronger, it has a potentigietding a (verifiable pseudorandonfunction, while the
computational assumption can yield at Bestverifiable)unpredictablefunction.

In either case, we require that it should be hard to any paoiyalktime adversary to succeed. Of course, to make
non-trivial sense of “success”, one has to make some naaltrestrictions on when the adversary is considered
suceessful. Formally, given that the adversary calledrésle on subsets,, ..., I; and “obtained information”
aboutG(J), we can define a predicate(J, 11, . . . I;) which indicates whether the adversary’s actions are ‘“fegal
For example, at the very least the predicate should be false i{I; . .. I; }. We call any such predicat®n-trivial.

We will certainly restrict ourselves to non-trivial predtes, but may sometimes place some more restrictions on
‘R in order to make a more plausible and weaker assumption &ea)

Definition 3 GivenL = L(k), we say that the grou@ satisfies thgeneralized decisional Diffie-HellmggDDH)
assumption of ordeL relative to a non-trivial predicatR, if for anylegal PP TadversaryA = (A, A;) we have

ky. G() . 1
Pr|:b:b, (G7q7g) <_Setup(1 )’ (a’la’L) <_Zq7 (J7St)GS Al (G7q)7 :| S _+neg|(k)
yo=G(J); y1 + G; b {0,1} 0"« Ay (yp, st) 2
whereA is legal if it called its oracle on subsefs . .. I; satisfyingR(J, I, ...,1;) = 1.

Very similarly, the groupi> satisfies thgeneralized computational Diffie-Hellm&CDH) assumption of ordeL
relative toR, if for any legal (see aboved P TadversaryA; we have

Pr|G(J) =y | (Gia9)  Setup(1*); (a1...a1) = Zq, (Jy) AT (Goq) | < negl(h)

We notice that the more restrictiof® places on thd;’s and the “target” set/, the harder it is for the adversary
to succeed, so the assumption becomes weaker (and moreaptefe Thus, the strongest possible assumption
of the above type is to put no further restrictions Brother than non-triviality (i.e.J & {I1,...I;}). We call

the two resulting assumptions simpipDH andgCDH (without specifyingR). A slightly weaker assumption
results when we require that the target set is equal to thesétl/ = [L], i.e. the adversary has to obtain
information abougy®--“Z. We call the resulting assumptionsl target gDDH/gCDH (whereL = 2 yields regular
DDH/CDH). We remark that these full target assumptions are the dstati way to define generalized (aka group)
Diffie-Hellman assumptions (e.g., in [STW96, BCP01, BCPQ0/&02]), but we will find our distinction (and,
therefore, terminology) more convenient. Finally, makinhtarger generally makes the assumption stronger (e.g.,

3Unless a generic inefficient conversion is used, or one assiihe existence of a random oracle, in which case applymgatidom
oracle to a computationally hard object trivially gives @pdorandom object.



for unrestricted or full targegg CDH/gCDH), since the adversary can always choose to concentratenusn fubset
of L. Thus, it is preferable to base the security of some cortisruon as small. and as restrictiv&k as possible.

Before moving to our new sum-frgg®dDH assumption, let us briefly state some simple facts appptH/gCDH.
It was already observed by [STW96] trgiDDH assumption of any polynomial ordér(k) (with or without full
target) follows from the regulddDH assumption (which correspondsito= 2). Unfortunately, we do not know of
the same result for thgCDH problem. The best analog of this result was implicitly obéai by [Lys02], who more
or less showed that the requ€DH assumption of logarithmic orde€?(log k) (even with full target) implies the
gCDH assumption of any polynomial ordéx(k), providedin the latter we restrict the adversary to operate on the
codewords of any good error-correcting code (i®l; ... I; C [L] must be all “far” from each other in order to
satisfyR).

Sum-FREegDDH. We already saw that the reguRDH assumption is a very strong security assumption in that
itimplies thegDDH assumption. This useful fact almost immediately impliesgixample, that the Naor-Reingold
construction in Equation (1) isRRF underDDH, illustrating the power oDDH for proving pseudorandomness.
Unfortunately, groups wer®DH is true are not convenient for makingrifiablerandom functions, since nobody
can verify the equality of discrete logs. On the other harelywill see shortly that it is very easy to obtain verifia-
bility in groups wherdDDH is solvable in polynomial time (such as the group suggesgddii01]). Unfortunately,
such groups certainly do not satisfy tppDH assumption too, which seems to imply that we have to settle fo
the computational assumption (liggCDH) in such groups, which in turn implies that we setlle only tioe VUF
construction rather than the desire®F. Indeed, obtaining such MUF is exactly what was recently done by
Lysyanskaya [Lys02] in groups wheB¥DH is easy bugCDH is hard.

However, we make the curcial observation that the fact BfaH is easy doesiot mean that no version of
gDDH assumption can be true: it only meams might have to put more restrictions on the predicg&ten order
to make it hard for the adversary to break tfieDH assumption relative t&. Indeed, for the current elliptic
groups for which we believe in a separation betw&H and CDH, we only know how to test ifh, u, v, w)
is of the formu = h®% v = hP,w = ho (this is called aDDH-tuple). For example, as was mentioned by
Boneh and Franklin [BF01], it seems reasonable to assurhé thaard to distinguidh a tupl@h, h®, h®, h¢, h°)
from a random tupléh, h®, h®, h¢, h%). Put differently, whenu, ... ay, are chosen at random and given a sample
g = G(0),G(I)...G(I;), the only way we know how to distinguist¥(/) from a random element of such
groups is by exhibiting three sefs,, I,,, I, (where0 < m,p,s < t, andI, denotes the empty set) such that
aj-ar, = ay, - ar, mod ¢.* The last equation implies thay/“+ I,,, = I, + 1", where we view the sets ds-bit
0/1-vectors, and the addition is bitwise over the integers.theowords, one has to explicitly findBDH-tuple
among the sampleS(7;)’s and the targe€(J).

We formalize this intuition into the following predicate(J, I, ..., I;). Let us denotd, = (). We say that/ is
DDH-dependnedn/; ... I; ifthere are indice® < m, p, s < t satisfyingJ+1,,, = I,,+I (see explanation above).
For example 10101 is DDH-dependent 001010,00001 and11111, sincel0101 + 01011 = 11111 + 00001 =
11112. Then we define thBDH-freerelationR to be true if and only if/ is DDH-independent frond; ... I;.

Definition 4 Given L = L(k), we say that the groufiz (where regularDDH is easy) satisfies theum-free
decisional Diffie-Hellmar{sf-DDH) assumption of ordeL if if satisfies thegDDH assumption of ordeL relative
to theDDH-free relationR above.G satisfies thédull targetsf-DDH assumption if we additionally requité = [L].

For our purposes we notice thaDH-dependence also implies thatp I,,, = I, ® I,, whered® indicates the
bitwise addition modua (i.e., we make 2 = 0"), or J & I,,, ® I, ® I, = 0. Let us callJ 4-wise independeritom
I, ... I if no three setd,,, I;, I, yield J & I,, ® I, ® I, = 0. Hence, if we letR'(J, I, ..., I;) = 1 if and only

4One can also try to find the additive relations, but sincestfeeare all random, it seems that the only such relations ondicd would
trivially follow from some multiplicative relations.



if J is 4-wise indepepndent from thg’s, we get thatR’ is a stricter relation that ol DH-free R. But this means
thatgDDH assumption relative t®’ is aweakerassumption thasf-DDH, so we call itweaksf-DDH. Our actual
construction will in fact be based on weskDDH.

To summarizesf-DDH is the strongest possible assumption which is conceivabthd groups were regular
DDH is false. We chose this assumption to get the simplest and effasent VRF construction possible when
DDH is false (in fact, we only need weak-DDH in our case). However, even if the ambitiafsDDH assumption
we propose turns out to be false in the current groups wWbBxd is easy — which we currently have no indication
of — it seems plausible that some reasonable wegkd#dH assumptions (relative to more restrictii® might
still hold. And our approach seems to be general enoughdw abme easy modification to our construction (at
slight efficiency loss) meet many such weag®DH assumptions.

3 Constructions

AssumeG is the group wher®DH is easy while some version ef-DDH holds (we will be more specific soon).
We consider the natural the type of functions given by Equag®); in our new notationf, ,, .. ., (z1...2¢) =
G(C(z)),> whereC is some currently unspecified (but efficiently computabhggdtive mapping fron{0, 1} to
{0,1}*. As we will see, the properties of encodidgwill be crucial in showing the properties of the resulting
function. To emphasize this dependence&gnve will also call the above functiolV R (-) when other parameters
are clear form the context.

3.1 Building PRFs

We notice, that the definition above already suffices to gigaradidate for a regul@RF. As a warm-up towards
VRFs, we first determine the conditions 6hand the kind o§DDH assumption we need in order to get a regular
PRF.

Lemma 1 Given encoding : {0,1}¢ — {0,1}%, assume predicat® satisfiesR (C(w), C(z1),...,C(z;)) = 1
foranyw ¢ {z1,...,z:}. ThenNR¢(-) is aPRF under thegDDH assumption of ordeL. relative toR.

Proof: The proof follows almost immediately by comparing the dégn of gDDH relative toR (Definition 3)
and the definition oPRF given in Section 2.1. Indeed, the adversary can quéR-(-) at any pointsey, . .. z;,
which corresponds to querying(-) on C(z;) ... C(x;), and has to distinguisiV R¢(w) = G(C(w)) for some
w & {z1...z}. Since our assumption implies th&{C(w), C(z1),...,C(z¢)) = 1, this adversary is legal for
breakinggDDH (of order L) relative toR, which is a contradiction. O

As an immediate corollary, usugDDH assumption implies thd¥ R« (-) is aPRF for any (injective)C, including
the identity. This in turn gives the result of [NR97], since mentioned that requl&DH impliesgDDH [STW96].

More interestingly, we will now determine the propertiegbivhich suffice to show thaV R« is aPRF under
the much weakesf-DDH assumption (for now, of the same large ordemwe will reduce the order later). In the
following, view every subset dfZ] (or element of{0, 1}1) as anL-dimensional vector ovefF'(2). Recall our
definition of a vectorJ being4-wise independent from the collectidn ... I;. To generalize this notion, we say
that the collection of vectorg, . .. I, is 4-wise independent, if nd or fewer vectors are linearly dependent.

Theorem 1 Assume” : {0,1}* — {0, 1}% is such that the collectiofC(z) | = € {0,1}*} is 4-wise independent.
ThenN R (+) is aPRF under the weak (and thus regulas}-DDH assumption of ordeL.

®Notice, we output a (pseudo)random elemenBdhstead of a (pseudo)random-bit string. However, standard hashing techniques
imply we can extract an almost uniform string of length claskg |G| from such an output. See [NR97].
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Proof: Obvious from Lemma 1 and the definition of westkDDH. [l

CONSTRUCTING 4-WISE INDEPENDENT ENCODINGS.  To get ourPRF under thesf-DDH assumption (i.e., in
groups were regulddDH might be false), it sufficing to constructdawise indepepndent encodirig. Naturally,
the goal is to maké. as close td as possible. Such encodings come up quite often in the tliédgrandomization
(see [ABI86, AS00]), and are closely related to coding tii€oln our case, the well known construction is very
simple and efficient, so we present it in a self-containedrmaan

Let us now view any element af € {0,1} as an element of the fiel@ F(2¢), which can be represented as
an/-dimensional vector ovef F'(2). This gives us the same bitwise addition operatimrbut now we also have
a multiplication operation. Then we sbt= 2/ and defineC'(z) = (z®||z), which is interpreted as follows. We
first cubez, which gives us anothet-dimentional vectoe:3, and then we append to it. Notice, the code” is
explicit and extremely efficient to evaluate. It is also vensy to see that anlywise indepepndent encoding we
can come up with must have > 2¢,” so our encoding is optimal. Now, assume there are stonezerodistinct
r1, 39,73, 24 € GF(2¢) and constants:, ao, a3, aq € {0,1} such thatzfz1 a;C(z;) = 0. We will show that
a1 = as = ag = a4 = 0, which yeilds4-wise independence.

Since our bitwise addition is the same as in the field, wezgégl ajz; =0 andE?:1 oz} = 0 overGF(2°).
Next, we square the first equation. Sir@& (2¢) has characteristi2 anda? = «;, the only surviving terms are
a;z?, which gives usi_, a;z? = 0. Similarly, raising the first equation to the powegives Y} | iz} = 0.
Thus, we have a linear system (with unknowns as, a3, ay) saying thatzfz1 aix{ =0forj =1,2,3,4. The
system corresponds to the famous Vandermonde matrix whatsentinant isczoz3z4 - ]_[Kj (x; —x5) # 0,
since all thex;’s are distinct and non-zero. Thus, the only solution to Weesn is the trivial all-zero solution,
completing the proof.

As a small technicality, we get thiewise independent encodirgg : {0, 1}°\ {0‘} — {0,1}%*, i.e. we explude
the all-zero vector. This implies that we get tRRF whose input domain excludes the all-zero vector too. This is
typically not a problem since we are “loosing” only one ouRbpoints. Of course, one can always increadey
1 and add a “dedicated” random, ;1 € Z4 to point0f, but this seems to be going through too much trouble for
such a small technicality. To summarize,

Theorem 2 The encoding”’ above defines BRF mapping/ bits (except’) to an element of;, which is secure
under the (weak3f-DDH assumption of orde2/.

REDUCING THE ORDER. While Theorem 2 gives a simplRRF construction, it is based on tlef-DDH as-
sumption of high polynomial ordeX?(k). While this assumption is reasonable, we now show how tocethe
order toO(log k) at only a marginal efficiency loss. So let: {0,1}* — {0,1}* be any4-wise indepepndet
encoding satisfying Theorem 1 (like the one we construdisale). The idea, similar to that of [Lys02], is to use
an error-correcting codg : {0,1}* — {0,1}" on top of our encoding’. However, since we are dealing with
linear dependence, we will have to restrict ourselvelintar codes (which was not needed in [Lys02]), and the
analysis will be slightly more involved. Thus, |I&tbe a linear error correcting code of distad@é (whered > 0
andN = O(L)), and defineC' = E o C : {0,1}* — {0,1}".

Theorem 3 Assume (wealgf-DDH assumption holds for any order= O(log k). ThenN R(-) is aPRF.

Proof. Assume some adversary = (A;, A,) breaks the pseudorandomness\ak ~(-). We constuct an adver-
saryB = (Bj, By) which breaksf-DDH assumption of some ordgr(to be specified later). Assunighas oracle

8In particular, obtaining the-wise independent encodir we need is equivalent to designing a parity check matrix gflewear code
of distances. Our specific code gives such matrix for the famous (and a}iBICH code of designed distanéeSee [MS77].
’Since all pairwise sum&'(x1) ® C(z») have to be distinct non-zero elements{6f 1}~.



access td", ;, .5, (H) for any subseti C [p|. B chooses a random subdetC [N] of cardinality exactlyp, and
implicitly setsa; = b; for i € I. It also picks on its own randowmy for all 7 € I. B (actually B1) now runsA; with
these implicit assignment in mind. Specifically, whénasks for the valu&vV R~ (), B; computes; = C(x), the
restrictionz; € {0,1}” of z to the positions in/, and the restrictiory; of z to the complement of. It asks its
oracle for the valug; = Fy, .., (21), and returns tod; the valuey = (yI)HieI % _WhenA; output the input
challenge value’, B, outputs the challenge input valué¢ = C’(m’);. Next, whenB, gets back the challenge
output value, which we ca}; (the reason will be clear)3; setsy’ = (y’I)Hiw % and passes it as the challenge
output value tads. ThenB; simulates oracle queries df, in the same way a8, did for A;. Finally, B, outputs
the same decision a%,.

We notice thatB simulatedA is a completely perfect way. Indeed, when the challengeBfavas the correct
output value,B translated it to the correct output value fdr Otherwise,B raised a random element to some
(wlog, non-zero) power, which left it a radnom group elemdritus, B distinguishes with the same advantage as
A modulo the problem thas could be illegal. Namely, assumeasked: = poly(k) queriesz?, . .., z! altogether.
ThenB askedt queriesz}, 27, ... z and outputted the challengg. Now it could be that} is 4-wise dependent
onz},z?,...z4. If this happens (say with probability), then we modify the behavior d§ to stop simulatingd
and letB output a random bit. We will show that it suffices to pet O(log k) in order to makex < 1/2, which
would complete the proof.

And here is the reason. Sinég simulatesA in a perfect way,A gets no information about during its run.
Thus, A cannot choose its actions basedlpso we may assume thdtchose some values = C(z!),..., 2! =
C(zt),2' = C(a'), wherez’ ¢ {z!,... '}, and only then (when the above values fixed the subsef was
actually chosen. Nowy exactly measures the probability that the randgrpfojection” 2} is 4-wise dependent on
the other projections!, ..., z}. We will apply the union bound. There are at m@st= O(¢*) choices for indices
s, m, r (including 0 for the empty set) which can cause the dependence of thecpoje. Thus, to show < 1/2

it suffice to show that for any three (or less, but this willyohe easier) fixed indices m, » the probability of linear

dependence in the projection is at mbg2T". Definez & /@ 2* @ 2" @ 2" = C(2') & C(z™) & C(2°) & C (")

andv & C(z') @ C(z™) @ C(zf) ® C(z"). Notice that since our error-correcting codleis linear, we have
z = E(v). Also, sinceC is 4-wise independent, we have that# 0. Thus, it remains to estimate the probability
thatz; = 0, or thatE(v); = 0 whenv # 0. But sincev # 0, E(v) has at least N entries which ard. Since

I picksp out of N entries ofE(v) at random, the probability of picking alfs (without replacement) is at most
(1 — 0)P. It remains to pickp so that(1 — §)? = O(1/¢3), and we see that setting= O(log k) suffices indeed
(recall thatk is our security parameters polynomial ink andd is a constant). This completes the proof. [

We remark that since error-correcting code can in princplproach a rate df, using Theorem 2 we can get a
PRF construction with final expansioN = (2 + ¢)¢ based of thesf-DDH assumption of orde® (log k).

3.2 Building VRFs

So far we saw how to construct plafRFs based orsf-DDH assumption. We now show how extend the above
techniques to get ¥RF. As before the construction is parameterized by some engadi: {0, 1}¢ — {0, 1}~.

e Gen(1%): runs(G, q,g) + Setup(1*), picks randonus, ... ,ar+1 € G, setsh = g4i+1,y; = h%,.. .y, =
het. Outputs public key’K = (G, q,g, h,y1 = h*, ...,y = h®), secretkeySK = (g,a1,...,ar).

e Provegsg (z): outputs(oy,...or), whereoy = g ando; = gH{iSW(@:l} forj = 1... L. In particular, the
valueoy, is Fsk (z), while (o1, ...,0-1) is the proofrsx ().

e Verifypy(o1,...,0r): setsoy = g and checks, for every < i < L, that(o;_1, 03, h, y;) form aDDH-tuple
(recall, DDH is easy!) wherC'(z) = 1, ot thato;_1 = oy is C(z); = 0. Accept if all the tests pass.
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To satisfy the definition o¥/RFs (Definition 1), we need to examine uniqueness, provalalitg pseudorandom-
ness. The first two properties are very easy. Uniquenessafelfrom the fact that discrete logs are unigue in
G (and that our assumed algorithm foDH will never accept an invalid tuple), while provability iswibus by
construction.

Thus, we only need to examine the pseudorandomness propenkily, a lot of machinery has been already
developed in Section 3.1. Essentially, the main differaneehave is that when the adversary aBksve(z), not
only does he gef'(z) = G(C(x)), but he also gets “for free” the proof valué§I) for all I € Prefixes(C(z)),

where for a set/ C [L] we definePrefixes(.J) o {0, TN [1],JN[2],...,J N[L—1],J}. Additionally, the pub-
lic key gives the adversary the valug${L + 1}), G({L + 1,1}),...,G({L + 1, L}). We denote this collection
of L+ 1 subsets ofL + 1] involving elementZ + 1 by Pub(L +1). With these in mind, we easily get the following
analog of Lemma 1.

Lemma 2 Given encoding : {0,1}* — {0,1}*, assume that for any ¢ {x1, ...,z } the predicateR satisfies
R(C(w), Prefixes(C(x1)), ..., Prefixes(C(z)), Pub(L + 1)) = 1. Then our construction is &RF, under the
gDDH assumption of ordef. + 1 relative toR.

Next, we can appropriately generalize the notiort-afise independence to that ¢fwise prefix-independence
Namely, a vector/ is 4-wise prefix independent from vectorfs. .. I; if there exist nol < p,r,s,< t and

I, € Prefixes(I,), I, € Prefixes(1,), I € Prefixes(I,) such that/ @ I, ® I} @ I = 0. A collection{I; ...I;}

is said to bet-wise prefix independent if every vectbris 4-wise prefix independent from the remaining vectors.
Finally, we will say that the above collection hafix-distanceat least3, if for any : # j and I ; € Prefixes(/}),

we have that; andIJ’- differ in at least3 positions when viewed as binary vectors of lengtfin particular, every

I; has weight at leas}). Then, we get the following analog of Theorem 1.

Theorem 4 AssumeC' : {0,1}* — {0,1}% is such that the collectio C(z) | z € {0,1}*} is 4-wise prefix-
independent and has prefix-distance at Iéasthen our construction is ¥RF under the weak (and thus regular)
sf-DDH assumption of ordef, + 1.

Proof: By Lemma 2, we only need to show that no veotdfw) is linearly dependent o8 (or fewer) vectors
21, 22, z3 inside the set®refixes(C(z1)),. .., Prefixes(C(z;)), Pub(L + 1). Assuming the contrary, if none of
21, 22, z3 comes fromPub(L + 1), we would exactly get that the collectidiC(z) | z € {0,1}} is 4-wise prefix-
dependent, which is a contradiction. Otherwise, seyis€say,z;)isoneof{{L + 1} ,{L + 1,1},...,{L+ 1, L}}.
Since these are the only sets containing eleniént 1), in order to “cancel’(L + 1) one otherz; (say, z2) also
comes from this collection, which means that® z, is some subset of of [L] or cardinalityat most2. The
only way we can now have€'(w) ® I @ z3 = 0, is if somezs; was a prefix of som&'(z;) (wherez; # w)
which differs fromC(w) in at most2 coordinates. But this is exactly what is ruled out by the fhetcollection
{C(z) | z € {0,1}*} has prefix-distance at leakt O

CONSTRUCTING THEENCODING. It remains again to constructdawise prefix-independent encoding of prefix
distance at leas3. We do it by giving a simple generic transformation from aegular4-wise independent
encodingC : {0,1}¢ — {0,1}*, such as the encodirg?||z) considered in the previous section. We will assume
without loss of generality that every two distinct eleme6tsr) and C(w) differ in at least two positions. For
example, this is true with thé-wise independent encodir{g?||=) constructed in the previous section. However,
even if originally false inC', one can always increadeby 1 by adding a “parity” bit toC (i.e., the XOR of all the
bits of C'(x)) and get the required distance at leasietween distinct codewords. Also, for a technical reason we
will exclude the zero vectad’ from the domain of our new encoding.

Lemma 3 If C' is 4-wise independent (and has distance at I&sthenC’(z) = (C(z)||1||z||1) is 4-wise prefix-
independent and has prefix-distance at leiast
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Proof: Below we will refer to the twd'’s in the definition ofC’ as “middle” and “last”. We start with showing the
prefix distance. Take any # w and consider any prefik of C’(w). This prefix either “crosses” both the middle
and the last, only the middlel, or none of them. In the first case (i.e., we lookC&fw) itself), we get distance
three betwee®’(z) andC’(w) sinceC(z) differs fromC(w) in at least two locations, anddiffers fromw in at
least one more location. In the second c&sey) still differs from C'(w) in at least two locations, and now also
I does not have the lastwhich C’(z) has. Finally, in the last case (¢ are crossed)] does not have both's
that C’(z) has, and also in between tiis = is non-zero (this is where we excludé) while the prefixI is zero,
giving distance at leastagain.

Next, we show thel-wise prefix independence. Take amyw;,ws, w3 wherez ¢ {w;,ws, w3}, and let
z1, 22, z3 be some prefixes @’ (w;), C'(w2), C'(w2) such tha(C (z)||1||z||1) ® 21 @ zo® z5 = 0. Notice, in order
to cancel the last of C’(z), at least one of the prefixes, sayhas to be full; i.e.z; = C'(wy) = C(w1)||1]Jwy||1.
Since the middld’s cancel out inC’(z) @ C'(w;), we have two possibilities for them to cancel in the full sum
C'(z) ® C'(w1) & 22 @ z3. Either both prefixes, andz3 cross the middlé, or none does. In the first case, taking
the “C-prefixes” we get thaC(z) ® C(w;) ® C(w2) @ C(w3) = 0, which contradicts the fact that is 4-wise
independent. In the second case, we get that the identity patween tha’s yield z & w; = 0, i.e. z = wx,
which is again a contradiction. ]

Applying the above Lemma to thewise independent codé(z) = (z*||z) used in Theorem 2, we get:

Theorem 5 The encoding’(z) = (3||z||1]|=||1) defines &/ RF mapping? bits (except?) to an element ofs,
which is secure under the (weadf}DDH assumption of ordes/ + 3.

REDUCING THE ORDER. Similarly to Theorem 3, we apply an “outer” error-corregticode to reduce the order
of the sf-DDH assumption we need for Theorem 5. However, we need to belwfredr construction preserves
prefix-independence. Here is one direct way of doing it if wats— as in Lemma 3 — from any reguldr
wise independent (but perhaps not prefix-independént) {0,1}* — {0,1}* with minimum distance2. Let
Ey:{0,1}F — {0,1}M andE, : {0,1}¢ — {0,1}"2 be two linear error correcting codes, both correcting some
constant fraction of errors. We define the final encoditig) = (E1(C(z))||1]|E2(z)||1) which maps/ non-zero
bits to N; + Ny + 2 = O(¥) bits. By carefully combining the arguments in Theorem 3 wita technique in
Lemma 3, we get the following corollary whose proof we omittmid repetition.

Theorem 6 Assume (wealgf-DDH assumption holds for any ordgr= O(log k). Then the codé€ above defines
aVRF.

As earlier, we remark that since error-correcting codesrcannciple approach a rate @f using Theorem 5 we
can get &/RF construction with final expansiaN = (3 +¢)¢ based of thesf-DDH assumption of orde®(log k).

Finally, we remark that with an extra overhead2dfi the expansion of’ (and a large polynomial loss in exact
security), we can reduce oBRF andVRF constructions in both Theorem 3 and Theorem 6 to usinfuih&rget
sf-DDH assumption of orde®(log k). Since we have no evidence that full-targeDDH is a significantly better
assumption than regulaf-DDH, it is not clear if losing these overheads is worthwhile. §hue leave the details
of this extension to the full version.

4 Distributed VRF

In this section we show that oMRF construction can be easily made distributed, which resulise firstDVRF
construction. Our construction is extremely simple andineisi\DPRF construction of Nielsen [Nie02] based
on regularDDH. However, the fact thdDDH is easy implies we can make our construction non-interadiie.,
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servers do not need to know about each other) and more efftbiem that of Nielsen. We start by presenting our
model, and then show our simple construction.

THEMODEL. We assume there aneserversSy, .. ., S, and that we have aregulRF V' = (Gen, Prove, Setup)
which we want to distribute. First, we define the syntax ofrthe generation algorithrGen’(-) run by the trusted
party. Gen'(1*) not only outputs the public/secret key®X and SK for V, but also a pair of public/secret key
(PK;, SK;) for each servef;. The global secret ke§ K is then erased, each sersgrgetsSK;, and the values
(PK, PK,,...,PK,) are published. When a usErapproaches the servéy with inputz, the server determines

if the user is qualified to learn the value/proof Bfz). How this is done is specifed by the application at hand
and is unimportant to us. I¥ is successful, though, we say ttfgtwasinitiated on inputz, andU andS; engage

in a possibly interactive protocol. To successfully contgplnis protocol, the user might have to simultaneously
interact with several servers in some possibly predefinddrdisee below), but the servers do not need to interact
to each other or know each other’s state. Given a threshofdhe systems, the robustness property states that
if U contactss servers on inpuk, and at least at least + 1) of these servers are honest (plus, of course, each
honest server accepts the user’s request), then at the ehe pfotocol the user learns the unique correct output
of Prove(z); i.e., the valueF'(x) and the proofr(z). This should hold even if the remainiig — ¢ — 1) of the
contacted servers are malicious. We notice also that wideuser/ needs to know the “local’ public ke K;

of server; in order to interact with serve§;, any outside party only needs to know the “global” public K&k in
order to verify the consistency @f(x) and~(x). In other words, the verification algortihverify does not have

to be changed from the non-distributed setting.

The security property of theDVRF protocol states that for any indicesiy,...,i; and for any adversary
A = (A1, Az) who “breaks” the security oDVRF by “corrupting” serverssS;,, ..., S;, (see below), there ex-
ists an adversary3 = (B, By) which breaks the pseudorandomness property of our oriyiiRdt, as given
by Definition 1. We now define what it means to break the secufitDVRF. In addition to the public key
(PK,PKy,...,PK,), A learns the valueSK;, , ..., SK;, of the corrupted servers. Thed; runs in the first
stage, in which it is given the ability to interact with anyriest servers; on arbitrary inputs and in any manner
that A, desires. However, we keep track of the set of indutghich were initiated by4,. At the end of the phase,
A; outputs the challenge input (and the state information fafl;). Then A, is given back a challengg, (for
randomb), which is either the valug, = F(z) or a random elemeny; in the range ofF. A, can then again
interect with honest servers, just likg did. At the end, 4, outputs the guessand succeeds i = b and neither
A; nor A, initiated the inputz with any of the serversA breaks the scheme if it succeeds with non-negligible
advantage ovet/2.

CONSTRUCTION In Section 3.2 we defined a general candidateMBRF parametrized by any encoding.
We now show how to make such construction distributed for @fpr which the basic construction is\tRF.
The construction is quite simple, but it shows how convenieis to have verifiability (given by the easiness of
DDH) “for free”. Recall that we hadK = (g,a1,...,ar); PK = (G,q,9,h,y1 = h*,...,y, = h®); and
Provesr (z) = (01,...01), whereoy = g, 0; = 0;°, if C(z); = 1ando; = o, otherwise.

To distribute this process, for evejy= 1... L we use Shamir'st + 1,n)-secret sharing [Sha79] ovél, to
split eacha; into n shareqa; 1, ..., a;,), SO that any + 1 of these shares suffice to recowgr while ¢ or fewer
shares give no information abowf. We set the secret keyK; of serveri to (a1, ...,ar;), and its public key
PK;to (yi1; = h*i,...,y; = h*Li). To computeProve(z), the uselU needs to contact at leagt+ 1) honest
servers. The protocol with the contact§gls proceeds in rounds. Assuming inductively that the vatye, is
known to both the user and the servers (with the base hgirg g which is known to everybody), we show how
to computes;. If C(z); = 0, 0; = 0;_1, SO we are done. Otherwise, each set¥esends the value;; = 0"
to the user. The user locally checks thaj_1, o;;, h,y;,;) form a propeDDH-tuple. If they do not[J discards
the share and stops interacting wih Upon receiving at least + 1) correct shared/ uses the corresponding
Lagrange interpolation in the exponent to compute the @szady correct) value;, and sends; to all the servers
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it is communicating with. Each servé, upon receivingr;, checks if(o;_1, 05, h,y;) form a validDDH-tuple.
If they do not, the server stops the interaction withThen the protocol proceeds to the next round until the entir
output is computed.

SECURITY. The security of the above scheme is quite straightforwBabustness is immediate since every share
is checked for consistency. As for pseudorandomness, demeny successful distributed adversadry= (A;, As)
who corrupts servers ...i;. We build B = (B, Be) for our original VRF as follows. B picks random values
aj, € ZLqforeveryj € [L] ands € [t], and gives the resulting secret keyK; , ..., SK;, to A. It then computes
the induced public key®K; , ..., PK;, and uses its own public key*,... h% to compute the remaining
public keysP K; for all non-corrupted users. This is done by performing thperapriate Lagrange interpolation
in the exponent which computes the valyg from y;,y;.,...,v;. It hands all these public keys 14, after
which B; starts runningd;. When A, initiates any server on input, B; asks for the valu€®rove(z), and uses
the responséo, . .. ,0,), together with the knowledge &K, , ..., SK;,, to compute all the relevant shares;

(by again doing straightforward Lagrange interpolatiorthia exponent; details are obvious and omitted). This
allows B; to simulate all the responses #3. After B, outputs the same challengéas A, B, gets the output
challengey’, which it forwards toA; as well. ThenB; simulatesAs’s interaction with the servers in exactly the
same wayB; did it for A;. Finally, B, outputs the same guebsas A., which completes the reduction and the
proof of security.

EFFICIENCY. The above protocol is quite efficient. The communicatiomplexity is O(t*¢k), and the round
complexity isL = O(¢). This is more efficient than the complexity of the (non-vailife) DPRF construction
of [Nie02] since no server interaction or expensive intevaczero-knowledge proofs are needed.

Finally, we remark that we can achieve proactive securitwel (i.e., periodically refresh the sharing of the
secret key to withstand “mobile” attacks [OY91]) by usin@retard share renewal techniques (see {1937)).
Essentially, each server (verifiably) distribut¥s to other servers, and all servers locally add these shartbeir
old secret shares (also correspondingly updating the pabéres).
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