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Abstract. Key Exchange (KE), which enables two parties (e.g., a client and a server) to securely establish
a common private key while communicating over an insecure channel, is one of the most fundamental
cryptographic primitives. In this work, we address the setting of unilaterally-authenticated key exchange
(UAKE), where an unauthenticated (unkeyed) client establishes a key with an authenticated (keyed) server.
This setting is highly motivated by many practical uses of KE on the Internet, but received relatively little
attention so far.

Unlike the prior work, defining UAKE by downgrading a relatively complex definition of mutually authen-
ticated key exchange (MAKE), our definition follows the opposite approach of upgrading existing definitions
of public key encryption (PKE) and signatures towards UAKE. As a result, our new definition is short and
easy to understand. Nevertheless, we show that it is equivalent to the UAKE definition of Bellare-Rogaway
(when downgraded from MAKE), and thus captures a very strong and widely adopted security notion, while
looking very similar to the simple “one-oracle” definition of traditional PKE/signature schemes. As a benefit
of our intuitive framework, we show two exactly-as-you-expect (i.e., having no caveats so abundant in the
KE literature!) UAKE protocols from (possibly interactive) signature and encryption. By plugging various
one- or two-round signature and encryption schemes, we derive provably-secure variants of various well-
known UAKE protocols (such as a unilateral variant of SKEME with and without perfect forward secrecy,
and Shoup’s A-DHKE-1), as well as new protocols, such as the first 2-round UAKE protocol which is both
(passively) forward deniable and forward-secure.

To further clarify the intuitive connections between PKE/Signatures and UAKE, we define and construct
stronger forms of (necessarily interactive) PKE/Signature schemes, called confirmed encryption and confi-
dential authentication, which, respectively, allow the sender to obtain confirmation that the (keyed) receiver
output the correct message, or to hide the content of the message being authenticated from anybody but the
participating (unkeyed) receiver. Using confirmed PKE/confidential authentication, we obtain two concise
UAKE protocols of the form: “send confirmed encryption/confidential authentication of a random key K.”

1 Introduction

Key exchange (KE) is one of the most fundamental cryptographic primitives. Using a KE protocol,
two parties can securely establish a common, private, cryptographic key while communicating over an
insecure channel. Although the basic idea of KE dates back to the seminal work of Diffie and Hellman
[9], a proper formalization of this notion was proposed only much later by Bellare and Rogaway [2]. In
particular, Bellare and Rogaway considered the problem of mutually authenticated key exchange where
two parties (e.g., a client and a server), each holding a valid long-term key pair, want to agree on a fresh
common cryptographic key, while being assured about the identity of their protocol’s partner. In [2],
Bellare and Rogaway proposed a model for mutually-authenticated KE which allows to formally define
security in this context, and in particular formalizes the adversary’s capabilities in a proper way.

Building on this remarkable work, many other papers addressed KE in multiple directions, such as
efficient and provably-secure realizations [20], or alternative security models [1,5,6]. Notably, the vast
majority of papers in this area considered only the mutually authenticated setting where both the server
and the client have long-term keys. However, it is striking to observe that many practical uses of KE
protocols on the Internet work in a restricted setting where only the server has a long-term (certified)
public key. A notable example of this setting is perhaps the simple access to web servers using the
well known SSL/TLS protocol. This notion of KE has been often called unilaterally-authenticated (or,
sometimes, anonymous, one-way or server-only) KE. To emphasize the distinction, in our work we will
denote unilaterally-authenticated KE as UAKE, and mutually-authenticated KE as MAKE.

In spite of the practical relevance of unilaterally-authenticated key-exchange, we notice that most
prior KE definitions targeted MAKE, and those works that focused on UAKE (e.g., [25,15,14,21]) used



definitions that were obtained by slightly “downgrading” definitions of MAKE to the unilateral setting.
The problem here is that existing definitions of MAKE are rigorous, but also pretty complex and hard
to digest. Therefore, when analyzing the simple notion of UAKE by downgrading existing definitions of
MAKE, one ends up with other complex definitions.

One goal of this work is thus to address this state of affairs by taking a different approach. Instead of
considering UAKE as a downgraded version of MAKE, we propose a new definition of UAKE obtained
by slightly “upgrading” the short and simple definitions of public key encryption and digital signatures.
Precisely, we build on the recent work of Dodis and Fiore [10] that proposes a definitional framework for
interactive message transmission protocols, and gives new notions of interactive public key encryption
(PKE) and interactive public key message authentication (PKMA). These two notions naturally extend
the classical notions of IND−CCA encryption (resp. strongly unforgeable signatures) to the interactive
setting. By building on this framework, we obtain a UAKE definition which is (in our opinion) more
intuitive and easier to digest.3 Nevertheless, we show that our differently-looking UAKE definition
is equivalent to the one of Bellare-Rogaway (BR) restricted to the single authenticated setting. This
shows that we are not providing a new KE notion, but simply suggesting a different, simpler, way to
explain the same notion when restricted to the unilateral setting. In fact, the BR UAKE definition
“downgraded-from-MAKE” is actually noticeably simpler than the MAKE definition, but still (in our
opinion) not as intuitive as our new definition. Hence, by establishing our equivalence, we offer a new
path of teaching/understanding MAKE: (1) present our definition of UAKE, and use it to design and
prove simple UAKE protocols (see below); (2) point out new subtleties of MAKE, making it hard
(impossible?) to have a simple “one-oracle” definition of MAKE; (3) introduce the “downgraded” BR-
framework (which has more finer-grain oracles available to the attacker) which is equivalent to our
UAKE framework; (4) extend the ”downgraded” BR framework to the full setting of MAKE. We view
this philosophy as a major educational contribution of this work.

In the following, we describe our definitional framework and the remaining results (including simple
and intuitive UAKE protocols) in more detail.

1.1 Our Results

Definitional Framework. The definitional framework proposed by Dodis and Fiore [10] consists
of two parts. The first part is independent of the particular primitive, and simply introduces the bare
minimum of notions/notation to deal with interaction. For example, they define (a) what it means to
have concurrent oracle access to an interactive party under attack; and (b) what it means to ‘act as a wire’
between two honest parties (this trivial, but unavoidable, attack is called a ‘ping-pong’ attack). Once
the notation is developed, the actual definitions become as short and simple as in the non-interactive
setting (e.g., see Definitions 5 and 6). So, by building on this framework, we propose a simple notion of
UAKE (cf. Definition 8) which we briefly discuss now. The attacker A has concurrent oracle access to
the honest secret key owner (the “server”), and simultaneously tries to establish a (wlog single) session
key with an honest unauthenticated client (the “challenger”). If the challenger rejects, A ‘lost’.4 If it
accepts and the session is not a ping-pong of one of its conversations with the server, then A ‘won’,
since it ‘fooled’ the challenger without trivially forwarding messages from the honest server. Otherwise,
if A established a valid key with the challenger by a ping-pong attack, A ‘wins’ if it can distinguish a
(well-defined) ‘real’ session key from a completely random key.5

3 We stress, we are not suggesting that we can similarly simplify the more complicated definitions of MAKE. In fact, we
believe that UAKE is inherently easier than MAKE, which is precisely why we managed to obtain our simpler definition
only for UAKE.

4 Notice, since anybody can establish a key with the server, to succeed A must establish the key with an honest client.
5 Notice, for elegance sake our basic definition does not demand advanced properties, such as forward security or deniabil-

ity, but (as we show) can be easily extended to do so. Indeed, our goal was not to get the most ‘advanced’ KE definition,
but rather to get a strong and useful definition which is short, intuitive, and easy to digest.
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Key Exchange Protocols. As we mentioned, our unilaterally-authenticated key-exchange (UAKE)
definition can be seen as a natural extension of the interactive PKE/PKMA definitions in [10]. As
a result, we show two simple and very natural constructions of UAKE protocols: from any possibly
interactive PKE scheme and a PRF, depicted in Figure 2, and from any possibly interactive PKMA
scheme and CPA-secure key encapsulation mechanism (KEM), depicted in Figure 3. By plugging various
non-interactive or 2-round PKE/PKMA schemes (and KEMs, such as the classical Diffie-Hellman KE),
we get a variety of simple and natural UAKE protocols. For example, we re-derive the A-DHKE-1
protocol from [25], the unilateral version of the SKEME protocol [19], and we get (to the best of
our knowledge) the first 2-round UAKE, depicted in Figure ??, which is both forward-deniable and
forward-secure.

Hence, the main contribution of our work is not to design new UAKE protocols (which we still do
due to the generality of our results!), but rather to have a simple and intuitive UAKE framework where
everything works as expected, without any caveats (so abundant in the traditional KE literature). Namely,
the fact that immediate corollaries of our work easily establish well known and widely used UAKE
protocols is a big feature of our approach. Unlike prior work, however, our protocols: (1) work with
interactive PKE/PKMA; (2) are directly analyzed in the unilateral setting using our simple definition,
instead of being “downgraded” from more complex MAKE protocols.

Confirmed PKE and Confidential PKMA. To provide a further smoother transition from basic
notions of PKE/PKMA towards KE, another contribution of our work is to define two strengthenings of
PKE/PKMA which inherently require interaction. We call these notions confirmed encryption and confi-
dential authentication, and study them in Section 6. In brief, confirmed encryption is an extension of the
interactive encryption notion of Dodis and Fiore [10] in which the (unkeyed) sender gets a confirmation
that the (keyed) receiver obtained the correct encrypted message, and thus accepts/rejects accordingly.
Confidential authentication, instead, adds a privacy property to PKMA protocols [10] in such a way
that no information about the message is leaked to adversaries controlling the communication channel
(and, yet, the unkeyed honest receiver gets the message). Clearly, both notions require interaction, and
we show both can be realized quite naturally with (optimal) two rounds of interaction. Moreover, these
two notions provide two modular and “dual” ways to build secure UAKE protocols.Namely, we further
abstract our UAKE constructions in Figures 2 and 3 by using the notions of confirmed PKE and confi-
dential PKMA, by showing that “confirmed encryption of random K” and “confidential authentication
of random K” both yield secure UAKE protocols.

Summary. Although we do not claim a special novelty in showing a connection between PKE/signatures
and KE, we believe that the novelty of our contribution is to formally state such connection in a general
and intuitive way. In particular, our work shows a path from traditional non-interactive PKE/PKMA
schemes, to interactive PKE/PKMA, to (interactive) confirmed PKE/confidential PKMA, to UAKE,
to MAKE (where the latter two steps use the equivalence of our simple “one-oracle” definition with
the downgraded Bellare-Rogaway definition). Given that unilaterally-authenticated key-exchange, aside
from independent interest, already introduces many of the subtleties of mutually-authenticated key-
exchange (MAKE), we hope our work can therefore simplify the introduction of MAKE to students.
Indeed, we believe all our results can be easily taught in an undergraduate cryptography course.

1.2 Related Work

Following the work of Bellare and Rogaway [2], several works proposed different security definitions for
(mutually-authenticated) KE, e.g., [3,4,1,5,22]. Notably, some of these works focused on achieving secure
composition properties [25,6]. Unilaterally-Authenticated Key-Exchange has been previously considered
by Shoup [25] (who used the term “anonymous key-exchange”), Goldberg et al. [15] (in the context of
Tor), Fiore et al. [14] (in the identity-based setting), and by Jager et al. [16] and Krawczyk et al. [21]
(in the context of TLS). All these works arrived at unilaterally-authenticated key-exchange by following
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essentially the same approach: they started from (some standard definitions of) mutually-authenticated
KE, and then they relaxed this notion by introducing one “dummy” user which can run the protocol
without any secret (so, the unauthenticated party will run the protocol on behalf of such user), and by
slightly changing the party-corruption condition.

Our authentication- (but not encryption-) based UAKE protocols also have conceptual similarities
with the authenticator-based design of KE protocols by Bellare et al. [1]. Namely, although [1] concen-
trate on the mutually-authenticated setting, our UAKE of Figure 3 is similar to what can be obtained
by applying a (unilateral) authenticator to an unauthenticated protocol, such as a one-time KEM.
As explained in Section 4, however, the derived protocols are not exactly the same. This is because
there are noticeable differences between authenticators and interactive PKMA schemes. For example,
authenticators already require security against replay attack (and, thus, standard signature schemes
by themselves are not good authenticators), and also use a very different real/ideal definition than our
simple game-based definition of PKMA. In summary, while the concrete protocols obtained are similar
(but not identical), the two works use very different definitions and construction paths to arrive at these
similar protocols.

Finally, in a concurrent and independent work, Maurer, Tackmann and Coretti [24] considers the
problem of providing new definitions of unilateral KE, and they do so by building on the constructive
cryptography paradigm of Maurer and Renner [23]. Using this approach, they proposed a protocol which
is based only on a CPA-secure KEM and an unforgeable digital signature, and is very similar to one of
our UAKE protocols.

2 Background and Definitions

In our paper we use relatively standard notation recalled in Appendix A. Before giving the definitions of
message transmission protocols and unilateral key exchange, we discuss two aspects of our definitions.

Session IDs . Throughout this paper, we consider various protocols (e.g., message transmission or
key exchange) that may be run concurrently many times between the same two parties. In order to
distinguish one execution of a protocol from another, one typically uses session identifiers, denoted sid,
of which we can find two main uses in the literature. The first one is to consider purely “administrative”
session identifiers, that are used by a user running multiple session to differentiate between them, i.e.,
to associate what session a message is going to or coming from. This means that the honest parties need
some concrete mechanism to ensure the uniqueness of sid’s, when honestly running multiple concurrent
sessions. E.g., administrative sid can be a simple counter or any other nonce (perhaps together with any
information necessary for communication, such as IP addresses or some mutually agreed upon timing
information), or could be jointly selected by the parties, by each party providing some part of the sid.
However, rather than force some particular choice which will complicate the notation, while simultane-
ously getting the strongest possible security definition, in our definitions we let the adversary completely
control all the administrative sid’s (as the adversary anyway controls all the protocol scheduling). In
order not to clutter the notation with this trivial lower level detail, in our work we will ignore such
administrative sid’s from our notation, but instead implicitly model them as stated above.

The second use of session identifiers in the literature is more technical as sid’s are used in security
definitions in order to define “benign” adversaries that simply act as a wire in the network. With respect
to the use of sid’s in security definitions we see three main approaches in the literature. The modern
KE approach lets parties define sid’s as part of the protocol. While this is more relaxed and allows for
more protocols to be proven secure, it also somewhat clutters the notation as the choice of the sid is
now part of the protocol specification. The second approach is to let sid be the transcript of a protocol
execution, which simplifies the notation and implies the previous approach. In both the first and second
approach, benign adversaries are those that cause two sessions have equal sid’s. The third approach
instead does not use explicit sid’s, and considers benign adversaries those that cause two sessions have
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same transcript (seen as a “timed object”). All the approaches have pros and cons. For example, both
the second and the third approach rule out some good protocols, but save on syntax and notation.
Moreover, the third approach is the strongest one for security: it leaves to protocol implementers the
freedom of picking the most convenient “administrative” sid selection mechanism, without worrying
about security, since in this model adversaries can arbitrarily control the administrative sid’s. For these
reasons, in this work we follow the third approach, which also gives us the possibility of making our
definitions more in line with those of PKE/signatures, where there are no explicit session identifiers.

Party Identities. Unlike the traditional setting of encryption and authentication, in the KE literature
parties usually have external (party) identities in addition to their public/secret keys. This allows the
same party to (claim to) have multiple keys, or, conversely, the same key for multiple identities. While
generality is quite useful in the mutually authenticated setting, and could be easily added to all our
definitions and results in the unilateral setting, we decided to avoid this extra layer of notation. Instead,
we implicitly set the identity of the party to be its public key (in case of the server), or null (in case
of the client). Aside from simpler notation, this allowed us to make our definitions look very similar to
traditional PKE/signatures, which was one of our goals. We remark that this is a trivial and inessential
choice which largely follows a historic tradition for PKE/PKMA. Indeed, having party identities is
equally meaningful for traditional PKE/PKMA schemes, but is omitted from the syntax, because it can
always be trivially achieved by appending the identities of the sender and/or recipient to the message.
We stress, we do not assume any key registration authority who checks knowledge of secret keys. In
fact, in our definition the attacker pretends to be the owner of the victim’s secret key (while having
oracle access to the victim), much like in PKE/PKMA the attacker tries to “impersonate” the honest
party (signer/decryptor) with only oracle access to this party.

2.1 Message Transmission Protocols

In this section, we recall the definitional framework of message transmission protocols as defined in [10],
along with suitable security definitions for confidentiality (called iCCA security) and authenticity (called
iCMA security).

A message transmission protocol involves two parties, a sender S and a receiver R, such that the
goal of S is to send a message m to R while preserving certain security properties on m. Formally, a
message transmission protocol Π consists of algorithms (Setup,S,R) defined as follows:

Setup(1λ): on input the security parameter λ, the setup algorithm generates a pair of keys (sendk, recvk).
In particular, these keys contain an implicit description of the message space M.

S(sendk,m): is a possibly interactive Turing machine that is run with the sender key sendk and a
message m ∈M as private inputs.

R(recvk): is a possibly interactive Turing machine that takes as private input the receiver key recvk,
and whose output is a message m ∈M or an error symbol ⊥.

We say that Π is an n-round protocol if the number of messages exchanged between S and R during
a run of the protocol is n. If Π is 1-round, then we say that Π is non-interactive. Since the sender
has no output, it is assumed without loss of generality that the S always speaks last. This means
that in an n-round protocol, R (resp. S) speaks first if n is even (resp. odd). For compact notation,
〈S(sendk,m),R(recvk)〉 = m′ denotes the process of running S and R on inputs (sendk,m) and recvk
respectively, and assigning R’s output to m′. In our notation, we will use m ∈ M for messages (aka
plaintexts), and capital M for protocol messages.

Definition 1 (Correctness). A message transmission protocol Π = (Setup, S,R) is correct if for all

honestly generated keys (sendk, recvk)
$← Setup(1λ), and all messages m ∈M, we have that 〈S(sendk,m),

R(recvk)〉 = m holds with all but negligible probability.
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Defining Security: Man-in-the-Middle Adversaries. Here we recall the formalism needed to
define the security of message transmission protocols. The basic idea is that an adversary with full
control of the communication channel has to violate a given security property (say confidentiality or
authenticity) in a run of the protocol that is called the challenge session. Formally, this session is a
protocol execution 〈S(sendk,m),AR(recvk)〉 or 〈AS(sendk,·),R(recvk)〉 where the adversary runs with an
honest party (S or R). AP denotes that the adversary has oracle access to multiple honest copies of
party P (where P = R or P = S), i.e., A can start as many copies of P as it wishes, and it can run the
message transmission protocol with each of these copies. In order to differentiate between several copies
of P, formally A calls the oracle providing a session identifier sid. However, as mentioned earlier, to keep
notation simple we do not write sid explicitly. The model assumes that whenever A sends a message to
the oracle P, then A always obtains P’s output. In particular, in the case of the receiver oracle, when
A sends the last protocol message to R, A obtains the (private) output of the receiver, i.e., a message
m or ⊥.

Due to its power, the adversary might entirely replay the challenge session by using its oracle. Since
this can constitute a trivial attack to the protocol, in what follows we recall the formalism of [10] to
capture replay attacks. The approach is similar to the one introduced by Bellare and Rogaway [2] in
the context of key exchange, based on the idea of “matching conversations”.

Let t be a global counter which is progressively incremented every time a party (including the
adversary) sends a message. Every message sent by a party (S, R or A) is timestamped with the current
time t. Using this notion of time,6 the transcript of a protocol session is defined as follows:

Definition 2 (Protocol Transcript). The transcript of a protocol session between two parties is
the timestamped sequence of messages (including both sent and received messages) viewed by a party
during a run of the message transmission protocol Π. If Π is n-round, then a transcript T is of the
form T = 〈(M1, t1), . . . , (Mn, tn)〉, where M1, . . . ,Mn are the exchanged messages, and t1, . . . , tn are the
respective timestamps.

In a protocol run 〈S(sendk,m),AR(recvk)〉 (resp. 〈AS(sendk,·),R(recvk)〉) we denote by T ∗ the transcript
of the challenge session between S and A (resp. A and R), whereas T1, . . . , TQ are the Q transcripts of
the sessions established by A with R (resp. S) via the oracle.

Definition 3 (Matching Transcripts). Let T = 〈(M1, t1), . . . , (Mn, tn)〉 and T ∗ = 〈(M∗1 , t∗1), . . . ,
(M∗n, t

∗
n)〉 be two protocol transcripts. We say that T matches T ∗ (T ⊆ T ∗, for short) if ∀i = 1, . . . , n,

Mi = M∗i and the two timestamp sequences are “alternating”, i.e., t1 < t∗1 < t∗2 < t2 < t3 < · · · <
tn−1 < tn < t∗n if R speaks first, or t∗1 < t1 < t2 < t∗2 < t∗3 < · · · < tn−1 < tn < t∗n if S speaks first. Note
that the notion of match is not commutative.

Using the above definitions, we recall the notion of ping-pong adversary:

Definition 4 (Ping-pong Adversary). Consider a run of the protocol Π involving A and an honest
party (it can be either 〈S(sendk,m),AR(recvk)〉 or 〈AS(sendk,·),R(recvk)〉), and let T ∗ be the transcript of
the challenge session, and T1, . . . , TQ be the transcripts of all the oracle sessions established by A. Then
we say that A is a ping-pong adversary if there is a transcript T ∈ {T1, . . . , TQ} such that T matches
T ∗, i.e., T ⊆ T ∗.

Now that we have introduced all the necessary definitions, we recall the two notions of interactive
chosen-ciphertext PKE (iCCA) and interactive chosen-message secure PKMA (iCMA) that capture,
respectively, confidentiality and authenticity of the messages sent by S to R. Let Π = (Setup,S,R) be
a message transmission protocol, and A be an adversary. The two notions are defined as follows by
considering the experiments in Figure 1.

6 We stress that timestamps are only used in the security definition; in particular they are not used by real-world parties.
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Experiment ExpiCCA
Π,A (λ)

b
$← {0, 1}

(sendk, recvk)
$← Setup(1λ)

(m0,m1)←AR(recvk)(sendk)

b′←〈S(sendk,mb),AR(recvk)(sendk)〉
If A is “ping-pong”, then output b̃

$← {0, 1}
Else if b′ = b and A is not “ping-pong”, then output 1
Else output 0.

Experiment ExpiCMA
Π,A (λ)

(sendk, recvk)
$← Setup(1λ)

m∗←〈AS(sendk,·)(recvk),R(recvk)〉
If m∗ 6= ⊥ and A is not “ping-pong”, then output 1
Else output 0.

Fig. 1. Security experiments of iCCAand iCMAsecurity.

Definition 5 (iCCA security). For any λ ∈ N, we define the advantage of an adversary A in breaking
iCCA security of a message transmission protocol Π as AdviCCA

Π,A (λ) = Pr[ExpiCCA
Π,A (λ) = 1]− 1

2 , and we

say that Π is iCCA-secure if for any PPT A, AdviCCA
Π,A (λ) is negligible.

Note that for 1-round protocols, the above notion is the same as the classical IND−CCA security.

Definition 6 (iCMA security). For any λ ∈ N, the advantage of A in breaking the iCMA security
of a message transmission protocol Π is AdviCMA

Π,A (λ) = Pr[ExpiCMA
Π,A (λ) = 1], and we say that Π is

iCMA-secure if for any PPT A, AdviCMA
Π,A (λ) is negligible.

Note that for 1-round protocols, the above notion is the same as the notion of strong unforgeability for
digital signatures.

3 Unilaterally-Authenticated Key-Exchange

In this section we build on the notions of iCCA/iCMA secure message transmission protocols recalled in
the previous section in order to obtain a smoother and clean transition from encryption/authentication
towards key exchange. In particular, in this work we focus on unilaterally-authenticated key-exchange
(UAKE, for short). UAKE is a weaker form of mutually-authenticated key-exchange in which only one
of the two protocol parties is authenticated.

Following the definitional framework of message transmission protocols [10], we define UAKE as a
protocol between two parties—in this case, an un-keyed user U and a keyed (aka authenticated) user
T—so that, at the end of a successful protocol run, both parties (privately) output a common session
key.

Formally, a UAKE protocol Π consists of algorithms (KESetup,U,T) working as follows:

KESetup(1λ): on input the security parameter λ, the setup algorithm generates a pair of keys (uk, tk).
Implicitly, it also defines a session key space K.

U(uk): is a possibly interactive algorithm that takes as input the public key uk of the authenticated
user, and outputs a session key or a symbol ⊥.

T(tk): is a possibly interactive algorithm that takes as input the private key tk, and outputs a session
key K or an error symbol ⊥.

In our security definitions we explicitly include the property that U terminates correctly (i.e., no ⊥
output) only if U gets confirmation that T can terminate correctly. For this reason, we assume without
loss of generality that T always speaks last. For compact notation, we denote with 〈U(uk),T(tk)〉 =
(KU,KT) a run of the protocol in which U and T output session keys KU and KT respectively.

Definition 7 (Correctness). An unilaterally-authenticated key-exchange protocol Π = (KESetup,U,

T) is correct if for all honestly generated key pairs (uk, tk)
$← KESetup(1λ), and all session keys

〈U(uk),T(tk)〉 = (KU,KT), we have that, when KU,KT 6= ⊥, KU = KT holds with all but negligible
probability.
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Security. For UAKE protocols we aim at formalizing two main security properties: authenticity and
confidentiality. Intuitively, authenticity says that the only way for an adversary to make the un-keyed
party terminate correctly (no ⊥ output) is to be ping-pong. Confidentiality aims to capture that, once
the un-keyed party U accepted, then the adversary cannot learn any information about the session key
(unless it is ping-pong up to learning the key). We formalize these two properties in a single experiment
in which A runs a challenge session with the un-keyed party U while having access to the keyed party
T. As for the case for message transmission protocols, the adversary formally refers to the keyed party
T oracle by specifying a session id sid. For simplicity of notation, however we do not write explicitly
these session identifiers.

Since in UAKE T speaks last, we allow the adversary to make one additional query to T after T
generated the last message: in this case T reveals its private output KT. If A makes such an additional
query in a ping-pong session then we say that A is “full-ping-pong”.

Although the resulting experiment looks a bit more complex compared to the ones of iCCA and
iCMA security, we stress that it can be seen as a natural combination of these two security notions.
At a high level, the experiment consists in first running (K0, ·)←〈U(uk),AT(tk)(uk)〉 and then analyzing
U’s output K0 (· means that we do not care about A’s output at this stage). If K0 6= ⊥ and A is not
ping-pong, then A wins (it broke authenticity). Otherwise, we give to A a real-or-random key Kb and
A wins if it can tell these two cases apart without, of course, pushing the ping-pong attack up to getting
K0 revealed from the oracle T. Notice that when K0 = ⊥ (i.e., the honest sender did not accept in
the challenge session), we also set K1 = ⊥. This is meant to capture that if U does not accept, then
there is no common session key established by the two parties (essentially, no secure channel will be
established). In this case the adversary will have no better chances of winning the game than guessing
b.

Experiment ExpUAKE−Sec
Π,A (λ)

(uk, tk)
$← KESetup(1λ);

b
$← {0, 1}

(K0, ·)←〈U(uk),AT(tk)(uk)〉
If K0 = ⊥, then K1 = ⊥
Else if K0 6= ⊥ and A is not “ping-pong”, then output 1

Else K1
$← K

b′←AT(tk)(Kb)

If A is “full-ping-pong”, then output b̃
$← {0, 1}

Else if b′ = b and A is not “full-ping-pong”, then output 1
Else output 0.

Definition 8 (Security of UAKE). We define the advantage of an adversary A in breaking the

security of Π as AdvUAKE−Sec
Π,A (λ) =

∣∣∣Pr[ExpUAKE−Sec
Π,A (λ) = 1]− 1

2

∣∣∣, and we say that a UAKE protocol

Π is secure if for any PPT A, AdvUAKE−Sec
Π,A (λ) is negligible.

Multi-User Extension of Our Notion. While we defined unilaterally-authenticated key-exchange
in the single-user setting, we stress that the definition easily extends to the multi-user setting. The
reason is that in our notion there is only one keyed user, T. So, when considering the multi-user setting
with keyed users T1, . . . ,Tn, we can assume that an adversary attacking a given Tj could simulate the
keys of all remaining users Ti 6= Tj . In contrast, such an extension is not equally straightforward in
MAKE, where, for example, the adversary could choose arbitrary keys for one of the two parties in the
challenge session. We also refer the interested reader to [21] for a discussion on the multi-user extension
of UAKE.
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Single-Challenge vs. Multiple Challenges. Similarly to CCA-secure encryption and other
privacy primitives, our attacker has only a single challenge session. Using a standard hybrid argument,
this is asymptotically equivalent to the multi-challenge extension of our notion (with all challenge
sessions sharing the same challenge bit b). We stress, however, that single-challenge does not mean
single oracle access to T. Indeed, the attacker AT can start arbitrarily many interleaved sessions with
the keyed user T, both before and after receiving the (single) challenge Kb. In particular, any UAKE
protocol where one can recover the secret key tk given (multiple) oracle access to T will never be secure
according to our definition, as then the attacker will trivially win the (single) challenge session by
simulating honest T.

Relation with Existing Definitions. As we mentioned earlier in this section, the notion of UAKE
has been considered in prior work with different definitions. Notably, two recent works [16,18] and
[21] use a definition (Server only Authenticated and Confidential Channel Establishment – SACCE)
which formally captures whether a party accepts or not in a protocol session, and requires that the
adversary A should not let the party accept if A does not correctly relay messages. If we compare
our security definition of UAKE given above and the SACCE notion, we then observe the following
main facts. (i) Our notion of ping-pong is stronger than the notion of matching conversations used in
SACCE in that ping-pong takes into account the timing of the messages included in the transcripts.
(ii) While UAKE and SACCE are very similar w.r.t. capturing the authenticity property, they instead
differ w.r.t. confidentiality. In particular, our notion aims to capture indistinguishability of the keys,
whereas SACCE aims to capture the security of the channel built by using the established session key.
As observed in [16], the latter security notion is weaker than mere session key indistinguishability, and
might thus be realized from weaker assumptions.

Finally, we formally consider the relation between our security notion of UAKE and the security
notion obtained by downgrading the Bellare-Rogaway [2] definition for mutually-authenticated key
exchange to the case of a single authenticated party. Although the two definitions use a slightly different
formalism, below we show that the notions are essentially the same. For completeness, we recall the
Bellare-Rogaway security definition in Appendix B.

The motivation of proving the equivalence to the BR model is to show that our notion does not
weaken existing, well studied notions, and can in fact be used in place of them. Indeed, we believe our
notion is shorter and more intuitive to work with, as we illustrate in this work. It is worth noting that this
is not surprising. Overall, the one-way authenticated setting is simpler than the mutually-authenticated
one as there are fewer attacks to be modeled. For example, in UAKE the security definition can involve
only one long-term key, and some advanced security properties such as key-compromise impersonation
no longer apply to the unilateral setting. In other words, this equivalence gives the opportunity of
modeling UAKE using our definition, and perhaps using the equivalence to BR as a transition towards
the more complex MAKE definition.

Theorem 1. Π is a secure UAKE protocol if and only if Π is secure in the (unilateral version of)
Bellare-Rogaway model.

Proof. To begin with, observe that the notion of matching conversation in the BR model is basically the
same as our notion of matching transcripts (when considered for UAKE protocols). In the BR experiment
recalled in Appendix B, there are two main events: NoMatch is the event that oracle ΠU,T accepted
but there is no other oracle Πs

T,U that has a matching conversation with ΠU,T (i.e., the adversary broke
the authenticity property); GoodGuess is the event that the adversary correctly guessed which session
key it received from the test query.

UAKE ⇒ BR. First, we show that if Π is a correct and secure UAKE, then it is also BR-secure.
Assume by contradiction that Π is not BR-secure. Then either one of the following cases occurs: (1) the
adversary is benign and there are two oracles which either accept two different keys, or the accepted
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key is not honestly distributed; (2) Pr[NoMatch] is non-negligible, or (3) Pr[NoMatch] is negligible
but |Pr[GoodGuess]− 1/2| is non-negligible.

If (1) occurs, then it means that Π is not a correct UAKE.
If there is an adversary B running in the BR security experiment such that (2) occurs, then we

can build another adversary A playing in ExpUAKE−Sec
Π,A (λ) such that the advantage AdvUAKE−Sec

Π,A (λ) is
non-negligible. A simply runs B by simulating the ΠU,T oracle with the messages received by U in the
challenge session, and simulating every oracle Πs

T,U by forwarding messages to a different copy of its T
oracle. Clearly, A can provide a perfect simulation to B. Finally, if the event NoMatch occurs in the
simulation, then A sends all messages and stops. Otherwise, if NoMatch does not occur, then A will
continue running in the second part of ExpUAKE−Sec

Π,A (λ) and output a random bit b′. To conclude, we
have:

Pr[ExpUAKE−Sec
Π,A (λ) = 1]− 1

2
= Pr[ExpUAKE−Sec

Π,A (λ) = 1 ∧NoMatch] +

Pr[ExpUAKE−Sec
Π,A (λ) = 1 ∧NoMatch]− 1

2

= Pr[NoMatch] +
1

2
Pr[NoMatch]− 1/2

=
Pr[NoMatch]

2

If there is an adversary B running in the BR security experiment such that (3) occurs, then we can
easily build another adversary A such that Pr[ExpUAKE−Sec

Π,A (λ) = 1]− 1/2 is non-negligible, and thus Π
is not a secure UAKE according to our definition. To see this, the observations are that: any adversary
who is benign in the BR model, is ping-pong in our security experiment; if the adversary makes the test
query on a fresh oracle in the BR model, then A is not full-ping-pong in our model.

BR ⇒ UAKE. The converse proof is similar. If we assume by contradiction that Π is not a secure
UAKE, then we can show that it is not BR-secure either.

Considering a run of the experiment ExpUAKE−Sec
Π,A (λ), and let E be the event that K0 6= ⊥ and

A is not ping-pong. We will do our proof partitioning on successful adversaries A1 for which E occurs
with non-negligible probability and successful adversaries A2 for which E occurs with at most negligible
probability.

First, if there is an adversary A1 running in ExpUAKE−Sec
Π,A1

(λ) such that Pr[E ] is non-negligible, we
can immediately build an adversary B running in the BR security experiment such that Pr[NoMatch] is
also non-negligible. The construction of B is straightforward: B simply uses its oracle ΠU,T to simulate
the challenger to A1 and its oracles Πs

T,U to simulate the oracles T. Then we observe that whenever the
event E occurs in the simulation, the event NoMatch occurs in the game played by B.

Second, if there is an adversary A2 such that Pr[ExpUAKE−Sec
Π,A2

(λ) = 1]− 1/2 is non-negligible (but
event E does not occur), we can build an adversary B running in the BR security experiment such that
Pr[GoodGuess]−1/2 is also non-negligible. Again the construction of B is straightforward: it simply uses
its oracles to simulate the UAKE experiment to A2. Then the main observation is that whenever A2

would cause experiment ExpUAKE−Sec
Π,A2

(λ) output 1 (without having E occur), then GoodGuess occurs
in the game played by B. ut

Uniqueness of Matching Transcript. It is interesting to note that our security definition implies
that for any secure protocol there can be at most one matching transcript. This for instance means that
it is hard for an adversary to force two distinct protocol sessions (in which one of the two parties is
honest) to have the same session key.7 Bellare and Rogaway prove in [2] that such property is achieved
by any protocol secure according to their (mutually-authenticated) definition. By the equivalence of

7 We stress that here we mean to force two distinct oracle sessions to have the same session key.
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our UAKE notion to BR security one might be tempted to conclude that this uniqueness property
holds for UAKE-secure protocols as well. This is only partially true as the proof in [2] is done for the
mutually-authenticated case, and in particular one case of the proof uses the fact mutually-authenticated
(BR-secure) protocols require at least 3 rounds. Below we give a separate proof of this statement for
UAKE protocols .

Proposition 1. Let MultipleMatch be the event that in a run of ExpUAKE−Sec
Π,A (λ) A is ping-pong and

there are at least two sessions i and j, with transcripts Ti and Tj, such that both Ti ⊆ T ∗ and Tj ⊆ T ∗.
Then if Π is a secure UAKE protocol, Pr[MultipleMatch] is negligible.

Proof. Assume by contradiction there exists an adversaryA such that Pr[MultipleMatch] is non-negligible.
We build another adversary A′ such that AdvUAKE−Sec

Π,A′ (λ) is non-negligible. Very intuitively, the basic
idea of the proof si that A′ can re-arrange the order in which the messages of session j are delivered
so that session j will no longer be matching and thus A′ can legally get the session key revealed. Since
session j has still the same messages as the challenge session they also have the same session key, which
allows A′ to distinguish and win the game. A more detailed proof follows.

If Q is an upper bounded of the T oracle sessions executed by A in its run, A′ first chooses random

i′, j′
$← {1, . . . , Q} (with i′ 6= j′) as a guess on the two sessions i and j for which MultipleMatch will

occur. Without loss of generality, assume that session i ends before session j (i.e., ti < tj where ti and
tj are the timestamps of the last message in session i and session j respectively). Next, A′ simulates
the experiment to A by forwarding all messages to the oracles except for the following change. When
A asks to deliver the last message to the T oracle in session j′, A′ does not forward the message to its
corresponding oracle of session j′, but replies to A with the response received by its T oracle on the last
message in session i′. Next, A′ continues the simulation, and after A terminates the challenge session,
A′ concludes the challenge session too, receives the challenge session key Kb and then: it delivers the
last message of session j′ to its oracle, and makes a last query on session j′ to obtain the session key
Kj′ . Finally, A′ outputs 1 if Kb = K ′j , and 0 otherwise.

First, we observe that if MultipleMatch occurs and i′ = i ∧ j′ = j is true, then the simulation
provided by A′ to A is perfect. Indeed the only difference is the response to the last message of session
j′. However, A′ response is the last message of session i′ which is the same as the last message of
session j′ (this follows from MultipleMatch). Second, observe that in the game played by A′ it holds
Ti′ ⊆ T ∗ but Tj′ 6⊆ T ∗. The latter follows from the fact that in the run of A′, session j′ ended after the
challenge session. Therefore the session key reveal asked by A′ is legal (i.e., A′ is not full ping-pong). So,
since the messages of sessions j′ and the challenge session are identical, the two sessions have the same
session key – K0 = Kj′ – that is A′ wins with probability 1. To conclude, observe that A′ advantage is
Pr[MultipleMatch]/Q2 where the factor 1/Q2 is the probability of correctly guessing i, j. ut

4 Constructions of UAKE Protocols based on iCCA and iCMA Security

In this section we show two realizations of unilaterally-authenticated key-exchange based on message
transmission protocols. The constructions are simple and they essentially show how to obtain a clean
and smooth transition from encryption/authentication towards key exchange. The first construction
(described in Figure 2) uses an iCCA-secure protocol Π′ and a pseudorandom function (see Appendix
A.1 for the PRF definition). Our second construction of UAKE (described in Figure 3) uses an IND−CPA-
secure key encapsulation mechanism (see Appendix A for the definition of KEM) and an iCMA-secure
protocol Π′.

The security of these protocols is proven via the following theorems :

Theorem 2. If Π′ is iCCA-secure, and F is a pseudo-random function, then the protocol Π in Figure
2 is a secure UAKE.
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Setting: a key pair (sendk′, recvk′) for an iCCA-secure protocol Π′ is gener-
ated. F : {0, 1}λ × {0, 1}λ → {0, 1}2λ is a PRF.

U(sendk′) T(recvk′)

r
$← {0, 1}λ U sends r to T using Π′

- Get r′

If r′ 6= ⊥ : s
$← {0, 1}λ

KU|c←Fr(s) c′, s� KT|c′←Fr′(s)
If c′ = c return KU

Else return ⊥ return KT

Fig. 2. UAKE from iCCA-secure encryption.

Setting: a key pair (sendk′, recvk′) for an iCMA-secure protocol Π′ is
generated. E = (KG,Encap,Decap) is a public-key KEM.

U(recvk′) T(sendk′)

(ek′, dk′)
$← KG(1λ) ek′ - (c,K)

$← Encap(ek′)

Get (ek′′|c′) T sends (ek′|c) to U using Π′

If ((ek′′|c′) 6= ⊥ and � return K
ek′′ = ek′)

return Decap(dk′, c′)

Fig. 3. UAKE from iCMA-secure PKMA and IND−CPA-secure KEM.

Proof. To prove the security of Π we define the following hybrid games:

Game 0: this is the real ExpUAKE−Sec
Π,A (λ) experiment.

Game 1: this is the same as Game 0 except for the following modifications:

– In the challenge session, U picks a random string r∗
$← {0, 1}λ, but runs the encryption protocol

Π′ sending message 0. Yet, given the adversary’s message c′, s∗ in the challenge session, U still
computes KT

∗|c∗←Fr∗(s∗), and uses these values as in Game 0 (i.e., to check if c∗ = c′ and, if
so, to define K0 = KT

∗).
– Whenever an oracle T is queried for the last message on a session in which the Π′ portion (i.e.,

all but the last message) is a ping-pong of the encryption protocol execution of the challenge

session, then the oracle T samples a fresh s
$← {0, 1}λ, and returns c′, s, where K ′|c′←Fr∗(s).

Via a simple reduction to the iCCA-security of Π′, it is possible to show that there exists B such
that: |Pr[G0]− Pr[G1]| ≤ 2 ·AdviCCA

Π′,B (λ).
Game 2: this is the same as Game 1 except that the PRF computations Fr∗(·) are replaced by a

random function R(·) (simulated via lazy sampling).
It is not hard to see that under the assumption that F is a PRF Game 2 is computationally
indistinguishable from Game 1.

Game 3: Let Forge be the event that in Game 2 the challenge session completes with K0 6= ⊥ while A
is not ping-pong. Then Game 3 proceeds exactly as Game 2, except that if Forge occurs, then the
game outputs 0 (instead of 1, as is done in ExpUAKE−Sec

Π,A (λ) and in Game 2). Hence, Game 3 and
Game 2 are identically distributed unless Forge occurs, i.e., |Pr[G2]− Pr[G3]| ≤ Pr[Forge].
We observe that the event Forge occurs if A sends the correct value c′ = c∗ to the challenger.
However, in Game 2 c∗ is generated as KT

∗|c∗←R(s∗) (i.e., it is uniformly at random in {0, 1}λ).
Hence, unless A obtained (c′, s∗) from a copy of the T oracle that computed K ′|c′←R(s∗), we have
that Pr[Forge] = Pr[c′ = c∗] = 1/2λ. Note that if A is not ping-pong, then we had never computed
R(s∗) in the simulation of T. Indeed, we use R in the simulation of T only for sessions in which the
first portion is a ping-pong of the first portion of the challenge session (the part related to protocol
Π′). So, if A is not ping-pong it must be either that the last message obtained by T in such sessions
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is different from the one sent by A in the challenge session; or that A concluded the challenge session
before getting the last message from the oracle.

To conclude the proof, if we analyze the probability that Game 3 outputs 1 (hence, Forge does not
occur), then A’s view of Game 3 in the second part (i.e., when A is given Kb) is exactly the same no
matter which is the bit b (both session keys K0 and K1 are indeed randomly chosen or they are both
⊥). Hence, A has probability 1/2 of guessing the right b′ = b. ut

Theorem 3. If Π′ is iCMA-secure, and E is an IND−CPA-secure KEM, then the protocol Π in Figure
3 is a secure UAKE.

Proof. To prove the security of Π we define the following simple hybrid games:

Game 0: This is the same as experiment ExpUAKE−Sec
Π,A (λ).

Game 1: Consider experiment Game 0, and let T ∗ = 〈(ek′, t∗1), T
∗′〉 be the transcript of the challenge

session, where T ∗
′

is the portion of transcript which corresponds to the run of the protocol Π′

(in the challenge session). Similarly, consider the transcripts Ti of all the oracle sessions and write
Ti = 〈(ek′i, t

i
1), T

′
i 〉. Let Forge be the event that in the challenge session the protocol Π′ completes

correctly but A is not ping-pong.
Game 1 proceeds as Game 0 except that, if Forge occurs, then Game 1 outputs 0 (instead of 1).
Clearly, Game 1 is identical to Game 0 unless Forge occurs, i.e., |Pr[G0]−Pr[G1]| ≤ Pr[Forge]. Under
the assumption that Π′ is iCMA-secure, one can easily prove that Pr[Forge] is negligible.

So, we are left with bounding |Pr[G1] − 1/2|. Let us split the event G1 around the event K0 = ⊥.
If K0 = ⊥, it is easy to see that Pr[G1] is at most 1/2. On the other hand, if K0 6= ⊥ then recall that
Game 1 can output 1 only when A is ping-pong (i.e., Forge does not occur). Then we argue that under
the assumption that the scheme E is IND−CPA-secure we have that p1 = |Pr[G1 ∧K0 6= ⊥] − 1/2| is
negligible. The reduction is straightforward. We provide it below for completeness.

Assume there exists A such that p1 ≥ ε is non-negligible, then we construct an adversary B which
has non-negligible advantage ε/Q against the IND−CPA security of E (where Q is an upper bound on the
number of oracle sessions opened by A). B receives the public key ek∗ and works as follows. It picks two

random strings K∗0 ,K
∗
1

$← {0, 1}λ, submits them to its challenger and obtains a ciphertext c∗. Moreover,

it initializes a counter j = 0 and picks a random integer µ
$← {1, . . . , Q}, which represents a guess on

which of the Q oracle sessions will be a ping-pong of the challenge session. For simplicity, we restrict
such a choice only to oracle sessions such that the first message is ek∗ (as this is necessary for A to

be ping-pong). Next, B generates a pair of keys (sendk′, recvk′)
$← Setup′(1λ) for Π′ and runs A(recvk′).

B sends ek∗ as the first message in the challenge session and uses the private key sendk′ to simulate
the authentication in the answers to all oracle queries to T. To generate the ciphertext B proceeds

as follows. If the adversary sends a public key eki 6= ek∗, B simply chooses a random Ki
$← {0, 1}λ,

encrypts ci
$← Enc(eki,Ki), and runs Π′ on (eki, ci). If eki = ek∗, B first increments j. If j = µ, then

B proceeds by using the challenge ciphertext c∗. Otherwise, it chooses a random Ki and proceeds as
before. Now, assume that A completes the challenge session, and recall that since Forge does not occur
A is ping-pong. If A completes by sending c∗ (i.e., µ was the right guess), then B returns K0. Otherwise,
if A does not send c∗ or A asks to reveal the session key on the µ-th oracle session, then B aborts and
outputs a random bit (this is essentially the case that µ was not the right guess). Finally, if there is no
abort B returns the same bit of A.

Notice that as long as B does not abort, its simulation is perfectly distributed. Thus the choice of µ
is perfectly hidden, i.e., B does not abort with probability 1/Q. To conclude the proof, observe that if
c∗ encrypts K0, then B is simulating ExpUAKE−Sec

Π,A (λ) with bit b = 0, whereas if c∗ encrypts K1, then

B is perfectly simulating the distribution of ExpUAKE−Sec
Π,A (λ) with b = 1. Hence, we have that B has

advantage at least ε/Q against the IND−CPA security of E . ut
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On the connection to authenticators [1]. We note that, due to the similarity between iCMA-
secure message transmission and the notion of authenticators from [1], our design approach of Figure
3 is similar to what can be obtained by applying a (unilateral) authenticator to an unauthenticated
protocol, such as a one-time KEM. However, the derived protocols are not exactly the same. For example,
to obtain our same protocols when using the signature-based authenticator one should slightly deviate
from the approach of [1] and consider ek′ as the nonce of the authenticator.

More conceptually, while the concrete protocols obtained are similar (but not identical), the two
works use very different definitions and construction paths to arrive at these similar protocols. Our
interactive PKMA notion is game-based and essentially extends the simple notion of signature schemes,
whereas authenticators follow the real/ideal paradigm and also require built-in protection against replay
attacks. For instance, a regular signature scheme is a 1-round iCMA secure message transmission, whereas
it can be considered an authenticator only with certain restrictions, (as per Remark 1 in [1]).

Instantiations of our protocols. In Section 5.1, we discuss four efficient UAKE protocols resulting
from instantiating the generic protocols in Figures 2 and 3 with specific 1- or 2-round iCCA- and iCMA-
secure schemes.

About freshness of session keys. It is worth noting that both above protocols have the property
that the keyed party T generates the session key in a “fresh” way (by sampling a fresh random s in
the protocol of Fig. 2, or by running Encap with fresh coins in the protocol of Fig. 3), even if the first
part of the protocol is replayed. Such a freshness property is necessary for the security of the protocols
in our model. For instance, one might consider a simpler version of the protocol of Fig. 2 in which T
generates KT|c′←G(r) using a PRG G. Such a protocol however would not be secure because of the
following attack. Consider an instantiation of Π′ with a non-interactive CCA encryption scheme. First
the adversary plays a ping-pong attack between the challenge session and an oracle session with T:
it obtains a real-or-random key Kb. In the second part of the experiment, the adversary starts a new
oracle session with T by sending to it the first message of the challenge session. Finally, the adversary
makes a last query to T in this second session in order to obtain the corresponding session key. Now,
observe that the session key will be the same key as the real key K0 of the challenge session, and thus
the adversary can trivially use it to test whether Kb = K0. To see the legitimacy of the attack note that
the second oracle session began after the challenge session ended, and thus it does not constitute a full
ping-pong. In contrast this attack does not apply to our protocol of Fig. 2: there, even if one replays
the first messages, every new session will sample a fresh session key with overwhelming probability.

5 Advanced Security Properties and Concrete Protocols

In this section, we discuss advanced properties of forward security and deniability for unilaterally-
authenticated key-exchange, and then we discuss four possible concrete instantiations of our protocols
given in Section 4.

5.1 Concrete Protocol Instantiations

Here we discuss four efficient UAKE protocols resulting from instantiating the generic protocols in
Figures 2 and 3 with specific 1- or 2-round iCCA- and iCMA-secure schemes. Before proceeding to the
analysis, let us briefly recall the instantiations of the iCCA- and iCMA-secure schemes that we consider.
First, note that any IND−CCA encryption scheme is a 1-round iCCA protocol, and similarly any strongly
unforgeable signature scheme is a 1-round iCMA protocol. Second, Dodis and Fiore [10] show a 2-round
iCCA-secure protocol based solely on IND−CPA security and a 2-round iCMA-secure protocol based on
IND−CCA encryption and a MAC. Briefly, the iCCA protocol works as follows: the receiver chooses a
“fresh” public key ek (of a 1-bounded IND−CCA encryption) and sends this key, signed, to the sender;
the sender encrypts the message using ek. The iCMA protocol instead consists in the receiver sending a

14



random MAC key r to the sender using the IND−CCA encryption, while the sender sends the message
authenticated using r.

If we plug these concrete schemes in our UAKE protocols of Figures 2 and 3, we obtain the following
four UAKE instantiations that we analyze with a special focus on the properties of forward security vs.
deniability:

1. Protocol of Figure 2 where the iCCA protocol Π′ is a non-interactive IND−CCA scheme: we obtain a
2-round UAKE based on IND−CCA that is (forward) passive deniable (a perfectly indistinguishable
transcript for an honest U is easily simulatable), but it is not forwardœsecure (recovering the long-
term key recvk′ trivially allows to recover r). This protocol recover the unilateral version of SKEME
[19] (without PFS).

2. Protocol of Figure 2 where the iCCA protocol Π′ is the 2-round protocol in [10] based on IND−CPA
security: we obtain a 3-round UAKE based on IND−CPA security that is not deniable (as T signs
the first message with a digital signature) but it is passive forward secure (since so is the 2-round
iCCA protocol, as shown in [10]).

3. Protocol of Figure 3 where the iCMA protocol Π′ is a digital signature: we obtain a 2-round UAKE
based on IND−CPA security that is clearly not deniable (as T signs c) but it can be shown passive
forward-secure (as dk′ is a short-term key which is deleted once the session is over). It is worth noting
that when implementing the KEM with standard DH key-exchange (ek′ = gx, c = gy,K = gxy) we
essentially recover protocol A-DHKE-1 in [25]. A very similar protocol based on IND−CPA KEM is
also recovered in the recent, independent, work of Maurer et al. [24].

4. Protocol of Figure 3 where the iCMA protocol Π′ is the 2-round PKMA proposed in [10] (called
Πmac) which is based on IND−CCA encryption and MACs: we obtain a 2-round UAKE (as we
can piggy-back the first round of Πmac on the first round of the UAKE). Somewhat interestingly,
this instantiation achieves the best possible properties for a 2-round protocol: it enjoys both passive
forward deniability (as Πmac is passive forward-deniable) and passive forward security (since dk′ is
short-term, as in the previous case). The resulting protocol is depicted in Figure ??, and we note that
it essentially recovers the unilateral version of SKEME [19]. Moreover, by using the MAC of [11] and
by applying some optimizations8, we obtain a UAKE protocol based only on CCA security. While
for practical efficiency one may use faster MACs, we show this protocol based only on CCA security
mostly for elegance. The resulting protocol is depicted in Figure ??, where we use a “labeled” CCA-
secure PKE: EncL(ek,m) denotes a run of the encryption algorithm to encrypt a message m w.r.t.
label L; analogously DecL(dk, c) denotes decryption w.r.t. label L. We recall that decryption of a
ciphertext c w.r.t. L succeeds only if c was created with the same label L.

6 Confirmed Encryption and Confidential Authentication

In this section we introduce two advanced notions of (interactive) PKE and PKMA that we call confirmed
encryption and confidential authentication (ConfPKE and ConfPKMA, for short). The basic idea is to
extend encryption in such a way that the sender receives confirmation that the receiver obtained the
transmitted message, and to extend authentication so that the transmitted messages remain private.
At a high level, these two notions have similarities as they both aim to capture at the same time
confidentiality and some notion of integrity. The main difference is which of the two parties obtains
such integrity guarantee. This is essentially due to the fact that in the two notions the role of the keyed
parties (i.e., who has a public/private key) is swapped.

Confirmed Encryption. To define ConfPKE, consider a message transmission protocol Π defined as
in Section 2.1, with the only change that the sender also returns a local output – a plaintext m ∈ M
8 By directly observing the MAC of [11], we notice that the ephemeral secret key dk′ (which is part of the MAC key with
r) is only used for verification, and there is no need to encrypt it inside c; instead, we can use labels to bind ek′ with c.
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Experiment ExpConfEnc
Π,A (λ)

1. b
$← {0, 1}; (sendk, recvk)

$← Setup(1λ)

2. (m0,m1)←AR(recvk)(sendk)

3. (m′, b′)←〈S(sendk,mb),AR(recvk)(sendk)〉
4. If m′ 6= ⊥ and A is not “ping-pong”,

then output 1
5. Else if A is “full-ping-pong”,

then output b̃
$← {0, 1}

6. Else if b′ = b and A is not “full-ping-pong”,
then output 1

7. Else output 0.

Experiment ExpConfAuth
Π,A (λ)

1. b
$← {0, 1}; (sendk, recvk)

$← Setup(1λ)

2. (m0,m1)←AS(sendk,·)(recvk)

3. (b′,m′)←〈AS1(sendk,mb),S(sendk,·)(recvk),R(recvk)〉
4. If m′ 6= ⊥ and A is not “ping-pong”,

then output 1
5. Else if A is “ping-pong” w.r.t. S(sendk,mb),

then output b̃
$← {0, 1}

6. Else if b′ = b and A is not “ping-pong” w.r.t. S(sendk,mb),
then output 1

7. Else output 0.

Fig. 4. Security experiments of ConfPKE and ConfPKMA.

or an error ⊥ – according to whether it receives evidence that the receiver obtained the transmitted
plaintext m. As in UAKE, observe that such a change implies that wlog the receiver always speaks last.
Correctness of ConfPKE is thus obtained by extending the one of message transmission protocols so
that both sender and receiver output the same message, i.e., 〈S(sendk,m),R(recvk)〉 = (m,m) holds for
all honestly generated keys and all plaintexts m ∈M.

For security, we want essentially two properties: confidentiality (no information about the transmit-
ted plaintexts is leaked) and confirmation (the sender is correctly assured that the receiver obtained
the transmitted plaintext). To formalize this notion we define experiment ExpConfEnc

Π,A (λ) in Figure
4. Briefly, it works as follows: given oracle access to the keyed party R(recvk), A first chooses two
plaintexts m0,m1, and then runs a challenge session with S(sendk,mb). Since here R speaks last, as
in UAKE we extend the ping-pong definition, and we say that A is “full-ping-pong” if A is ping-
pong and, in the ping-pong session, A makes a last query to R that returns m′. A wins the game in
two cases: (line 4) it breaks confirmation by letting S accept for some plaintext and without trivially
forwarding messages, or (line 6) it breaks confidentiality by correctly guessing b and without being
full-ping-pong. Therefore, we say that Π is a secure ConfPKE scheme if for every PPT A, its advantage
AdvConfEnc

Π,A (λ) =
∣∣Pr[ExpConfEnc

Π,A (λ) = 1]− 1
2

∣∣ is negligible.

Confidential Authentication. For confidential authentication, we consider a standard message trans-
mission protocol Π (without any syntactic change), and we say that Π is a secure ConfPKMA if for
any PPT A its advantage AdvConfAuth

Π,A (λ) =
∣∣Pr[ExpConfAuth

Π,A (λ) = 1]− 1
2

∣∣ is negligible. The experiment

ExpConfAuth
Π,A (λ) is described in Figure 4 and is similar in the spirit to the one of ConfPKE, except that

the keyed parties are swapped. So, given oracle access to S(sendk, ·), A first chooses two plaintexts
m0,m1 and then runs a challenge session with the receiver. In this session, however, A is also given ora-
cle access to a single specific sender’s copy S1(sendk,mb) transmitting mb. A wins the game in two cases:
(line 4) it breaks confirmation by letting S accept for some plaintext and without trivially forwarding
messages, or (line 6) it breaks confidentiality by correctly guessing b and without being ping-pong (but
notice that in this case we only care about ping-pong w.r.t. to the session transmitting mb). We remark
that although our ConfAuth security definition considers a single challenge (aka “left-or-right”) oracle
S1(sendk,mb), it can be extended to the multi-challenge setting via a standard hybrid argument since
here the adversary has also access to (multiple instances of) the sender oracle S(sendk, ·).

Application to Unilaterally-Authenticated Key-Exchange. We use the notions of ConfPKE and
ConfPKMA to obtain a further smooth and clean transition from iCCA/iCMA security to unilaterally-
authenticated key-exchange. In the following lemmas, we show that by doing either “confirmed encryp-
tion of random K” or “confidential authentication of random K” we obtain secure UAKE protocols,
that are essentially a re-interpretation of the two UAKE protocols in Figures 2 and 3.
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Theorem 4. Let Π be a message transmission protocol, and let Π1 be the UAKE protocol in which U
chooses a random K, sends K to T by running S(sendk,K) (and, of course, T runs R(recvk)), and K is
used as the session key for both parties (if Π succeeds). If Π is a secure ConfPKE, then Π1 is a secure
UAKE.

Theorem 5. Let Π be a message transmission protocol, and let Π2 be the UAKE protocol in which: T
chooses random K1,K2 and sends (K1,K2) to U by running S(sendk,K1|K2); U (running R(recvk)) gets
K1,K2, sends K2 back to T, and sets K1 as its session key; T accepts (and let K1 be the session key) iff
the received K2 is the same as the one it sent. If Π is a secure ConfPKMA, then Π2 is a secure UAKE.

We provide a proof sketch for Theorem 4. The proof of Theorem 5 is very similar.

Proof (Sketch). Assume that A can break the security of the UAKE protocol Π1, we build an adversary
B which breaks the security of the ConfPKE scheme. Essentially, B runs A by forwarding all A’s
queries to its oracles. In particular, B simulates the challenge session by choosing two random keys
K0,K1 so that B’s challenger will run the challenge session with one of these two keys. Once A sends
the last protocol message in the challenge session, B checks if A (and thus also B itself) was ping-pong
and proceeds as follows: (i) if A was not ping-pong, then B runs b′←A(⊥) and outputs the same b′.
(ii) Otherwise, if A was ping-pong (in this case the sender must accept by correctness), then B runs
b′←A(K0) and returns b′. To see why B’s simulation is correct, observe that A has to obey essentially
the same rules in the security experiments of ConfEnc and the one of UAKE−Sec. The definition of
ping-pong is the same and the only difference between the security experiments is that in UAKE−Sec, if
U rejects, then A can win only with probability 1/2 (recall that in this case it has to distinguish between
two keys K0 = K1 = ⊥). In contrast, in ConfEnc, even if the sender rejects, the adversary may have
the chance to win the game with probability non-negligibly higher than 1/2. However, it is not hard to
see that this asymmetry between the security definitions is not relevant while proving that ConfPKE
implies UAKE. Intuitively, if a non-ping-pong A makes U accept, the same holds for B w.r.t. the sender.
Otherwise, if a ping-pong A has non-negligible advantage in distinguishing a real-or-random session key,
then B will also have non-negligible advantage in distinguishing which of the two messages were sent in
the challenge session.

Instantiations. Finally, we focus on realizing confirmed encryption and confidential authentication. In
particular, we show how to build a ConfPKE scheme based on an iCCA-secure protocol (see Figure 5),
and a ConfPKMA scheme based on an iCMA-secure protocol and a (non-interactive) IND−CPA-secure
PKE scheme (see Figure 6).

Setting: a key pair (sendk′, recvk′) for an iCCA-secure protocol Π′ is gener-
ated.

S(sendk′,m) R(recvk′)

r
$← {0, 1}λ S sends m|r to R using Π′

- Get (m′|r′)
If (m′|r′) 6= ⊥ :

c←Fr(s) c′, s� s
$← {0, 1}λ; c′←Fr′(s)

If c′ = c return m return m′

Fig. 5. ConfPKE from iCCA-secure encryption.

Theorem 6. If Π′ is iCCA-secure, then the protocol Π in Figure 5 is a secure ConfPKE scheme.

Theorem 7. If Π′ is iCMA-secure, and E is IND−CPA-secure, then the protocol Π in Figure 6 is a
secure ConfPKMA scheme.
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Setting: a key pair (sendk′, recvk′) for an iCMA-secure protocol Π′ is
generated. E = (KG,Enc,Dec) is an IND−CPA-secure PKE.

S(sendk′,m) R(recvk′)

c
$← Enc(ek′,m) ek′� (ek′, dk′)

$← KG(1λ)

S sends (ek′|c) to R using Π′ Get (ek′′|c′)
- If (ek′′|c′) 6= ⊥ ∧ ek′′ = ek′

return Dec(dk′, c′)

Fig. 6. ConfPKMA from iCMA-secure PKMA and IND−CPA-secure PKE.

The proofs of security of these two protocols are very similar to the ones of Theorems 2 and 3, and are
omitted.

Finally, to see how the intermediate notions of ConfPKE and ConfPKMA offer a smooth transition
from iCCA/iCMA security towards UAKE, it is interesting to observe that our two constructions of
UAKE in Figures 2 and 3 can be seen as the result of applying (with some optimizations) Theorems 4
and 5 to the protocol of Figures 5 and 6 respectively. Precisely, we consider the following optimizations:
in the protocol of Figure 2 only a single random value r is sent and we use a PRF with longer outputs
to obtain the two strings K|c, while the protocol of Figure 3 uses a KEM instead of a PKE.
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A Standard Cryptographic Primitives

We describe notation and recall some basic definitions that will be useful in our work. We denote with
λ ∈ N a security parameter, and we say that a function ε(λ) is negligible if it is a positive function

that vanishes faster than the inverse of any polynomial in λ. If X is a set, we denote with x
$← X the

process of selecting x uniformly at random in S. An algorithm A is called PPT if it is a probabilistic
Turing machine whose running time is bounded by some polynomial in λ. If A is a PPT algorithm, then

y
$← A(x) indicates the process of running A on input x and assigning its output to y.

A.1 Pseudorandom Functions

Let λ be the security parameter, and `, L be polynomials in λ. A function F : K × {0, 1}` → {0, 1}L,
where K is the key space, is a pseudorandom function (PRF) if for any PPT adversary A its advantage

AdvA,F (λ) =
∣∣∣Pr[AFK(·)(1λ) = 1 : K

$← K]− Pr[AR(·)(y) = 1]
∣∣∣

is at most negligible. Above R : {0, 1}` → {0, 1}L denotes a random function.

A.2 (Non-Interactive) CCA-secure Public-Key Encryption

A public key encryption scheme E is a tuple of algorithms (KG,Enc,Dec) defined as follows:

KG(1λ) on input the security parameter, the key generation returns a public key ek and a secret key
dk.

Enc(ek,m) on input the public key ek and a message m, it outputs a ciphertext c.

Dec(dk, c) given the secret key dk and a ciphertext c, it outputs a message m or an error symbol ⊥.

Consider the following experiment involving the scheme E and an adversary A:
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Experiment ExpIND−CCA
E,A (λ)

b
$← {0, 1}

(ek, dk)
$← KG(1λ)

(m0,m1)←ADec(dk,·)(ek)

c∗
$← Enc(ek,mb)

b′←ADec(dk,·)(c∗)

If A is not “legal”, then output b̃
$← {0, 1}

Else if b′ = b and A is “legal” output 1
Else output 0.

In the above experiment, A is called “legal” if it does not query the decryption oracle Dec(dk, ·) on the
challenge ciphertext c∗ (after A receives c∗).

The advantage of an adversary A in breaking the IND−CCA security of an encryption scheme E is

AdvIND−CCA
E,A (λ) =

∣∣∣∣Pr[ExpIND−CCA
E,A (λ) = 1]− 1

2

∣∣∣∣
Definition 9 (IND−CCA security). An encryption scheme E is IND−CCA-secure if for any PPT A,
AdvIND−CCA

E,A (λ) is negligible.

A weaker notion of IND−CCA security that we consider in our work is q-bounded IND−CCA security
[7]. This notion is defined as IND−CCA security except that the adversary is restricted to query the
decryption oracle at most q times (where q is a pre-fixed bound).

A further weaker notion of security for public key encryption is semantic security, or indistinguisha-
bility against chosen-plaintext attacks (IND−CPA). Its definition is the same as IND−CCA security
except that the adversary does not get access to any decryption oracle.

Finally, we recall the notion of key encapsulation mechanism (KEM) which is closely related to public
key encryption. A KEM is defined by three algorithms (KG,Encap,Decap): the key generation KG is the
same as in PKE; the probabilistic encapsulation algorithm Encap uses the public key ek to generate a
ciphertext C and a key K; the decapsulation algorithm Decap takes as input the secret key dk and a
ciphertext C and outputs a key K. For correctness, it is required that for all honestly generated pairs

of keys (ek, dk), and (C,K)
$← Encap(ek) it holds K = Decap(dk, C). The security definition of KEM is

basically the same as that of PKE except that the goal of the adversary is to distinguish an honestly
generated session key from a random one. It is worth noting that the standard Diffie-Hellman protocol
(aka a simplified version of ElGamal) is a KEM: Let G be a cyclic group where DDH holds and g ∈ G
be a generator: KG outputs ek = gx and dk = x for a random x, Encap outputs C = gy K = gxy for a
random y, and Decap(dk, C) recovers the same K = Cx = gxy.

A.3 Digital Signatures

A digital signature scheme consists of a triple of algorithms Σ = (Σ.kg,Sign,Ver) working as follows:

Σ.kg(1λ) the key generation takes as input a security parameter λ and returns a pair of keys (sk, vk).
Sign(sk,m) on input a signing key sk and a message m, the signing algorithm produces a signature σ.
Ver(vk,m, σ) given a triple vk,m, σ the verification algorithm tests if σ is a valid signature on m with

respect to verification key vk.

For security we define the following experiment:

Experiment Expuf-cma
A,Σ (λ)

(sk, vk)
$← Σ.kg(1λ)
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(m∗, σ∗)
$← ASign(sk,·)(vk)

If Ver(vk,m∗, σ∗) = 1 and (m∗, σ∗) is “new” then output 1
Else Output 0

We say that the forgery (m∗, σ∗) is “new” if it is different from all the pairs (mi, σi) obtained from the
signing oracle Sign(sk, ·). We define the advantage of an adversaryA in breaking the strong unforgeability
against chosen-message attacks (suf-cma) of Σ as Advsuf-cma

A,Σ (λ) = Pr[Expsuf-cma
A,Σ (λ) = 1].

Definition 10 (suf-cma security). A digital signature scheme Σ is suf-cma-secure if for any PPT A,
Advsuf-cma

A,Σ (λ) is negligible.

A weaker notion of security is (simple) unforgeability against chosen-message attacks (uf-cma), which
is defined as the strong version above, except that (m∗, σ∗) is considered “new” if only the message m∗

(instead of the pair) is different from all messages mi queried to the signing oracle.

A.4 Message Authentication Codes

A message authentication code consists of a triple of algorithms MAC = (Gen,Tag,Ver) working as
follows:

Gen(1λ): the key generation algorithm takes as input the security parameter λ and returns a key k ∈ K.
Tag(k,m): on input a secret key k ∈ K and a message m ∈ M, the authentication algorithm produces

an authentication tag σ.
Ver(k,m, σ): given the secret key k, a message m and an authentication tag σ, the verification algorithm

tests if σ correctly authenticates m.

A scheme MAC is correct if for all λ ∈ N and m ∈ M, the probability Pr[Ver(k,m, σ) = 1 : k
$←

Gen(1λ), σ
$← Tag(k,m)] is overwhelming. The security is defined via the following experiment:

Experiment Expsuf-cmva
A,MAC (λ)

k
$← Gen(1λ)

Run ATag(k,·),Ver(k,·,·)(λ)
If A makes a verification query (m∗, σ∗) such that

Ver(k,m∗, σ∗) = 1 and (m∗, σ∗) is “new”,
then output 1.

Else output 0

where for (m∗, σ∗) being “new” we mean that it must be different from all the pairs (mi, σi) obtained
from the tag oracle Tag(k, ·). The advantage of an adversary A in breaking the strong unforgeability
against chosen-message and chosen verification queries attacks (suf-cmva) of MAC is Advsuf-cmva

A,MAC (λ) =

Pr[Expsuf-cmva
A,MAC (λ) = 1].

Definition 11 (suf-cmva security). A message authentication code MAC is suf-cmva-secure if for any
PPT A, Advsuf-cmva

A,MAC (λ) is negligible.

B The Bellare-Rogaway security model in the unilateral setting

Here we briefly recall the Bellare-Rogaway security model for authenticated key-exchange [2], in a
version which directly considers the case where only one of the two parties is authenticated. For syntax,
we identify the parties as in our UAKE definition. Namely, we have a single keyed (aka authenticated)
party T and an unkeyed party U. The security is defined by a game between an adversary A and a
challenger. At the beginning of the game A is given the public key uk of the keyed party T. During the
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game the adversary is given access to several oracles Πs
i,j where i, j ∈ {U,T} and 1 ≤ s ≤ Q. Oracle

Πs
i,j models the party i which attempts to establish a key with party j in the s-th session. Precisely,

since A can simulate oracles ΠU,T on its own (they do not require any secret), we assume that A has
access to a single oracle ΠU,T (representing an honest client) while it can query as many oracles Πs

T,U

as it wishes.
The adversary A interacts with the oracles by sending messages of the form (i, j, s,M), where such

a tuple is intended to mean that A sends a message M to party i, claiming it is from party j in the
session s. Each oracle O = Πs

i,j maintains some meta-information:

– δO ∈ {⊥, accepted, error} which determines whether the session is in a finished state or not;
– γO ∈ {⊥, revealed}, which signals whether the oracle has been “opened” (by revealing the session

key) or not;
– KO which denotes the session key of the protocol run, if the protocol has completed.

Basically, the oracle O = Πs
i,j models a copy of party i when running a protocol session with party j.

So, on a message (i, j, s,M) from the adversary, the oracle Πs
i,j answers with the message M ′ generated

by the corresponding copy of i and by revealing the state δO.
In addition to sending messages to an oracle, the adversary can also make a query Reveal(O) which

is answered as follows: If δO 6= accepted then return ⊥, otherwise it returns KO and γO is then changed
to revealed.

Finally, the adversary can make a single query Test(O∗) on the oracle O∗ = ΠU,T which must be
fresh (see below for the definition of freshness). In this case, the challenger selects a bit b ∈ {0, 1}. If b = 0
then the challenger responds with the value of KO∗ , otherwise it responds with a random key chosen
from the space of session keys. We call the oracle O∗ on which Test(O∗) is called the “Test-oracle”. At
the end of the game, the adversary has to output a bit b′.

The oracle O∗ = ΠU,T is said to be fresh if: (1) δO∗ = accepted, (2) γ∗O 6= revealed, (3) there is no
oracle O′ with γO′ = revealed with which O∗ has had a matching conversation. After the Test(O∗)
query has been made, the adversary can continue making queries as before, except that it cannot call
Reveal(O′) on an oracle O′ that is partner of O∗, if O′ exists, and it cannot call Reveal(O∗).9

For the notion of matching conversations between two oracles, we recall this is basically the same
as our notion of matching transcripts. Namely, it combines equality of transcripts and interleaving of
timestamps.

Now, the following notation and events are defined in the above experiment. An adversary A is
called benign if it faithfully conveys messages between two oracles Πs

i,j and Πt
j,i. Next, NoMatch is the

event that ΠU,T accepted but there is no oracle Πs
T,U which has a matching conversation with ΠU,T.

Finally, GoodGuess is the event that at the end of the experiment b′ = b.

Definition 12. Then a protocol Π is a secure unilateral authenticated key exchange protocol in the BR
model described above if for any PPT adversary A running in the game described above the following
conditions hold:

1. the probability of NoMatch is negligible (i.e., the protocol is a secure mutual authentication protocol);
2. in the presence of a benign adversary, which faithfully conveys messages on ΠU,T and Πs

T,U, both
oracles always accept holding the same session key, and this key is distributed as an honest session
key;

3. For any PPT A running in the experiment described above, we have that |Pr[GoodGuess]− 1/2| is
negligible.

9 Notice, allowing test queries on oracles Πs
T,U would not make sense in the unilateral setting as the partner of such oracle

can be the adversary itself. So, we want to guarantee security for session keys established by an honest client U.
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