Space-Time Tradeoffs for Graph Properties

Yevgeniy Dodis! and Sanjeev Khanna?
! Laboratory for Computer Science, MIT, USA. E-mail: yevgen@theory.lcs.mit.edu
2 Department of Fundamental Mathematics Research, Bell Labs, USA. E-mail:
sanjeev@research.bell-labs.com.

Abstract. We initiate a study of space-time tradeoffs in the cell-probe
model under restricted preprocessing power. Classically, space-time trade-
offs have been studied in this model under the assumption that the pre-
processing is unrestricted. In this setting, a large gap exists between
the best known upper and lower bounds. Augmenting the model with a
function family F that characterizes the preprocessing power, makes for
a more realistic computational model and allows to obtain much tighter
space-time tradeoffs for various natural settings of F. The extreme set-
tings of our model reduce to the classical cell probe and generalized
decision tree complexities.

We use graph properties for the purpose of illustrating various aspects of
our model across this broad spectrum. In doing so, we develop new lower
bound techniques and strengthen some existing results. In particular, we
obtain near-optimal space-time tradeoffs for various natural choices of
F; strengthen the Rivest-Vuillemin proof of the famous AKR conjecture
to show that no non-trivial monotone graph property can be expressed
as a polynomial of sub-quadratic degree; and obtain new results on the
generalized decision tree complexity w.r.t. various families F.

1 Introduction

It is well known that preprocessing of static data often significantly speeds up
the time it takes to answer dynamic queries about it. A data structure with
appropriate auxiliary information about the static data can facilitate efficient
answering of dynamic queries. Naturally, the more space is available for build-
ing such a data structure, the more auxiliary information one can precompute
and the faster the queries can be answered. A natural and important question
in this context is to characterize the tradeoff between the amount of available
preprocessing space and the time it takes to answer the queries.

1.1 The Classical Cell Probe Model

A widely used computational model for studying such tradeoffs is the cell probe
model introduced by Yao [17]. The static data structure problem in the cell probe
model is as follows. We are given a function f:Y x @ + {0, 1}, where the first
input y € Y (Jy| = m) is static, and the second input ¢ € @ (Jg| = n) is
the dynamic query (typically n < m, we assume so from now). We are also



given a parameter s which indicates the amount of space available for storing
a data structure D = {c1,c¢q,...,¢cs} containing information about y, where
¢i Y = {0,1}. Each ¢; is called a cell and the process of generating D given
y is called preprocessing. It is done only once, after which a given query ¢ is
answered by (adaptively) probing (the values of the) cells of D, and the time ¢
spent in answering ¢ is the number of probes made in order to compute f(y, q).
The objective is to build D so as to be able to compute f(y,q) (for any y
and ¢) by probing as few cells in D as possible, and the goal is to study this
optimal worst-case time ¢ = T4(f) as a function of s, m and n. We emphasize
that the time is not the running time of the “probing scheme” but only the
number of accesses to D. This models the situation when the local computation
is cheap/fast but the database access is expensive/slow. Moreover, this measure
of time is indicative of a fundamental combinatorial limitation on how fast the
queries can be answered for any natural notion of time.

The static data structure problem has been extensively studied in the liter-
ature ([1-4,10-12,16]). Yet, no explicitly defined function f is known for which
t = w(n) is proven when space s = poly(n). Moreover, a simple argument demon-
strates that showing such a super linear bound for an NP function f would wun-
conditionally separate NP from the class of read-twice branching programs [13];
a long-standing question in complexity theory [15]. This situation is to be con-
trasted with an existential result of Miltersen [10] which states that for a random
function f : Y x Q — {0,1} we have (w.h.p.) T4(f) = 2(m) > n even when
s = 27! In other words, one has to read essentially the whole static input
even when exponential preprocessing space is given. The result is not surprising
since one cannot hope to “efficiently share” limited information to answer queries
about completely unrelated values. Still, constructing an ezplicit function that
would close this large gap (O(n) vs. £2(m)) is a major open question in the cell
probe model.

While the strength of the cell probe model lies in the clean framework that
it provides for studying space-time tradeoffs, the model is unrealistic in at least
two respects. Firstly, the probing scheme is all-powerful: it may compute any
arbitrary function with the ¢ bits that it reads. So for example, any (even un-
decidable) function f can be computed with m probes by storing y directly and
reading it completely for any query ¢ (so s =t = m). Secondly, the preprocessing
stage is allowed to use arbitrarily complex functions ¢; in the data structure D.
For example, any function f can be computed with exponential space s = 2"
and unit time ¢ = 1 by simply storing the answer to every possible query. These
two aspects of the model at least partly explain the difficulty in obtaining strong
lower bounds in this model.

1.2 Owur Model: Cell Probe Model with Restricted Preprocessing
Power

The goal of this paper is to study space-time tradeoffs in the cell probe model
when the preprocessing power may be restricted, making the model more realis-
tic and fine-tuned (while it is an interesting direction to also limit the power of



the probing scheme, we focus on restricting the preprocessing power). We model
limited preprocessing power by introducing a new parameter F which is used
to denote a (typically infinite) family of (boolean) functions. Given a function
family F, we require that the value of each cell ¢; in D corresponds to an appli-
cation of some g € F to a subset of y’s input bits. We call such data structure D
F-restricted. Thus, while space constraint s limits the amount of precomputed
information, the function family F limits the complexity of precomputed infor-
mation. The time ¢ in this new parameterized model is denoted by ¢t = T¢ s(f),
referred to as the cell probe complexity of f w.r.t. F. Since the extremal case of
unrestricted F is simply the standard static data structure problem, our model
is a proper extension of the classical cell probe model.

Another extreme of our model is when the space s is unrestricted but F is
restricted. Then, the cell probe complexity of f w.r.t. F is simply the generalized
decision tree complexity of evaluating f over a worst-case query; we denote this
measure by Tg(f). Indeed, unrestricted space implies that we have “precom-
puted” all possible applications of every g € F to every appropriate subset of y’s
input bits. So the question is no longer the one of creating a space-efficient data
structure but that of “adaptive expressibility” of a function f on a given query
using functions from F. This is precisely the generalized decision tree complexity
w.r.t. F. When F consists merely of the identity function (which we call trivial
F), this is just the (simple) decision tree complexity measure. Unlike the classical
data structure problem, it is often possible to tightly characterize the decision
tree complexity of a given function (e.g. [5]). Thus, our general model elegantly
unifies the issue of space-efficient data structures with that of adaptive express-
wbility, bridging together the cell probe complexity and the generalized decision
tree complexity.

1.3 Ouwur Function f: Graph Properties

The objective of our study is to illustrative different aspects of our new model
across a broad spectrum of possible settings of F and s (in particular, to illustrate
how much tighter space-time tradeoffs can be obtained once we put reasonable
restrictions on F, but we do not limit ourselves to this). For this purpose, we use
a problem related to verification of graph properties. Aside from combinatorial
interest, an important motivation for this choice comes from the fact that graph
properties form a rich class of functions having decision tree complexity. In fact,
the famous Aandrea-Karp-Rosenberg (AKR) conjecture states that every non-
trivial monotone graph property P on n-vertex graphs is evasive, i.e. its decision
tree complexity D(P) = (’2‘)1 The conjecture is proven up to a constant factor
by Rivest and Vuillemin [14], i.e. D(P) = 2(n?) = 2(m). As we will see later,
this result in fact forms a “base case” in our study (corresponding to trivial F).

Our Setup: Fix a graph property P. Given an n-vertex graph G = (V, E) as a
static input, our goal is to preprocess it to answer dynamic queries of the form:

1 As we will see, n will be the size of our query, which is consistent with its usage
before. Also, m = (), i.e. the size of the adjacency matrix of our graph.



“Given X C V', does the subgraph Gx of GG induced by X satisfy P?”

We refer to this problem as the induced subgraph problem. Thus, fp(G,X) =
P(Gx), m = () = ©(n?) and a good lower bound would be of the form ¢ =
2(n? [polylog(s)). For notational convenience, we will write T 4(P) in place of
Tr s(fp). Note that every query evaluates the property P on some (sub)graph.
The hope is that the distribution of P over induced subgraphs of G is very
non-trivial, so that it is hard to reuse space when computing fp.

2 Overview of Our Results

As we pointed, the induced subgraph problem will be an example problem
demonstrating the richness of our model as well as different techniques to show
space-time tradeoffs in various settings, ranging from the classical cell probe com-
plexity to the generalized decision tree complexity. In what follows, we describe
more precisely some of our results, leaving others out due to space limitations. In
particular, we will not talk about oblivious and non-deterministic computation
in our model. In the next section we will prove a representative result.

2.1 Restricted Space, Unrestricted Function Families

We start with the extremal case of unrestricted preprocessing. As remarked by
Miltersen et al. [13], essentially all known lower bound results for the classical
data structure problem can be viewed as applications of the following connection
between the cell probe and the communication complexity model [10]. In this
model, introduced by Yao [18], Alice is given y € Y, Bob is given ¢ € @ and
they wish to compute f(y,q) by exchanging the minimum number of bits. This
number is the deterministic communication complexity of f. We describe the
connection of [10] more generally using the notion of asymmetric communica-
tion complexity introduced in [13]. Here, instead of measuring simply the total
number of bits exchanged, we measure the number of bits sent by Alice and
Bob individually. An [A, B]-protocol is a protocol where Alice sends at most A
bits and Bob sends at most B bits. A lower bound of [A, B] means that in the
worst case, either Alice must send {2(A) bits or Bob must send {2(B) bits in
order to compute f. To obtain the most general result, we consider a variant
of the cell probe model where a cell size is an additional parameter b. In other
words, rather than storing boolean functions in the data structure, we store b-bit
functions ¢; : Y +— {0,1}" and read all b bits per probe.

Lemma 1. [10] Any cell probe scheme with space s, cell size b and time t for
computing f yields a [tb,tlog s]-protocol for computing f. Hence, a lower bound
of [A, B] implies that Ts(f) > 2(min(A4/b, B/ logs)).

Since B < n (Bob can always send his entire input), the best possible lower
bound obtainable this way is t = Q(logs) implying that the current proof tech-
niques cannot cross the £2(n/ log s) barrier (but they can possibly give this bound




for large values of b). We show that such a lower bound can indeed be established
for the induced subgraph problem using Lemma 1, for any non-trivial monotone
graph property as well as for the property PARITY: “Does G have an odd number
of edges?”. The first result is shown using the fooling set method (see [9]) and
the second uses the richness technique of [13].

Theorem 1. o T,(P) > Q(%), for any non-trivial monotone property P.

o Ts(PARITY) > (2(1555) even when the cell size b= n.

This is as far as we can get in the classical setting using current techniques.

2.2 Restricted Space, Restricted Function Families

We now turn our attention to the core of our study where we restrict the pre-
processing power by means of a function family F. Our goal here is to develop
techniques to beat (2(n/logs) illustrating how restricted preprocessing allows
to obtain tighter bounds on query time. In fact, for many natural families F we
obtain nearly optimal lower bounds of the form 2(n?/polylog(s)). The extreme
case where F is trivial (i.e. we are allowed to store just the edges of the graph)
reduces to the AKR set-up. An £2(n?) lower bound can thus be obtained for any
non-trivial monotone graph property (even on a fixed query set). However, once
we allow F to contain more general function families, many evasive properties
can now be decided by reading very few cells for any fized query. Yet, as we
will show, this efficiency in answering specific queries can provably not be trans-
lated into a space-efficient data structure that allows to efficiently answer all the
queries. As in the classical model, the main difficulty is in efficient sharing of
information contained in the cells across different queries. However, unlike the
classical model, explicit knowledge about the family F enables us to reason about
the behavior of the precomputed information.

As an elementary example, consider the following evasive property P: Is
G an empty graph? Let F be simply the family of OR functions. Clearly, a
single OR can express the property on a given G. In fact, this seems to be a
very natural function family for computing P. However, a cell storing an OR
of all the edges in the graph is of no use in determining whether an induced
subgraph G'x satisfies P. Setting any edge outside of G x to true fixes this OR to
1 without affecting P(Gx). Intuitively speaking, the cells that are sensitive to
“many” edges are useful for answering only very few queries, while “short” cells
contain little information forcing us to read many of them to answer a “large”
query. Indeed, we prove that if F is restricted to only AND and OR functions,
Trs(P) = 2(n?/log” s) for any evasive property P.

We obtain similar results for more general a-CNF, a-DNF (for constant ) and
symmetric function families. We also study the following curious question: What
is the time complexity of induced subgraph problem for a property P when the
data structure can only contain answers about whether an induced subgraph of
the input graph has property P? While any single query can now be answered in
one probe, we show 2(n?/log® s) bound for any non-trivial “uniform” monotone

property.



Basic Idea: The central technique used for the induced subgraph problem is
a probabilistic argument which shows that for any data structuring strategy,
there exists an input graph G s.t. (a) it “stabilizes” the value of any cell that is
sensitive to many variables (where “many” will depend on space s), and (b) still
leaves a large subset X “untouched” such that one can reveal the edges of Gx via
an evasive strategy?. Since the evasive game on X is now only sensitive to cells
with small number of edge variables, we get our desired bounds (same results
will apply to monotone graph properties as well by the AKR). We illustarate
this “stabilization technique” on a-CNF/a-DNF formulas in Section 3.

2.3 Unrestricted Space, Restricted Function Families

We now turn our attention to the extreme where the space s is unrestricted
and only the family F is restricted. In case of the induced subgraph problem,
Tr(P) reduces to the decision tree complexity w.r.t. F of computing P on the
entire verter set V. In other words, how many functions from F one needs to
evaluate (adaptively in the worst-case) in order to verify if a given graph G
satisfies P? When F contains merely the identity function, it is the setting of the
AKR and £2(n?) lower bound is known for any non-trivial monotone P [14,8].
We examine what happens when we allow more powerful functions in F such as
AND, OR (more generally, threshold functions), and XOR (more generally, small
degree polynomials). Since space is not an issue, even these seemingly simple
function families efficiently capture many evasive properties, e.g., T,,, (CLIQUE) =
1, T,.(CONNECTIVITY) = @(nlogn) [5], T, (PARITY) = 1. Yet we will show that
for large classes of evasive properties, these families are no more powerful than
the trivial identity function.

Small Degree Polynomials: We study the family F..,<; of all multivariate
polynomials over Zs of degree at most k; the case k = 1 gives the XOR family. Let
deg(f) denote the degree of the (unique) multi-linear polynomial ¢ computing a
boolean function f over Zs,. Extending the ideas from Rivest and Vuillemin [14],
we establish the following theorem:

Theorem 2. For any non-trivial monotone graph property P, deg(P) = 2(n?).

Since deg(P) < D(P) (any decision tree of depth d yields a polynomial of degree
at most d), the theorem implies the AKR conjecture (up to a constant factor)
and shows that the degree of a monotone graph property over Z, essentially
matches its decision tree complexity. We note that for a general (even evasive
and monotone!) function f, much larger gaps are possible. Moreover, any multi-
linear polynomial over Z,, invariant under relabeling of vertices, computes some
valid graph property (e.g. PARITY has degree 1), but this property can never be
monotone unless the degree is large. Using the easy observation that deg(P) <
ET oo (P), we get a tight (e.g., achieved by CLIQUE) general bound:

Corollary 1. For any non-trivial monotone P, Tx, . (P) = Q(”TZ) In partic-
ular, Ty (P) = 2(n?).

2 A strategy that forces one to probe all edges of the graph.



This corollary still implies the AKR result as the identity is a trivial XOR func-
tion. Thus, having access to 2™ possible XORs is no more powerful than being
able to query only an edge at a time!

AND/OR Families: On the other hand, this approach does not work for two
most natural extensions of the AKR setup, namely the AND and OR function
families, since the degree of these functions can be as large as 2(n?) (in fact,
a general bound of £2(n?) does not hold for these families). We develop general
techniques for studying these families by essentially reducing their decision tree
complexity to a certain measure on simple decision trees. Intuitively, if (simple)
decision tree complexity of a property P corresponds to looking at as few edges
of G as possible, a good bound on T,,,(P) (T,.(P)) corresponds to looking at as
few missing (present) edges of G as possible. We then develop several techniques
to lower bound this measure and obtain (2(n?) bound for many properties. Our
techniques are based on examining the combinatorial structure of graph cer-
tificates and design of general “edge-revealing” strategies for monotone graph
properties. One of the strategies we examined in detail is to answer “no” (“yes”)
unless forced to say “yes” (“no”). Our study of these strategies might be of in-
dependent interest. We remark that our techiniques for AND/OR families apply
to arbitrary functions and not only to graph properties. We defer the details to
the full version.

3 Stabilization Technique

In order to explain the technique, we need two definitions.

Definition 1 (Gadget Graph). An (n,q(n))-gadget graph H(V, E) is a labeled
clique on n vertices such that: (a) each edge is labeled 0 (missing), 1 (present),
or * (unspecified), and (b) there exists a subset @ C V with |Q| = ¢(n), such
that @ induces a clique where each edge of the clique is labeled *. We refer to
Q as the query set of H.

Definition 2 (Stabilizing Graph). Given an F-restricted data structure D of
size s, a graph H is called an (n, q(n), g(s))-stabilizing graph for D if: (a) H is a
(n, g(n))-gadget graph, and (b) every cell in D reduces to being a function of at
most g(s) edge variables on the partial assignment specified by H.

Now suppose for a function family F we want to show that Tr,(P) =
2(q*(n)/g(s)) for every evasive property P. We start by showing existence of
a (n,q(n), g(s))-stabilizing graph Gp for every F-restricted data structure D.
Thus when Gp is presented as the static input, every cell in D reduces to be
a function of at most g(s) edge variables. At the same time, we have access to
a query set (Q whose every edge is unspecified as yet. We present this set @
as the dynamic input to the scheme and play the evasive game for property P
on the subgraph induced by @. Since each cell probe can reveal at most g(s)
edge variables, we obtain the desired 2(¢?(n)/g(s)) lower bound. The following
theorem summarizes this argument.



Theorem 3. If every F-restricted data structure of size s has a (n,q(n), g(s))-
stabilizing graph, then for any evasive property P, T s(P) = 2(¢*(n)/g(s)).

Thus the heart of our approach is to show the existence of a (n, g(n), g(s))-
stabilizing graph with suitable parameters. We show existence of such graph us-
ing the probabilistic method. Typically, we pick a random (n, ¢(n))-gadget graph
s.t. for any h € F, the probability that h|H does not reduce to a function of at
most g(s) variables is less than 1/s. Applying the union bound to the s cells of
D, we conclude that (n,q(n), g(s))-stabilizing graph exists for any D.

As a simple example, let us construct an (n,n/2,log” s)-stabilizing graph
for the family of OR functions, implying that T, s(P) = 2(n?/log®s) for any
evasive P. Create H by picking a random subset ) C V of size n/2 and setting all
edges outside @)’s induced subgraph to true. Take any OR function ¢ = e; V.. .Ve,
and assume that edges e; touch k vertices of V. The only way that ¢ is not
stabilized to 1 by H, is when all k vertices fall inside @, i.e. with probability

(n’/‘;fk)/(n’/‘z) < 1/2F < 1/sif k > logs. So any c that has a reasonable (> 1/s)

chance of “surviving” must have k < log s, i.e. depends on at most log® s edges.
In the remainder of this section, we construct stabilizing graphs for a-CNF
and «a-DNF formulas (for constant «), deferring other results to the full version.

Theorem 4. For any evasive property P and constant
To_cnr/onr,s(P) = 2(n?/(log™ ' nlog® s)).

First, it suffices to show the claimed lower bound for a-DNF formulas (store
any a-CNF by storing its complement a-DNF formula). By Theorem 3, it is
enough to show the existence of a (n,1/2,0(log® ' nlog®® s))-stabilizing graph
for every a-DNF - restricted data structure D. We will proceed similarly to
the case of OR formulas above, but slightly change our random experiment to
make the analysis simpler. Let us say that a formula f is stabilized by a partial
assignment if it fixes the value of f. We will show that, if S is a random subset,
constructed by choosing each vertex of V' with probability 1/2, then setting each
edge variable in S x V to 0/1 uniformly at random (we refer to this experiment
as A) either stabilizes any a-DNF formula or reduces it to be a function of
O(log®~* nlog®® s) edge variables, with probability 1—o0(1/s). Setting then Q =
V'\ S, and noticing that |@| > n/2 with probability at least 1/2, we get that the
claimed stabilizing graph exists.

The claim is shown by induction on «. The base case of & =1 is just slighly
more technical than the case of OR functions. Picking appropriate constants, if
1-DNF formula f has more than 2(log*s) edges, its edges touch §2(log s) vertices
of V, so w.h.p. S contains {2(log s) vertices touched by f. Thus, at least {2(log s)
edges will be set to 0/1 at random in A. Since each such setting stabilizes 1-DNF
w/pr. 1/2, w.h.p. f will be stabilized during experiment A.

Our inductive step relies on two technical Lemmas, whose proofs we omit due
to the space limitations. The first Lemma says that any a-DNF f either has a
certain “compact” decomposition into (o — 1)-DNF’s or it has a “large” number
of pairwise disjoint terms. The next Lemma shows that experiment A stabilizes
a-DNF formulas with large number of pairwise disjoint terms.



Lemma 2. Let f be an a-DNF formula on N variables and let 0 < r < 1 be a
positive real. Then either
o f has a decomposition of the form ly fo + 11 f1 +...+1,—1fp—1 wherel;’s are
literals, f;’s are (a — 1)-DNF formulas, and p < In(a2“N%)/r, or
e f has at least (1/2ar) pairwise disjoint (i.e. no common variables) terms.

Lemma 3. Let f be an a-DNF formula with o?2%+?2 10g2s pairwise disjoint
terms. Then experiment A stabilizes f with probability at least 1 — 1/s2.

We can now complete the proof. Consider any a-DNF formula f. Let r =
1/(a2%*3log? 5). By Lemma 2, either f has a?2'*t?log? s pairwise disjoint
terms or it has a representation of the form lofo + li fi + ... + lp—1 fp—1, where
P < Pmax = In(an®®)/r = O(lognlog® s). In case of the first scenario, we know
by Lemma 3 that f will be stabilized “almost certainly”. Otherwise, we argue
that almost certainly f will have no more than h(a) = O(log® ™" nlog® s) vari-
ables. We sketched that h(1) = O(log” s). Using the compact decomposition of
f and applying induction to each f; in the decomposition, we must satisfy the
recurrence: h(@) < pmaxh(@ — 1) + pmax < Pmax)® ™ B(1) + 207 (Pmax)?. Using
h(1) = O(log® s), we get h(a) = O(log® " nlog** s).

To analyze the probability of failure, denote by R(«) the probability that
a given a-DNF formula does not reduce to a function of at most h(«) distinct
variables. Using Lemma 3, we have R(«) < pmaxR(e — 1) + 2. Scaling h(1) by
a suitably large constant, it is easy to see that R(a) can be bounded by o(1/s)
for any constant «. This completes the proof of Theorem 4.

Remark: The stabilization technique also works for the randomized complexity.
Using the best known bound of £2(n*/?) [6] for randomized decision tree com-
plexity of monotone graph properties, we get a bound £2(n/?/polylog(s)) for
each of the families we considered.

4 Conclusions and Open Problems

We showed that our model provides a uniform framework to study lower bounds
across a spectrum of computational models. Using as an example the induced
subgraph problem, we showed some techniques for breaking the 2(n/logs) bar-
rier for various natural settings of F. In the process, we also obtained a strength-
ening of the Rivest-Vuillemin result, showing that monotone graph properties
cannot be expressed by polynomials of sub-quadratic degree. Finally, we ob-
tained new results and techniques on the generalized decision tree complexity
with respect to some natural families like the AND/OR family.

We introduced a parameterized cell probe model in an effort to examine
space-time tradeoffs in computationally realistic preprocessing scenarios. How-
ever, for the sake of getting unconditional results and in order to illustrate our
new model more cleanly, we only considered syntactic restrictions on the prepro-
cessing function family. It is perhaps more interesting to examine computational
restrictions. For example, to examine the measure T,y (where POLY is the set



of polynomial time computable functions), with a hope of obtaining the first
super linear lower bound. A complimentary direction is to place some restriction
on the power of the probing scheme, that is, to restrict how the information from
the data structure is accessed and/or processed. An example of that is oblivious
computation, where, given a query ¢, the probing scheme has to decide right away
which ¢ cells to access. Again, it is perhaps a feasible intermediate goal to obtain
a super linear bound in this setting. Another interesting direction is to examine
the effects of randomization, i.e. when the probing scheme might be probabilistic
and have a small propbability of error. Finally, it will be extremely interesting
to apply our model to some other important problems, like the nearest neighbor
search problem (see [2, 3]).

References

1. M. Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. In
Combinatorica, 8:235-247, 1988.

2. A. Borodin, R. Ostrovsky, Y. Rabani. Lower Bounds for High Dimensional
Nearest Neighbor Search and Related Problems. In Proc. of STOC, 1999.

3. A. Chakrabarti, B. Chazelle, B. Gum, A. Lvov. A good neighbor is hard to find.
In Proc. of STOC, 1999.

4. P. Elias, R.A. Flower. The complexity of some simple retrieval problems. In J.
ACM, 22:367-379, 1975.

5. A. Hajnal, W. Maass and G. Turan. On the communication complexity of graph
properties. In Proc. of STOC, pp. 186191, 1988.

6. P. Hajnal. An n?? lower bound on the randomized complexity of graph prop-
erties. In Combinatorica, 11:131-143, 1991.

7. L. Hellerstein, P. Klein, R. Wilber. On the Time-Space Complexity of Reach-
ability Queries for Preprocessed Graphs. In Information Processing Letters,
27:261-267, 1990.

8. J. Kahn, M. Saks, D. Sturtevant. A topological approach to evasiveness. In
Proc. of FOCS, pp. 31-39, 1983.

9. E. Kushilevitz, N. Nisan. Communication Complexity. Cambridge University
Press, 1997.

10. P. Miltersen. The bit probe complexity measure revisited. In Proc. of STACS,
pp. 662-671, 1993.

11. P. Miltersen. Lower bounds for union-split-find related problems on random
access machines. In Proc. STOC, pp. 625-634, 1994.

12. P. Miltersen. On cell probe complexity of polynomial evaluation. In Theoretical
Computer Science, 143:167-174, 1995.

13. P. Miltersen, N. Nisan, S. Safra, A. Wigderson. On Data Structures and Asym-
metric Communication Comlexity. In Proc. of STOC, pp. 103-111, 1995.

14. R. Rivest, J. Vuillemin. On recognizing graph properties from adjecency matri-
ces. In Theoretical Computer Science, 3:371-384, 1976.

15. I. Wegener. The complexity of Boolean functions. In Wiley- Teubner series in
Computer Science, 1987.

16. B. Xiao. New bounds in cell probe model. Ph.D. thesis, UC San Diego, 1992.

17. A. Yao. Should tables be sorted. In J. ACM, 28:615-628, 1981.

18. A. Yao. Some complexity questions related to distributed computing. In Proc.
of STOC, pp. 209-213, 1979.



