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Abstract9

One of the ultimate goals of symmetric-key cryptography is to find a rigorous theoretical framework10

for building block ciphers from small components, such as cryptographic S-boxes, and then argue11

why iterating such small components for sufficiently many rounds would yield a secure construction.12

Unfortunately, a fundamental obstacle towards reaching this goal comes from the fact that traditional13

security proofs cannot get security beyond 2−n, where n is the size of the corresponding component.14

As a result, prior provably secure approaches — which we call “big-box cryptography” — always15

made n larger than the security parameter, which led to several problems: (a) the design was too16

coarse to really explain practical constructions, as (arguably) the most interesting design choices17

happening when instantiating such “big-boxes” were completely abstracted out; (b) the theoretically18

predicted number of rounds for the security of this approach was always dramatically smaller19

than in reality, where the “big-box” building block could not be made as ideal as required by the20

proof. For example, Even-Mansour (and, more generally, key-alternating) ciphers completely ignored21

the substitution-permutation network (SPN) paradigm which is at the heart of most real-world22

implementations of such ciphers.23

In this work, we introduce a novel paradigm for justifying the security of existing block24

ciphers, which we call small-box cryptography. Unlike the “big-box” paradigm, it allows one to go25

much deeper inside the existing block cipher constructions, by only idealizing a small (and, hence,26

realistic!) building block of very small size n, such as an 8-to-32-bit S-box. It then introduces a27

clean and rigorous mixture of proofs and hardness conjectures which allow one to lift traditional,28

and seemingly meaningless, “at most 2−n” security proofs for reduced-round idealized variants of the29

existing block ciphers, into meaningful, full-round security justifications of the actual ciphers used in30

the real world.31

We then apply our framework to the analysis of SPN ciphers (e.g, generalizations of AES),32

getting quite reasonable and plausible concrete hardness estimates for the resulting ciphers. We also33

apply our framework to the design of stream ciphers. Here, however, we focus on the simplicity of the34

resulting construction, for which we managed to find a direct “big-box”-style security justification,35

under a well studied and widely believed eXact Linear Parity with Noise (XLPN) assumption.36

Overall, we hope that our work will initiate many follow-up results in the area of small-box37

cryptography.38
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1 Introduction51

Block ciphers are working horses of cryptography, and are used everywhere. Not surprisingly,52

we have many candidate constructions of block ciphers in the real world, including the53

industry-standard AES. The vast majority of such constructions iterate some relatively54

simple sequence of invertible transformations across multiple rounds and can be roughly55

divided into two main paradigms [28]: Feistel networks [21] or substitution-permutation56

networks (SPNs) [21, 35]. Simplifying somewhat, a Feistel round builds a keyed permutation57

on 2n bits from a “good” keyed round function on n bits; while an SPN round applies w58

“good” unkeyed permutations (so-called S-boxes) block-wise to its wn-bit input (for some59

w ≥ 1), and then mixes the results with a keyed, non-cryptographic permutation on wn bits60

(called D-box). Examples of block ciphers based on Feistel networks include DES, FEAL,61

MISTY, and KASUMI; block ciphers based on SPNs include AES, Serpent, and PRESENT.62

One of the biggest open problems in theoretical cryptography is to provide some theor-63

etical justification about the security of this widespread approach of iterating “something64

simple” for many rounds. Ideally, such justification would be unconditional and provably65

secure. Unfortunately, obtaining such unconditional proofs is completely beyond our current66

capabilities (and would immediately imply P 6= NP , and more). The best we can do uncon-67

ditionally (see [33] and the references therein) is to prove essential, but extremely limited,68

security properties of block ciphers, such as resistance to linear or differential attacks. While69

unconditional, these important results are insufficient for real-world applications of block70

ciphers to encryption and authentication. As the result, in order to prove sufficiently strong71

security properties of block ciphers, — such as security against chosen-plaintext/ciphertext72

attacks, — all existing approaches justifying security of current constructions roughly consist73

of 3 steps:74

1. Abstraction: abstract and idealize some building block f inside the round function of the75

corresponding cipher.76

2. Proof: show formal security of the resulting block cipher for some minimal number of77

rounds r, using a traditional reductionist approach.78

3. Conjecture: make some kind of heuristic conjecture/assumption that, by increasing the79

number of rounds well beyond the minimal number of rounds r predicted in the prior80

step, existing real-world block ciphers are still secure, despite using much less idealized81

constructions of the building block f .82

So far, existing realizations of this “recipe” used what we call a big-box approach to83

security. We detail this approach below in Section 1.1, where we show that it has several84

serious deficiencies in terms of our ultimate goal of building a block cipher from small85

components, such as cryptographic S-boxes. To address these problems, we introduce a86

novel paradigm for justifying the security of existing block ciphers, which we call small-box87

cryptography, described in Section 1.2. While the main motivation for small box-cryptography88

comes from the design of block ciphers, the framework is very general and can be used to89

build other primitives, such as hash functions, stream ciphers, pseudorandom functions, or90

even one-way functions. In particular, the framework consists of two main steps:91

1. Construction Step. This step itself consists of two components specific to the primitive92

(e.g., block cipher, hash function, etc) we are building: domain extension and hardness93
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amplification. Despite being primitive-specific, it is largely syntactic, resulting in many94

constructions that have the potential to be secure in the real world.95

2. Analysis Step. This step gives concrete exact security bounds/conjectures for the resulting96

constructions. It consists of three parts. The first two parts are information-theoretic and97

fully provable.1 They formally analyze the domain extension and hardness amplification98

steps above within the existing techniques from “big-box” cryptography. The last step99

introduces a new “big-to-small” conjecture, which allows one to lift these big-box results100

to meaningful bounds/conjectures about the security of the resulting construction in101

the real world. In essence (see Theorem 14), this conjecture states if a natural-looking102

hardness amplification result gave a good security ε(n) against attackers running in time103

T assuming n is “large” (n� log T , in particular), then the same construction will also104

have security ε′(n) ≈ ε(n) even for much smaller values of n, despite the fact that the105

supporting security proof critically breaks down in this case.2106

We then apply our framework to the design of SPN-based block ciphers, which includes107

AES, Serpent, and PRESENT, among others. While the design of SPN ciphers is complex108

enough that we have no other ways to assess the soundness of our final security bounds, it109

appears that our bounds are (a) useful/practical; and, yet, (b) not contradicted by existing110

cryptanalysis. For example, instantiating our framework with a rather aggressive version111

of the “big-to-small” conjecture, we get can get the following concrete security bounds for112

generalization of AES (without key scheduler, for simplicity):113

r-round variant of 128-bit AES with 8-bit S-boxes is (264, (5.28)−r)-secure.3114

In particular, setting r = 10 (the number of real AES rounds), this would already yield115

respectable one-in-hundred-million security, while setting r = 24 would give excellent 2−64
116

security. Thus, to the best of our knowledge, our framework gives the most accurate and117

plausible theoretical justification for the security of SPN ciphers.118

To complement our results, we also apply our framework to the design of pseudorandom119

generators (PRGs; aka stream ciphers). We then look at the resulting PRG construction, and120

analyze it from scratch, instead of applying the “Analysis Step” mentioned above (and, thus,121

avoid using the new and not-well-understood “big-to-small” conjecture; although we also122

analyze the resulting PRG in our new framework). Somewhat surprisingly, we show that not123

only did we get a meaningful PRG by blindly following the “syntactic” route, but the resulting124

construction was elegant enough to be analyzed using tools from big-box cryptography!125

In particular, we show that the resulting PRG is secure under the well-studied variant of126

the Learning Parity with Noise (LPN) assumption, called Exact LPN (XLPN) [27]. While127

the resulting “collision” of big- and small-box cryptography is likely a coincidence, it gives128

further evidence that the Construction Step of our framework often leads to plausibly-secure129

constructions, and motivates the further study of the “big-to-small” conjecture(s) introduced130

by this work.131

1 In practice, the hardness amplification step is often used with correlated round keys, using some “key
schedule” heuristic. To model this case, we also need a plausible conjecture that the key schedule step
does not violate the information-theoretic security proven using fully independent round keys.

2 As we will see, the “big-to-small” conjecture looks very different from all previous (“big-box”) hardness
assumptions, and could be viewed as “one-way function” of small-box cryptography. While the particular
conjectures introduced here might be too strong/aggressive or require further fine-tuning, the framework
is general enough to accommodate future milder variants of this conjecture, still leading to meaningful
real-world guarantees, while addressing the limitations of big-box cryptography.

3 Here (T, ε)-security means that no T -time distinguisher can break the system with advantage greater
than ε.
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1.1 Big-Box Cryptography and Its Limitations132

This approach follows the “abstraction-proof-conjecture” paradigm outlined above, but where133

the idealized building blocks f “big”, meaning that its length n is proportional to block cipher134

length N . For example, the seminal paper by Luby and Rackoff [30] showed that a 4-round135

Feistel network yield a secure pseudorandom permutation on N = 2n bits when applied to136

(independently keyed) round functions modeled as n-bit pseudorandom functions. Similarly,137

one can oversimplify the design of SPN ciphers, by ignoring its fine-grained substitution-138

permutation structure (arguably the “heart and soul” of the SPN design which goes back to139

Shannon [35]), — and instead view them as key-alternating ciphers [20, 5, 9, 25], where one140

models the entire SPN layer as a monolithic public permutation Π on N = n bits. With such141

a higher-level abstraction, one can formally show that the r-round key-alternating cipher142

is secure, for any r ≥ 1, in the random permutation model on N bits [20, 5, 9, 25], where143

r = 1 corresponds to the famous Even-Mansour cipher [20]. The advantage of the big-box144

approach is that one can formally prove exact security bounds which are exponentially small145

in the block length N = O(n) of the underlying cipher E, and reduce the security of E to a146

slightly simpler building block f . Also, such proofs rule out certain generic attacks against147

the construction, and could generally be used as good “sanity checks” for the corresponding148

designs. However, they come with two significant disadvantages:149

First, since f is still “big’, they do not come close to theoretically explaining how to build150

a block cipher from scratch, or, at least, from small components — which is the ultimate151

goal of block cipher design. In fact, one could subjectively argue that, in the existing152

constructions, the design of such a “large” component f is where “all the real action”153

is happening. For example, designing the round function of Feistel ciphers is, by far,154

the most intricate/interesting part of the design of DES, FEAL, MISTY, and KASUMI,155

where a wrong choice can render the whole design insecure. Similarly, completely ignoring156

the substitution-permutation structure of SPN ciphers (where the substitution is done157

by a small S-box, and permutation is a simple non-cryptographic D-box), once again158

ignores the heart of every SPN cipher, including AES.159

Second, the actual building blocks used by the existing constructions are extremely far160

from satisfying the idealized properties required for the provable security of this approach.161

For example, the round functions of DES and other Feistel ciphers are nowhere close to162

pseudorandom, while the simple 1-round SPN structure inside SPN ciphers is certainly163

not a random public permutation. As a result, it is completely unclear to what extent164

the provable results actually apply to the existing constructions. In fact, the number of165

rounds r sufficient for security with an idealized building blocks f is always dramatically166

lower than the number of rounds used (and needed!) in practice: there are no 4-round167

Feistel ciphers, or 1-round SPN (or key alternating) ciphers currently used.168

To put it differently, while the “proof” part of the big-box approach can lead to good-169

looking bounds, the “abstraction” part is too coarse, while the “conjecture” part is really170

big (and also somewhat unclear). In particular, since none of the existing constructions171

have building blocks that are reasonably close to properties needed in theory, this approach172

does not give any guidance or explanation about why the particular real-world choices of173

implementing the “big-box” would be preferable to others, even with a significantly increased174

number of rounds. For example, the analysis of key-alternating ciphers does not shed any175

light as to why the round permutation build by the SPN structure is indeed much better than176

some affine permutation, which would be insecure, irrespective of the number of rounds. In177

other words, by keeping the box large, the big-box approach completely misses any theoretical178
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explanation behind (arguably) the most interesting design decisions the practitioners must179

make when building actual ciphers.180

1.2 Getting Closer to Reality: Small-Box Cryptography181

To address the serious problems with the big-box approach outlined above, our new4 approach182

attempts to go much deeper inside the existing block cipher constructions, by only idealizing183

a small (and, hence, realistic!) building block f , such as an S-box. For example, let us184

recall that an SPN cipher on wn bit inputs (where w is a relatively large constant w ≥ 1), is185

computed via repeated invocation of two basic steps: a substitution step in which a public186

(unkeyed) “cryptographic” permutation f : {0, 1}n → {0, 1}n, called an S-box, is computed187

in a blockwise fashion over the wn-bit intermediate state, and a permutation step in which a188

keyed but “non-cryptographic” permutation π on {0, 1}wn is applied, called a D-box. Since189

π is non-cryptographic and typically linear, we will not idealize any of its properties, and190

work with D-box permutations π close to those used in practice. Hence, the only component191

which can be idealized is the S-box f , which we will model as a random permutation.192

Since the input length, n of f is small, such idealization is not unreasonable, which means193

the final construction analyzed is really close to what is used in practice, and certainly194

captures the heart of the SPN construction: namely, the actual SPN structure, as opposed to195

key-alternating ciphers, where this structure is completely ignored!196

Of course, given the huge conceptual advantages of the small-box approach over the197

big-box approach in terms of the “abstraction” step, there is an important catch, as otherwise,198

we would likely have an unconditional result (and proved P 6= NP along the way). The199

catch is that the best provable security one can conceivably get with such an approach is200

only exponential in n, as the S-box was the only idealized source of hardness that we could201

use. And since n� N was very small by design (say, at most 32 in existing constructions),202

the actual bounds are not useful for practical use. At first, this admittedly serious deficiency203

appears to invalidate the whole point of provable security with this approach, which might204

have been the reason why so few papers followed this route prior to this work. However,205

As one of the contributions of this work, we show that the seemingly useless bounds one gets206

in the “proof” component of the “small-box” approach, can still lead to very reasonable final207

results,208

provided one properly models the “conjecture” component of this approach.209

Small-Box Approach From the Sky. The approach is rather subtle and is carefully210

explained in Section 4. In brief, it formalizes two clean and explicit hardness conjectures,211

termed hardness amplification (Conjecture 13) and big-to-small (Conjecture 14). The hard-212

ness amplification conjecture, which is very plausible and can be sometimes proven even213

unconditionally (under appropriate independence assumptions) using a beautiful hardness214

amplification result of Maurer, Pietrzak, and Renner [31], states that the success probability215

ε of the distinguisher can be driven down exponentially by cascading the block cipher with216

itself.5 Notice, such cascading is indeed a common practice of every block cipher design, where217

increasing the number of rounds (with independent or even correlated keys) is critical for218

4 As we detail in the related work Section 1.4, some of our ideas were already used in the prior work, but
not in the totality that we present here.

5 While we state this result for block ciphers, the framework of [31] is strong enough to study unconditional
hardness amplification for other primitives, such as PRGs (where one XORs several PRGs with
independent seeds).

ITCS 2022
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improving the security of the block cipher. In particular, we can get this success probability219

to an extremely low level 2−wn by cascading the original cipher O(w) times.220

However, this conjecture is only meaningful in the “big-box” setting, when the size n221

of our building block (e.g., S-box) is larger than the security parameter, as otherwise the222

exponential in n bounds given by our “proof component” are meaningless. To go back to the223

small-box case we care about, we notice that the success probability 2−wn achieved in the224

big-box setting after cascading is also good and meaningful in the small-box case. In fact,225

the big-to-small conjecture states that even though the hardness amplification argument226

used to justify this conclusion crucially relied on the big-box assumption, the final conclusion227

is actually true even in the small-box case! Unlike the hardness amplification step, which228

appears very believable and even unconditionally true in certain settings, the big-to-small229

conjecture is completely new and not formally studied. However, despite being new and230

rather strong, it allows us to precisely state the kind of “leap of faith” one would be making231

when using constant size small-boxes.232

We discuss these issues in more detail in Section 4, here only stating the end result233

of applying the 2 conjectures together. Here n0 = n0(a, α) is the constant defined in the234

big-to-small conjecture (and could be really small; n0 = 8 in the case of AES), and we also235

don’t explicitly state if cascading uses independent or correlated keys/building blocks (which236

is part of the hardness amplification conjecture):237

I Theorem 1 (Small-Box Cryptography; Informal). Let T be the desired attacker time bound,238

and assume that r-rounds block cipher E of length wn utilizing idealized block f of size n is239

(T, 2−αn)-secure, as long as n > a log T (for some constants a > 1 and α < 1). Then, under240

Conjectures 13 and 14, for any n ≥ n0(a, α), cascading E for c = O(w/α) times will result241

in a r′ = O(wr/α)-round block cipher E′ which is (T,O(T/2`(n) + 2−wn))-secure,6 where242

`(n) is the key length of E′ under to corresponding cascading step (equal to c times the key243

length of E when independent keys are used).244

The theorem above formalizes the last, “conjecture” step of small-box cryptography to245

get the following conclusion:246

247

Under two clean and explicit hardness conjectures, one can get strong and meaningful security
bounds for popular block ciphers, by obtaining “seeming useless” (T, poly(T )/2n) security
bounds for reduced-round variants of these ciphers with idealized building blocks of size n.

248

Moreover, the small-box approach explicitly explains why the number of rounds r′ used249

in practical constructions is noticeably larger than the theoretically predicted number of250

rounds r in the provably secure step: to drive the success probability of the distinguisher251

significantly below the minimum 2−n level possible with the traditional information-theoretic252

proof. Thus, we have eliminated both significant disadvantages of the big-box approach: not253

guiding how to instantiate the “big” building blocks in practice, and giving inadequately low254

predictions for the number of rounds r needed for real-world security.255

1.3 Our Results256

We believe our main result is conceptual: bring the attention of the cryptographic to the257

deficiencies of “big-box” cryptography for the task of designing block ciphers and other258

6 For simplicity we consider uniform attackers; for other (e.g., non-uniform) models, we can change the
conjectured T/2`(n) term to reflect the best generic attack in this model; see [12] for such non-uniform
bounds for block ciphers.
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symmetric key primitives, which are usually built from scratch, from very small components259

such as S-boxes. We also introduced a specific framework (which we called small-box260

cryptography) which is one concrete attempt to address this problem. This framework261

yields a rather syntactic way to derive candidate constructions conjectured to be secure262

in the real world and then proposes an explicit way to get concrete security bounds for263

the resulting constructions: by combining provably secure domain extension and hardness264

amplification steps with a new and unstudied type of hardness assumptions we call “big-to-265

small” conjectures.266

We then apply this framework to the analysis of SPN ciphers (e.g, generalizations of267

AES), getting quite reasonable and plausible hardness estimates for the resulting ciphers. We268

also apply this framework to the design of stream ciphers. Here, however, we focus on the269

simplicity of the resulting construction, for which we managed to find a direct “big-box”-style270

security justification, under a well studied and widely believed XLPN assumption [27].271

Overall, we certainly hope that our work will initiate many follow-up results in the272

area of small-box cryptography, which will both refine the initial heuristics (such as more273

refined analogs of our conjectured Theorem 1) outlined in this work, and add to a better274

understanding of existing symmetric-key constructions, hopefully well beyond block/stream275

ciphers.276

1.4 Related Work277

There are only a few prior papers looking at provable security of SPNs. The vast majority of278

such work analyzes the case of secret, key-dependent S-boxes (rather than public S-boxes as279

we consider here), and so we survey that work first.280

SPNs with secret S-boxes. Naor and Reingold [34] prove security for what can be viewed281

as a non-linear, 1-round SPN. Their ideas were further developed, in the context of domain282

extension for block ciphers (see the further discussion below), by Chakraborty and Sarkar [8]283

and Halevi [24].284

Iwata and Kurosawa [26] analyze SPNs in which the linear permutation step is based on285

the specific permutations used in the block cipher Serpent. They show an attack against286

2-round SPNs of this form, and prove security for 3-round SPNs against non-adaptive287

adversaries. In addition to the fact that we consider public S-boxes, our linear SPN model288

considers generic linear permutations and we prove security against adaptive attackers.289

Miles and Viola [33] study SPNs from a complexity-theoretic viewpoint. Two of their290

results are relevant here. First, they analyze the security of linear SPNs using S-boxes that291

are not necessarily injective (so the resulting keyed functions are not, in general, invertible).292

They show that r-round SPNs of this type (for r ≥ 2) are secure against chosen-plaintext293

attacks.7 They also analyze SPNs based on a concrete set of S-boxes, but in this case they294

only show security against linear/differential attacks (a form of chosen-plaintext attack),295

rather than all possible attacks, and only when the number of rounds is r = Θ(logn).296

SPNs with public S-boxes. The work of Cogliati et al. [11] analyzed SPNs with public S-297

boxes. In fact, this paper will basically give us the “domain extension” (n→ wn) component298

of our “Analysis Step”, when we apply small-box cryptography to SPNs. Unlikely our work,299

however, the work of [11] did not advocate the hardness amplification to go beyond 2−n300

security, or derived a concrete framework to assess the security of SPNs in the real world.301

7 In contrast, [11] showed that 2-round, linear SPNs are not secure against a combination of chosen-
plaintext and chosen-ciphertext attacks when w ≥ 2.

ITCS 2022



106:8 Small-Box Cryptography

The earlier work by Dodis et al. [17] studied the indifferentiability [32] of confusion-302

diffusion networks, which can be viewed as unkeyed SPNs.303

As observed earlier, the Even-Mansour construction [20] of a (keyed) pseudorandom304

permutation from a public random permutation can be viewed as a 1-round, linear SPN in305

the degenerate case where w = 1 (i.e., no domain extension) and all-round permutations are306

instantiated using simple key mixing. Security of the 1-round Even-Mansour construction307

against adaptive chosen-plaintext/ciphertext attacks, using independent keys for the initial308

and final key mixing, was shown in the original paper [20]. Kilian and Rogaway [29] and309

Dunkelman, Keller, and Shamir [18] showed that security holds even if the keys used are the310

same. As we mentioned, these results are insufficient for us, as we need a much larger (at311

least security parameter) domain expansion factor w.312

Cryptanalysis of SPNs. Researchers have also explored cryptanalytic attacks on generic313

SPNs [2, 3, 4, 14]. These works generally consider a model of SPNs in which round314

permutations are secret, random (invertible) linear transformations, and S-boxes may be315

secret as well; this makes the attacks stronger but positive results weaker. In many cases316

the complexities of the attacks are exponential in n (though still faster than a brute-force317

search for the key), and hence do not rule out asymptotic security results. On the positive318

side, Biryukov et al. [2] show that 2-round SPNs (of the stronger form just mentioned) are319

secure against some specific types of attacks, but other attacks on such schemes have been320

identified [14].321

Hardness Amplification. Harness amplification, going back to the seminal paper of322

Yao [37], amplifies the security of a given cryptographic primitive, typically by combining c323

independent copies of this primitives, and ensuring that the attacker must break all such324

copies. Traditionally, it is studied in the computational setting (e.g. [7, 6, 15, 10, 19, 23]),325

where one starts with (T, ε)-security, and gets (T ′, ε′)-security, where ε′ ≈ εc. Unfortunately,326

such complexity-theoretic results, while extremely beautiful, have an inherent limitation327

that T ′ ≤ Tε′ ≈ Tεc. This means that the increased security comes at the price of a huge328

degradation in the run-time of the attacker, making these beautiful results completely useless329

for small-box cryptography. See [16] for more discussion.330

Fortunately, hardness amplification has also been studied in the information-theoretic331

setting [31, 36], where the attacker is computationally unbounded but has a limited number of332

queries T to appropriate idealized oracles. In this setting, the security can be proven without333

much degradation in the parameter T , and this is the setting we use in our framework.334

Random Local Functions. Goldreich [22] suggested designing a one-way function by335

repeatedly applying a certain local predicate f (which could be viewed as “S-box”) to carefully336

chosen subsets of input bits. This influential work led to many follow-up constructions (see [1]337

and references therein) of how to build various “local” cryptographic primitives in this way,338

and argue about their security. At a high level, these results could be viewed as a different339

instantiation of small-box cryptography, which is incomparable to our proposal. Namely, our340

proposal focuses on capturing real-world designs where security is obtained by repetition and341

suggests modeling f as a random function/permutation in the Analysis Step. In contrast,342

the study of local cryptography is more focused on achieving small input locality (which is343

not our concern), as a result explicitly trying to avoid naive hardness amplification (which344

is expensive for locality). In other words, the two approaches happen to use “S-boxes” for345

completely different goals. It would be interesting to see if some interesting connection can346

be found between the two approaches to “small-box cryptography”.347



Y. Dodis and H. Karthikeyan and D. Wichs 106:9

2 Applying Big-Box Cryptography to PRGs348

In this section, we present our construction of a pseudorandom generator. We then prove its349

security under the eXact Linear Parity with Noise (XLPN) assumption. The construction,350

by itself, may not be the best PRG construction from this assumption, as it relies on large351

public parameters, which is unnecessary if one’s goal to build a “big-box” PRG from XLPN.352

Of course, our point is to explicitly build and analyze cryptographic primitives from a “small”353

(but still polynomial size) S-box, which naturally mandates seemingly large parameters when354

viewed from the big-box perspective. Hence, the main purpose of our PRG construction is355

to introduce the small-box framework, before we look at the more complicated example of356

block ciphers in Section 4. In particular, unlike the case of block ciphers, the example will357

be simple enough that we can directly apply the “big-box” analysis to it (in the common358

reference string model, modeling our S-box).359

2.1 Syntax and Security of PRG360

A PRG is a primitive that is often used to produce random-looking string from a short,361

randomly chosen seed.362

I Definition 2 (Pseudorandom Generator). Let n ∈ N be the security parameter. Then, an
efficiently computable function G : {0, 1}n → {0, 1}`(n) for `(n) > n is an (T, ε)-secure PRG
if for all adversaries A running in time T , the following holds:∣∣∣∣ Pr

s←Un

[A(G(s)) = 1]− Pr
R←U`(n)

[A(R) = 1]
∣∣∣∣ ≤ ε

2.2 Our Construction363

Recall, the goal of small-box cryptography is to analyze the direct construction of various364

primitives from “small” (constant- or polynomial-, but not exponential-) sized S-boxes. In365

the case of a PRG, it is natural to think of such an S-box as a Boolean function f modeled366

as a random function in the analysis. This is without loss of generality, as any non-Boolean367

S-box f ′ : {0, 1}a → {0, 1}b is equivalent to a Boolean S-box f : {0, 1}a+log b → {0, 1}, where368

f(x‖i) represents the i-th output bit of f ′(x). Further, it will be convenient for the notation369

to write the domain of this Boolean function as {0, 1}n+log `, where ` is the desired output of370

our PRG, and n is the “small” leftover part. E.g., when n = 8 and ` = 256, we get (still371

“small”) 16-to-1 S-box.372

For our “big-box” analysis, it will also be convenient to define a truth-table matrix for f373

as an `×N matrix M, and think of this matrix as public parameters (or common random374

string, crs) of our PRG construction:375

M =


f(1 ‖ 0) . . . f(N ‖ 0)
f(1 ‖ 1) . . . f(N ‖ 1)

...
. . .

...
f(1 ‖ `− 1) . . . f(N ‖ `− 1)


where N = 2n.376

Let F = {f : {0, 1}n+log ` → {0, 1}} be the set of all “S-box” functions f above. We now
define a family of PRGs G = {G̃f : {0, 1}nc → {0, 1}` | f ← F}, which takes an additional

ITCS 2022



106:10 Small-Box Cryptography

“hardness” parameter c, and will expand a cn-bit input x = (x1, . . . , xc) into an `-bit output
y as follows:

y = G̃f (x1, . . . , xc) =


f(x1 ‖ 0)⊕ f(x2 ‖ 0)⊕ . . .⊕ f(xc ‖ 0)
f(x1 ‖ 1)⊕ f(x2 ‖ 1)⊕ . . .⊕ f(xc ‖ 1)

...
f(x1 ‖ `− 1)⊕ f(x2 ‖ `− 1)⊕ . . .⊕ f(xc ‖ `− 1)


Note on parameters. We need ` ≥ nc+ 1 in order to ensure that our PRG is expanding,377

which lower bounds the domain length of the S-box by (n + log(nc + 1)) = O(log c), if378

we think of n = O(log c). This is still a pretty good trade-off. Indeed, in both of our big-379

and small-box analyses (done in Sections 2.3 and 3), c will be the “security” parameter of380

the construction. So our security will scale — under appropriate hardness assumptions —381

exponentially in c. While the bit-size of the S-box input has only logarithmic dependence on382

the security parameter c. In particular, while the overall size of the S-box ` · 2n ≈ c · (n2n) is383

noticeably greater than the PRG input size c · (n+ log `) ≈ c · (n+ log c), it is still polynomial384

in the security parameter c (assuming n = O(log c)), and can be read by the attacker in its385

entirety.386

2.3 Big-Box Analysis of G̃387

In this section, we will undertake a big-box analysis of G̃ by proving its security from388

well-studied assumption, a variant of the LPN problem. The variant we consider is called389

the Exact LPN problem. This was first proposed and employed in proof of security by Jain390

et al. [27]. Much like the original LPN problem, the XLPN problem has a search and a391

decisional variant. It has been shown that the search variant of this problem is equivalent to392

the search version of the original LPN problem. Additionally, the hardness of the decisional393

XLPN problem is polynomially related to the search LPN problem.394

I Definition 3 (Decisional Exact LPN (XLPN) Assumption). For 0 < τ < 1
2 , q,m ∈ N, the

(q,m)-XLPNτ problem is (T, ε)-hard if for every adversary A running in time T , the following
holds: ∣∣∣∣ Pr

s,A,x

[
A(A,A>s⊕ x) = 1

]
− Pr

A,y
[A(A,y) = 1]

∣∣∣∣ ≤ ε
where s← Zm2 , A← Zm×q2 , x← Zq2,c and y← Zq2. Here, Zq2,c is the uniform distribution of395

q dimension binary vectors of weight c = τ · q.396

To this end, we will prove the following theorem:397

I Theorem 4. Under the (q = N,m = N − `)-XLPNτ assumption, the family of PRGs398

G = {G̃f : {0, 1}nc → {0, 1}`|f ← F} is secure and provided c = 2n · τ and ` ≥ nc+ 1, for399

0 < τ < 1
2 .400

Discussion on parameters. Note that the length doubling PRG has an error-rate401

of 1/O(logn), which is worse than a constant, but much better than 1/O(
√
N) needed for402

public-key encryption. Finally, by suitably setting the parameters, we get the following403

result:404

I Corollary 5. For any polynomial N , let ` = N/2 and c = `/(2 logN) = N/(4 logN). Then,405

there exists a family of length-doubling PRG under the (N,N/2)-XLPNτ assumption where406

τ = 1/O(logN).407
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We defer the proof of the above theorem to Section A. However, we discuss some instructive408

intuitions for the proof. Recall that in the PRG security game, the adversary A either409

receives G̃(X) for X← {0, 1}nc or y← {0, 1}`. To break this game, A would have to identify410

c values x1, . . . , xc that evaluates to the output that it has received, and in this setting y is411

a set of ` parity check equations.412

In other words, if A finds a vector x ∈ ZN2 such that wt(x) = c and Mx = y, then with413

high probability, A received the real value and not the random value.414

With this insight, it is useful to view this problem via the context of linear binary codes.415

In such a case, M can be considered as a parity check matrix and y is the syndrome of x.416

However, this only works if M is of full row rank. Recall that a matrix M has a full row417

rank. if each of the rows of the matrix is linearly independent. Fortunately, we know that418

with overwhelming probability, a randomly sampled binary matrix has full rank.419

In other words, given a random parity-check matrix M of size `×N , we need to decode a420

random error vector x, from the ` parity check equations, i.e., Mx = y, such that wt(x) = c.421

Further, we get that
(
N
c

)
< 2` =⇒ c logN < ` < N422

Finally, given a parity-check matrix M, one can efficiently calculate a corresponding423

generator matrix A. Note that A ∈ Z(N−`)×N
2 and MA> = 0, by definition.424

3 Applying Small-Box Cryptography to PRGs425

In the previous section, we presented the construction of a PRG, using an idealized primitive426

f , and proved its security under the XLPN assumption. In this section, we arrive at the same427

construction, but by religiously following the small-box framework. Recall, our recipe for428

small-box cryptography consists of two steps — the construction step and then the analysis429

step, each of which consists of several small steps. We detail each below.430

3.1 Construction Step431

The construction step of small-box cryptography consists of two smaller sub-steps: domain432

extension and hardness amplification. Although both of these steps are primitive-specific (e.g.,433

different from PRGs and block ciphers), they are largely syntactic and require little-to-no434

technical expertise.435

Domain Extension Step. Normally, the ideal object (S-box) gives a direct construction436

of the given primitive, but for “tiny” input/output domain. For example, in the PRG case437

the S-box f : {0, 1}n+log ` → {0, 1} is a trivial “PRG” from (n+ log `) bits to 1 bit. Of course,438

being non-expanding, this is not interesting in terms of functionality, but it will be obviously439

“secure” when we think of n as “big” and f as a “big” random oracle in subsequent sections.440

To make the primitive interesting in terms of functionality even in the small-box world,441

the purpose of the domain extension step is to amplify the length of either the input, the442

output, or both to be large even in the “small” box world. In the case of PRG, the interesting443

parameter is the desired PRG output length `, which we think as “big”.8 So our goal here is444

to extend the output domain from {0, 1} to {0, 1}`.445

In the big-box world, one would amplify the output size by a factor of ` by expanding446

the PRG seed length by a factor of ` and concatenating the ` outputs of the base PRG. Here447

8 This explains our strange-looking choice of notation to denote the input length of our S-box as (n+log `)
rather than just `. Of course, this is just matter of convenience of notation: if the S-box size was n′, we
would have to subtract log ` from it, and instead assume n′ = log `+ n for a new parameter n.
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we do almost the same thing, except we don’t need to pay in the seed length, and use our448

idealized modeling of our base PRG f as a random oracle rather than a “mere” PRG. This449

is consistent with the design intuition that a good S-box has all the idealized properties one450

would need for the construction to work. Namely, we can construct the range-extended PRG451

G as follows: G : {0, 1}n → {0, 1}`:452

G(x) = (f(x ‖ 0), . . . , f(x ‖ `− 1)) (1)453

where ‖ denotes concatenation. Intuitively, we simply “waste” log ` bits of the seed to454

enumerate over the ` desired output bits.455

Hardness Amplification Step. As we can see, the improved functionality — in this case,456

output size — came at the expense of decreased security (which is, of course, expected). For457

the PRG example above, the seed length was (n+ log `) bits, but now is only n bits, which458

means it is definitely easier to break (we will formalize this quantitatively in Section 3.2).459

The goal of the hardness amplification step is to amplify security — not just to the level460

we started from — but hopefully well beyond, so that we can afford to make n “small” and461

still have good looking security bound (this is somewhat subtle, and will be explained in462

the analysis step in Section 3.2). The hardness amplification step is usually parameterized463

by the hardness parameter c, which we can also think of as a security parameter of our464

final construction. For the case of PRGs, the standard hardness amplification is simply465

the bit-wise XOR operation, applied to c independent copies of our (already “domain-466

extended”) PRG. Intuitively, while each individual PRG might only be slightly secure, by467

XOR-ing c independent copies the potential biases of the final PRG decay exponentially in468

c. This was formally analyzed in the computational setting by Dodis et al. [15] and in the469

information-theoretic setting by Maurer et al. [31].470

With this in mind, we can define the following PRG G̃ : {0, 1}nc → {0, 1}`:

G̃(x1, . . . , xc) = G(x1)⊕ . . .⊕G(xc)

This PRG can also be rewritten as follows, if we unwrap the definition of G from471

Equation (1):472

G̃(x1, . . . , xc) =


f(x1 ‖ 0)⊕ f(x2 ‖ 0)⊕ . . .⊕ f(xc ‖ 0)
f(x1 ‖ 1)⊕ f(x2 ‖ 1)⊕ . . .⊕ f(xc ‖ 1)

...
f(x1 ‖ `− 1)⊕ f(x2 ‖ `− 1)⊕ . . .⊕ f(xc ‖ `− 1)

 (2)473

This is the same construction as the one in Section 2.2, but now obtained using two474

relatively syntactic steps. In each step, we intuitively think of f as a “big” random oracle to475

justify the soundness of this step (and we formalize this below), but the actual construction476

makes sense even in the “small-box” world! This dichotomy will be the point of the analysis477

step we present in the next section.478

3.2 Analysis Step479

On a high-level, the analysis step of small-box cryptography will consist of two components.480

The first component is provable, typically information-theoretically. It involves the analysis481

of the security of the final object (G̃, in the case of PRG, or SPN cipher in the case of482

block ciphers) in the corresponding idealized model for the building block f (random oracle483

model, in the case of PRG, and random permutation model in the case of SPNs). The proof484



Y. Dodis and H. Karthikeyan and D. Wichs 106:13

will critically use the assumption that the size of f is larger than the running time T of485

the attacker A so that A cannot query f on all inputs. However, the final security bound486

one gets will be “syntactically meaningful” even in the small-box world, when the size of f487

becomes polynomial. Then the second component of the analysis will involve a new type of488

conjecture, which we term Big-to-Small conjecture, which was never considered prior to this489

work, and which allows one to get good exact security bounds for the final construction in490

the small-box world. We detail these below for the simple case of PRGs.491

Idealized Big-box Proof. Here we are arguing the security of our final PRG G̃ in the492

random oracle model for the S-box f . Normally, one would try to do it modularly, by493

separately analyzing the domain extension step, followed by the hardness amplification step.494

Indeed, this is how we will do the analysis in the case of SPNs, where a direct analysis of the495

entire construction appears extremely cumbersome. Here, however, the PRG construction is496

so simple, that we do a direct proof for the security of G̃ in the random oracle model for f .497

Recall that in the basic PRG security game, an adversary has to distinguish between498

G̃(x) and a random `-bit string, for a random seed x = (x1, . . . , xc), by making at most q499

queried to the random oracle f . We obtain the following simple lemma:500

I Lemma 6. Let f : {0, 1}n+log ` → {0, 1} be modeled as a random oracle. Then, G̃ :501

{0, 1}nc → {0, 1}` is (q/N)c-secure PRG where N = 2n, and q is the number of oracle502

queries made to f .503

Proof. Let us define the variable qj to be the number of calls to f of the form f(·, j) for504

j = 0, . . . , `− 1. Let x1, . . . , xc be n-bit strings, randomly sampled as the seeds. Now, define505

an event Badj as the event that a PPT attacker A invoked f(x1, j), . . . , f(xc, j). Now, note506

that the the probability that A invoked exactly one of these seeds with j is at most qj/2n.507

Therefore, Pr[Badj ] ≤ (qj/2n)c.508

Define by E the event that any of Bad1, . . . , Bad`−1 occurred. Then, we know that

Pr[E ] =
`−1∑
j=0

Pr[Badj ] = 1
N c

`−1∑
j=0

qcj ≤
( q
N

)c
Now, note that if E did not happen, then the adversary has no distinguishing advantage509

between real or random. Therefore, the distinguishing advantage of A in the PRG game is510

(q/N)c. J511

Removing the dependence on q in ε. We need one other syntactic, but extremely512

important step. For reasons to be clear when we move to the Big-to-small conjecture, we513

cannot afford to have a dependence on a number of oracle queries q in our security bound for514

ε. Instead, we will re-write our bound, but in a way that pushed the dependence on q into515

the lower bound for the S-box input parameter n. Concretely, if we (temporarily) assume516

that n ≥ 10 log q (or, equivalently, q ≤ 2n/10), then ε(n) ≤ 2−0.9nc = N−0.9c.517

Finally, we will now no longer assume that the attacker A is computationally unbounded,518

but instead upper bound its running time by some parameter T ≥ q, and say that our PRG519

is (T, ε)-secure if no such attacker can break it with an advantage more than ε. With this520

change, we get the following restatement on our bound in Lemma 6 which will be convenient521

for our Big-to-small conjecture.522

I Theorem 7. If n ≥ 10 log T and f : {0, 1}n+log ` → {0, 1} is modeled as a random oracle,523

then G̃ : {0, 1}nc → {0, 1}` given in Equation (2) is a (T,N−0.9c)-secure PRG, where N = 2n.524
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Big-to-Small Conjecture. Our analysis in the sections thus far have assumed that n is525

sufficiently large, i.e., “big n”. Formally, Theorem 7 assumed that n > 10 log T . However,526

the construction of G̃ is interesting even when n is much smaller. Indeed, we only need527

cn < ` to get a meaningful expansion. Moreover, even the final security bound N−0.9c is528

pretty good (while not established, of course!) for quire reasonable values of n and c. For529

example, setting c = n = 8 and ` = 128, we get a PRG with seed length cn = 64, output530

length ` = 128, and conjectured security (2−64)−0.9 ≈ 2−57, from a reasonably small Boolean531

S-box on 15 bits (or, equivalently, a more “balanced” S-box from 12-to-8 bits, which is quite532

reasonable to build). This would be fantastic, if true!533

Of course, such security makes no sense, as it does not depend on the running time534

T of the distinguisher. Indeed, we could have replaced n ≥ 10 log T with the bound535

n ≥ 1000000 log T , and basically get optimal security ≈ 2−nc using a cn-bit seed, without536

doing any work. Nevertheless, we conjecture that bounds such as the one in Theorem 7 are537

hopefully meaningful for real-world security of the corresponding ciphers, provided one also538

includes some term corresponding to “brute-force attacks” running in time T . For example,539

the best generic (non-uniform) attacks against PRGs with cn-bit key [13] have an advantage540

roughly T/N c/2 using non-uniform attackers using time and space T .541

A particularly strong Big-to-small conjecture9 would then state that the best way to542

attack constructions of the type we present is either by doing a brute-force search with543

advantage T/N c/2 ignoring the fine-grained structure of our PRG, or we could have a generic544

attack on the structure of our PRG, ignoring its key size. And since with such a strong545

conjecture we have T/N c/2 � N−0.9c, we are effectively saying that the brute-force attack is546

the best we can do for our cipher.547

Of course, we could make weaker conjectures, and perhaps invest more time in the548

cryptanalysis of the resulting cipher. But the “mega-conjecture” of our approach is as follows:549

550

Big-to-Small (Meta-)Conjecture: If the idealized big-box analysis shows (T,N−αc)-
hardness when n > a log T (for some a > 1 and α < 1) for the c-time iterated construction of
a given primitive, then the construction is also (T,N−αc+ε(T ))-secure for any n ≥ n0, where
n0 = n0(a, α) � log T is a constant, and ε(T ) accounts for a term involving a brute-force
search component in time T .

551

I Conjecture 8 (Big-to-Small Conjecture; Informal). Assume a PRG G′ of seed length `(n)552

is (T, ε′(n))-secure, where ε′(n) > T/2`(n), when using ideal building component of length553

n ≥ a log T (for some a > 1). Then, for some constant n0 = n0(a), the “scaled down” version554

of G′ of seed length `(n0) using building block f of size n ≥ n0 is still (T,O(ε′(n))-secure.555

We defer a more precise discussion on such a conjecture, its practicality, and its impact556

after a similar analysis of SPNs in Section 4.3, as this is our most interesting case.557

We note, however, that we would not be surprised that such a strong conjecture could558

be false in its generality. For example, analogous conjecture is clear false for related559

unpredictability primitives, such as one-way functions (OWF) constructed using direct product560

with independent inputs: F (x1, . . . , xw) = f(x1), . . . , f(xw). Namely, when scaling the input561

length n to OWF f from security parameter to constant, we clearly make the resulting562

combined function F insecure, by iterative inverting each xi one by one. However, it currently563

appears that funding natural counter-examples for indistinguishability primitives (like PRGs564

9 Of course, we have no chance of proving such a conjecture, as it clearly implies one-way functions.
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and block ciphers) is quite non-obvious, even if one starts with artificial constructions not565

motivated by what is done in practice. Moreover, once the corresponding primitive is built566

using the natural hardness amplification step applied c times (e.g., cascade for block ciphers,567

or XOR for PRGs), the big-to-small conjecture becomes quite plausible. Indeed, we believe it568

could be true (while beyond our reach formally), at least with a weaker security term N−a
′c

569

for a′ < a (when the non-cascaded version has security N−a). Further, the we would not be570

surprised if the brute-force component ε(T ) could be improved by future cryptanalysis to be571

somewhat below the naive brute-force search.572

To sum up, while many aspects of our framework are still being nailed down, we hope573

this work will motivate further explorations of small-box cryptography, including its promise574

and limitations.575

4 Applying Small-Box Cryptography to SPNs576

As our next result, we demonstrate the use of our framework to obtain concrete security577

bounds for SPN block ciphers.10 In Section 4.1 we remind the reader of the syntax of (linear)578

SPNs. In Section 4.2 we show how we can obtain essentially the same construction by579

combining a “domain extension step” with the “hardness amplification” step. Namely, the580

former could be viewed as reduced-round SPN for which we will use the results of [11], which581

showed that 3-round linear SPNs achieve O(T 2/2n) security in the random permutation582

model (as a way to model the S-box, and under pretty mild restrictions on the linear D-box583

design). As stated before, a D-box is keyed, non-cryptographic permutation on wn bits.584

The latter step of “hardness amplification” could be viewed as cascading the cipher with585

independent (or correlated) keys to increase the number of rounds to get below 2−n security586

barrier (in the “big-box” world). These analyses are done in Sections 4.3. Finally, Section 4.3587

formalizes an appropriate “big-to-small” conjecture to go to the “small-box” world, and588

Section 4.4 brings everything together to justify Theorem 1 and get the concrete (conjectured)589

security bounds advertised in the Introduction.590

4.1 Pseudorandom Permutations and SPNs591

Pseudorandom Permutation. We now look at the security of a Pseudorandom Permuta-592

tion (PRP).593

I Definition 9 (Pseudorandom Permutation). Let n ∈ N be the security parameter. Then,
an efficiently computable keyed-permutation Ek : {0, 1}n → {0, 1}n where k ← {0, 1}s is an
(T, ε)-secure PRP if for all adversaries A running in time T , the following holds:∣∣∣∣ Pr

k←{0,1}s

[
AEk(·)() = 1

]
− Pr
P←P

[
AP (·)() = 1

] ∣∣∣∣ ≤ ε
where P is the set of all permutations over {0, 1}n. Note that if the construction uses an594

ideal object, then A gets oracle access to this primitive as well.595

Substitution-Permutation Networks. A substitution-permutation network (SPN) is a596

keyed permutation defined by the two transformations that it repeatedly invokes. The first597

transformation is what is called an “S”-box where one computes, block by block, a public,598

10Although we only apply our result to the SPN design, the discussion below is rather general, and can be
applied to any r-round design E which uses some idealized building block f of (potentially small) size n.
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cryptographic permutation. The second transformation uses a keyed, non-cryptographic599

permutation. The repeated invocation is determined by the rounds of the SPN. In addition,600

the distribution of the keys for the keyed-permutation is also included in this definition,601

though in practice, the keys are actually derived from a single master key through a key602

schedule.603

Formally, an r-round SPN taking inputs of length wn where w ∈ N is the width of the604

network, is defined by:605

1. r + 1 keyed permutations {πi : Ki × {0, 1}wn → {0, 1}wn}ri=0,606

2. a distribution K over K0 × · · · ×Kr, and607

3. a permutation f : {0, 1}n → {0, 1}n.608

The actual construction is as follows:609

x1 := π0(k0, x).610

For i = 1 to r do:611

1. yi := S(xi), where S (x[1] ‖ · · · ‖x[w]) def= f(x[1]) ‖ · · · ‖ f(x[w]).612

2. xi+1 := πi(ki, yi).613

The output is xr+1.614

where (k0, . . . , kr) ∈ K0 × · · · ×Kr are the round keys and x ∈ {0, 1}wn is the input.615

Note that if f is efficiently invertible and each πi is efficiently invertible (given the616

appropriate key), then one can simply reverse the process, given the round keys, to obtain617

the original input x.618

Linear SPNs. In practice, majority of SPNs are what we call linear. Such SPNs correspond619

to the setting where the D-Boxes (i.e., the keyed permutations πi) are defined as follows:620

πi(ki, y) = ki + y, where each ki = Ti(k) with Ti being a linear transformation, and k being621

the “main” key. A simple example of such linear SPN corresponds to the case there each Ti622

is the identity function, meaning the original key k = (k0, . . . , kr) is (r + 1)wn-bit long, and623

consists of (r + 1) independent sub-keys of length wn each. However, we could have more624

compact key schedules T = (T0, . . . , Tr), where the main key k will be much smaller (and625

each function Ti possibly expanding). Indeed, such linear SPNs were analyzed by Cogliati et626

al. [11] (see Lemma 10 and Lemma 11 below).627

Figure 1 is a pictorial representation of a 3-round Linear SPN with unspecified linear628

transformations T0, T1, T2, T3.629

4.2 Construction Step630

In this section, we show how the defined SPN can be “syntactically" obtained through a631

process of two steps — domain extension and hardness amplification.632

Domain Extension Step. In this step, we view the S-box as an idealized block (random633

permutation), and our goal is to find the minimal number of rounds r for which SPNs634

(with appropriately chosen linear D-boxes) are (T, 2−Ω(n))-secure in the random permutation635

model. This is exactly the question studied by [11], who showed that minimal such r = 3,636

and we will use their concrete results in Section 4.3.637

Hardness Amplification Step. First, since we are in the big world, we imagine the size638

n of the “small-box” f is made large enough so that exponential in n security is meaningful.639

For example, one could imagine SPN ciphers with large S-boxes (say, of several hundred640

bits long), even though they yield block ciphers of much higher block length wn than we641
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wn-bit input

f f f fff f f ff

f ffff f ffff

n-bit f -box input

f ffff f ffff

k0 = T0(k)

k1 = T1(k)

k3 = T3(k)

k2 = T2(k)

Figure 1 A 3-round Linear SPN with key schedule (T0, T1, T2, T3) expanding k to rounds keys
(k0, k1, k2, k3), where ki = Ti(k) for i = 0, 1, 2, 3

might need (say, thousand bits or more). Then one can ask the question if the security of642

such “blown up” ciphers (still with idealized f) gets significantly better when one starts to643

increase the number of rounds r well beyond what is needed for their minimal security, by644

cascading the block cipher with itself, with independently generated keys. This is exactly the645

question of hardness amplification of block ciphers studied by [31, 36]; their result states that646

by cascading c independent, (T, ε)-secure ciphers, one still gets (T, ε′)-security which decays647

exponentially in c: ε′ ≈ εc, but for our purposes any weaker exponential dependence on c648

(e.g., ε′ = εc/100) will be enough to get a meaningful result, at the price of lesser efficiency.649

We give a more precise analysis in Section 4.3.650

In summary, by doing this c-cascading step applied to the basic 3-round SPN predicted651

secure by [11] in the big-box world, we effectively obtain 3c-round SPN, which was exactly652

our goal.653

4.3 Analysis Step654

Soundness of Domain Extension. As our next step, we analyze the soundness of655

hardness amplification in the big-box world, when we still model f as a “big” ideal object.656

As for the PRG case, we do it in the information-theoretic setting, where the running time of657

the attacker is unbounded, and only the number of oracle queries q is still bounded. Unlike658

the PRG case, the direct analysis of both domain extension and hardness amplification659

together appears extremely involved. Instead, we do it in a modular fashion, starting with660

the analysis of domain extension.661
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Fortunately for us, this question has been studied by Cogliati et al.[11]. They study the662

security of an SPN as a strong-pseudorandom permutation. Specifically, they show that663

a 2-round SPN is insecure with linear D-boxes but a 3-round SPN is secure, with caveats.664

Formally, these are the results for the 3-Round SPN which we present here, without proof.665

We invite the readers to refer to the original work for a complete discussion on the two666

Lemmas that we will use below.667

I Lemma 10 (Security of 3-Round SPN, Corollary 1 [11]). For w > 1, there exists a 3-668

round linear SPN k0 = k3 = k for uniform k ∈ {0, 1}wn and set k1 = k2 = 0wn which is669

ε(q) = O(q2/2n)-secure, where q is the number of queries made by the distinguisher.670

I Lemma 11 (Security of 3-Round SPN, Corollary 2 [11]). Let w > 1, k′ be a uniform n-bit671

key, and ai for i = 1, . . . , w are distinct non-zero elements of finite field F = GF(2n). Then,672

there exists a 3-round linear SPN with k0[i] = k3[i] = ai · k′, k1 = k2 = 0wn which is673

ε(q) = O(q2/2n)-secure.674

Lemma 10 deals with the minimal security of the 3-round scheme. However, one can reduce675

the key length from wn to n (saving a factor of w), and Lemma 11 shows such reduction in676

key length still leaves the construction almost as secure, by utilizing a more aggressive key677

schedule.678

Provable Hardness Amplification with Independent Keys. We begin by uncondi-679

tionally proving the hardness amplification that we need (under appropriate independence680

assumptions) using a beautiful hardness amplification result of Maurer, Pietrzak, and Ren-681

ner [31]. This is proved for a cascade of c block ciphers E1, . . . , Ec which use both independent682

keys and independent ideal components f . For the case of SPNs, this means independent683

S-boxes with independent round keys. (We comment on how to relax this assumption later684

in the section.)685

In the language of [31], imagine we have two indistinguishable “random systems” F and686

H, where:687

F provides two oracles, where the first oracle is the ideal building block f of length n,688

and the second oracle is the (keyed) block-cipher construction Efk utilizing f as an oracle689

and using a secret key k. Denote such block cipher by E = Efk , and F = (f,E). Note,690

both forward and backward queries to E are allowed (and the same is true for f when f691

is a random permutation S-box).692

H provides two oracles, where the first oracle is still the ideal building block f of length693

n, but the second oracle is a random independent wn-bit permutation P . Denote such694

H = (f, P ). Note, both forward and backward queries to P are allowed (and the same is695

true for f when f is a random permutation S-box).696

Assume further that no computationally unbounded distinguisher D making at most q queries697

to either F or H (for simplicity we do not split q into the number of primitive queries to f698

and construction queries to either E or P ) can distinguish F from H with advantage greater699

than ε = ε(q). Let us denote this by ∆q(F,H) ≤ ε.700

Now, let F1, . . . , Fc be c independent copies of F , and H1, . . . ,Hc be c independent
copies of H. Let C be the construction such that, for L1, . . . , Lc being each either Fi or Hi,
C(L1, . . . , Lc) implements c+ 1 oracles, as follows. If we let Li = (fi, Qi) (where Qi is either
a random permutation Pi or Ei), then

C(L1, . . . , Lc) = (f1, ..., fc, Q1 ◦Q2 ◦ ... ◦Qc)

where ◦ is the composition of permutations. Namely, C is the c-time cascade of the c701

block ciphers Ei or random permutations Pi, which also provides oracle access to the c702
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independent building blocks f1, . . . , fc. Let us also denote the c-cascade of our c block ciphers703

by E′ = E1 ◦ · · · ◦ Ec, and the c-cascade of random permutations Pi by P ′ = P1 ◦ · · · ◦ Pc,704

which by itself is just another random permutation.705

It is easy to see that this construction C has a property that is called neutralizing by [31]:
whenever at least one of the Hi’s is such that Li = Hi (the ideal system), meaning that Qi
is a fresh random permutation Pi, then

C(L1, .., Lc) = (f1, ...., fc, P
′) = C(H1, ...,Hc),

because the composition becomes random if at least one of the permutations is random.706

Under such conditions, the amplification result proven in [31] states that707

∆q(C(F1, . . . , Fc), C(H1, ...,Hc)) = ∆q((f1, ...., fc, E
′), (f1, ...., fc, P

′))708

≤ 2c−1εc < (2ε)c (3)709

We can now apply Equation (3) to the 3-round linear SPN construction, where the710

building block f is an n-bit random permutation, and the security value ε(q) = O(q2/2n)711

is established by Lemma 10. We then get that the resulting 3c-round SPN construction712

uses c independent S-boxes f1 . . . fc (one per each 3 rounds) and c independent wn-bit keys713

K1 . . .Kc, and achieves (q, ε′c(q))-security against q queries (to either the construction of the714

S-boxes), where ε′c(q) = O((q2/2n)c).715

In fact, to reach the same conclusion with a shorter key length, we could use Lemma 11716

in place of Lemma 10. In this case, we get the final key of length only cn� cwn, so we save717

the domain expansion factor w. Thus, although we still need c independent S-boxes, for now,718

this version and could be viewed as a relatively advanced form of key scheduling, with very719

strong provable security guarantees.720

Removing the dependence on q in ε. As with the case of PRGs, we cannot use these721

results as is, and need to do some manipulation of the bounds to move the dependence on722

the number of queries q from ε on q to the size of the S-box f . Let n ≥ 20(log q + 1) (or,723

equivalently, 2q2 ≤ 2n/10). Then 2ε(n) = 2q2/2n = 2−0.9n, and hence ε′c(q) ≤ (2ε(n))c =724

2−0.9nc = N−0.9c.725

Finally, we will now no longer assume that the attacker A is computationally unbounded,726

but instead upper bound its running time by some parameter T ≥ q, and say that our SPN727

cipher is (T, ε)-secure if no such attacker can break it with an advantage more than ε. With728

this change, we get the following restatement on our bound above.729

I Theorem 12. If n ≥ 20(log T+1), then the 3c-round SPN construction using c independent730

S-boxes and c independent (either wn-bit or n-bit, depending on variant) round keys is731

(T,N−0.9c)-secure.732

Conjectured Hardness Amplification with Correlated Keys. Unfortunately, the733

hardness amplification result of [31] crucially relies on the complete independence of the c734

S-boxes f1, . . . , fc and c independent round keys. In particular, unlike the much simpler735

PRG setting, where we managed to analyze the whole PRG construction in one go, for the736

case of SPNs, we currently cannot prove such strong results when the S-boxes are shared737

across the cascade, or keys are more correlated. The best provable result in this setting738

is the “computational hardness amplification” of Tessaro [36], but that comes with huge739

degradation in the number of oracle queries q allowed by the “cascade distinguisher”, leading740

to concrete bounds which are not useful.741

In general, though, we would like to apply an appropriate hardness amplification step in742

practical settings, where different cascading ciphers use correlated rather than independent743
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keys (via a key schedule used in most actual designs), or when correlated or even identical744

building blocks f (e.g., S-boxes) are used in different cascaded ciphers. For such pragmatic745

settings, we do not have any provable results such as [31], and hence we state the hardness746

amplification step as a “conjecture” rather than “theorem” below. In particular, the concrete747

choice of cascading (not spelled out in the statement) is part of the conjecture. For simplicity,748

we also choose the final security level we desire to be 2−wn, which is definitely enough for749

practical use, but the statement easily extends to any security level below 2−n.750

I Conjecture 13 (Hardness Amplification; Informal). Let T be the desired attacker time bound,751

and assume that r-rounds block cipher E of length wn utilizing idealized block f of size n752

is (T, 2−αn)-secure, as long as n > a log T (for some constants a > 1 and α < 1). Then,753

provided n > a log T , cascading E for c = O(w/α) times will result in a r′ = O(wr/α)-round754

block cipher E′ which is (T,O(T/2`(n) + 2−wn))-secure, where `(n) is the key length of E′755

under to corresponding cascading step (equal to c times the key length of E when independent756

keys are used).757

Ignoring the cost of the brute-force key search (against uniform attackers, for simplicity)758

T/2`(n) (which is expected to be negligible for our choice of parameters), the hardness759

amplification conjecture states that using a building block f of size n would yield better-than-760

exponential-in-n security 2−wn for sufficiently many more (still constant, assuming expansion761

w = O(1)) rounds, provided the box size n is sufficiently large.762

Big-to-Small Conjecture. But now it seems natural to assume/conjecture that such a763

final result not only holds for “big” n but might even be true for “small” n! Namely, back764

to the original small-box f , we can reasonably conjecture security 2−wn (plus brute-force765

search) for a sufficiently large constant number of rounds r′ = O(rw) without assuming that766

this is only true when n is large. Namely, the amplified security level 2−wn is so good even767

if n is small, that we optimistically hope that it holds even in the small-box world, even768

though the supporting hardness amplification argument is no longer valid.769

As discussed in Section 3.2, we will propose one of the strongest variants of such a770

conjecture. The motivation behind such a strong variant is that it gives us great security in771

case it happens to be true for practically used ciphers. As before, the conjecture will give a772

meaningful result for our purposes as long as one can decrease the size n of the ‘small-box”773

below the threshold of log T , for T independent of n. The constant n0 = n0(a) below could774

be really small (e.g., n0 = 8 in the case of AES), and is part of the conjecture. We also775

notice that we are not making this conjecture for all (even potentially artificial) block ciphers776

E′, but only for specific E′ resulting from applying the hardness amplification step to the777

basic block cipher E (for which we get our provably secure results).778

I Conjecture 14 (Big-to-Small Conjecture; Informal). Assume a block cipher E′ with key779

length `(n) is (T, ε′(n))-secure, where ε′(n) > T/2`(n), when using ideal building component780

of length n ≥ a log T (for some a > 1). Then, for some constant n0 = n0(a), the “scaled781

down” version of E′ using building block f of size n ≥ n0 is still (T,O(ε′(n))-secure.782

We discuss this very strong conjecture below but notice that Conjectures 13 and 14783

immediately imply the statement of Theorem 1 from the Introduction.784

How Reasonable is “Big-to-Small” Conjecture? At first, this conjecture seems like785

a complete “cheat”, as we simply assume that the conclusions attained by some security786

arguments crucially relying on the big-box assumption n � log T , might still hold in the787

small-box world when n is a constant. But let us observe a couple of things. First, we788

already mentioned that we do not need such a strong conjecture: many weaker conjectures789
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will yield meaningful variants of Theorem 1, provided they allow one to decrease the size n790

of the “small-box” below the threshold value log T . Second, since the construction of E′ is791

the same for all n, it is natural that its security smoothly changes with n, without any huge792

jumps at certain levels, as long as the exhaustive key search is infeasible (this is why we793

assumed ε′(n) > T/2`(n)). In particular, under this reasonable assumption, we certainly allow794

the assumed success probability ε′(n) to grow as the box f becomes smaller. So the only795

really big assumption is the fact that we kept the running time of the attacker at the same796

level T , even though when T becomes larger than 2n, the attacker can suddenly evaluate797

our ideal component f (e.g., S-box) on all 2n inputs. Third, given our current inability to798

built unconditionally block ciphers from only small components, it seems that some kind799

of “big-to-small” conjecture must be required, but we tried to make it as crisp and clean as800

we could, while additionally proving as many things around it as possible with the existing801

techniques. And, finally, the kinds of constructions we get when applying this conjecture to802

the SPN ciphers are exactly the SPN ciphers used in practice, and believed to be secure. So803

one can use this conjecture as a clean and formal way to isolate exactly the kind of “leap of804

faith” we are making in the real world in assuming these ciphers are secure.805

Aside from these reasonable, but still rather limited, justifications at this stage we don’t806

have any other theoretical justification for this strong “Big-to-Small Conjecture”, and view807

this as an exciting direction for future research. In particular, given that coupling this808

strong conjecture with (rather mild and believable) hardness amplification step gives us809

the amazing conclusion of Theorem 1, which in turn implies plausible security for many810

SPN-based ciphers, we believe studying this new and non-standard conjecture is extremely811

reasonable and well-motivated.812

4.4 Putting the Pieces Together813

As mentioned earlier, Dodis et al.[11] proved results that addressed the problem of “domain814

extension” of block ciphers. In particular, they showed that a 3-round SPN is (T, 2−αn)-815

secure when n > 2 log T/(1− α) (so that T 2/2n ≤ 2−αn). Thus, cascading it c times gives816

us 3c-round SPN with conjectured (T, T/2`(n) + 2−Ω(cn))-security, where `(n) is our final key817

length, and this is true even for small values of n (governed by constant n0 which is part of the818

conjecture). To get this close to the practical SPN designs, let us write T = 2t, and assume819

we use correlated key schedule with final key length `(n) = wn, and, for simplicity, ideal820

hardness amplification is true even with best possible α ≈ 1. Then we get (very ambitious)821

conjectured (2t, 2t−wn + 2−cn)-security in 3c rounds. In particular, optimistically setting822

n = 8 and wn = 128 for the case of AES, we could get ambitious (2t, 2t−128 + 2−8c)-security823

in 3c rounds. Assume c ≤ 8 and t = 64 is good enough for practical use, we simplify this to824

an amazingly simple, but powerful, conclusion of our small-box cryptography framework:825

3c-round variant of 128-bit AES with 8-bit S-boxes which is (264, 2−8c)-secure826

In particular, setting c = 10/3, would already yield respectable one-in-hundred-million827

security in 10 rounds (the number of real AES rounds), while setting c = 8 would give828

excellent 2−64 security in 24 rounds.829

While the above “back-of-the-envelope” calculations were a bit ad hoc and likely quite830

optimistic, they demonstrate several very attractive features of our framework, especially831

in comparison to its “big-box” counterpart. First, such calculations can be easily made832

(although more research is needed in estimating or conjecturing the right constants hid-833

den/underspecified in Theorem 1). Second, such calculations give meaningful conjectured834

security of actually used ciphers. Third, for the first time, we see that our conjectured bounds835
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— even when ambitiously good — were on the pessimistic side, predicting either more rounds836

or a lower level of conjectured security than what is believed in practice. This is exactly837

what we expect from a sound theory, as we don’t want such a theory to make predictions838

contradicted by reality.839

5 Conclusion and Open Problems840

We introduce the framework of small-box cryptography, which allows us to extend the841

(seemingly meaningless) provable security bounds for small values n into meaningful bounds842

for the iterated version of the corresponding cipher. Applying this framework to existing SPN843

ciphers, we get the most accurate theoretical justification for the security of these ciphers.844

While applying it to PRGs, we get a construction for which we can get an alternative proof845

from a well-studied assumption.846

A number of interesting open questions remain. First, we have many open-ended questions847

regarding the soundness of our small-box approach, most important of which is a better848

understanding of the “big-to-small” Conjecture 14. It would also be interesting to apply849

the small-box framework to the Feistel ciphers, by going deeper into the design of its round850

function, so that we get much more meaningful justification regarding the design of existing851

such ciphers, including DES, FEAL, MISTY and KASUMI.852

Second, it is interesting to understand the best way to get concrete security bounds using853

the current framework. For example, unlike the setting of “big-box” cryptography, where854

the improved security directly translates to smaller key length, in the setting of small-box855

cryptography the effect is much less understood, and likely significantly less important. For856

example, even proving optimal O(q/2n) security instead of O(q2/2n) security for our reduced-857

round SPN simply changes the constant a from the hardness amplification Conjecture 13858

from a = 2/(1 − α) to a = 1/(1 − α). This in turns might slightly decrease the minimal859

value of S-box size n0(a) in big-to-small Conjecture 14, but at the present we have no good860

understanding how practically important this change would be. In other words, proving861

“beyond-birthday” results in the small-box approach is certainly interesting on a technical862

level, but might not matter too much in terms of applying the framework to the existing863

ciphers.864
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A Proof of Theorem 4985

Proof. With the above intuition, we can prove the hardness amplification result through986

a sequence of hybrids, and reducing the problem to a variant of the LPN problem. In the987

proof we denote the uniform distribution of binary vectors of length N and weight c by ZN2,c.988

Hybrid H0. A receives Mx for x← ZN2,c and M← Z`×N2 .989

Hybrid H1. A receives Mx⊕MA>s where A is the generator matrix corresponding to the990

parity check matrix M← Z`×N2 . A ∈ Z(N−`)×N
2 , s← ZN−`2 , and x← ZN2 with wt(x) = c991

Note that Hybrids H0 and H1 are identically distributed because of the property that992

MA> = 0993

Hybrid H2. A receives Mx⊕MA>s where M is the parity check matrix corresponding994

to the generator matrix A← Z(N−`)×N
2 s← ZN−`2 , and x← ZN2 with wt(x) = c995

Note that the difference between Hybrids H1 and H2 only lies in the order of sampling996

M,A. In H1, we sample M and then compute A, while in H2 we do the opposite.997

Hybrid H3. A receives Me where M is the parity check matrix corresponding to the998

generator matrix A← Z(N−`)×N
2 and e← ZN2 .999

B Claim 15. If (N,m = N − `)-XLPNτ is (t, ε)-hard, then the distinguishing advantage1000

between H2 and H3 for any PPT adversary A is at most ε provided c = N · τ1001

Proof. Let us assume that there is A2 that can distinguish between H2 and H3. We will1002

construct A1 that uses A2 to win the ranked LPN game.1003

Challenger samples A ← Z(N−`)×N
2 , s ← ZN−`2 , and x ← ZN2 with wt(x) = c. It then1004

sets e0 = A>s ⊕ x and e1 ← ZN2 . It tosses a bit and sends to A1, (A, e = eb). A1 then1005

generates the corresponding PCM M for A and runs A2 on Me. It is easy to verify that if1006

b = 0, A1 simulates perfectly H2 and if b = 1, it simulates H3 perfectly. A1 merely forwards1007

A2’s guess as its own. This concludes the proof. J1008

Hybrid H4. A receives Me where M← Z`×N2 and e← ZN2 .1009

Note that the difference between hybrids H3 and H4 is again the order of sampling. In the1010

former, A is sampled and then M is computed, whereas in the latter M is directly sampled.1011

Hybrid H5. A receives y← Z`21012

Hybrids H4, H5 are identically distributed and therefore are statistically indistinguishable.1013

J1014
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