
The Double Ratchet: Security Notions, Proofs, and

Modularization for the Signal Protocol
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Abstract

Signal is a famous secure messaging protocol used by billions of people, by virtue of many se-
cure text messaging applications including Signal itself, WhatsApp, Facebook Messenger, Skype,
and Google Allo. At its core it uses the concept of “double ratcheting,” where every message
is encrypted and authenticated using a fresh symmetric key; it has many attractive properties,
such as forward security, post-compromise security, and “immediate (no-delay) decryption,”
which had never been achieved in combination by prior messaging protocols.

While the formal analysis of the Signal protocol, and ratcheting in general, has attracted
a lot of recent attention, we argue that none of the existing analyses is fully satisfactory. To
address this problem, we give a clean and general definition of secure messaging, which clearly
indicates the types of security we expect, including forward security, post-compromise security,
and immediate decryption. We are the first to explicitly formalize and model the immediate
decryption property, which implies (among other things) that parties seamlessly recover if a
given message is permanently lost—a property not achieved by any of the recent “provable
alternatives to Signal.”

We build a modular “generalized Signal protocol” from the following components: (a) con-
tinuous key agreement (CKA), a clean primitive we introduce and which can be easily and
generically built from public-key encryption (not just Diffie-Hellman as is done in the current
Signal protocol) and roughly models “public-key ratchets;” (b) forward-secure authenticated en-
cryption with associated data (FS-AEAD), which roughly captures “symmetric-key ratchets;”
and (c) a two-input hash function that is a pseudorandom function (resp. generator with in-
put) in its first (resp. second) input, which we term PRF-PRNG. As a result, in addition to
instantiating our framework in a way resulting in the existing, widely-used Diffie-Hellman based
Signal protocol, we can easily get post-quantum security and not rely on random oracles in the
analysis.

We further show that our design can be elegantly extended to include other forms of “fine-
grained state compromise” recently studied at CRYPTO’18, but without sacrificing the im-
mediate decryption property. However, we argue that the additional security offered by these
modifications is unlikely to justify the efficiency hit of using much heavier public-key cryptog-
raphy in place of symmetric-key cryptography.
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1 Introduction

Signal [26] is a famous secure messaging protocol, which is—by virtue of many secure text messaging
applications including Signal itself, WhatsApp [32], Facebook Messenger [12], Skype [24] and Google
Allo [25]—used by billions of people. At its core it uses the concept of double ratcheting, where every
message is encrypted and authenticated using a fresh symmetric key. Signal has many attractive
properties, such as forward security and post-compromise security, and it supports immediate
(no-delay) decryption. Prior to Signal’s deployment, these properties had never been achieved in
combination by messaging protocols.

Signal was designed by practitioners and was implemented and deployed well before any security
analysis was obtained. In fact, a clean description of Signal has been posted by its inventors
Marlinspike and Perrin [26] only recently. The write-up does an excellent job at describing the
double-ratchet protocol, gives examples of how it is run, and provides security intuition for its
building blocks. However, it lacks a formal definition of the secure messaging problem that the
double ratchet solves, and, as a result, does not have a formal security proof.

A first formal treatment of Signal’s security is provided in recent work by Cohn-Gordon et al. [7],
who spell out numerous low-level details of Signal (including a number of enhancements required
for a robust practical implementation). Their security definition, however, is quite involved and
complex, and it is specifically targeted towards the existing Signal protocol—as opposed to the
general secure messaging problem that Signal is trying to solve. Moreover, said paper does not
define and address the immediate decryption feature of Signal, which is essential for justifying
Signal’s relative complexity compared to simpler protocols that do not have this feature.

Immediate decryption and its importance. One of the main issues any messaging scheme
must address is the fact that messages might arrive out of order or be lost entirely. Additionally,
parties can be offline for extended periods of time and send and receive messages asynchronously.
Given these inherent constraints, immediate decryption is a very attractive feature. Informally, it
ensures that when a legitimate message is (eventually) delivered to the recipient, the recipient can
not only immediately decrypt the message but is also able to place it in the correct spot in relation
to the other messages already received. Furthermore, immediate decryption also ensures an even
more critical liveness property, termed message-loss resilience (MLR) in this work: if a message
is permanently lost by the network, parties should still be able to communicate (perhaps realizing
at some point that a message has never been delivered). Finally, even in settings where messages
are eventually delivered (but could come out of order), giving up on immediate decryption seems
cumbersome: should out-of-order messages be discarded or buffered by the recipient? If discarded,
how will the sender (or the network) know that it should resend the message later? If buffered,
how to prevent denial-of-service attacks and distinguish legitimate out-of-order messages (which
cannot be immediately decrypted) from fake messages? While these questions could surely be
answered (perhaps by making additional timing assumptions about the network), it appears that
the simplest answer would be to design a secure messaging protocol which support immediate
decryption. Indeed, to the best of our knowledge, all secure messaging services deployed in practice
do have this feature (and, hence, MLR).

Additional properties. In practice, parties’ states might occasionally leak. To address this
concern, a secure messaging protocol should have the following two properties:

2



• Forward secrecy (FS): if the state of a party is leaked, none of the previous messages
should get compromised (assuming they are erased from the state, of course).

• Post-compromise security (PCS) (aka channel healing): once the exposure of the
party’s state ends, security is restored after a few communication rounds.

In isolation, fulfilling either of these desirable properties is well understood: FS is achieved by using
basic steam ciphers (aka pseudorandom generators (PRGs)) [3], while PCS [8] is achieved by some
form of key agreement executed after the compromise, such as Diffie-Hellman. Unfortunately, these
techniques, both of which involve some form of key evolution, are clearly at tension with immediate
decryption when the network is fully asynchronous. Indeed, the main elegance of Signal, achieved by
its double-ratchet algorithm, comes from the fact that FS and PCS are not only achieved together,
but also without sacrificing immediate decryption and MLR.

Goals of this work. One of the main drawbacks of all formal Signal-related papers [2, 29, 18, 11],
following the initial work of [7], is the fact that they all achieve FS and PCS by explicitly giving up
not only on immediate decryption, but also MLR. (This is not merely a definitional issue as their
constructions indeed cease any and all further functionality when, say, a single message is dropped in
transit.) While such a drastic weakening of the liveness/correctness property considerably simplifies
the algorithmic design for these provably secure alternatives to Signal, it also made them insufficient
for settings where message loss is indeed possible. This can occur, in practice, due to a variety of
reasons. For example, the protocol may be using an unreliable transport mechanism such as SMS
or UDP. Alternatively, traffic may be routed (via more reliable TCP) through a central back-end
server so as to facilitate asynchronous communication between end-points (as is very common for
secure messaging deployments in practice). Yet, even in this setting, packet losses can still occur as
the server itself may end up dropping messages due to a variety of unintended events such as due to
outages or being subject to a heavy work/network load (say, because of an ongoing (D)DOS attack,
partial outages, or worse yet, an emergency event generating sudden high volumes of traffic). With
the goal of providing resilient communication even under these and similar realistic conditions, the
main objectives of this work are to:

(a) propose formal definitions of secure messaging as a cryptographic primitive that explicitly
mandates immediate decryption and MLR; and

(b) to provide an analysis of Signal itself in a well-defined general model for secure messaging.

Our work is the first to address either of these natural goals. Moreover, in order to improve the
general understanding of secure messaging and to develop alternative (e.g., post-quantum secure)
solutions, this paper aims at

(c) generalizing and abstracting out the reliance on the specific Diffie-Hellman key exchange
(making the current protocol insecure in the post-quantum world) as well as clarifying the
role of various cryptographic hash functions used inside the current Signal instantiation. That
is, the idea is to build a “generalized Signal” protocol of which the current instantiation is
a special case, but where other instantiations are possible, including those which are post-
quantum secure and/or do not require random oracles.
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1.1 Our Results

Addressing the points (a)-(c) above, this paper’s main contributions are the following:

• Providing a clean definition of secure messaging that clearly indicates the expected types of
security, including FS, PCS, and—for the first time—immediate decryption.

• Putting forth a modular generalized Signal protocol from several simpler building blocks:

(1) forward-secure authenticated encryption with associated data (FS-AEAD), which can be
easily built from a regular PRG and AEAD and roughly models the so-called symmetric-
key ratchet of Signal;

(2) continuous key agreement (CKA), which is a clean primitive that can easily be built
generically from public-key encryption and roughly models the so-called public-key
ratchet of Signal;

(3) a two-input hash function, called PRF-PRNG, which is a pseudorandom function (resp.
generator) in its first (resp. second) input and helps to “connect” the two ratchet types.

• Instantiating the framework such that we obtain the existing Diffie-Hellman-based protocol
and observing that one can easily achieve post-quantum security (by using post-quantum-
secure public-key encryption, such as [1, 5, 17]) and/or not rely on random oracles in the
analysis.

• Extending the design to include other forms of “fine-grained state compromise” recently
studied by Poettering and Rösler [29] and Jaeger and Stepanovs [18] but, once more, without
sacrificing the immediate decryption property.

The secure messaging definition. The proposed secure messaging (SM) definition encom-
passes, in one clean game, (Figure 2) all desired properties, including FS as well as PCS and
immediate decryption. The attacker in the definition is very powerful, has full control of the order
of sending and receiving messages, can corrupt parties’ state multiple times, and even controls the
randomness used for encryption.1 In order to avoid trivial and unpreventable attacks, a few restric-
tions need to be placed on an attacker A. In broad strokes, the definition requires the following
properties:

• When parties are uncompromised, i.e., when their respective states are unknown to A, the
protocol is secure against active attacks. In particular, the protocol must detect injected
ciphertexts (not legitimately sent by one of the parties) and properly handle legitimate ci-
phertexts delivered in arbitrary order (capturing correctness and immediate decryption).

• When parties are uncompromised, messages are protected even against future compromise of
either the sender or the receiver, modeling forward security.

• When one or both parties are compromised and the attacker remains passive, security is
restored “quickly,” i.e., within a few rounds of back-and-forth, which models PCS.

1Namely, good randomness is only needed to achieve PCS, while all other security properties hold even with the
adversarially controlled randomness (when parties are not compromised).
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While the proposed definition is still rather complex, we believe it to be intuitive and considerably
shorter and easier to understand compared to the recent works of [18, 29], which are discussed in
more detail in Section 1.2.

It should be stressed that the basic SM security in this paper only requires PCS against a passive
attacker. Indeed, when an active attacker compromises the state of, say, party A, it can always send
ciphertexts to the partner B in A’s name (thereby even potentially hijacking A’s communication
with B and removing A from the channel altogether) or decrypt ciphertexts sent by B immediately
following state compromise. As was observed by [18, 29] at CRYPTO’18, one might achieve certain
limited forms of fine-grained security against active attacks. For example, it is not a priori clear
if the attacker should be able to decrypt ciphertexts sent by A to B (if A uses good randomness)
or forge legitimate messages from B to A (when A’s state is exposed). We comment on these
possible extensions in Section 6.3 but notice that they are still rather limited, given that the
simple devastating attacks mentioned above are inherently non-preventable against active attackers
immediately following state compromise. Thus, our main SM security notion simply disallows all
active attacks for ∆SM epochs immediately following state compromise where ∆SM is the number of
rounds of communication required to refresh a compromised state.

The building blocks. Since the original Signal protocol is quite subtle and somewhat tricky to
understand, one of the main contributions of this work is to distill out three basic and intuitive
building blocks used inside the double ratchet.

The first block is forward-secure authenticated encryption with associated data (FS-AEAD) and
models secure messaging security inside a single so-called epoch; an epoch should be thought of
as a unidirectional stream of messages sent by one of the parties, ending once a message from the
other party is received. As indicated by the name, an FS-AEAD protocol must provide forward
secrecy, but also immediate decryption. Capturing this makes the definition of FS-AEAD somewhat
non-trivial (cf. Figure 5), but still simpler than that of general SM; in particular, no PCS is
required (which allows us to define FS-AEAD as a deterministic primitive and not worry about
poor randomness).

Building FS-AEAD turns out to be rather easy: in essence, one uses message counters as
associated data for standard AEAD and a PRG to immediately refresh the secret key of AEAD
after every message successfully sent or received. This is exactly what is done in Signal.

The second block is a primitive called continuous key agreement (CKA) (cf. Figure 3), which
could be viewed as an abstraction of the DH-based public-key ratchet in Signal. CKA is a syn-
chronous and passive primitive, i.e., parties A and B speak in turns, and no adversarial messages or
traffic mauling are allowed. With each message sent or received, a party should output a fresh key
such that (with “sending” keys generated by A being equal to “receiving” keys generated by B and
vice versa). Moreover, CKA guarantees its own PCS, i.e., after a potential state exposure, security
is restored within two rounds. Finally, CKA must be forward-secure, i.e., past keys must remain
secure when the state is leaked. Forward security is governed by a parameter ∆CKA ≥ 0, which,
informally, guarantees that all keys older than ∆CKA rounds remain secure upon state compromise.

Not surprisingly, minimizing ∆CKA results in faster PCS for secure messaging.2 Fortunately,
optimal CKA protocols achieving optimal ∆CKA = 0 can be built generically from key-encapsulation
mechanisms. Interestingly, the elegant DH-based CKA used by Signal achieves slightly sub-optimal
∆CKA = 1, which is due to how long parties need to hold on to their secret exponents. However, the

2Specifically, the healing time of the generic Signal protocol presented in this work is ∆SM = 2 + ∆CKA.
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Signal CKA saves about a factor of 2 in communication complexity, which makes it a reasonable
trade-off in practice. We show that a similar tradeoff can also be achieved for schemes based on
LWE. A general study of KEMs for which key generation and encapsulation can be merged has
recently been put forth in follow-up work by Drucker and Gueron [10].

The third and final component of the generalized Signal protocol is a two-argument hash func-
tion P, called a PRF-PRNG, which is used to produce secret keys for FS-AEAD epochs from an
entropy pool refreshed by CKA keys. More specifically, with each message exchanged using FS-
AEAD, the parties try to run the CKA protocol “on the side,” by putting the CKA messages as
associated data. Due to asynchrony, the party will repeat a given CKA message until it receives a
legitimate response from its partner, after which the CKA moves forward with the next message.
Each new CKA key is absorbed into the state of the PRF-PRNG, which is then used to generate
a new FS-AEAD key.

Informally, a PRF-PRNG takes as inputs a state σ and a CKA key I and produces a new state
σ′ and a (FS-AEAD) key k. It satisfies a PRF property saying that if σ is random, then P(σ, ·)
acts like a PRF (keyed by σ) in that outputs (σ′, k) on adversarially chosen inputs I are random.
Moreover, it also acts like a PRNG in that, if the input I is random, then so are the resulting state
σ′ and key k. Observe that standard hash functions are assumed to satisfy this notion; alternatively,
one can also very easily build a PRF-PRNG from any PRG and a pseudorandom permutation (cf.
Section 4.3).

Generalized signal. Putting the above blocks together properly yields the generalized Signal
protocol (cf. Figure 8). As a special case, one can easily obtain the existing Signal implementation3

by using the standard way of building FS-AEAD from PRG and AEAD, CKA using the Diffie-
Hellman based public-key ratchet mentioned above, and an appropriate cryptographic hash function
in place of PRF-PRNG. However, many other variants become possible. For example, by using a
generic CKA from DH-KEM, one may trade communication efficiency (worse by a factor of 2) for a
shorter healing period ∆SM (from 3 rounds to 2). More interestingly, using any post-quantum KEM,
such as [1, 5, 17] results in a post-quantum secure variant of Signal. Finally, we also believe that our
generalized double ratcheting scheme is much more intuitive than the existing DH-based variant,
as it abstracts precisely the cryptographic primitives needed, including the two types ratchets, and
what security is needed from each primitive.

Beyond double ratcheting to full signal. Following most of the prior (and concurrent) work [2,
29, 18, 11] (discussed in the next section), this paper primarily concerned with formalizing the
double-ratchet aspect of the Signal protocol. This is certainly the most elegant and ingenious part
of Signal, but it assumes that any set of two parties can correctly and securely agree on the initial
secret key. The latter problem is rather non-trivial, especially (a) in the multi-user setting, when
a party could be using a global public key to communicate with multiple recipients, some of which
might be malicious, (b) when the initial secret key agreement is required to be non-interactive, and
(c) when state compromise (including that of the master secret for the PKI) is possible, and even
frequent. Some of those subtleties are discussed and analyzed by Cohn-Gordon et al. [7], but, once
again, in a manner specific to the existing Signal protocol (rather than a general secure messaging
primitive). Signal also suggests using the X3DH protocol [27] as one particular way to generate the

3For syntactic reasons having to do with our abstractions, our protocol is a minor variant of Signal, but is logically
equivalent to Signal in every aspect.
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initial shared key. Certainly, studying (and even appropriately defining) secure messaging without
idealized setup, and analyzing “full Signal” in this setting, remains an important area for future
research.

1.2 Related Work

The OTR (off-the-record) messaging protocol [4] is an influential predecessor of Signal, which
was the first to introduce the idea of the DH-based double ratchet to derive fresh keys for each
encrypted message. However, it was mainly suitable for synchronous back-and-fourth conversations,
so Signal’s double ratchet algorithm had to make a number of non-trivial modifications to extend
the beautiful OTR idea into a full-fledged asynchronous messaging protocol.

Following the already discussed rigorous description of DH-based double ratcheting by Marlin-
spike and Perrin [26], and the protocol-specific analysis by Cohn-Gordon et al. [7], several formal
analyses of ratcheting have recently appeared [2, 29, 18, 11]; they design definitions of various types
of ratcheting and provide schemes meeting these definitions. As previously mentioned, all these
works have the drawback of no longer satisfying immediate decryption.

Bellare et al. [2] looked at the question of unidirectional ratcheting. In this simplified variant
of double (or bidirectional) ratcheting, the receiver is never corrupted, and never needs to update
its state. Coupled with giving up immediate decryption, this allowed the authors to obtain a
rather simple solution: in essence, generate fresh DH-key gxi (which was sent and authenticated
as associated data of the previous message mi−1) for each new message mi, and perform (non-
interactive) DH-exchange between gxi and the fixed receiver key gy to derive the key for mi.
Unfortunately, extending this simple model (which does not appear to have direct applications)
and solution to the case of bidirectional communication appeared non-trivial and was left to future
work.

Bidirectionality has recently been achieved in two very similar work by Jaeger and Stepanovs [18]
and Poettering and Rösler [29], both appearing at CRYPTO’18. The papers differ in syntax (one
treats secure messaging while the other considers key exchange) and hence use different definitions.
However, in spirit both papers attempt to model a bidirectional channel satisfying FS and PCS
(but not immediate decryption). Moreover, both consider “fine-grained” PCS requirements which
are not met by Signal’s double ratchet protocol (and not required by the SM definition in this
work). Namely, while Signal (and our work) do not offer any privacy and authenticity for messages
immediately following state compromise (and until standard PCS kicks in), these papers demand
“semi-security” even right after corrupting a party: privacy (but not authenticity) of outgoing
messages and authenticity (but not privacy) of incoming messages. This semi-security is, no doubt,
at least of theoretical interest. However, it seems unclear whether there are many realistic scenarios
in which such a notion is sufficient. For example, one of the most important attacks not covered
by Signal is when the attacker A learns A’s secret state and can easily disrupt her session with
B by sending a fake message to either party before parties would normally heal by PCS. Fine-
grained PCS will prevent A from sending a fake message from B to A, but (inherently!) cannot
prevent A from sending a fake message from A to B. However, either of these options is equally
effective at disrupting the channel, so it is not clear how fine-grained PCS helps in this very
important attack scenario. In principle this might not be that much of a concern except that the
extra semi-security appears to come at a steep price: both papers use growing (and potentially
unbounded) state as well as heavy techniques from public-key cryptography, including certain
types of “key-updatable” public-key signature and encryption schemes; all known constructions of
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such key-updatable public-key encryption rely onierarchical identity-based encryption [13] (HIBE),
which is extremely inefficient compared to primitives used by Signal (nor are HIBEs even nearly as
widely and robustly implemented). Finally, the formal definitions given by both papers are quite
involved and hard to parse, having lots of variables and many lines of pseudocode, making it difficult
to work with when analyzing new schemes. Overall, we feel that assuming a passive attacker for
few messages before full PCS would kick in seems to be a good compromise between preventing
many realistic attacks, while keeping the resulting schemes and definitions practical, efficient and
with a limited amount of implementation overhead. More discussion can be found in Section 6.1,
including a practical compromise: an (informally stated) extension to Signal which achieves a
slightly weaker form of fine-grained compromise than [29, 18], yet still using only constant sized
states, bandwidth and computation as well as comparatively lightweight (and widely implemented)
public-key primitives (i.e., regular signature and public-key encryption).

Finally, the notion of immediate decryption is reminiscent in spirit to the zero round trip time
(0-RTT) communication with forward secrecy which was recently studied by [15, 9]. However, the
latter primitive is stateless on the sender side, making it more difficult to achieve (e.g., the schemes
of [15, 9] use a heavy tool called puncturable encryption [14]).

Concurrent and Independent Work. We have recently become aware of two concurrent and
independent works by Durak and Vaudenay [11] and Jost, Maurer and Mularczyk [19]. Like other
prior works, these works (1) designed their own protocols and did not analyze Signal; and (2) do not
satisfy immediate decryption or even message-loss resilience (in fact, they critically rely on receiving
messages from one party in order). Both works also provide formal notions of security, including
privacy, authenticity, and a new property called unrecoverability by [11] and post-impersonation
authentication by [19]: if an active attacker sends a fake message to the recipient immediately
following state compromise of the sender, the sender can, by design, never recover (and, thus,
will notice the attack by being unable to continue the conversation). We find this property very
interesting and briefly comment our initial thoughts on it in Section 6.3. We also notice that the
work of [11] requires computation linear in the number of messages within an epoch (both for
sending and for receiving); moreover, this linear computation involves public-key operations (in
fact, no symmetric keys are used at all). The work of [19] also uses public-key operations for every
message sent, even within a single epochs. Hence, our generalized Signal protocol appears to be
much more efficient than the solutions of [11, 19].

However, a fairer comparison will be to look at the public-key variant of Signal that we sketch in
Section 6.3, since this is when we achieve certain forms of “fine-grained compromise” also achieved
by [11, 19]. We find our protocol to be comparable in efficiency with that of [19] and still more
efficient than [11] (unless epochs are guaranteed to be short). Security-wise, putting aside imme-
diate decryption (not modeled/achieved by [11, 19]) and unrecoverability (not modeled/achieved
by Signal and this work), it appears that our work and the works of [11, 19] achieve somewhat
comparable other properties, including forward security and PCS.
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2 Preliminaries

2.1 Game-Based Security and Notation

All security definitions in this work are game-based, i.e., they consider games executed between a
challenger and an adversary. The games have one of the following formats:

• Unpredictability games: First, the challenger executes the special init procedure, which
sets up the game. Subsequently, the attacker is given access to a set of oracles that allow it
to interact with the scheme in question. The goal of the adversary is to provoke a particular,
game-specific winning condition. The advantage of an adversary A against construction C in
an unpredictability game ΓC is

AdvC
Γ (A) := P[A wins ΓC ] .

• Indistinguishability games: In addition to setting up the game, the init procedure samples
a secret bit b ∈ {0, 1}. The goal of the adversary is to determine the value of b. Once more,
upon completion of init, the attacker interacts arbitrarily with all available oracles up to the
point where it outputs a guess bit b′. The adversary wins the game if b = b′. The advantage
of an adversary A against construction C in an indistinguishability game Γ is

AdvC
Γ (A) := 2 ·

∣∣P[A wins ΓC ]− 1/2
∣∣ .

With the above in mind, to describe a any security (or correctness) notion, one need only specify
the init oracle and the oracles available to A. The following special keywords are used to simplify
the exposition of the security games:

• req is followed by a condition; if the condition is not satisfied, the oracle/procedure containing
the keyword is exited and all actions by it are undone.

• win is used to declare that the attacker has won the game; it can be used for both types of
games above.

• end disables all oracles and returns all values following it to the attacker.

Moreover, the descriptions of some games/schemes involve dictionaries. For ease of notation, these
dictionaries are described with the array-notation described next, but it is important to note that
they are to be implemented by a data structure whose size grows (linearly) with the number of
elements in the dictionary (unlike arrays):

• Initialization: The statement D[·]← λ initializes an empty dictionary D.

• Adding elements: The statement D[i] ← v adds a value v to dictionary D with key i,
overriding the value previously stored with key i if necessary.

• Retrieval: The expression D[i] returns the value v with key i in the dictionary; if there are
no values with key i, the value λ is returned.

• Deletion: The statement D[i]← λ deletes the value v corresponding to key i.

Finally, sometimes the random coins of certain probabilistic algorithms are made explicit. For
example, y ← A(x; r) means that A, on input x and with random tape r, produces output y. If r
is not explicitly stated, it is assumed to be chosen uniformly at random; in this case, the notation
y ←$ A(x) is used.
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Oracles for AEAD Game

init
K ← K
e∗ ← λ
b← {0, 1}

encrypt (a,m)
if b = 0

e∗ ← Enc(K, a,m)
else

e∗ ← C
return e∗

decrypt (a, e)
if e = e∗ or b = 1

return ⊥
return Dec(K, a, e)

Figure 1: Oracles of the IND-CCA security game for an AEAD scheme (Enc,Dec), where encrypt is a
one-time oracle.

2.2 Authenticated Encryption

Definition 1. An authenticated encryption with associated data (AEAD) scheme is a pair of
algorithms AE = (Enc,Dec) with the following syntax:

• Encryption: Enc takes a key K, associated data a, and a message m and produces a cipher-
text e← Enc(K, a,m).

• Decryption: Dec takes a key K, associated data a, and a ciphertext e and produces a message
m← Dec(K, a, e).

All AEAD schemes in this paper are assumed to be deterministic, i.e., all randomness stems from
the key K.

Correctness. An AEAD scheme is correct if for all keys K and all pairs (K, a),

Dec(K, a,Enc(K, a,m)) = m.

Security. In order to be used in the constructions in this paper, AEAD schemes need only satisfy
one-time IND-CCA security. This is captured by the game depicted in Figure 1. It provides access
to a one-time encryption oracle that returns either an encryption of the message specified by the
attacker or a random ciphertext from the space C of all ciphertexts, depending on a randomly chosen
bit b. Moreover, the attacker may query a decryption oracle arbitrarily many times (except on the
challenge ciphertext), which, however, always returns ⊥ if b = 1. The advantage of an adversary
A attacking an AEAD scheme AE is denoted by AdvAE

ot-cca(A); the attacker is parametrized by its
running time t.

Definition 2. An AEAD scheme AE is (t, ε)-one-time-CCA-secure if for all t-attackers A,

AdvAE
ot-cca(A) ≤ ε .

2.3 Key-Encapsulation Mechanism

Definition 3. A key-encapsulation mechanism (KEM) is a public-key primitive consisting of three
algorithms KEM = (Gen,Enc,Dec) with the following syntax:
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• Key generation: Gen takes a (implicit) security parameter and outputs a fresh key pair
(pk, sk)←$ Gen.

• Encapsulation: Enc takes a public key pk and produces a ciphertext and a symmetric key
(c, k)←$ Enc(pk).

• Decapsulation: Dec takes a secret key sk and a ciphertext c and recovers the symmetric key
k ← Dec(sk, c).

Correctness. A KEM must satisfy the following standard correctness property:

P[(pk, sk)←$ Gen, (c, k)←$ Enc(pk), k′ ← Dec(sk, c) : k = k′] = 1 .

Security. KEMs are required to satisfy IND-CPA security, which asks that no adversary be able
to tell a random symmetric key from an encapsulated one (without the decapsulation key). This is
captured by considering the following game: it chooses a random bit b← {0, 1}, produces a key pair
(pk, sk) ← Gen, and generates (c, k0) ← Enc(pk) as well as a uniform random key k1; an attacker
A wins the game if it correctly guesses b, given pk, c, and kb. The advantage of A is denoted by
AdvKEM

cpa (A); the attacker is parametrized by its running time t.

Definition 4. A key-encapsulation mechanism KEM is (t, ε)-CPA-secure if for all t-attackers A,

AdvKEM
cpa (A) ≤ ε .

Section C of the appendix briefly recapitulates the standard El-Gamal KEM based on DDH and
the Frodo KEM [6], which is based on learning with errors (LWE).

2.4 Pseudorandom Generators

A pseudorandom generator (PRG) is a function G :W →W×K such that G(U) is indistinguishable
from U ′ for uniformly random U ∈ W and U ′ ∈ W ×K. The advantage of an attacker A at distin-
guishing between these two distributions is denoted by AdvG

prg(A); the attacker is parametrized by
its running time t.

Definition 5. A pseudorandom generator G is (t, ε)-secure if for all t-attackers A,

AdvG
prg(A) ≤ ε .

3 Secure Messaging

A secure messaging (SM) scheme allows two parties A and B to communicate securely bidirectionally
and is expected to satisfy the following informal requirements:

• Correctness: If no attacker interferes with the transmission, B outputs the messages sent
by A in the correct order and vice versa.

• Immediate decryption and message-loss resilience (MLR): Messages must be de-
crypted as soon as they arrive and may not be buffered; if a message is lost, the parties do
not stall.
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• Authenticity: While the parties’ states are uncompromised (i.e., unknown to the attacker),
the attacker cannot change the messages sent by them or inject new ones.

• Privacy: While the parties’ states are uncompromised, an attacker obtains no information
about the messages sent.

• Forward secrecy (FS): All messages sent and received prior to a state compromise of either
party (or both) remain hidden to an attacker.

• Post-compromise security (PCS, aka “healing”): If the attacker remains passive (i.e.,
does not inject any corrupt messages), the parties recover from a state compromise (assuming
each has access to fresh randomness).

• Randomness leakage/failures: While the parties’ states are uncompromised, all the se-
curity properties above except PCS hold even if the attacker completely controls the parties’
local randomness. That is, good randomness is only required for PCS.

This section presents the syntax of and a formal security notion for SM schemes.

3.1 Syntax

Formally, an SM scheme consists of two initialization algorithms, which are given an initial shared
key k, as well as a sending algorithm and a receiving algorithm, both of which keep (shared) state
across invocations. The receiving algorithm also outputs a so-called epoch number and an index,
which can be used to determine the order in which the sending party transmitted their messages.

Definition 6. A secure-messaging (SM) scheme consists of four probabilistic algorithms SM =
(Init-A, Init-B,Send,Rcv), where

• Init-A (and similarly Init-B) takes a key k and outputs a state sA ← Init-A(k),

• Send takes a state s and a message m and produces a new state and a ciphertext (s′, c) ←$

Send(s,m), and

• Rcv takes a state s and a ciphertext c and produces a new state, an epoch number, an index,
and a message (s′, t, i,m)← Rcv(s, c).

3.2 Security

3.2.1 Basics

The security notion for SM schemes considered in this paper is intuitive in principle. However,
formalizing it is non-trivial and somewhat cumbersome due to a number of subtleties that naturally
arise and cannot be avoided if the criteria put forth at the beginning of Section 3 are to be met.
Therefore, before presenting the definition itself, this section introduces some basic concepts that
will facilitate understanding of the definition.

Epochs. SM schemes proceed in so-called epochs, which roughly correspond the “back-and-forth”
between the two parties A and B. By convention, odd epoch numbers t are associated with A sending
and B receiving, and the other way around for even epochs. Note, however, that SM schemes are
completely asynchronous, and, hence, epochs overlap to a certain extent. Correspondingly, consider
two epoch counters tA and tB for A and B, respectively, satisfying the following properties:
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• The two counters are never more than one epoch apart, i.e., |tA − tB| ≤ 1 at all times.

• When A receives an epoch-t message from B for t = tA + 1, it sets tA ← t (even). The next
time A sends a message, tA is incremented again (to an odd value).

• Similarly, when B receives an epoch-t message from A for t = tB + 1, it sets tB ← t (odd).
The next time B sends a message, tB is incremented again (to an even value).

Message indices. Within an epoch, messages are identified by a simple counter. To capture the
property of immediate decryption and MLR, the receive algorithm of an SM scheme is required to
output the correct epoch number and index immediately upon reception of a ciphertext, even when
messages arrive out of order.

Corruptions and their consequences. Since SM schemes are required to be forward-secure
and to recover from state compromise, any SM security game must allow the attacker to learn the
state of either party at any given time. Moreover, to capture authenticity and privacy, the attacker
should be given the power to inject malicious ciphertexts and to call a (say) left-or-right challenge
oracle, respectively. These requirements, however, interfere as follows:

• When either party is in a compromised state, the attacker cannot invoke the challenge oracle
since this would allow him to trivially distinguish.

• When either party is in a compromised state, the attacker can trivially forge ciphertexts and
must therefore be barred from calling the inject oracle.

• When the receiver of messages in transmission is compromised, these messages lose all security,
i.e., the attacker learns their content and can replace them by a valid forgery. Consequently,
while any challenge ciphertext is in transmission, the recipient may not be corrupted. Simi-
larly, an SM scheme must be able to deal with forgeries of compromised messages (once the
parties have healed).

These issues require that the security definition keep track of ciphertexts in transmission, of chal-
lenge ciphertexts, and of compromised ciphertexts; this will involve some (slightly cumbersome)
record keeping.

Natural SM schemes. For simplicity, SM schemes in this work are assumed to satisfy the
natural requirements below.4

Definition 7. An SM scheme SM = (Init-A, Init-B,Send,Rcv) is natural if the following criteria
are satisfied:

(A) Whenever Rcv outputs m = ⊥, the state remains unchanged.

(B) Any given ciphertext corresponds to an epoch t and an index i, i.e., the values (t, i) output by
Rcv are an (efficiently computable) function of c.

(C) Algorithm Rcv never accepts two messages corresponding to the same pair (t, i).

4The reader may skip over this definition on first read. The properties are referenced where they are needed.
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(D) A party always rejects ciphertexts corresponding to an epoch in which the party does not act
as receiver

(E) If a party, say A, accepts a ciphertext corresponding to an epoch t, then tA ≥ t− 1.

3.2.2 The Security Game

The security game, which is depicted in Figure 2, consists of an initialization procedure init and of

• two “send” oracles, transmit-A (normal transmission) and chall-A (challenge transmission);

• two “receive” oracles, deliver-A (honest delivery) and inject-A (for forged ciphertexts); and

• a corrupt oracle corr-A

pertaining to party A, and of the corresponding oracles pertaining to B. Moreover, Figure 2
also features an epoch-management function ep-mgmt, a function sam-if-nec explained below,
and two record-keeping functions record and delete; these functions cannot be called by the
attacker. The game is parametrized by ∆SM, which relates to how fast parties recover from a state
compromise. All components are explained in detail below, following the intuition laid out above.

The advantage of A against an SM scheme SM is denoted by AdvSM
sm,∆SM

(A). The attacker is
parameterized by its running time t, the total number of queries q it makes, and the maximum
number of epochs qep it runs for.

Definition 8. A secure-messaging scheme SM is (t, q, qep,∆SM, ε)-secure if for all (t, q, qep)-attack-
ers A,

AdvSM
sm,∆SM

(A) ≤ ε .

Initialization and state. The initialization procedure chooses a random key and initializes the
states sA and sB of A and B, respectively. Moreover, it defines several variables to keep track of
the execution: (1) tA and tB are the epoch counters for A and B, respectively; (2) variables iA
and iB count how many messages have been sent by each party in their respective current epochs;
(3) tL records the last time either party’s state was leaked to the attacker and is used, together
with tA and tB, to preclude trivial attacks; (4) the sets trans, chall, and comp will contain records
and allow to track ciphertexts in transmission, challenge ciphertexts, and compromised ciphertexts,
respectively; (5) the bit b is used to create the challenge.

Sampling if necessary. The send oracles transmit-A and chall-A allow the attacker to pos-
sibly control the random coins r of Send. If r = ⊥, the function samples r ←$ R (from some
appropriate set R), and returns (r, good), where good indicates that fresh randomness is used. If,
on the other hand, r 6= ⊥, the function returns (r, bad), indicating, via bad, that adversarially
controlled randomness is used.

Epoch management. The epoch management function ep-mgmt advances the epoch of the
calling party if that party’s epoch counter has a “receiving value” (even for A; odd for B) and resets
the index counter. The flag argument is to indicate whether fresh or adversarial randomness is
used. If a currently corrupted party starts a new epoch with bad randomness, the new epoch is
considered corrupted. However, if it does not start a new epoch, bad randomness does not make
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Security Game for Secure Messaging

init
k ←$ K
sA ← Init-A(k)
sB ← Init-B(k)
(tA, tB)← (0, 0)
iA, iB ← 0
tL ← −∞
trans, chall, comp← ∅
b←$ {0, 1}

corr-A
req B /∈ chall

comp
+← trans(B)

tL ← max(tA, tB)
return sA

transmit-A (m, r)
(r, flag)← sam-if-nec(r)
ep-mgmt(A, flag)
iA ++
(sA, c)← Send(sA,m; r)
record(A, norm,m, c)
return c

chall-A (m0,m1, r)
(r, flag)← sam-if-nec(r)
ep-mgmt(A, flag)
req safe-chA and
|m0|= |m1|
iA ++
(sA, c)← Send(mb; r)
record(A, chall,mb, c)
return c

deliver-A (c)
req (B, t, i,m, c) ∈ trans

for some t, i,m
(sA, t

′, i′,m′)← Rcv(sA, c)
if (t′, i′,m′) 6= (t, i,m)

win

if (t, i,m) ∈ chall
m′ ← ⊥

tA ← max(tA, t)
delete(t, i)
return (t′, i′,m′)

inject-A (c)
req (B, c) /∈ trans and safe-inj

(sA, t
′, i′,m′)← Rcv(sA, c)

if m′ 6= ⊥ and (B, t′, i′) /∈ comp
win

tA ← max(tA, t
′)

delete(t′, i′)
return (t′, i′,m′)

ep-mgmt (P, flag)

if P = A and tP even or
P = B and tP odd
if flag = bad and
¬safe-chP

tL ← tP + 1
tP ++
iP ← 0

sam-if-nec (r)

flag← bad
if r = ⊥

r ←$ R
flag← good

return (r, flag)

record (P, flag,m, c)
rec← (P, tP, iP,m, c)

trans
+← rec

if ¬safe-chP

comp
+← rec

if flag = chall

chall
+← rec

delete (t, i)
rec← (P, t, i,m, c)

for some P,m, c

trans, chall, comp
−← rec

safe-chP :⇐⇒ tP ≥ tL + ∆SM

safe-inj
:⇐⇒ min(tA, tB) ≥ tL + ∆SM

Figure 2: Oracles corresponding to party A of the SM security game for a scheme SM = (Init-A, Init-B,
Send,Rcv); the oracles for B are defined analogously.

the ciphertext corrupted. This captures that randomness should only be used for PCS (but for
none of the other properties mentioned above).

Record keeping. The game keeps track of ciphertexts in transmission, of challenge ciphertexts,
and of compromised ciphertexts. Records have the format (P, tP, iP,m, c), where P is the sender,
tP the epoch in which the message was sent, iP the index within the epoch, m the message itself,
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and c the ciphertext.
Whenever record is called, the new record is added to the set trans. If a party is not in a safe

state, the record is also added to the set of compromised ciphertexts comp. If the function is called
with flag = chall, the record is added to chall. The function delete takes an epoch number and
an index and removes the corresponding record from all three record keeping sets trans, chall, and
comp.

Sometimes, it is convenient to refer to a particular record (or a set thereof) by only specifying
parts of it. For example, the expression B /∈ chall is equivalent to there not being any record
(B, ∗, ∗, ∗, ∗) in the set chall. Similarly, trans(B) is the set of all records of this type in trans.

Send oracles. Both send oracles, transmit-A and chall-A, begin with sam-if-nec, which sam-
ples fresh randomness if necessary, followed by a call to ep-mgmt. Observe that the flag argument
is set to flag ← good by sam-if-nec if fresh randomness is used, and to flag ← bad otherwise.
Subsequently:

• transmit-A increments iA, executes Send, and creates a record using flag = norm, indicating
that this is not a challenge ciphertext. Observe that if A is not currently in a safe state, the
record is added to comp.

• chall-A works similarly to transmit-A, except that one of the two inputs is selected ac-
cording to b, and the record is saved with flag = chall, which will cause it to be added to the
challenges chall. Note that chall-A can only be called when A is not in a compromised state,
which is captured by the statement req safe-chA.

The oracles for B are defined analogously.

Receive oracles. Two oracles are available by which the attacker can get A to receive a cipher-
text: deliver-A is intended for honest delivery, i.e., to deliver ciphertexts created by B, whereas
inject-A is used to inject forgeries. These rules are enforced by checking (via req) the set trans.

• deliver-A: The ciphertext is first passed through Rcv, which must correctly identify the
values t, i, and m recorded when c was created; if it fails to do so, the correctness property is
violated and the attacker immediately wins the game. In case c was a challenge, the decrypted
message is replaced by ⊥ in order to avoid trivial attacks. Before returning the output of
Rcv, tA is incremented if t is larger than tA, and the record corresponding to c is deleted.

• inject-A: Again, the ciphertext is first passed through Rcv. Unless the ciphertext corre-
sponds5 to (t, i) ∈ comp, algorithm Rcv must reject it; otherwise, authenticity is violated and
the attacker wins the game. The final instructions are as in deliver-A. Oracle inject-A may
only be called if neither party is currently recovering from state compromise, which is taken
care of by flag safe-inj.

The oracles for B are defined analogously.
By deleting records at the end of deliver-A and inject-A, the game enforces that no replay

attacks take place. For example, if a ciphertext c that at some point is in trans is accepted twice,

5cf. Property (B) in Definition 7.
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the second time counts as a forgery. Similarly, if two forgeries for a compromised pair (t, i) are
accepted, the attacker wins as well. Note, however, that natural schemes do not allow replay attacks
(cf. Property (C) in Definition 7).

Corruption oracles. The corruption oracle for A, corr-A, can be called whenever no challenges
are in transit from B to A, i.e., when B /∈ chall. If corruption is allowed, all ciphertexts in transit
sent by B become compromised. Before returning A’s state, the oracle updates the time of the most
recent corruption. The corruption oracle chall-B for B is defined similarly.

3.3 Simplified Properties

Proving SM security is facilitated by considering the three simplified properties correctness, au-
thenticity, and privacy. These properties together imply full SM security, as stated at the end of
this section. All three of them are obtained by modifying the original SM game (cf. Figure 2).

Correctness. For the correctness game, there are no oracles chall-A and chall-B, and only
reduced inject oracles are available, which differ from the normal ones as follows:

• if ciphertext c does not correspond to (t′, i′) ∈ comp, inject-A and inject-B immediately
return (t′, i′,⊥);6

• the if -clause is removed completely.

Essentially, the reduced inject oracle only processes ciphertexts corresponding to (t, i) ∈ comp,
which is unavoidable even after healing since the attacker knows the keys with which to decrypt
and authenticate these messages. Observe that the only way to win the game is via the win
instruction in deliver-A or deliver-B. The advantage of A in the correctness game is denoted by
AdvSM

corr,∆SM
(A).

Definition 9. A secure-messaging scheme SM is (t, q, qep,∆SM, ε)-correct if for all (t, q, qep)-at-
tackers A,

AdvSM
corr,∆SM

(A) ≤ ε .

Authenticity. In the authenticity variant of the SM game, there are no oracles chall-A and
chall-B, and the win-instruction inside deliver-A and deliver-B is removed. Furthermore, the
attacker must call init with two arguments t∗L and t∗ with t∗ ≥ t∗L + ∆SM, where t∗ is the epoch it
is trying to attack and t∗L is the last corruption event before the attempt. To formally define this,
consider the case where t∗ is even, i.e., B is the sender and A the receiver in the epoch under attack;
the case where t∗ is odd works analogously. Then, the authenticity game additionally differs from
the original as follows:

• if at any point tL ∈ {t∗L + 1, . . . , t∗ − 1}, the attacker loses the game immediately;

• if A (the receiver in epoch t∗) is corrupted any time once tA > t∗L, the attacker loses the game
immediately;

6Recall that, by virtue of Property (B) in Definition 7, (t′, i′) output by Rcv are assumed to be efficiently deducible
from a ciphertext c.
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• the inject oracles are reduced (see above) except for ciphertexts corresponding to epoch t∗.

The advantage of A in the authenticity game is denoted by AdvSM
auth,∆SM

(A).

Definition 10. A secure-messaging scheme SM is (t, q, qep,∆SM, ε)-authentic if for all (t, q, qep)-
attackers A,

AdvSM
auth,∆SM

(A) ≤ ε .

Privacy. The privacy variant only provides reduced inject oracles (see above), and the if -clause
with the win instruction in deliver-A is removed completely. Furthermore, the attacker must call
init with two arguments t∗L and t∗ with t∗ ≥ t∗L + ∆SM, where t∗ is the epoch it is trying to attack
and t∗L is the last corruption event before the attempt. Formally, this is enforced as follows:

• if at any point tL ∈ {t∗L + 1, . . . , t∗ − 1}, the attacker loses the game immediately (i.e., the
outcome of the game is a uniformly random bit);

• the challenge oracle for P ∈ {A,B} has an additional tP = t∗ constraint in the req-statement.

Observe that the condition tP = t∗ effectively means that only one challenge oracle is available
(chall-A if t∗ is even; chall-B if t∗ is odd). The advantage of A in the privacy game denoted by
AdvSM

priv,∆SM
(A).

Definition 11. A secure-messaging scheme SM is (t, q, qep,∆SM, ε)-private if for all (t, q, qep)-at-
tackers A,

AdvSM
auth,∆SM

(A) ≤ ε .

Combining the properties. The following theorem relates the simplified properties to the full
SM security definition; its proof can be found in Appendix A.

Theorem 1. Assume an SM scheme SM is

• (t′, q, qep,∆SM, εcorr)-correct,

• (t′, q, qep,∆SM, εauth)-authentic, and

• (t′, q, qep,∆SM, εpriv)-private.

Then, it is also (t,∆SM, q, qep, ε)-secure, where

ε ≤ εcorr + q2
ep · (εauth + εpriv) .

4 Building Blocks

The SM scheme presented in this work is a modular construction and uses three components:
continuous key-agreement (CKA), forward-secure authenticated encryption with associated data
(FS-AEAD) and—for lack of a better name—PRF-PRNGs. These primitives are presented in
isolation in this section before combining them into an SM scheme in Section 5.

18



4.1 Continuous Key Agreement

This work distills out the public-ratchet part of the Signal protocol and casts it as a separate
primitive called continuous key agreement (CKA). This step is not only useful to improve the
intuitive understanding of the various components of the Signal protocol and their interdependence,
but it also increases modularity, which, for example, would—once the need arises—allow to replace
the current CKA mechanism based on DDH by one that is post-quantum secure.

4.1.1 Defining CKA

At a high level, CKA is a synchronous two-party protocol between A and B. Odd rounds i consist
of A sending and B receiving a message Ti, whereas in even rounds, B is the sender and A the
receiver. Each round i also produces a key Ii, which is output by the sender upon sending Ti and
by the receiver upon receiving Ti.

Definition 12. A continuous-key-agreement (CKA) scheme is a quadruple of algorithms CKA =
(CKA-Init-A,CKA-Init-B,CKA-S,CKA-R), where

• CKA-Init-A (and similarly CKA-Init-B) takes a key k and produces an initial state γA ←
CKA-Init-A(k) (and γB),

• CKA-S takes a state γ, and produces a new state, message, and key (γ′, T, I) ←$ CKA-S(γ),
and

• CKA-R takes a state γ and message T and produces new state and a key (γ′, I)← CKA-R(γ, T).

Denote by K the space of initialization keys k and by I the space of CKA keys I.

Correctness. A CKA scheme is correct if in the security game in Figure 3 (explained below), A
and B always, i.e., with probability 1, output the same key in every round.

Security. The basic property a CKA scheme must satisfy is that conditioned on the transcript
T1, T2, . . ., the keys I1, I2, . . . look uniformly random and independent. An attacker against a CKA
scheme is required to be passive, i.e., may not modify the messages Ti. However, it is given the
power to possibly (1) control the random coins used by the sender and (2) leak the current state of
either party. Correspondingly, the keys Ii produced under such circumstances need not be secure.
The parties are required to recover from a state compromise within 2 rounds.7

The formal security game for CKA is provided in Figure 3. It begins with a call to the init
oracle, which samples a bit b, initializes the states of both parties, and defines epoch counters tA
and tB. Procedure init takes a value t∗, which determines in which round the challenge oracle may
be called.

Upon completion of the initialization procedure, the attacker gets to interact arbitrarily with
the remaining oracles, as long as the calls are in a “ping-pong” order, i.e., a call to a send oracle for
A is followed by a receive call for B, then by a send oracle for B, etc. The attacker only gets to use
the challenge oracle for epoch t∗. No corruption or using bad randomness (send-A’ and send-B’)
is allowed less than two epochs before the challenge is sent (allow-corr).

7Of course, one could also parametrize the number of rounds required to recover (all CKA schemes in this work
recover within two rounds, however).
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Security Game for CKA

init (t∗)
k ←$ K
γA ← CKA-Init-A(k)

γB ← CKA-Init-B(k)
tA, tB ← 0
b←$ {0, 1}

corr-A
req allow-corr or finishedA

return γA

send-A
tA ++
(γ, TtA , ItA)←$ CKA-S(γ)
return (TtA , ItA)

send-A’ (r)
tA ++
req allow-corr

(γ, TtA , ItA)← CKA-S(γ; r)
return (TtA , ItA)

receive-A
tA ++

(γA, ∗)← CKA-R(γA, TtA)

chall-A
tA ++
req tA = t∗

(γ, TtA , ItA)←$ CKA-S(γ)

if b = 0
return (TtA , ItA)

else
I ←$ I
return (TtA , I)

allow-corrP :⇐⇒ max(tA, tB) ≤ t∗ − 2

finishedP :⇐⇒ tP ≥ t∗ + ∆CKA

Figure 3: Oracles corresponding to party A of the CKA security game for a scheme CKA = (CKA-Init-A,
CKA-Init-B,CKA-S,CKA-R); the oracles for B are defined analogously.

The game is parametrized by ∆CKA, which stands for the number of epochs that need to pass
after t∗ until the states do not contain secret information pertaining to the challenge. Once a party
reaches epoch t∗+∆CKA, its state may be revealed to the attacker (via the corresponding corruption
oracle). The game ends (not made explicit) once both states are revealed after the challenge phase.
The attacker wins the game if it eventually outputs a bit b′ = b.

The advantage of an attacker A against a CKA scheme CKA with ∆CKA = ∆ is denoted by
AdvCKA

ror,∆(A). The attacker is parameterized by its running time t.

Definition 13. A CKA scheme CKA is (t,∆, ε)-secure if for all t-attackers A,

AdvCKA
ror,∆(A) ≤ ε .

4.1.2 Instantiating CKA

This paper presents several instantiations of CKA: First, a generic CKA scheme with ∆ = 0
based on any key-encapsulation mechanism (KEM). Then, by considering the ElGamal KEM (cf.
Section C.1) and observing that an encapsulated key can be “reused” as public key, one obtains a
CKA scheme based on the decisional Diffie-Hellman (DDH) assumption, where the scheme saves a
factor of 2 in communication compared to a straight-forward instantiation of the generic scheme.
However, the scheme has ∆ = 1 (cf. Figure 4). A similar idea can also be applied to the Frodo
KEM [6] (cf. Section C.2), which is based on learning with errors (LWE). A general study of KEMs
for which key generation and encapsulation can be merged has recently been put forth in follow-up
work by Drucker and Gueron [10].
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CKA from KEMs. A CKA scheme with ∆ = 0 can be built from a KEM in natural way: in
every epoch, one party sends a public key pk of a freshly generated key pair and an encapsulated
key under the key pk′ received from the other party in the previous epoch. Specifically, consider a
CKA scheme CKA = (CKA-Init-A,CKA-Init-B,CKA-S,CKA-R) that is obtained from a KEM KEM
as follows:

• The initial shared state k = (pk, sk) consists of a (freshly generated) KEM key pair. The
initialization for A outputs pk← CKA-Init-A(k) and that for B outputs sk← CKA-Init-B(k).

• The send algorithm CKA-S takes as input the current state γ = pk and proceeds as follows: It

1. encapsulates a key (c, I)←$ Enc(pk),

2. generates a new key pair (pk, sk)←$ Gen,

3. sets the CKA message to T ← (c, pk),

4. sets the new state to γ ← sk, and

5. returns (γ, T, I).

• The receive algorithm CKA-R takes as input the current state γ = sk as well as a message
T = (c, pk) and proceeds as follows: It

1. decapsulates the key I ← Dec(sk, c),

2. sets the new state to γ ← pk, and

3. returns (γ, I).

Theorem 2. Assume KEM is a (t′, ε)-secure KEM. Then, the above CKA scheme CKA is (t,∆, ε)-
secure for t ≈ t′ and ∆ = 0.

Proof. The theorem is proved by showing that for every attacker A against the CKA security of
CKA, there exists an attacker B such that

AdvCKA
ror,∆(A) ≤ AdvKEM

cpa (B) .

Assume w.l.o.g. that t∗ is odd, i.e., A sends the challenge; the case where t∗ is even is handled
analogously. The reduction B is straight-forward: Let (pk, c, k) be a KEM challenge (where k is
either embedded in c or random and independent). Then,

• in epoch t∗ − 1, the reduction embeds pk into B’s CKA message Tt∗−1, and

• in epoch t∗, the reduction embeds c into A’s message Tt∗ and uses k as the CKA key It∗ that
A outputs.

Observe that A’s simulated state may safely be revealed once she reaches epoch t∗ + ∆CKA = t∗

since at that ponit her state contains a secret key that is unrelated to the challenge. Similarly, once
B reaches t∗, he deletes the secret key used to decapsulate, and thus the reduction need not know
it to simulate B’s state at the end.
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CKA from DDH. Observe that if one instantiates the above KEM-based CKA scheme with the
ElGamal KEM (cf. Section C.1)ver some group G, both the public key and the encapsulated key
are elements of G. Hence, the Signal protocol uses an optimization of the ElGamal KEM where
a single group element first serves as an encapsulated key sent by, say, A and then as the public
key B uses to encapsulate his next key. Interestingly, this comes at the price of having ∆ = 1 (as
opposed to ∆ = 0) due to the need for parties to hold on to their exponents (which serve both as
secret keys and encapsulation randomness) longer.

Concretely, a CKA scheme CKA = (CKA-Init-A,CKA-Init-B,CKA-S,CKA-R) can be obtained
from the DDH assumption8 in a cyclic group G = 〈g〉 as follows:

• The initial shared state k = (h, x0) consists of a (random) group element h = gx0 and its
discrete logarithm x0. The initialization for A outputs h ← CKA-Init-A(k) and that for B
outputs x0 ← CKA-Init-B(k).

• The send algorithm CKA-S takes as input the current state γ = h and proceeds as follows: It

1. chooses a random exponent x,

2. computes the corresponding key I ← hx,

3. sets the CKA message to T ← gx,

4. sets the new state to γ ← x, and

5. returns (γ, T, I).

• The receive algorithm CKA-R takes as input the current state γ = x as well as a message
T = h and proceeds as follows: It

1. computes the key I = hx,

2. sets the new state to γ ← h, and

3. returns (γ, I).

For the theorem below, let a group G be (t, ε)-secure if every attacker with running time at most
t has advantage at most ε at distinguishing DDH triples from random triples.

Theorem 3. Assume group G is (t, ε)-DDH-secure. Then, the above CKA scheme CKA is (t,∆, ε)-
secure for t ≈ t′ and ∆ = 1.

Proof. Assume w.l.o.g. that t∗ is odd, i.e., A sends the challenge; the case where t∗ is even is handled
analogously. Let (ga, gb, gc) be a Diffie-Hellman or random triple. The reduction simulates the CKA
protocol in the straight-forward way but embeds the triple into the CKA as follows:

• in epoch t∗ − 1, it uses Tt∗−1 = ga and It∗−1 = gxa, where x is the exponent used to simulate
Tt∗−2 = gx.

• in epoch t∗, it uses Tt∗ = gb and It∗ = gc; and

• in epoch t∗ + 1, for a random x′, it uses Tt∗+1 = gx
′

and It∗+1 = gbx
′
.

8The DDH assumption states that it is hard to distinguish DH triples (ga, gb, gab) from random triples (ga, gb, gc),
where a, b, and c are uniformly random and independent exponents.
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Figure 4: Comparison between CKAs with ∆CKA = 0 based on generic KEMs (bottom) resp. El-Gamal
(left) and ElGamal-based CKA with ∆CKA = 1 (right). The figure shows the lifetimes of secret state values
alongside the protocol. Consider the state of parties A and B once the third protocol message is delivered:
In the ∆CKA = 0 protocols, A has a secret key sk3 resp. an exponent x3 that is not used yet, and B’s state
contains no secret information; hence, no past keys can be computed upon state compromise. In the ElGamal
protocol with ∆CKA = 1, A stores secret exponent x3, which allows to compute key gx2x3 .

It is easy to verify that this correctly simulates the CKA experiment. In particular, note that A’s
simulated state may safely be revealed once she reaches epoch t∗ + ∆CKA = t∗ + 1 since at that
point she would have deleted her exponent b in the actual game. B would delete his exponent a as
soon as he reaches t∗, i.e., even before t∗ + ∆CKA.

CKA based on LWE. A similar public-key-ciphertext-reuse idea can be applied to the Frodo
KEM [6] (cf. Section C.2 for an explanation of notation), which is based on learning with errors
(LWE). Concretely, a CKA scheme, in which A and B actually have slightly different algorithms
for sending and receiving, can be obtained as shown next. The scheme is parametrized by a size
parameters n and n̄, a modulus q, and an error distribution χ over Zq.

• The initial shared state k consists of a matrix A ∈ Zn×n
q chosen uniformly at random,

and independently sampled matrices S,E ← χ(Zn×n̄
q ), where χ(Zn×n̄

q ) is the distribution
on matrices obtained by sampling each entry independently according to χ. A initially stores
(A,S)← CKA-Init-A(k), and B’s initial state is (A,B := AS + E)← CKA-Init-B(k).

• B’s send algorithm CKA-S-B takes as input the current state γ = (A,B) and proceeds as
follows: It

1. chooses S′,E′, Ẽ′ ∼ χ(Zn̄×n
q ) independently,

2. computes B′ ← S′A + E′,

3. computes V′ ← S′B + Ẽ′,

4. computes reconciliation information C′ ← 〈V′〉2B ,

5. computes the key I ← bV′e2B ,
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6. sets the CKA message to c = (B′,C′),

7. sets the new state to γ ← (A,S′), and

8. returns (γ, T, I).

• A’s send algorithm CKA-S-A proceeds analogously, but it multiplies by S′ from the right.

• A’s receive algorithm CKA-R-A takes as input the current state γ = (A,S) as well as a message
T = (B′,C′) and proceeds as follows: It

1. computes the key I = rec(B′S,C′),

2. sets the new state to γ ← (A,B′), and

3. returns (γ, I).

• B’s receive algorithm CKA-R-B proceeds analogously, but it multiplies by S′ from the left.

The security of the above CKA scheme based on LWE is proved by reduction to the CPA security
of the Frodo KEM.

Theorem 4. Assume Frodo is a (t, ε)-CPA-secure KEM. Then, the above CKA scheme CKA is
(t,∆, ε)-secure for t ≈ t′ and ∆ = 1.

Proof. Depending on the challenge epoch t∗, the reduction is either to the security of the original
Frodo (as laid out in Section C.2) or to a variant where the encryptor multiplies from the right and
the decryptor from the left. For this proof sketch, assume w.l.o.g. that t∗ is even, i.e., the challenge
ciphertext is sent by B and the reduction is to the original Frodo scheme.

Similarly to all previous CKA proofs, the reduction simply embeds a particular instance of the
Frodo KEM into the full CKA game. Specifically, let A, B, V′, C′, and K be the KEM instance,
where K is either the key as computed by Frodo or uniformly random.

In epoch t∗ − 1, the reduction embeds B into the execution of CKA-S-A, instead of choosing
values S and E and computing B← AS+E itself. It then picks Ẽ ∼ χ(Zn×n̄

q ), sets V← B′t∗−2S+Ẽ
(where B′t∗−2 was sent by B in epoch t∗ − 2), and computes C = 〈V〉2B as well as I ← bVe2B .
Once B obtains B and C, CKA-R-B recovers the key I as rec(S′B,C).

In epoch t∗, the reduction embeds B′, V′, C′, and I ← K into CKA-S-B, instead of computing
these values as CKA-S-B normally would. Once A receives B′ and C′, CKA-R-A simply outputs K
instead of computing rec(B′S,C′).

By inspection, one can verify that this correctly simulates the CKA experiment. In particular,
note that B’s simulated state may safely be revealed once he reaches epoch t∗ + ∆CKA = t∗ + 1
since at that point he would have deleted his secret value S′ in the actual game. A would delete
her secret value S as soon as she reaches t∗, i.e., even before t∗ + ∆CKA.

4.2 Forward-Secure AEAD

4.2.1 Defining FS-AEAD

Forward-secure authenticated encryption with associated data is a stateful primitive between a
sender A and a receiver B and can be considered a single-epoch variant of an SM scheme, a fact
that is also evident from its security definition, which resembles that of SM schemes.
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Definition 14. Forward-secure authenticated encryption with associated data (FS-AEAD) is a
tuple of algorithms FS-AEAD = (FS-Init-S,FS-Init-R,FS-Send,FS-Rcv), where

• FS-Init-S (and similarly FS-Init-R) takes a key k and outputs a state vA ← FS-Init-S(k),

• FS-Send takes a state v, associated data a, and a message m and produces a new state and a
ciphertext (v′, e)← FS-Send(v, a,m), and

• FS-Rcv takes a state v, associated data a, and a ciphertext e and produces a new state, an
index, and a message (v′, i,m)← FS-Rcv(v, a, e).

Observe that all algorithms of an FS-AEAD scheme are deterministic.

Memory management. In addition to the basic syntax above, it is useful to define the following
two functions FS-Stop (called by the sender) and FS-Max (called by the receiver) for memory
management:

• FS-Stop, given an FS-AEAD state v, outputs how many messages have been received and
then “erases” the FS-AEAD session corresponding to v form memory; and

• FS-Max, given a state v and an integer `, remembers ` internally such that the session corre-
sponding to v is erased from memory as soon as ` messages have been received.

These features will be useful in the full protocol (cf. Section 5) to be able to terminate individual
FS-AEAD sessions when they are no longer needed. Providing a formal requirement for these
additional functions is omitted. Moreover, since an attacker can infer the value of the message
counter from the behavior of the protocol anyway, there is no dedicated oracle included in the
security game below.

Correctness and security. Both correctness and security are built into the security game de-
picted in Figure 5. The game is the single-epoch analogue of the SM security game (cf. Figure 2)
and therefore has similarly defined oracles and similar record keeping. A crucial difference is that
as soon as the receiver B is compromised, the game ends with a full state reveal as no more security
can be provided. If only the sender A is compromised, the game continues and uncompromised
messages must remain secure.

The advantage of an attacker A against an FS-AEAD scheme FS-AEAD is denoted by the
expression AdvFS-AEAD

fs-aead (A). The attacker is parameterized by its running time t and the total
number of queries q it makes.

Definition 15. An FS-AEAD scheme FS-AEAD is (t, q, ε)-secure if for all (t, q)-attackers A,

AdvFS-AEAD
fs-aead (A) ≤ ε .

4.2.2 Instantiating FS-AEAD

An FS-AEAD scheme can be easily constructed from two components:

• an AEAD scheme AE = (Enc,Dec), and

• a PRG G :W →W ×K, where K is the key space of the AEAD scheme.
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Security Game for FS-AEAD

init
k ←$ K
vA ← FS-Init-S(k)
vB ← FS-Init-R(k)
iA ← 0
corrA ← false
trans, chall, comp← ∅
b←$ {0, 1}

corr-A
corrA ← true
return vA

corr-B
req chall = ∅
end (vA, vB)

transmit-A (a,m)
iA ++
(vA, e)← FS-Send(vA, a,m)
record(good, a,m, e)
return c

chall-A (a,m0,m1)
req ¬corrA and |m0|= |m1|
iA ++
(vA, e)← FS-Send(vA, a,mb)
record(chall, a,mb, e)
return e

deliver-A (a, e)
req (i, a,m, e) ∈ trans

for some i,m
(vA, i

′,m′)← FS-Rcv(vA, a, e)

if (i′,m′) 6= (i,m)
win

if (i,m) ∈ chall
m′ ← ⊥

delete(i)
return (i′,m′)

inject-A (a, e)
req (a, e) /∈ trans

(vA, i
′,m′)← FS-Rcv(vA, a, e)

if m′ 6= ⊥ and (B, i′) /∈ comp
win

delete(i′)
return (i′,m′)

record (flag, a,m, e)
rec← (iA, a,m, e)

trans
+← rec

if flag = bad or corrA

comp
+← rec

if flag = chall

chall
+← rec

delete (i)
rec← (i, a,m, e) for m, a, e

s.t. (i, a,m, e) ∈ trans

trans, chall, comp
−← rec

Figure 5: Oracles corresponding to party A of the FS-AEAD security game for a scheme FS-AEAD =
(FS-Init-S,FS-Init-R,FS-Send,FS-Rcv); the oracles for B are defined analogously.

The scheme is described in Figure 6. For simplicity the states of sender A and receiver B are
is not made explicit; it consists of the variables set during initialization. The main idea of the
scheme, is that the A and B share the state w of a PRG G. State w is initialized with a pre-shared
key k ∈ W, which is assumed to be chosen uniformly at random. Both parties keep local counters
iA and iB, respectively.9 A, when sending the ith message m with associated data (AD) a, uses G
to expand the current state to a new state and an AEAD key (w,K) ← G(w) and computes an
AEAD encryption under K of m with AD h = (i, a).

Since B may receive ciphertext out of order, whenever he receives a ciphertext, he first checks
whether the key is already stored in a dictionary D. If the index of the message is higher than
expected (i.e., larger than iB + 1), B skips the PRG ahead and stores the skipped keys in D. In
either case, once the key is obtained, it is used to decrypt. If decryption fails, FS-Rcv throws an
exception (error), which causes the state to be rolled back to where it was before the call to FS-Rcv.

9For ease of description, the FS-AEAD state of the parties is not made explicit as a variable v.
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Forward-Secure AEAD

Init-A (k)
w ← k
iA ← 0

Init-B (k)
w ← k
iB ← 0
D[·]← λ

try-skipped (i)
K ← D[i]
D[i]← ⊥
return K

FS-Send (a,m)
iA ++
(w,K)← G(w)
h← (iA, a)
e← Enc(K,h,m)
return (iA, e)

skip (u)
while iB < u− 1

iB ++
(w,K)← G(w)
D[u]← K

FS-Rcv (a, c)
(i, e)← c
K ← try-skipped(i)
if K = ⊥

skip(i)
(w,K)← G(w)
iB ← i

h← (i, a)
m← Dec(K,h, e)
if m = ⊥

error
return (i,m)

Figure 6: FS-AEAD scheme based on AEAD and a PRG.

Theorem 5. Assume AE is a (t′, εaead)-OT-CCA secure AEAD scheme and G is a (t′, εprg)-secure
PRG. Then, the above FS-AEAD scheme FS-AEAD is (t, q, ε)-secure for t ≈ t′ and

ε ≤ q · (εaead + εprg) .

Proof. The proof is a straight-forward hybrid argument: Let H0 denote the actual FS-AEAD
security game.

• In the first hybrid experiment H1, all PRG outputs are replaced by uniform random values.
The indistinguishability of H1 from the original experiment H0 follows immediately form the
security of the PRG.

• In the second hybrid experiment H2, the win condition inside the deliver-A oracle is re-
moved. The prefect correctness of the proposed FS-AEAD scheme is easily seen by inspection,
and hence H1 and H2 are indistinguishable.

• In the third hybrid experiment H3, all AEAD ciphertexts are replaced by random ciphertexts
and any (uncompromised) injections are always rejected. Since in H2 all keys used for the
AEAD scheme are random, the indistinguishability of H3 from H2 follows immediately from
the security of the AEAD scheme. Moreover, the advantage of any attacker in H3 is 0.

4.3 PRF-PRNGs

4.3.1 Defining PRF-PRNGs

A PRF-PRNG resembles both a pseudo-random function (PRF) and a pseudorandom number
generator with input (PRNG)—hence the name. On the one hand, as a PRNG would, a PRF-
PRNG (1) repeatedly accepts inputs I and uses them to refresh its state σ and (2) occasionally
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Security Game for PRF-PRNG

init
k ←$ K
σ ← P-Init(k)
corr← false
prng, prf ← false
b←$ {0, 1}

corr
req ¬prf
return σ

process (I)
I ← sam-if-nec(I)
(σ,R)← P-Up(σ, I)
return R

chall-prf (I)
req ¬corr and ¬prng
prf ← true
(σ′, R)← P-Up(σ, I)
if b = 1

R←$ R
return (σ′, R)

chall-prng (I)
I ← sam-if-nec(I)
req ¬corr and ¬prf
prng← true

(σ,R)← P-Up(σ, I)
if b = 1

R←$ R
return R

sam-if-nec (I)
if I = ⊥

I ←$ I
corr← false

return I

Figure 7: Oracles of the PRF-PRNG security game for a scheme P = (P-Init,P-Up).

uses the state, provided it has sufficient entropy, to derive a pseudo-random pair of output R and
new state; for the purposes of secure messaging, it suffices to combine properties (1) and (2) into
a single procedure. On the other hand, a PRF-PRNG can be used as a PRF in the sense that if
the state has high entropy, the answers to various inputs I on the same state are indistinguishable
from random and independent values.

Definition 16. A PRF-PRNG is a pair of algorithms P = (P-Init,P-Up), where

• P-Init takes a key k and produces a state σ ← P-Init(k), and

• P-Up takes a state σ and an input I and produces a new state and an output (σ′, R) ←
P-Up(σ, I).

Security. The simple intuitive security requirement for a double-seed PRG is that P-Init(σ, I)
produce a pseudorandom value if the state σ is uncorrupted (i.e., has high entropy) or the input
I is chosen uniformly from some set S. Moreover, if the state is uncorrupted, it should have the
PRF property described above. This is captured by the security definition described by Figure 7:

• Initialization: Procedure init chooses a random bit b, initializes the PRF-PRNG with a
random key, and sets two flags prng and prf to false: the PRNG and PRF modes are mutually
exclusive and only one type of challenge may be called; the flags keep track of which.

• PRNG mode: The oracle process can be called in two ways: either I is an input specified
by the attacker and is simply absorbed into the state, or I = ⊥, in which case the game
chooses it randomly (inside sam-if-nec) and absorbs it into the state, which at this point
becomes uncorrupted. Oracle chall-prng is works in the same fashion but creates a challenge.
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• PRF mode: Once the state is uncompromised the attacker can decide to obtain PRF
challenges by calling chall-prf , which simply evaluates the (adversarially chosen) input on
the current state without updating it and creates a challenge.

• Corruption: At any time, except after asking for PRF challenges, the attacker may obtain
the state by calling corr.

The advantage of A in the PRF-PRNG game is denoted by AdvP
PP(A). The attacker is parameter-

ized by its running time t.

Definition 17. An PRF-PRG P is (t, ε)-secure if for all t-attackers A,

AdvP
PP(A) ≤ ε .

4.3.2 Instantiating PRF-PRNGs

Being a PRF-PRNG is a property the HKDF function used by Signal is assumed to have; in partic-
ular, Marlinspike and Perrin [26] recommend the primitive be implemented with using HKDF [22]
with SHA-256 or SHA-512 [28] where the state σ is used as HKDF salt and I as HKDF input
key material. This paper therefore merely reduces the security of the presented schemes to the
PRF-PRNG security of whatever function is used to instantiate it.

Alternatively, a simple standard-model instantiation (whose rather immediate proof is omitted)
can be based on a pseudorandom permutation (PRP) Π : {0, 1}n × {0, 1}n → {0, 1}n and a PRG
G : {0, 1}n → {0, 1}n ×K by letting the state be the PRP key s ∈ {0, 1}n and

(s′, R)← P-Up(s, I) = G(Πs(I)) .

5 Secure Messaging Scheme

This section presents a Signal-based secure messaging (SM) scheme and establishes its security
under Definition 8. The scheme suitably and modularly combines continuous key-agreement (CKA),
forward-secure authenticated encryption with associated data (FS-AEAD), and PRF-PRNGs; these
primitives are explained in detail in Section 4.

5.1 The Scheme

The scheme is inspired by the Signal protocol, but differs from it in a few points, as explained in
Section 5.2. The main idea of the scheme is that the parties A and B keep track of the same PRF-
PRG (aka the “root RNG”), which they use to generate keys for FS-AEAD instances as needed.
The root RNG is continuously refreshed by random values output by a CKA scheme that is run
“in parallel.”

State. Scheme SM keeps an internal state sA (resp. sB), which is initialized by Init-A (resp. Init-B)
and used as well as updated by Send and Rcv. The state sA of SM consists of the following values:

• an ID field with id = A,

• the state σroot of the root RNG,
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Signal-Based Secure-Messaging Scheme

Init-A (k)
id← A
(kroot, kCKA)← k

σroot ← P-Init(kroot)
(σroot, k)← P-Up(σroot, λ)

v[·]← λ
v[0]← FS-Init-R(k)

γ ← CKA-Init-A(kCKA)
Tcur ← λ

`prv ← 0

tcur ← 0

Send-A (m)
if tcur is even

`prv ← FS-Stop(v[tcur − 1])
tcur ++
(γ, Tcur, I)←$ CKA-S(γ)
(σroot, k)← P-Up(σroot, I)
v[tcur]← FS-Init-S(k)

h← (tcur, Tcur, `prv)
(v[tcur], e)← FS-Send(v[tcur], h,m)

return (h, e)

Rcv-A (c)
(h, e)← c
(t, T, `)← h
req t even and t ≤ tcur + 1

if t = tcur + 1
tcur ++
FS-Max(v[t− 2], `)

(γ, I)← CKA-R(γ, T)
(σroot, k)← P-Up(σroot, I)

v[t]← FS-Init-R(k)

(v[t], i,m)← FS-Rcv(v[t], h, e)

if m = ⊥
error

return (t, i,m)

Figure 8: Secure-messaging scheme based on a FS-AEAD, a CKA scheme, and a PRF-PRNG. The figure
only shows the algorithms for A; B’s algorithms are analogous, with “even” replaced by “odd” (and with Init-B
initializing v[0] via FS-Init-S).

• states v[0], v[1], v[2], . . . of the various FS-AEAD instances,

• the state γ of the CKA scheme,

• the current CKA message Tcur, and

• an epoch counter tcur.

In order to remove expired FS-AEAD sessions from memory, there is also a variable `prv that
remembers the number of messages sent in the second most recent epoch. Recall (cf. Section 4.2)
that once the maximum number of messages has been set via FS-Max, a session “erases” itself from
the memory, and similarly for calling FS-Stop on a particular FS-AEAD session. For simplicity,
removing the corresponding v[t] from memory is not made explicit in either case. The state sB is
defined analogously.

The algorithms. The algorithms of scheme SM are depicted in Figure 8 and described in more
detail below. For ease of description, the algorithms Send and Rcv are presented as Send-A and
Rcv-A, which handle the case where id = A; the case id = B works analogously. Moreover, to
improve readability, the state sA is not made explicit in the description: it consists of the variables
set by the initialization algorithm.

• Initialization: The initialization procedure Init-A expects a key k shared between A and B;
k is assumed to have been created at some point before the execution during a trusted setup
phase and to consist of initialization keys kroot and kCKA for the root RNG and the CKA
scheme, respectively. In a second step, the root RNG is initialized with k. Then, it is used
to generate a key for FS-AEAD epoch v[0]; A acts as receiver in v[0] and all subsequent even
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epochs and as sender in all subsequent odd epochs. Furthermore, Init-A also initializes the
CKA scheme and sets the initial epoch tcur ← 0 and Tcur to a default value.10

As pointed out above, scheme SM runs a CKA protocol in parallel to sending its messages. To that
end, A’s first message includes the first message T1 output by CKA-S. All subsequent messages sent
by A include T1 until some message received from B includes T2. At that point A would run CKA-S
again and include T3 with all her messages, and so on (cf. Section 4.1).

Upon either sending or receiving Ti for odd or even i, respectively, the CKA protocol also
produces a random value Ii, which A absorbs into the root RNG. The resulting output k is used
as key for a new FS-AEAD epoch.

• Sending messages: Procedure Send-A allows A to send a message to B. As a first step,
Send-A determines whether it is A’s turn to send the next CKA message, which is the case
if tcur is even. Whenever it is A’s turn, Send-A runs CKA-S to produce the her next CKA
message T and key I, which is absorbed into the root RNG. The resulting value k is used
as a the key for a new FS-AEAD epoch, in which A acts as sender. The now old epoch is
terminated by calling FS-Stop and the number of messages in the old epoch is stored in `prv,
which will be sent along inside the header for every message of the new epoch.

Irrespective of whether it was necessary to generate a new CKA message and generate a new
FS-AEAD epoch, Send-A creates a header h = (tcur, Tcur, `prv), and uses the current epoch
v[tcur] to get a ciphertext for (h,m) (where h is treated as associated data).

• Receiving messages: When a ciphertext c = (h, e, `) with header h = (t, T, `) is processed
by Rcv-A, there are two possibilities:11

– t ≤ tcur: In this case, ciphertext c pertains to an existing FS-AEAD epoch, in which
case FS-Send is simply called on v[t] to process e. If the maximum number of messages
has been received for session v[t], the session is removed from memory.

– t = tcur + 1 (in which case tcur is odd): Here, the receiver algorithm advances tcur by
incrementing it and processes T with CKA-R. This produces a key I, which is absorbed
into the PRF-PRG to obtain a key k with which to initialize a new epoch v[tcur] as
receiver. Then, e is processed by FS-Rcv on v[tcur]. Note that Rcv also uses FS-Max to
store ` as the maximum number of messages in the previous receive epoch.

Irrespective of whether a new CKA message was received and a new epoch created, if e is
rejected by FS-Rcv, the algorithm raises an exception (error), which causes the entire state
sA to be rolled back to what it was before Rcv-A was called.

5.2 Differences to Signal

By instantiating the building blocks as shown below, one obtains an SM scheme that is very close
to the actual Signal protocol (cf. [26, Section 5.2] for more details):

• CKA: the DDH-based CKA scheme from Section 4.1.2 using Curve25519 or Curve448 as
specified in [23];

10B also starts in epoch tcur ← 0.
11Observe that c is only accepted if tcur is even.
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• FS-AEAD: FS-AEAD scheme from Section 4.2 with HMAC [21] with SHA-256 or SHA-
512 [28] for the PRG, and an AEAD encryption scheme based on either SIV or a composition
of CBC with HMAC [30, 31];

• PRF-PRNG: HKDF [22] with SHA-256 or SHA-512 [28], used as explained in Section 4.3.2.

We now detail the main differences:

Deferred randomness for sending. Deployed Signal implementations generate a new CKA
message and absorb the resulting key into the RNG in Rcv, as opposed to taking care of this inside
Send, as done here. The way it is done here is advantageous in the sense that the new key is
not needed until the Send operation is actually initiated, so there is no need to risk its exposure
unnecessarily (in case the state is compromised in between receiving and sending). Indeed, this
security enhancement to Signal was explicitly mentioned by Marlinspike and Perrin [26] (cf. Section
6.5), and we simply follow this suggestion for better security.

Epoch indexing. In our scheme we have an explicit epoch counter t to index a given epoch. In
Signal, one uses the uniqueness of latest CKA message (of the form gx) to index an epoch. This
saves an extra counter from each party’s state, but we find our treatment of having explicit epoch
counters much more intuitive, and not relying on any particular structure of CKA messages. In
fact, indexing a dictionary becomes slightly more efficient when using a simple counter than the
entire CKA message (which could be long for certain CKA protocols; e.g., post-quantum from
lattices).

FS-AEAD abstraction. Unlike the SM proposed from this section, Signal does not use the FS-
AEAD abstraction. Instead, each party maintains a sending and a receiving PRG that are kept in
sync with the other party’s receiving and sending PRG, respectively. Moreover, when receiving the
first message of a new epoch, the current receive PRG is skipped ahead appropriately depending
on the value `, and the skipped keys are stored in a single, global dictionary. The state of the
receive PRG is then overwritten with the new state output by the root RNG. Then, upon the next
send operation new randomness for the CKA message is generated, and the sending RNG is also
overwritten by the state output from updating the root RNG again. This is logically equivalent
to our variant of Signal with the particular FS-AEAD implementation in Figure 6, except we will
maintain multiple dictionaries (one for each epoch t). However, merging these dictionaries into one
global dictionary (indexed by epoch counter in addition to the message count within epoch) becomes
a simple efficiency optimization of the resulting scheme. Moreover, once this optimization is done,
there is no need to store an array of FS-AEAD instances v[t]. Instead, we can only remember the
latest sending and receiving FS-AEAD instance, overwriting them appropriately with each new
epoch. Indeed, storing old message keys from not-yet-delivered messages is the only information
one needs to remember from the prior FS-AEAD instances. So once this information is stored in
the global dictionary, we can simply overwrite the remaining information when moving to the new
epoch. With these simple efficiency optimizations, we arrive to (almost) precisely what is done by
Signal (cf. Figure 9).

To sum up, blindly using the FS-AEAD abstraction results in a slightly less efficient scheme,
but (1) we feel our treatment is more modular and intuitive; (2) when using a concrete FS-AEAD
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Signal Scheme

Init-A (k)
id← A
(kroot, kCKA)← k
σroot ← P-Init(kroot)

(σroot, wR)← P-Up(σroot, λ)

γ ← CKA-Init-A(kCKA)
Tcur ← λ

`prv ← 0
tcur, iS, iR ← 0
D[·]← λ

skip (t, u)
while iR < u

iR ++
(wR,K)← G(wR)
D[t, iR]← K

Send-A (m)
if tcur is even

tcur ++
`prv ← iS
iS ← 0
(γ, Tcur, I)←$ CKA-S(γ)
(σroot, wS)← P-Up(σroot, I)

iS ++
(wS,K)← G(wS)
h← (tcur, iS, Tcur, `prv)
e← Enc(K,h,m)

return (h, e)

try-skipped (t, i)
K ← D[t, i]
D[t, i]← ⊥
return K

Rcv-A (c)
(h, e)← c
(t, i, T, `)← h
req t even and t ≤ tcur + 1

if t = tcur + 1
skip(t− 2, `)
tcur ++, iR ← 0

(γ, I)← CKA-R(γ, T)
(σroot, wR)← P-Up(σroot, I)

K ← try-skipped(t, i)
if K = ⊥

skip(t, i− 1)
iR ++
(wR,K)← G(wR)

m← Dec(K,h, e)

if m = ⊥
error

return (t, i,m)

Figure 9: Signal scheme without the FS-AEAD abstraction, based on a CKA scheme, a PRF-PRNG,
authenticated encryption, and a regular PRG. The figure only shows the algorithms for A; B’s algorithms are
analogous, with “even” replaced by “odd” (and with Init-B initializing wS instead of wR).

scheme from Section 4.2, getting actual Signal becomes a simple efficiency optimization of the
resulting scheme. In particular, the security of Signal itself still follows from our framework.

Initial key agreement. As mentioned in the introduction, our modeling only addresses the
double-ratchet aspect of the Signal protocol, and does not tackle the challenging problem of the
generation of the initial shared key k. One thing this also allows us to do is to elegantly side-step
the issue that natural CKA protocols are unkeyed, and do not generate shared a shared key I0 from
the initial message T0. Instead, we model CKA as a secret key primitive, where the initial key kCKA
effectively generates the first message T0 of “unkeyed CKA” protocol, but now shared keys I1, I2, . . .
get generated right away from subsequent messages T1, T2, . . .. In other words, rather than having
k only store the root key kroot, in our protocol we let it store a tuple (kroot, kCKA), and then use
kCKA to solve the syntactic issue of having a special treatment for the first CKA message T0.

In most actual Signal implementations, the initial shared key k will only contain the value kroot,
and it is the receiver B who stores several initial CKA messages T0 (called “one-time prekeys”)
on the Signal server for new potential senders A. When such A comes along, A would take one
such one-time prekey value T0 from the Signal server, and (optionally) use it to generate the initial
shared key kroot using the X3DH Key Agreement Protocol [27]. This creates slight circularity, and
we leave it to the future work to properly model and analyze such generation of the initial key kroot.
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5.3 Security of the SM Scheme

This section establishes SM security of the scheme presented in Section 5.1 by showing that it
satisfies the correctness, authenticity, and privacy properties. By combining Theorems 7, 8, and 12
with Theorem 1, one obtains the following result:

Theorem 6. Assume that

• CKA is a (t′,∆CKA, εcka)-secure CKA scheme,

• FS-AEAD is a (t′, q, εfs-aead)-secure FS-AEAD scheme, and

• P is a (t′, εp)-secure PRF-PRNG.

Then, the SM construction above is (t, q, qep,∆SM, ε)-SM-secure for t ≈ t′, ∆SM = 2 + ∆CKA, and

ε ≤ 2q2
ep · (εcka + q · εfs-aead + εp) .

The rest of the section is dedicated to proving Theorems 7, 8, and 12.

5.3.1 Correctness

Theorem 7. Let t, q, qep ∈ N. The SM construction above is (t, q, qep,∆SM, 0)-correct for ∆SM =
2 + ∆CKA, where ∆CKA is the parameter of the underlying CKA scheme.

Proof. Recall the correctness variant of the SM game allows no challenges and only provides reduced
inject oracles, which only allow the attacker to deliver compromised messages pertaining to non-
current epochs.

To argue that scheme SM is correct, note that it is straight-forward to verify that A and B
produce the same CKA keys in this experiment and absorb them into their respective copies of the
root RNG in the same order. Therefore, when A initializes a new (odd) epoch with a particular key,
B will initialize the epoch on his end with the same key (and vice-versa). Moreover, it is not hard
either to see that messages received are routed to the appropriate instance of FS-AEAD. Using the
correctness of FS-AEAD, one concludes that scheme SM is correct as well.

5.3.2 Authenticity

SM scheme SM presented in Section 5.1 satisfies the authenticity property:

Theorem 8. Assume that

• CKA is a (t′,∆CKA, εcka)-secure CKA scheme,

• FS-AEAD is a (t′, q, εfs-aead)-secure FS-AEAD scheme, and

• P is a (t′, εp)-secure PRF-PRNG.

Then, the SM construction above is (t, q, qep,∆SM, ε)-authentic for t ≈ t′, ∆SM = 2 + ∆CKA, and

ε ≤ εcka + q · εfs-aead + εp .
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To prove the theorem, fix an attacker A, and recall that A initially specifies values (t∗L, t
∗), where

w.l.o.g. t∗ is assumed to be even in the following. That is, in the epoch being attacked, B acts as
sender and A as receiver. Recall further that the authenticity game provides no challenge oracles
and inject oracles that are reduced (as defined in Section 3.3), except for ciphertexts corresponding
to epoch t∗.12 Moreover,

• if at any point tL ∈ {t∗L + 1, . . . , t∗ − 1}, the attacker loses the game immediately;

• if A (the receiver in epoch t∗) is corrupted any time once tA > t∗L, the attacker loses the game
immediately;

In the following, let theal = t∗L + 2.13

The proof that SM scheme SM presented in Section 5.1 satisfies the authenticity property
considers hybrid experiments H0, H1, and H2. The indistinguishability of H0 and H1 follows from
the security of the CKA scheme, that of H1 and H2 from the security of the PRF-PRNG, and there
is a reduction from winning the FS-AEAD security game to winning in H2.

Hybrid H0. This hybrid is the actual authenticity game for scheme SM.

Hybrid H1. Denote by T1, T2, . . . and I1, I2, . . . the CKA messages and keys, respectively, created
by A and B during the execution of the protocol. H1 works as H0, but CKA key Itheal , is replaced
by a value chosen uniformly at random.

Lemma 9. There exists an attacker B1 (comparable in efficiency to A) such that

AdvSM
H0

(A) ≤ AdvSM
H1

(A) + AdvCKA
ror,∆(B1) .

Proof. Assume for simplicity that theal is even, i.e., the “healing” CKA message/key pair is produced
by B. Attacker B1 (against the CKA game) internally runs A and simulates the authenticity game
for A. The simulation may fail under certain circumstances, but, as shown below, this only happens
when A would lose the game anyway. B1 proceeds as follows:

• init(t∗L, t
∗): B1 calls its own oracle init(theal) and simulates initialization for both parties as

in H0, except that the CKA initialization procedures are not called (these are handled by the
CKA game).

• transmit-A(m,⊥): B1 simulates the oracle as in H0, but, whenever needed, it creates CKA
messages and keys by calling the corresponding oracle of the CKA game: to create (Tt, It) it
calls send-A.

• transmit-A(m, r) for r 6= ⊥: B1 simulates as in H0, but it creates CKA messages and keys
(Tt, It) by calling send-A’; if the call fails (due to the req condition of send-A’), B1 aborts.

• transmit-B(m,⊥): B1 simulates as in H0, but, whenever needed, it creates CKA messages
and keys (Tt, It) by calling chall-B if t = theal, and send-B otherwise.

12cf. Property (B) in Definition 7.
13Observe that this should indeed be theal = t∗L + 2, and not t∗L = t∗L + ∆CKA: following Section 4.1, all CKA schemes

heal within two epochs; the parameter ∆CKA merely measures the number of additional epochs needed for parties’
states to become safe to corrupt.
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• transmit-B(m, r) for r 6= ⊥: B1 simulates as in H0, but it creates CKA messages and keys
(Tt, It) by calling send-B’; if the call fails (due to the req condition of send-A’), B1 aborts.
If t = theal, B1 also aborts.

• deliver-A(c) and inject-A(c): B1 simulates as in H0 but calls receive-A (just to advance
the CKA game) and uses the CKA keys It already returned by the CKA game (when B1 was
handling a previous transmit query for B).

• corr-A: B1 simulates as in H0, but uses the corruption oracle corr-A of the CKA game to
get the state γA; if the call fails (due to the req condition of corr-A), B1 aborts.

The oracles corresponding to B not explicitly described above work analogously. In addition, as
soon as a party reaches epoch theal + ∆CKA, the reduction corrupts said party to obtain its state,
which is used to complete the simulation.

The proof is completed by showing that whenever the bit inside the CKA game is b = 0 or
b = 1, B1 simulates H0 or H1, respectively, to A—up to the point where A wins or loses. This is
verified by inspection and by noticing that that the restrictions of the authenticity game match the
restrictions of the CKA game. In particular:

• B1 calls the CKA challenge oracle chall-B in epoch theal—as announced when B1 called init.

• Since B1 uses the leaked state to simulate once a party reaches theal+∆CKA, a call to send-A’
(send-B’) only fails if the call to transmit-A (transmit-B) with r 6= ⊥ causes an epoch-t
message to be sent for t ∈ {t∗L + 1, . . . , theal + ∆CKA}. In such a case, due to

t∗ ≥ t∗L + ∆SM = t∗L + 2 + ∆CKA = theal + ∆CKA , (1)

the attacker loses the game because either

– tL is set to a value in {t∗L + 1, . . . , t∗ − 1}, or

– tL is set to t∗ but before B sends any epoch-t∗ messages, i.e., all epoch-t∗ ciphertexts will
be compromised and therefore the attacker cannot win the authenticity game.

• Due to (1), injections are only allowed once the CKA game has ended. Hence, the simulation
only needs to handle forged CKA messages T once it is given the CKA state (γA, γB).

• Observe that if A is corrupted at any point after tA > t∗L, the attacker loses the game. If B is
corrupted while tB ∈ {t∗L + 1, . . . , t∗ − 1}, A loses as well. If B gets corrupted in epoch t∗ or
later, the CKA game allows corrupting B as well, due to (1).

Hence, the simulation fails only if A would lose the authenticity game anyway.

Hybrid H2. Consider again CKA messages T1, T2, . . . and keys I1, I2, . . .. Each time a party
advances to a new epoch t, it absorbs It into its copy of the root RNG. Observe that once A, the
receiver-to-be for epoch t∗, absorbs It∗−1 and sends their first message in epoch t∗− 1, the attacker
is able to start (non-trivial) injections for epoch t∗ even though B, the sender-to-be for epoch t∗,
may not have received any epoch-(t∗ − 1) message and thus still be in epoch t∗ − 2. The only
exception to this fact is for ∆CKA = 0 and t∗ = t∗L + 2: in this case the authenticity game does not
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allow the attacker to inject until both parties reach epoch t∗. This is important since the refreshing
CKA key is It∗ here.

Let σt∗−1 be the state of the root RNG after the absorption of It∗−1. Observe that for each
forged ciphertext c′ with arbitrary CKA messages T ′, the attacker causes A to absorb some CKA
key I ′ into the root RNG at state σt∗−1; the second component k′ of the corresponding output
(σ′, k′) ← P-Up(σt∗−1, I

′) is thereafter used to instantiate an FS-AEAD session that processes the
FS-AEAD part of c′.

H2 works as H1, but each output (σ′, k′) of P-Up(σt∗−1, I
′) on some input I ′ is replaced by

(σ, k̃I′) for a randomly chosen value k̃I′ ∈ R.

Lemma 10. There exists an attacker B2 (comparable in efficiency to A) such that

AdvSM
H1

(A) ≤ AdvSM
H2

(A) + AdvP
PP(B2) .

Proof. Attacker B2 (against the PRF-PRNG game) internally runsA and simulates the authenticity
game for A. The simulation may fail under certain circumstances, but, as shown below, this only
happens when A would lose the game anyway. B2 simulates as shown next. Observe that the
simulation process potentially produces σt∗—the actual state of the RNG when B absorbs It∗ .
Once this happens, B2 uses this value to continue the simulation (while still using the PRF-PRNG
game for injections pertaining to epoch t∗ until A reaches epoch t∗ as well).

• init(t∗L, t
∗): B2 simulates initialization for both parties as in H2, except that the PRF-PRNG

initialization procedures are not called (these are handled by the PRF-PRNG game).

• transmit-A(m, r): B2 simulates as in H2, but it creates keys k for new FS-AEAD sessions
as follows: If a key is needed during Send for epoch t, i.e., when P-Up is supposed to be called
on state σt−1 and some input I,

– process is called with no argument for t = theal but t 6= t∗,

– chall-prng is called with no argument for t = theal and t = t∗,

– chall-prf(I) is called for t 6= theal but t = t∗, and

– process(I) is called in all other cases.

If chall-prng or chall-prf cannot be called (due to the req condition), B2 aborts.

• deliver-A(c): B2 simulates as in H2 but uses the appropriate FS-AEAD key obtained from
the PRF-PRNG game when processing the corresponding transmit query.

• inject-A(c): B2 simulates as in H2, but when an FS-AEAD key for epoch t∗ is needed, it
creates it similarly to the transmit oracles above, by calling chall-prf(I).

• corr-A: B2 simulates as in H2, but uses the corruption oracle of PRF-PRNG game to get
the state σ. If this is not possible, due to ¬prf being false, B2 aborts.

• corr-B: B2 simulates as in H2, but uses the corruption oracle of the PRF-PRNG game to
get the state σ. If this is not possible, due to ¬prf being false, B2 proceeds as follows: if B
is in epoch t∗ − 1 or t∗ − 2, it aborts; if B is in epoch t∗ or later, use σt∗ mentioned above or
whatever state it has evolved to.
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The oracles corresponding to B not explicitly described above work analogously. The proof is
completed by showing that whenever bit inside the PRF-PRNG game is b = 0 or b = 1, B2

simulates H1 or H2, respectively, to A—up to the point where A wins or loses. This is verified by
inspection and by noticing that that the restrictions of the authenticity game match the restrictions
of the PRF-PRNG game. In particular:

• Simulating the transmit oracles only fails if chall-prng or chall-prf cannot be called due
to the req condition, which, implies that corr = true when tB = t∗ − 1. This, in turn, means
that tL ∈ {t∗L + 1, . . . , t∗ − 1}, and thus the attacker would lose anyway.

• If simulating corr-A fails, prf = true, which only occurs once tA = t∗ − 1, which implies that
the corruption would set tL ∈ {t∗L + 1, . . . , t∗ − 1}, and thus the attacker would lose anyway.

• Simulating corr-B fails only if B is in epoch t∗ − 1 or t∗ − 2, which again implies that A
would lose anyway.

Reduction to FS-AEAD. Observe that there are two ways for FS-AEAD session to be created
for t = t∗:

• B creates his own when he advances to epoch t∗, or

• a session is created when A tries to inject towards A once she is in session t∗ − 1.

In either case, in hybrid H2, all keys generated for sessions with t = t∗ are uniformly random.
Therefore, there is a straight-foroward hybrid argument, where in the ith hybrid, attacking the first
i FS-AEAD session with t = t∗ is not accepted as a win; each two successive hybrids are close by
a straight-forward reduction to the FS-AEAD security; the proof is omitted.

Lemma 11. There exists an attacker B3 (comparable in efficiency to A) such that

AdvSM
H2

(A) ≤ q ·AdvFS-AEAD
fs-aead (B3) .

5.3.3 Privacy

SM scheme SM presented in Section 5.1 satisfies the privacy property:

Theorem 12. Assume that

• CKA is a (t′,∆CKA, εcka)-secure CKA scheme,

• FS-AEAD is a (t′, q, εfs-aead)-secure FS-AEAD scheme, and

• P is a (t′, εp)-secure PRF-PRNG.

Then, the SM construction above is (t, q, qep,∆SM, ε)-private for t ≈ t′, ∆SM = 2 + ∆CKA, and

ε ≤ εcka + q · εfs-aead + εp .
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To prove the theorem, fix an attacker A, and recall that A initially specifies values (t∗L, t
∗), where

w.l.o.g. t∗ is assumed to be even in the following. That is, in the epoch being attacked, B acts as
sender and A as receiver. Recall further that the privacy game provides only reduced inject oracles
(as defined in Section 3.3) and that the challenge oracles only work in epoch t∗. Moreover, if at
any point tL ∈ {t∗L + 1, . . . , t∗ − 1}, the attacker loses the game immediately (i.e., the outcome of
the game is a uniformly random bit). In the following, let theal = t∗L + 2.

Similarly, to authenticity, the proof that SM scheme SM presented in Section 5.1 satisfies the
privacy property also considers hybrid experiments H0, H1, and H2. Again, the indistinguishability
of H0 and H1 follows from the security of the CKA scheme, that of H1 and H2 from the security
of the PRF-PRNG, and there is a reduction from winning the FS-AEAD security game to winning
in H2.

Hybrid H0. This hybrid is the actual privacy game for scheme SM.

Hybrid H1. Denote by T1, T2, . . . and I1, I2, . . . the CKA messages and keys, respectively, created
by A and B during the execution of the protocol. H1 works as H0, but CKA key Itheal , is replaced
by a value chosen uniformly at random.

Lemma 13. There exists an attacker B1 (comparable in efficiency to A) such that

AdvSM
H0

(A) ≤ AdvSM
H1

(A) + AdvCKA
ror,∆(B1) .

Proof. Assume for simplicity that theal is even, i.e., the “healing” CKA message/key pair is produced
by B. Attacker B1 (against the CKA game) internally runs A and simulates the privacy game for
A. The simulation may fail under certain circumstances, but, as shown below, this only happens
when A would lose the game anyway. B1 proceeds as follows:

• init(t∗L, t
∗): B1 calls its own oracle init(theal) and simulates initialization for both parties as

in H0, except that the CKA initialization procedures are not called (these are handled by the
CKA game).

• transmit-A(m,⊥): B1 simulates the oracle as in H0, but, whenever needed, it creates CKA
messages and keys by calling the corresponding oracle of the CKA game: to create (Tt, It) it
calls send-A.

• transmit-A’(m, r) for r 6= ⊥: B1 simulates as in H0, but it creates CKA messages and keys
(Tt, It) by calling send-A’; if the call fails (due to the req condition of send-A’), B1 aborts.

• chall-A(m): B1 simulates as in H0, i.e., the oracle offers no functionality since t∗ is even.

• transmit-B(m,⊥): B1 simulates as in H0, but, whenever needed, it creates CKA messages
and keys (Tt, It) by calling chall-B if t = theal, and send-B otherwise.

• transmit-B’(m, r) for r 6= ⊥: B1 simulates as in H0, but it creates CKA messages and keys
(Tt, It) by calling send-B’; if the call fails (due to the req condition of send-A’), B1 aborts.
If t = theal, B1 also aborts.

• deliver-A(c) and inject-A(c): B1 simulates as in H0 but calls receive-A (just to advance
the CKA game) and uses the CKA keys It already returned by the CKA game (when B1 was
handling a previous transmit query for B).
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• corr-A: B1 simulates as in H0, but uses the corruption oracle corr-A of the CKA game to
get the state γA; if the call fails (due to the req condition of corr-A), B1 aborts.

The oracles corresponding to B not explicitly described above work analogously. In addition, as
soon as a party reaches epoch theal + ∆CKA, the reduction corrupts said party to obtain its state,
which is used to complete the simulation.

The proof is completed by showing that whenever the bit inside the CKA game is b = 0 or
b = 1, B1 simulates H0 or H1, respectively, to A—up to the point where A wins or loses. This is
verified by inspection and by noticing that that the restrictions of the authenticity game match the
restrictions of the CKA game. In particular:

• B1 calls the CKA challenge oracle chall-B in epoch theal—as announced when B1 called init.

• Since B1 uses the leaked state to simulate once a party reaches theal+∆CKA, a call to send-A’
(send-B’) only fails if the call to transmit-A (transmit-B) with r 6= ⊥ causes an epoch-t
message to be sent for t ∈ {t∗L + 1, . . . , theal + ∆CKA}. In such a case, due to

t∗ ≥ t∗L + ∆SM = t∗L + 2 + ∆CKA = theal + ∆CKA , (2)

the attacker either loses the game because tL is set to a value in {t∗L + 1, . . . , t∗ − 1}, or tL
is set to t∗ but before B sends any epoch-t∗ messages, i.e., all epoch-t∗ ciphertexts will be
compromised and therefore the attacker cannot ask for any challenges (and will have no
information about the secret bit b).

• Observe that if either party is corrupted while tB ∈ {t∗L + 1, . . . , t∗ − 1}, A loses. If B gets
corrupted in epoch t∗ or later, the CKA game allows corrupting B as well, due to (2). However,
A may get corrupted when she is in epoch t∗−1 (before having received any epoch-t∗ message)
but B is already in t∗. At that point the CKA game does not allow corruption, but the fact
that the privacy game allowed the corruption in the first place implies that no challenge has
been sent yet. Hence, all remaining epoch-t∗ ciphertexts will be compromised and therefore
the attacker cannot ask for any challenges (and will have no information about the secret bit
b). Once A reaches t∗, the CKA game allows corruption as well, again due to (2).

Hence, the simulation fails only if A would lose the authenticity game anyway.

Hybrid H2. Consider again CKA messages T1, T2, . . . and keys I1, I2, . . .. Each time a party
advances to a new epoch t, it absorbs It into its copy of the root RNG. For arbitrary i, let σi be
the state of the root RNG after the absorption of Ii. H2 works as H1, but the output (σt∗ , kt∗) of
P-Up(σt∗−1, It∗) is replaced by (σt∗ , k̃t∗) for a randomly chosen value k̃t∗ ∈ R.

Lemma 14. There exists an attacker B2 (comparable in efficiency to A) such that

AdvSM
H1

(A) ≤ AdvSM
H2

(A) + AdvP
PP(B2) .

Proof. Attacker B2 (against the PRF-PRNG game) internally runsA and simulates the authenticity
game for A. The simulation may fail under certain circumstances, but, as shown below, this only
happens when A would lose the game anyway. B2 proceeds as follows:

• init(t∗L, t
∗): B2 simulates initialization for both parties as in H2, except that the PRF-PRNG

initialization procedures are not called (these are handled by the PRF-PRNG game).
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• transmit-A(m, r): B2 simulates as in H2, but it creates keys k for new FS-AEAD sessions
as follows: If a key is needed during Send for epoch t, i.e., when P-Up is supposed to be called
on state σt−1 and input It,

– process is called with no argument for t = theal but t 6= t∗,

– chall-prng is called with no argument for t = theal and t = t∗,

– chall-prng(I) is called for t 6= theal but t = t∗, and

– process(I) is called in all other cases.

If chall-prng cannot be called (due to the req condition), B2 aborts.

• deliver-A(c): B2 simulates as in H2 but uses the appropriate FS-AEAD key obtained from
the PRF-PRNG game when processing the corresponding transmit query.

• inject-A(c): B2 simulates as in H2.

• corr-A: B2 simulates as in H2, but uses the corruption oracle of PRF-PRNG game to get
the state σ.

The oracles corresponding to B not explicitly described above work analogously. The proof is
completed by showing that whenever bit inside the PRF-PRNG game is b = 0 or b = 1, B2 simulates
H1 or H2, respectively, to A—up to the point where A loses. This is verified by inspection and
by noticing that that the restrictions of the authenticity game match the restrictions of the PRF-
PRNG game. In particular, simulating the transmit oracles only fails if chall-prng cannot be
called due to the req condition, which, implies that corr = true when tB = t∗ − 1. This, in turn,
means that tL ∈ {t∗L + 1, . . . , t∗ − 1}, and thus the attacker would lose anyway.

Reduction to FS-AEAD. Observe that in hybrid H2, the key generated for FS-AEAD session
t = t∗ is uniformly random. Therefore, there is a straight-foroward hybrid argument, where in the
ith hybrid, attacking the first i FS-AEAD session with t = t∗ is not accepted as a win; each two
successive hybrids are close by a straight-forward reduction to the FS-AEAD security; the proof is
omitted.

Lemma 15. There exists an attacker B3 (comparable in efficiency to A) such that

AdvSM
H2

(A) ≤ q ·AdvFS-AEAD
fs-aead (B3) .

6 On Stronger Security Notions

In the past two years several stronger notions of security beyond what is achieved by our secure
messaging protocol. A selection of them and their relation to this work is presented below.
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6.1 Security against Fine-Grained Compromise

A concern with the Signal protocol one might raise is that the states of both parties are identical.
In other words, corrupting party, say, A reveals the secrets of party B (at least once all messages
in transit from A to B are delivered) since the secrets are symmetric. In particular, if A and B are
executing the Signal protocol, then corrupting A allows to break the following security properties
(amongst others) during the current epoch:

(1) Privacy of future messages sent by A.

(2) Authenticity of future messages sent by A.

(3) Privacy of future message sent by B.

(4) Authenticity of future messages sent by B.

Given that, by correctness, A should be able use her (leaked) state to decrypt future messages from
B, it seems that losing property (3) is unavoidable. Moreover, once A’s state leaks, she holds no
secret that is not already known to the adversary (until the next epoch begins), and thus giving up
on (2) is also unavoidable. However, no such arguments exist for properties (1) and (4). Indeed,
these and various more involved security properties are considered under the general moniker of
security against fine-grained state compromise in [18]. Similarly, in [29] the authors also define a
stronger notion of security for such channels which captures security against these and other more
advanced attacks. Furthermore, in both papers new protocols satisfying the respective new security
notions are presented.

A high price. A major appeal of the Signal protocol is its real-world practicality: besides allowing
for immediate decryption, it also uses only a small amount of local storage to keep state, is built from
a collection of standard and widely implemented primitives, and requires quite a limited amount
of computation for any given operation. Unfortunately, to achieve their new security notions, the
constructions of [18, 29] drop immediate decryption and make use of much heavier cryptographic
machinery than the original Signal protocol. For example, both the key-updatable KEMs of [29] and
the forward-secure public-key encryption of [18] are built from hierarchical identity based encryption
(HIBE) and their states grow linearly in the number of messages exchanged during an epoch. This
results in significantly larger states, more computation, added communication complexity (e.g., due
to including public keys for a forward-secure signature scheme as well as forward-secure encryption
scheme with each ciphertext sent [18]), and makes use of the relatively non-standard HIBE primitive
(itself based on computationally expensive pairings or lattices).

While, for some use cases, this may be an acceptable price to pay for the added security, we
believe that there remain a large number of realistic settings where the added cost is too much to
ask. For example:

• when building a secure message platform intended to support very cheap (and thus under-
resourced) smartphones;

• when the system is expected to still allow for some communication despite potential packet
loss and/or re-ordered messages (e.g., due to an unreliable network);
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• when lacking the (considerable) resources and cryptographic engineering know-how required
to securely implement, test, and audit new advanced cryptographic primitives on all natively
supported devices.

To address these and similar cases, we describe a compromise protocol in Section 6.2. While the new
protocol strengthens the security of Signal (e.g., it protects properties (1) and (4) above), it does not
give up immediate decryption, only makes use of standard cryptographic primitives constructions,
which are already widely implemented in standard cryptographic libraries, and requires only a
modest increase in local storage, computation, and bandwidth compared to the original protocol.
Formally capturing the security notion achieved by the protocol as well as a corresponding security
proof are left for future work.

6.2 Public-Key Secure Messaging

In a nutshell, the key idea is to extend the SM protocol from Section 5 and to break the symmetry
between the internal states of A and B by using CCA2-secure public-key encryption (PKE) and
EUF-CMA-secure digital signatures (DS)—standard public-key primitives—to encrypt and sign,
respectively, the ciphertexts produced by the FS-AEAD scheme. Furthermore, with every message
sent, a party “announces” encryption and verification keys for future epochs. Specifically, when
sending epoch-t messages,14 A attaches the encryption key with which B would encrypt in epoch
t+ 1 as well as the verification key corresponding to the signing key A will use in epoch t+ 2.

In the following, let PKE = (PKEG,Enc,Dec) be a CCA2-secure PKE scheme and DSS =
(DSG,Sign,Verify) a EUF-CMA-secure DSS (cf. Section 2).

State. Scheme SM keeps an internal state sA (resp. sB), which is initialized by Init-A (resp. Init-B)
and used as well as updated by Send and Rcv. Compared to the SM scheme from Section 5, the
state sA of SM consists of the following additional values (the state sB is defined analogously):

• dictionaries ek[·] and dk[·] storing encryption and decryption keys, respectively, for public-key
encryption, and

• dictionaries sk[·] and vk[·] storing signing and verification keys, respectively, for digital signa-
tures.

By convention, epoch-t messages are encrypted with ek[t] and signed with sk[t]. At any given time,
the two parties store only a subset of all these keys:

• encryption key ek[t] and signing key sk[t] for the current sending epoch t;

• decryption keys dk[t] and verification keys vk[t] for all receiving epochs t for which not all
messages have been received (i.e., for which FS-Cnt(v[t]) <M[t]).

14Recall that A sends messages in odd epochs and receives messages in even epochs.
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Public Key Secure-Messaging (PKSM) Scheme

Init-A (k′)
id← A
(k,PKEK,DSK)← k′

(kroot, kCKA)← k
ek0, dk0, ek1, dk1 ← PKEK
sk0, vk0, . . . , sk2, vk2 ← DSK

σroot ← P-Init(kroot)
(σroot, k)← P-Up(σroot, λ)

v[·]← λ
v[0]← FS-Init-R(k)

γ ← CKA-Init-A(kCKA)
Tcur ← λ

ek[·], dk[·], sk[·], vk[·]← λ
dk[0]← dk0, vk[0]← vk0

ek[1]← ek1, sk[1]← sk1

dk[2]← dk2, vk[2]← vk2

`prv ← 0

tcur ← 0

Send-A (m)
if tcur is even

`prv ← FS-Stop(v[tcur − 1])
tcur ++

(γ, Tcur, I)←$ CKA-S(γ)
(σroot, k)← P-Up(σroot, I)
v[tcur]← FS-Init-S(k)

(ek[tcur + 1], dk[tcur + 1])←$ PKEG

(sk[tcur + 2], vk[tcur + 2])←$ DSG

h←
(tcur, `prv, Tcur,ek[tcur + 1], vk[tcur + 2])

(v[tcur],e
′)← FS-Send(v[tcur], h,m)

e← Enc(ek[tcur], e
′)

s← Sign(sk[tcur], (h, e))

return (h, e, s)

Rcv-A (c)
(h, e, s)← c
(t, `, T, ek, vk)← h
req t even and t ≤ tcur + 1

if ¬Verify(vk[t], (h, e), s)
error

e′ ← Dec(dk[t], e)

if t = tcur + 1
tcur ++
FS-Max(v[t− 2], `)

sk[t− 1], ek[t], vk[t+ 1]← λ
ek[t+ 1]← ek, vk[t+ 2]← vk

(γ, I)← CKA-R(γ, T)
(σroot, k)← P-Up(σroot, I)

v[t]← FS-Init-R(k)

(v[t], i,m)← FS-Rcv(v[t], h,e′)

if m = ⊥
error

return (t, i,m)

Figure 10: Secure-messaging scheme based on an FS-AEAD, a CKA scheme, a CCA secure public key
encryption scheme, an EUF-CMA secure digital signature scheme and a PRF-PRNG. The figure only shows
the algorithms for A; B’s algorithms are analogous, with “even” replaced by “odd” (and with Init-B initializing
v[0] via FS-Init-S as well as storing the “opposite” public/secret keys).

The algorithms. The algorithms of the PKSM scheme are depicted in Figure 10 and described
in more detail below; the differences to the original SM scheme in Figure 8 are highlighted. For
ease of description, the algorithms Send and Rcv are presented as Send-A and Rcv-A, which handle
the case where id = A; the case id = B works analogously. Moreover, to improve readability, the
state sA is not made explicit in the description: it consists of the variables set by the initialization
algorithm (except for the four lines describing how to parse the initial shared key).

• Initialization: The initialization procedure Init-A expects a key k′ shared between A and B;
k is assumed to have been created at some point before the execution during a trusted setup
phase and to consist of

– initialization keys k = (kroot, kCKA) for the root RNG and the CKA scheme, respectively;

– PKE key pairs PKEK for epochs 0 and 1; and

– DS key paris DSK for epochs 0, 1, and 2.

The parties then store the appropriate keys (as described above) in their dictionaries ek[·],
dk[·], sk[·], and vk[·]. The remainder of the initialization is identical to that of the original SM
scheme.

The PKSM protocol uses the PRF-PRNG, CKA, and FS-AEAD similarly to the original SM
protocol, except for the modifications described above.
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• Sending messages: Procedure Send-A allows A to send a message to B. If A enters a new
sending epoch t, the protocol proceeds as before, but additionally generates the PKE key pair
(ek[t+ 1], dk[t+ 1]) for epoch t+ 1 and the DS key pair (sk[t+ 2], vk[t+ 2]) for epoch t+ 2.

Irrespective of whether A entered a new sending epoch, in addition to the values tA, `prv, and
Tcur, the header h now also includes the keys ek[tA + 1] and vk[tA + 2]. Furthermore, the
FS-AEAD ciphertext e′ is additionally encrypted with ek[tA] and signed with sk[tA]; observe
that ek[tA] is either part of the initial shared key or has been previously announced by B, and,
similarly, sk[tA] is either part of the initial shared key or has been previously generated by A.
The resulting ciphertext e and signature s as well as h make up the eventual ciphertext.

• Receiving messages: When Rcv-A processes a ciphertext c = (h, e, `) with header h =
(t, `, T, ek, vk), it first verifies the signature with vk[t], which is either part of the initial shared
key or has been previously announced by B. If the check fails, the algorithm throws an
exception (error) and terminates; otherwise, it uses decryption key dk[t], which is either
part of the initial shared key or has been generated earlier by A, to decrypt e, yielding an
FS-AEAD ciphertext e′.

As with the original SM scheme, there are two possibilities:

– t ≤ tA (and t even): In this case, ciphertext c pertains to an existing FS-AEAD epoch,
in which case the Rcv-A proceeds as before, but additionally deletes dk[t] and vk[t] if all
messages for epoch t have been received.

– t = tA + 1 and tA odd: Again, the algorithm proceeds as before, except that it

∗ deletes sk[t − 1], ek[t], and vk[t + 1] (as there is no longer any need to sign epoch-
(t− 1) messages nor to announce the encryption key for epoch t or the verification
key for epoch t+ 2) and

∗ stores ek as the encryption key for epoch t + 1 and vk as the verification key for
epoch t+ 2.

Efficiency. In comparison with the original protocol in Figure 8 the packets being exchanged
are significantly larger as they now each contain two extra public keys, a signature, and a public
key encryption of the AEAD ciphertext. In practice, this may prove to be a high price to pay in
bandwidth costs for the added security.

Fortunately, there are various optimizations one could apply to our scheme to reduce some of
these overheads. We leave the study of these optimizations to future work, here only mentioning
some high-level ideas. First, we might be able to reduce the size of two public-keys to a single public
key by using a “signature-encryption” scheme (e.g., the ones in [16]), which allows to securely reuse
the same key material for “compatible” signature and encryption schemes. In addition to bandwidth
of each packet (now only one public-key), this even saves on the secret state of a party, as the same
secret key will be used both for signing in one epoch, and decrypting in the next one.

While using a signature-encryption scheme does lead to smaller packet size due to only one
public key, such schemes do not make any effort to compress ciphertexts and signatures themselves,
nor to reduce the time for sender’s signing/encrypting (resp. receiver’s verifying/decrypting). For
this task, a better suited primitive might be a signcryption scheme [33]. Indeed, the main original
motivation for signcryption was to be more efficient (in time, “signcryptext” size, and/or public
key size) as compared to the sum of separate signature and encryption schemes.
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In fact, even more optimizations might be possible in a specific context, since for our application,
each party will use a given signcryption key only in two epochs: as a sender with one particular
recipient in one epoch, and as receiver with a one particular sender in another. It might be possible
that such restricted signcryption schemes could be even more efficient than general ones.

Finally, a naive computation of AEAD, signature and public-key encryption will require multiple
passes over a potentially long message. Thus, further optimizations should be possible, so that only
a single pass over the message can compute all three functionalities.

Security intuition. Intuitively, the new scheme inherits the SM security properties of the original
protocol in Figure 8 since the adversary’s job has, if anything, only become harder. That is, even
if both the public key encryption and signature schemes were trivially breakable it still remains
for the adversary to attack the original protocol. However, now, when corrupting A the adversary
does not learn the current signing key of B, nor does it learn B’s current decryption key. Thus
(assuming the encryption and signature schemes are secure), A’s state cannot be used to decrypt
future messages sent by A in the current epoch t (as they are encrypted with ek[t]) nor can the
adversary forge messages from B to A since these would have to verify under the corresponding
verification key. We leave a formal analysis of the security achieved here (as well as the variant
using signcryption directly) for future work.

Limits of the construction. It is worth noting that although the modified protocol does satisfy
a stronger security notion than SM security in Figure 2 it does not achieve the very powerful notions
of [18, 29]. For example, the notion in [18] also requires security in the following sense. Consider a
single epoch in which A has sent a messages but which has not yet been delivered to B. Now the
adversary corrupts both A and B. Then [18] require that the adversary should not be able to forge
a different first message for that epoch than the one already sent out by A.

Clearly, even our modified scheme above does not satisfy this notion since the adversary learns
the symmetric key needed to create an appropriate FS-AEAD from B while she learns the required
signing (and public key encryption) keys from A. In contrast, the protocol of [18] essentially uses
forward-secure signatures instead of our plain signatures. Thus, once A signs a first message for the
epoch she no longer posses the signing key material to sign any other first message (or ciphertext
really) for that epoch. While it is relatively immediate that using forward-secure signatures would
also be an option for our protocol so as to get security against the above (and similar) attack we
believe that the added practical costs could often outweigh the benefits. (A similar, but even more
stark trade-off can be observed by replacing our plain public key encryption with forward secure
variants). With an eye towards practicality, for the reasons described above, we have opted for the
less secure but simpler and more lightweight variant above.

6.3 RECOVER Security

In recent concurrent and independent works by Durak and Vaudenay [11] and Jost, Maurer and
Mularczyk [19], the authors introduce a very interesting notion of RECOVER-security, which,
intuitively, ensures that once an adversary manages to forge a message from A to B, then no future
message from A to B will be accepted by B. The converse must also hold when switching the
roles of A and B. In a nutshell, to achieve this notion, their secure messaging protocol includes
h = H(trans) as part of the associated data (AD) of each new ciphertext being sent. Here H is
a collision resistant hash function and trans is a list containing all AD/ciphertexts pairs sent thus
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far. To see why this achieves RECOVER-security notice that once B accepts a forged message, i.e.
one not sent by A, their values of trans will hence forth always differ. Thus any future message A
sends to B will not have the expected value of h and so decryption will fail on B’s end.

It is tempting to apply the same idea to Signal (and our extension in Figure 8), but notice that
the naive application of hashing the entire transcript comes in tension with immediate decryption
(which the protocol of [11, 19] does not meet), as the receiver may receive messages out of order,
and not have the full transcript to hash. Moreover, if one cares about message loss recovery (when
messages can be lost forever), then this idea will not work. We leave the problem adding meaningful
and achievable form of RECOVER-security (especially in relation to immediate decryption) to our
notions and protocols as an interesting problem for future research.
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A Simplified Properties Imply Full SM Security

Theorem 1. Assume an SM scheme SM is

• (t′, q, qep,∆SM, εcorr)-correct,

• (t′, q, qep,∆SM, εauth)-authentic, and

• (t′, q, qep,∆SM, εpriv)-private.

Then, it is also (t,∆SM, q, qep, ε)-secure, where

ε ≤ εcorr + q2
ep · (εauth + εpriv) .

In order to prove Theorem 1, fix ∆SM and a (t, q, qep)-attacker A. The proof considers a series of
hybrids to arrive at an experiment in which the attacker has advantage 0. The distances between
successive hybrids are bounded via reductions to correctness, authenticity, and privacy.

Hybrid H0. Hybrid H0 is the original SM game. For notational purposes, denote the advantage
of A by AdvSM

H0
(A).

A.1 Dealing with Correctness

Hybrid H1. Hybrid H1 works as H0, except that the win-condition inside the delivery oracles
deliver-A and deliver-B is removed.

Lemma 16. There exists a (t′, q, qep)-attacker B1 with t′ ≈ t such that

AdvSM
H0

(A) ≤ AdvSM
H1

(A) + AdvSM
corr,∆SM

(B1) .

Proof. For both experiments H0 and H1, consider the event E that the win-condition inside one of
the delivery oracles is provoked; observe that, since the game ends upon win, if E occurs, it occurs
before condition win in one of the inject oracles is triggered.

It suffices to upper bound the probability of E occurring in, say, H1. This is achieved via a
reduction: Consider an attacker B1 against correctness that uses A and attempts to simulate H1

to A. The simulation proceeds as follows (the oracles B1 interacts with are referred to as B1’s own
oracles):

• Initially, choose a bit b ∈ {0, 1} randomly and initialize empty chall. Run A.

• Simulate SM game oracles to A as follows (oracles corresponding to B are simulated similarly):

– transmit-A: simply forward (to own transmit-A and back).

– chall-A(m0,m1, r): from A’s previous queries, determine whether safe-chA will be sat-
isfied after ep-mgmt. If so, call own transmit-A(mb, r), obtain and record answer c

in chall
+← (A, c), and pass c to A.

– deliver-A(c): call deliver-A(c) and pass answer to A except when (B, c) ∈ chall, then
replace m′ by ⊥ in the answer and remove triple from chall.

– inject-A(c): simply forward.
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– corr-A: if B /∈ chall, call own corr-A and forward response to A.

The oracles corresponding to B are defined analogously.
By inspection, one observes that B1 correctly, i.e., identically to H1, handles challenges and

injections in the game. In particular, since the state of a party remains unchanged if Rcv rejects a
ciphertext (cf. Property (A) in Definition 7), the reduced inject oracle of the correctness game is
identical to the actual inject oracle as long as the attacker does not provoke win inside an injection
oracle. The latter, however, would preclude E from occurring. Hence, the probability that B1 wins
the correctness game is equal to the probability that A provokes E in H1.

A.2 Getting Rid of Injections

Hybrid H2. Hyrbid H2 works as H1, but with reduced inject oracles, as defined in Section 3.3.
In the following, denote the advantage of A in H2 by AdvSM

H1
(A).

Lemma 17. There exists a (t′, q, qep)-attacker B2 with t′ ≈ t such that

AdvSM
H1

(A) ≤ AdvSM
H2

(A) + q2
ep ·AdvSM

auth,∆SM
(B2) .

Proof. In order to distinguish H1 and H2, A must provoke the win condition in the inject oracles
since H1 and H2 behave identically otherwise. Therefore, it suffices to upper bound the probability
of this event E in, say, H2, which is achieved via a reduction: Consider an attacker B2 against
authenticity that uses A and attempts to simulate H2 to A. The simulation proceeds as follows
(the oracles B2 interacts with are referred to as B2’s own oracles):

• Initially, choose values t∗ ∈ [qep] and t∗L ∈ [t∗ − ∆SM] uniformly at random and call own
init(t∗L, t

∗); choose bit b ∈ {0, 1} randomly and initialize empty chall. Run A.

• Simulate SM game oracles to A as follows (oracles corresponding to B are simulated similarly):

– transmit-A: simply forward (to own transmit-A and back).

– chall-A(m0,m1, r): from A’s previous queries, determine whether safe-chA will be sat-
isfied after ep-mgmt. If so, call own transmit-A(mb, r), obtain and record answer c

in chall
+← (A, c), and pass c to A.

– deliver-A(c): call deliver-A(c) and pass answer to A except when (B, c) ∈ chall, then
replace m′ by ⊥ in the answer and remove triple from chall.

– inject-A(c): simply forward.

– corr-A: if B /∈ chall, call own corr-A and forward response to A.

The oracles corresponding to B are defined analogously.
For the analysis of the reduction, one must argue that the probability that B2 wins the authen-

ticity game is at least q−2
ep ·P[E ] (where the probability is in H2). To that end, observe that B2 tries

to guess

• the epoch t∗ of the first successful injection query A makes, and

• the time t∗L of the last corruption event before the healing event that should have protected
against the injection.
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Assume that t∗ is even, i.e., in the epoch under attack, B is the sender and A the receiver; the case
where t∗ is odd works analogously.

It remains to argue that whenever the guess is correct, the simulation succeeds. To that end,
observe first that, by virtue of Property (E) in Definition 7, tA ≥ t∗−1 when the successful injection
occurs. Hence, no successful inject query can be made before A reaches epoch t∗ − 1. Moreover,
Properties (C) and (D) imply that the win-event cannot be the result of a replay attack or by
having A receive a ciphertext she sent.

Observe that the attacker correctly handles challenges and injections. In particular, since the
state of a party remains unchanged if Rcv rejects a ciphertext (cf. Property (A) in Definition 7),
the reduced inject oracle is identical to the actual inject oracle as long as the attacker does not
provoke win inside an injection oracle.

Moreover, if the guess is correct, B2 cannot lose the authenticity game due to the condition on
tL. Finally, B2 loses due to the corruption condition on A only if A asks to corrupt A (the receiver
in epoch t∗) when tA > t∗L, which would either contradict the correctness of the guess, or it occurs
when tA ≥ t∗, in which case all epoch-t∗ messages become compromised and win could not be
provoked by A anymore anyway. Finally, the view of A is independent of (t∗L, t

∗) (at least until A
wins or loses), and hence the probability of a correct guess is at least q−2

ep .

A.3 Substituting Random Encryptions

Hybrids H3,i. These hybrids, for i = 0, 1, . . . , qep, work as H2, but challenges up to epoch i
are created by encrypting a fixed message m̄ instead of mb. Observe that H3,0 is identical to H2.
Denote the advantage of A by AdvSM

H3,i
(A).

Lemma 18. For each i = 1, . . . , qep, there exists an attacker B3,i (comparable in efficiency to A)
such that

AdvSM
H3,i−1

(A) ≤ AdvSM
H3,i

(A) + i ·AdvSM
priv,∆SM

(B3,i) .

Proof. Consider an attacker A against SM security and a reduction attacker B3,i (against privacy)
that works as follows (the oracles B3,i interacts with are referred to as B3,i’s own oracles):

• Initially, let t∗ = i and choose value t∗L ∈ [i] uniformly at random and call own init(t∗L, t
∗);

choose bit b ∈ {0, 1} randomly and initialize empty chall. Run A.

• Simulate SM game oracles to A as follows (oracles corresponding to B are simulated similarly):

– transmit-A: simply forward (to own transmit-A and back).

– chall-A(m0,m1, r):

∗ First i − 1 epochs: from A previous queries, determine whether safe-chA will be
satisfied after ep-mgmt. If so, call own transmit-A(m̄, r), obtain and record

answer c in chall
+← (A, c), and pass c to A.

∗ Epoch i (for chall-A if i is odd and chall-B if i is even): pass (m̄,mb, r) to own
chall-A; obtain and pass answer c to A.

∗ Epochs after ith: from A previous queries, determine whether safe-chA will be satis-
fied after ep-mgmt. If so, call own transmit-A(mb, r), obtain and record answer

c in chall
+← (A, c) and pass c to A.
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– deliver-A(c): call deliver-A(c) and pass answer to A except when (B, c) ∈ chall, then
replace m′ by ⊥ in the answer and remove triple from chall.

– inject-A simply forward.

– corr-A: If B /∈ chall, call own corr-A and forward response to A.

The oracles corresponding to B are defined analogously.
Observe that B3,i tries to guess the time t∗L of the last corruption event before epoch i. If the

guess then B3,i simulates H3,i−1 to A if the secret bit inside the privacy game is 0 and H3,i if it
the bit is 1. In particular, observe that (if the guess is correct) B3,i loses the privacy game only
if A would lose the SM game (by an argument similar to that in the reduction to authenticity in
Lemma 17). In particular, the guess t∗L is independent of A’s view (at least until A loses).

Clearly, for H3,qep , AdvSM
H3,qep

(A) = 0. Theorem 1 now follows by combining Lemmas 16 to 18.

B Additional Preliminaries

B.1 Public-Key Encryption

Definition 18. A public-key encryption (PKE) scheme consists of three algorithms PKE = (PKEG,
Enc,Dec) with the following syntax:

• Key generation: PKEG takes a (implicit) security parameter and outputs a fresh key pair
(ek, sk)←$ PKEG.

• Encryption: Enc takes a public key ek as well as a message m and produces a ciphertext
e←$ Enc(ek,m).

• Decryption: Dec takes a secret key sk and a ciphertext e and outputs a message m ←
Dec(sk, e).

Correctness. A PKE must satisfy the following standard correctness property:

P[(ek, sk)←$ PKEG, c←$ Enc(ek,m),m′ ← Dec(sk, c) : m′ = m] = 1 .

Security. This work considers CCA security, which asks that no adversary be able to distinguish
encryptions of two different messages even given access to a decryption oracle. This is captured by
considering the following game: It chooses a random bit b← {0, 1}, produces a key pair (ek, sk)←
PKEG and passes ek to the attacker A. The attacker specifies two messages m0 and m1 and is then
given c∗ ← Enc(ek,mb). Moreover, A is given access to a decryption oracle for sk, but it is not
allowed to query the challenge ciphertext c∗. The attacker A wins the game if it correctly guesses b.
The advantage of A is denoted by AdvPKE

CCA(A); the attacker is parametrized by its running time t.

Definition 19. A public-key encryption scheme Π is (t, ε)-CCA-secure if for all t-attackers A,

AdvPKE
CCA(A) ≤ ε .

53



B.2 Digital Signatures

Definition 20. A digital-signature scheme (DSS) is a triple of algorithms DSS = (DSG, Sign,Verify)
with the following syntax:

• Key Generation: Given an (implicit) security parameter, key generation algorithm Gen
derives a key pair (sk, vk)←$ DSG.

• Signing: Given a message m and a signing key sk, the signing algorithm Sgn produces a
signature s← Sign(sk,m).

• Verification: Given a message m, a signature s, and a verification key vk, the verification
algorithm outputs a decision bit d← Verify(vk,m, s).

A DSS is called deterministic if Sgn is deterministic.

Digital signature schemes in this work are required to be deterministic. Note that any DSS can be
converted into a deterministic one by (1) having the signing key include the key to a PRF and (2)
generating the coins needed to sign a message m by evaluating the PRF on input m.

Correctness. We require standard correctness property that signatures generated under a signing
key always pass verification under the corresponding verification key:

∀m : P[(sk, vk)← DSG, s← Sign(sk,m) : 1 = Verify(vk,m, s)] = 1 .

Security. DS schemes in this work must satisfy the (standard) notion of existential unforgeability
under chosen-message attacks (EUF-CMA). This is captured by the following game: It generates
a key pair (sk, vk) and passes vk to the attacker. Then, the attacker is given access to a signing
oracle for sk. The adversary wins the game if it is able to eventually output a forgery, i.e., a pair
(m, s) such that m has not been queried to the signature oracle, but s is a valid signature for m
under vk. The advantage of the attacker A against a scheme DSS is denoted by AdvDSS

CMA(A).

C Key-Encapsulation Mechanisms

C.1 ElGamal KEM

In the (standard) ElGamal KEM, a public key has the form h = gs, where g is the generator of
cyclic group G of prime order q and where the secret key s ∈ Zq is chosen uniformly at random.
That is,

(h, s) = (gs, s) ←$ Gen .

To encapsulate a key, let r ∈ Zq be uniformly random and

(c, k) = (gr, hr) ←$ Enc(h) .

Finally, for decapsulation,
k = cs ← Dec(s, c) .

It is well known and easy to see that the security of this scheme follows immediately form the DDH
assumption.
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C.2 Frodo KEM

This section briefly recapitulates the Frodo KEM; for more details the reder is referred to the
original paper [6]. The Frodo KEM KEM = (Gen,Enc,Dec) is based on the learning with errors
(LWE) problem. It is parametrized by a size parameters n and n̄, a modulus q, and an error
distribution χ over Zq. The key generation algorithm Gen chooses a matrix A ∈ Zn×n

q uniformly at
random, and it samples matrices S,E← χ(Zn×n̄

q ) independently, where χ(Zn×n̄
q ) is the distribution

on matrices obtained by sampling each entry independently according to χ. The public key is
pk = (A,B := AS + E), and the secret key is sk = S.

In order to encapsulate a key for pk, algorithm Enc chooses S′,E′, Ẽ′ ∼ χ(Zn̄×n
q ) independently

and computes
B′ ← S′A + E′ as well as V′ ← S′B + Ẽ′ .

Then, from V′, reconciliation information C′ ← 〈V′〉2B as well as the key K ← bV′e2B are
computed (see below). The ciphertext is c = (B′,C′).

To decapsulate the key from a ciphertext c with secret key sk = S, algorithm Dec computes
K ← rec(B′S,C′), where rec is a function that uses the reconciliation information to recover the
key.

Reconciliation. Assume for simplicity that q is a power of two, and let B and B̄ such that
B + B̄ = log q. Observe that both the the decrypting party computes an approximation B′S
of matrix V′. In order to extract B random-looking bits from each entry v of matrix V′, the
encrypting party applies the function

b·e2B : v 7→
⌊
2−B̄v

⌉
mod B

to v. This function can be seen to split Zq into B intervals of length B̄ centered around 0. Since the
decrypting party can only compute an approximation of each entry v, the following reconciliation
information

〈·〉2B : v 7→
⌊
2−B̄+1v

⌋
mod 2

is passed to the decrypting party. This function can be seen to partition each interval above into
two parts, according the (B̄ + 1)

st
most significant bit. The reconciliation information helps the

reconciliation function rec in cases where the value v is close to an interval border (as long as the
error is not larger than 2B̄−2) and can be shown not to reveal information about bve2B . For further
information, see [6].
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