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Abstract

Cascade chaining is a very efficient and popular mode of tiparfor building various kinds of cryptographic
hash functions. In particular, it is the basis of the moswhgaitilized SHA function family. Recently, many
researchers pointed out various practical and theoredifidiencies of this mode, which resulted in a renewed
interest in building specialized modes of operations amd Im@sh functions with better security. Unfortunately,
it appears unlikely that a new hash function (say, based awamode of operation) would be widely adopted
before being standardized, which is not expected to happtreiforeseeable future.

Instead, it seems likely that practitioners would contitoieise the cascade chaining, and the SHA family
in particular, and try to work around the deficiencies margib above. In this paper we provide a thorough
treatment of how to soundly design a secure hash fundiibfrom a given cascade-based hash functibiior
various cryptographic applications, such as collisicsistance, one-wayness, pseudorandomness, etc. We require
each proposed construction Af to satisfy the following “axioms”.

1. The construction should consist of one or tistack-box” calls to H.

2. In particular, one is not allowed to know/use anythingwltbe internals ofd, such as modifying the
initialization vector or affecting the value of the chaigivariable.

3. The construction should support variable-length inputs

4. Compared to a single evaluation Bf M), the evaluation of’(M) should make at most a fixed (small
constant) number of extra calls to the underlying composskinction of H. In other words, the efficiency
of H' is negligibly close to that off.

We discuss several popular modes of operation satisfymgltlove axioms. For each such mode and for each
given desired security requirement, we discuss the weagsirement on the compression functionfbfvhich
would make this mode secure. We also give the implicationth@de results for using existing hash functions
SHA-z, wherez € {1, 224,256, 384, 512}.
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1 Introduction

The Cascade constructiois a very elegant way to build a hash functifinon arbitrary-length inputs from a given
compression functiok on fixed-length inputs. Recall that for a givén: {0,1}" x {0,1}" — {0,1}", one
can define a hash functioH, parametrized by an initialization vectél’ € {0,1}", as follows (where input
z=uwx1]...] z¢andz; € {0,1}"fori=1...0):

Hxy || ... || ) = h(ze, bl .. h(z1, IV)..))

We will refer to this as the MD mode or the plain MD mode (after Merkle-Dard)y The most abundant use
of the MD mode in practice comes in the design of the industry-standard basly fSHA (which consists of
several specific hash functions SHAwherez € {1,224, 256,384, 512}). Unfortunately, despite its elegance and
simplicity, the plain MD mode has several deficiencies. For instance, it daagiarantee that a “global” collision
of H implies a “local” collision of the compression functiagn unless one preprocesses the input into a suffix-
free form before applying? [10] (as we already mentioned, the particular suffix-free encodingppémading the
message length is callédD strengtheningand is actually used in the SHA family for this reason). More seriously,
it was shown by Coron et al. [9] that even MD strengthening falls preyegdhtension attack® which makes it
insufficient for domain extension of random oracle. Moreover, thiciafcy disqualifies the natural use of “plain
MD” in the design of “pseudorandom functions” [3]. Other problems agee when the MD mode is used in
applications such as key derivation [11] and target collision-resistam¢éOWHFs?) [5, 24].

Apart from the issues mentioned above, several other deficiencieg dith mode against exponential-time
attacks have been discovered [14, 16]. All these deficiencies, abujitle the improved brute-force attacks on the
popular SHA-1 hash function proposed recently [25, 26], suggestittis time to design a better, more “secure”
mode of operation for building a variable-length input hash function. Withghipose, NIST has been organizing
several workshops dedicated to coming up with the next generation tnastiohs [21]. However, this process will
take some time, and it does not appear that such hash functions wouldhbtardgiaed and widely accepted in any
foreseeable future. Therefore, practitioners are “stuck” with thegect of using existing hash functions, despite
all their deficiencies. Hence, there is a pressing need to design immedias’ ‘fiixkthe MD paradigm, without
changing it drastically.

There are two aims in coming up with such “fixes” to the MD mode. The first, arfdrsthe most popular, aim
is to design a slight variant of the MD mode that provably preserves a giweurity property of the compression
function, and to do so in the most aesthetic and efficient manner. We mentioa tew of the many examples of
this approach. For collision-resistance, we already mentioned the welirktezhnique oMD strengthening For
another example, by viewing the initialization vector as the key and applyimgfix-free encodintp the message,
one can obtain a variable-length input pseudorandom function frore@-fength input pseudorandom compression
function [3]. In the case of target collision-resistance, Shoup [24jgthed an elegant mode for building target
collision-resistant (TCR) hash functions (or UOWHFs [22]) from a Té&Rpression function by cleverly XORing
certain masks to the internal chaining variables in the MD construction. Tinenon feature in all these results
is that one assumesxactly the sameroperty from the compression functiégnas the desired property from the
hash functionH. In many cases, such as the PRF and TCR examples, this means thatra™seade must be
sufficiently different from the plain MD so that its implementation requires atnoial modification to the SHA
implementation. Concretely, the SHA family uses a fixed public IV (as opposetbtvary secret IV needed for
PRFs), while in the TCR case one cannot XOR the corresponding masksutuitiodifying the internals of SHA.

Of course, we are not saying that the required modifications are too ‘laxatgal” to be correctly implemented by
a serious programmer. In fact, they are not. Our point is that, irrespasitsimplicity and conceptual similarity to
the existing implementations, they require one to tinker with the internals of suatestiimplementations. And this

Yl.e., givenH () and any extensiop, one can computél (z || y) without knowingz.
2Which stands for Universal One-Way Hash Functions.



is not only error-prone and requiring low-level programming (whichldoeasult in less optimized implementations
than those done by the experts), but goes against the whole philosbpinydalar design. We do not want our

security engineers to know all the low-level cryptographic details. ldstday should understand the higher-level
picture of the protocols they are trying to build, and never need to wowytaxisting low-level libraries.

This brings us to the second approach, where one explicitly aims to dessgtiare” mode that uses orthack-
box callsto the plain MD modé. For instance, MD strengthening satisfies this property. Other importantpea
include the HMAC mode for pseudorandom functions [3] and the resuliddimain extension of random oracle in
[9]. The attractive feature of these results is that they result in a hashida with the desired property without
tinkering with the internals of SHA, and can use any off-the-shelf implementatiboreover, all these examples
also satisfy theproperty-preservingroperty described above, and do so without any noticeable efficjmmities
as compared to the solutions following the first approach. Concretelye gtite of one or two (or sometimes zero!)
extra calls to the compression functibr— which is negligible for all practical purposes —, one manages to achieve
the desired goal without tinkering with the internals of the existing hash furgtio
OUR GOAL. Not surprisingly, we will emphasize the latter approach in coming up withsfier existing hash
functions. That is, we consider the question of building a hash fundiibachieving a given security property
P using a black-box MD-based hash functiéh(with an unknown compression functid). We require that the
proposed constructiof’ satisfies the following “axioms”:

1. The construction should consist of one or titack-box” calls to H. In particular, the construction is not
allowed to use any knowledge of or tinker with the internals of the hash funéfio

2. The construction must support variable-length inputs.

3. Compared to a single evaluation Hf()/), the evaluation off’(M) should make at most a fixed (small
constant) number of extra calls to the underlying compression functiéh df other words, the efficiency of
H' is negligibly close to that of{.

The motivation behind requiring the constructifii to satisfy these axioms is from the viewpoint of a practitioner
who understands the properties of the hash function that are needibe feecurity of his cryptosystem, but who
wants to use an off-the-shelf standardized hash function implementatioruiviihloering with its internals. Such a
practitioner would be willing to sacrifice th@operty-preservin@spect of the “fix” in favor of a black-box imple-
mentation.

In fact, the above “axioms” leave very little freedom in choosing the modepefation forH’. The resulting
modes are essentially tineost widely-utilizedonstructions appearing in practical implementations:

1. Plain MD Construction:This captures the notion that the application uses the hash function as it isillWe
denote this mode of operation Hs

2. Encode-then-MD Constructionn this case, the user encodes the hash function input before applygng th
plain MD construction. Examples of popular encoding schemes usedféixefgee encoding and prefix-free
encoding. We will refer to the corresponding constructions aptéix-free MD constructiod,.. and the
suffix-free MD constructiohl,, ;.

3. MD-then-Chop Constructiortere the user applies the plain MD mode and only uses part of the output while
discarding the remaining bits. In particular, existing hash functions SHRa22l SHA-384 are obtained this
way from SHA-256 and SHA-512, respectively. We denote the MD-ittap construction that chopshits
of the output asi,;,, -

4. NMAC/HMAC ConstructionThe version of the NMAC construction that we consider simply composes two
applications of the plain MD mode with possibly different initialization vectbv§ and IV;. While not
obeying the first axiom, the NMAC construction serves as a nice abstrdatitire HMAC construction which
does satisfy all our axioms (but is slightly harder to formally analyze in somesgaConcretely, the HMAC

3In practice, with MD strengthening, but we ignore this aspect for now.



construction uses the NMAC construction with; = h(IV,a;) = H(ay) andIVa = h(IV, an) = H(an),
where eachy; is either the null stringL (in which case we lek(IV, L) = IV) or a singlex-bit block. We
denote the NMAC construction &8,,,,.. and the HMAC construction dsy,,,...

Now we can finally rephrase our goal as follows. Given a particuldretsecurity property’ (such as collision-
resistance or pseudorandomness) and one of thedes of operation above (which all satisfy our axioms), find the
weakest security assumption{8d)on the compression functignwhich would make the corresponding mode satisfy
P (or determine that the construction is insecure for @nytdeally, this security property?’ for 4 would beP itself
(which would result in groperty-preserving mode of operatjiorHowever, unlike most previous work, property
preservation is not our primary concern. In particular, we will not decdamode of operation to be “insecure” for a
propertyP simply because it is not property-preserving farinstead, we will find the weakest security propefty
of the compression function that makes the resulting construction secusawill allow the practitioners to decide
whether or not it is reasonable to assume that the compression functiasifige hash functions, such as SHA,
satisfy the property”’, even if P’ is (slightly) stronger tha®.

OuUR RESULTS. We achieve our main goal for a very wide variety of security propertiekidiing collision-
resistance (CRpseudorandomness (PRjdifferentiability from random oracle (ROnessage authentication (MAC)
target collision-resistance (TCRyecond preimage-resistance (SPRpdomness extraction (REhdone-wayness
(OW). In each case, and for each of the four popular modes above, we @vilifiythe needed propert§’ onh. In
some cases, the needBteasily follows from some existing work (for instance, from [9] in the casgomnain ex-
tension of random oracle). In other cases, it required some minor, baottiamp modifications to the existing results
in order to satisfy our axioms. For example, by assuming thetV, random) = random” in addition toh being

a PRF when keyed with the firatbits of its input, we could build a variable length PRF using the encode-then-MD
mode and adjusting the proof of [3]. More interestingly, by making extrarap§ons om, in some cases we can
prove security of the modes which were previously believed “insecugeélise they were not property-preserving.
Finally, in some cases the proof will involve careful and non-trivial modifan of previous results. For example,
this is the case when analyzing the one-wayness dfithe construction.

In addition to giving an exhaustive “modeproperty” guide (see figure 1) for achieving a given security priyper
with a given popular mode, in each section we also mention the practical impliaztioar results when using
existing hash functions SHA; wherex € {1,224, 256,384, 512}.

RELATED WORK. We have already cited many of the relevant papers. In particular, tieniga of the MD
mode that are useful in the property-preservation of collision-resistH, pseudorandomness [3, 4], message-
authentication [1, 20], random oracles [9] and randomness extradtidn We also mention the works of [7, 8]
concerned with multiple property-preservation; namely, designing a single wimoperation which simultaneously
preserves several properties. Unfortunately, the modes of [7, 8ptsatisfy our axioms. Finally, we mention
the work of Halevi and Krawczyk [13], which concentrated on buildingRrhash functions, and is the closest in
spirit to our motivation (indeed, we will use their results when discussing @ property). The authors built TCR
hash functions using the encode-then-MD mode, and showed a simplg cotlieme that yields a secure TCR hash
function under an appropriately strong assumption on the underlying essipn functiorh (still weaker than CR,
but stronger than TCR).

LOCATION OF THE KEY IN KEYED CONSTRUCTIONS We note that for keyed constructions, such as constructions
of pseudorandom and TCR functions, there are more than one possibilitezech hash function mode of operation.
In particular, any construction for these primitives must specify the locatidhe key. In keeping with the black-
box nature of the modes of operation, we prevent popular keying mesuatisas setting the key to be th& or
XORing the key into the chaining variables since this violates our basic axioms.

Moreover, we also do not consider the dedicated-key setting [1, &rewvnere is separate space for the key in
each application of the compression function. This is because existinduradions do not support such dedicated
keys. Even though we may consider the key to be part of the messagebiteckwe do not analyze this method
since it yields constructions with poor input bandwidth (thus violating ourdsgisim). Hence, we will only consider
modes of operation which incur an additive constant overhead comfmatieel plain MD mode.

3



Plain MD Encode-then-MD | MD-then-Chop | NMAC/HMAC
Suf-Free+(1 N/HMAC+(1)+(2
CRHF (1) + (2) (L) )+ (2 / L+@)
Pre-Free+(1)+(2) ay #L
Append key + | SF+(1)+(4) (append)| Prepend key + N/H+(3)+(4)(prepend)
PRE 1 (1) 4(2)+(4) | PF+(2)+(3) (prepend)  (2)+(3) Any IVs/as
Suf-Free not secure (5) NMAC/HMAC+(5)
RO Not Secure )
Pre-Free+(5) worse security | IV £ IVa 5 ap # ao
MAC Append key + | SF+(1)+(6) (append)| Append key + | N/H+(1)+(2)+(6)
(1)+(2)+(6) | PF+(1)+(2)+(6Japp.) | (1)+(2)+(6") Any IVs/as
TCR key & blks SF+(7) (key @ blks) key @ blks N/H+(7)+(9) (append)
(1) + (9 PF+(7)+(9) (7) + (9) Any IVs/as(key @ blks)
SF+(9 N/H+(8)+(9
SPR 8) + (9) ©) (&) + (9) /HHE+)
PF+(8)+(9) Any IVs/as
RExt (10) MDS + (10)(SF/PF?? (10) NMAC + (10)
X
Hoo (M) A Hoo(me) | Hoo(M) A Hoo(10) Heo (M) HMAC??
MDS+(2)+(11) NMAC+(2)+(11)
OWF 2)+(11 27)+(11
@+ (SF/PF??) @)+(11) HMAC??
Assumptions on compression function: ‘ Misc.
(1)=Collision Resistance (CR)  (1’)=CR after Chop SF=Suffix-free
(2)=Output Regular (2))=h(U,, -) is output regular PF=Prefix-free
(3)=standard PRF (sPRF) (3’)=sPRF after Chop MDS=MD Strengtheining
(4)=dual PRF (dPRF) ??=not known to be secure
(5)=FIL-RO RExt=Randomness Extrn.
(6)=MAC with k-bit key Key @ Blks =XOR key to
(7)=enhanced SPR (eSPR) (7")=eSPR after Chop each block
(8)=computed SPR (cSPR) (8”)=cSPR after Chop
(9)=Fixed-point at random IV
(10)=Family of random functions
(11)=One-way function

Figure 1: Table for comparing Security Property vs. Mode of operation

ARE WE ASKING TOO MucH? In our motivation, we advocated the fact that the security officersldhmunt
know (or worry about) the low-level details of the hash function implementstidn particular, we do not want
them to manually modify the internals of SHA. On the other hand, to use out tesy have to be “smart enough”
to understand the purpose of their application of the hash function, sccireyse our black-box workarounds.
For example, they need to knowif’ is used for collision-resistance, key derivation, one-wayness, ean'tAve
asking too much? Should not the security engineer just believe that the gxistsin function will be “magically
applicable” for whatever intuitive use (s)he has in mind (therefore makisg#per “useless”)?

We give two answers. First, we personally believe that a person degigraryptographic protocol using a hash
function shouldknow what security properties this hash function should satisfy. (Anddibés not contradict our
desire to protect them from low-level details!) Second, in order for #oeigty engineer to use a hash function in
the “magical” way above, the function should not have the weaknesdbg &HA family we mentioned earlier.
Thus, until a new, “magic” hash function is built and standardized, we sicgrtyiot achievex positive answer to
our question, even if wavant our engineers to be “dumb” and not understanding what they is doingtfwie
personally disagree with)! Until then, we believe that the results of thisrapaneaningful and useful.



2 Security of MD modes

We will analyze each of the security properties that actual hash fundaiensften required to satisfy, and find the
minimal assumptions on the compression function that are necessary tatpemexcurity of each of the black-box
modes of operation for this security notion. As we discussed, we will mbticeourselves to the case of property-
preservation and in some cases, we will need to make slightly stronger a&swsmmn the compression function
than the security notion desired.

Since the focus of our paper is mostly qualitative, in terms of when (i.e. fachndpplications) does it make
more sense to use some particular mode of operation, so we will keep thesistislightly informal” by using
more asymptotic definitions for the security notions. We assume basic familiaritytive$ie notions, but provide
the formal definitions in the appendix A if one needs. Due to space cortsiraia only give the security of the
modes of operation for collision-resistance, pseudorandomnesg, ¢atligon-resistance and one-wayness in the
main body. The discussion for other security notions can be found imdjges B-E.

2.1 Collision Resistance

We will analyze each of the four modes for minimal assumptions required @othpression functioh : {0, 1}" x
{0,1}™ — {0, 1}" needed in order to prove its collision resistance. A construction will be catietlision resistant

if the maximum advantage of an efficient attacker in finding a collision i&s we discussed, in some cases, the
security property needed for the compression functiomay be stronger than collision resistance.

PLAIN MD CONSTRUCTION It is a well-known fact that simply assuming collision resistance of the cossjme
function does not suffice to prove collision resistance of the plain MDtoaction. Indeed, if the compression
functionh has afixed-pointsuch that there is somee {0, 1}" such that:h(xz, IV) = IV. Then the output of the
plain MD constructiorH collides for the inputs: andz || m, for anym. Thus we, at least, need the compression
function to satisfy the following property.

Assumption 1 (No Fixed-Points) A functionh : {0,1}*x {0,1}"™ — {0, 1}" is ae secureagainst fixed points if for
a randomly chosetiV' € {0, 1}" no efficient machinel has success probability more thamwf finding a sequence
of k-bit blocksz; . .. z; such that,

h(zi,h(...,h(z1,IV)...)) =1V

If the compression function is such that no efficient attacker can finkl Sxed points (along with being collision
resistant), then the plain MD construction can be proven to be collision mnasista

Observation 1 The plain MD construction can be proven to be collision resistant if the cessjwn function is
collision resistant and is secure against fixed-points. The proof of moiligsistance for this case works as in [10],

The no fixed-pointsassumption allows us to prove collision resistance of the plain MD construdtignif is a
non-standard assumption and it is not intuitively clear as to which compnefgsiotions satisfy this property. But
since we are already assuming the compression function to be collisiotangésigerhaps we can prove this result by
making a weaker and cleaner additional assumption on the compressitiofiuf@rtunately we show that simply
assuming output regularity suffices in this case.

Assumption 2 (Regularity of outputs) A functionh : {0,1}™ — {0,1}™ is a e output regular functiorf for any
efficient machined that gives al bit output:

|Pr[A(z) = 1|z < h(Up)]| — Pr[A(z) =1|x — U,]| <€
HereU,,, andU,, denote the uniform distributions did, 1} and {0, 1}", respectively.

We show that if the compression function is output regular (i.e. for a randput, the output is well distributed
over the range) in addition to being collision-resistant, then it is securesadixied points and thus a CRHF using
the observation above.



Lemma 2.1 The compression functidn: {0,1}" x {0,1}" — {0,1}"iS (ecol + €reg + 27")-secCuUre against fixed
points if it satisfies the following properties:

e h iS¢,y collision resistant.
e his ane,., output regular function.

Proof: To the contrary, say there is an efficient attacker that finds a fixed point x; with non-negligible prob-
ability ¢, then we can show that it either breaks the collision resistance or the oatuiarity assumption for the
compression function. In order to show this, choose the initialization véét@asV «— h(x) (for z «— U, x Uy,),
instead of/V <« U,,. If the success probability ofl changes by a non-negligible amount then we can break the
output regularity assumption. Thu$,> €., + Pr[A succeeds in new game].

To estimate the success probability of the attacken the new game, say it finds a sequencexdfit blocks
x1...z; such that(z;, h(..., h(z1,IV)...)) = IV with probabilitye’. Lety = (x;, h(..., h(xz1,IV)...)). Then
itis the case thali(z) = h(y) (wherez was used to select thd”). Thus, we can deduce that,

¢ = Pr[(A4 succeeds) A (x = y)] + Pr[(A succeeds) A (x # y)]
= < P = )]+
= 6/ S €col + Z P . _
Ive{o,1}n 2 #{x st. h(z) =1V}
S €col + 27"

Thus we get that the maximum success probability of an efficient fixed-poiing attacker ig, ., + €., + 27",

Corollary 2.2 The plain MD constructiord using a compression function: {0,1}" x {0,1}" — {0,1}" is a
(€reg + €cor +27) collision resistant hash function if satisfies the following properties:

e his e,y COllision resistant.
e his ane,., output regular function.

ENCODE-THEN-MD CONSTRUCTION It makes sense to only consider deterministic input coding schemes, since
the resulting construction must behave like a function. We analyze two of teepopular such coding schemes,
i.e. prefix-free encodingndsuffix-free encoding

We first note that using a prefix-free encoding on the input does rdllenis to get rid of any security properties
inlemma 2.2. Hence we can essentially restate the same result for the peefMilr constructiomd,,.. as well. On
the other hand, if we usesffix-free encodin¢such as Merkle-Dandégd strengthening) then the resulting suffix-
free MD constructiorH,,, s can be shown to be collision resistant by simply assuming the collision-resistative
compression functioh [10, 18].

MD-THEN-CHOP CONSTRUCTION Note that simply assuming collision resistance of the compression function is
not useful for this construction, since we truncatbits of the output. For instance, consider the case when
collision resistant on thesebits, and is the constant function for all other bits (noted by Kelsey [Hdwever, in

our setting this only means that we need to make a stronger assumption on thressiompfunctiork. In particular,

we will instead assume thatis collision resistant even if we remove theskits from its output.

Lemma 2.3 The MD-then-chop constructidt.;,, , using a compression functién: {0, 1}* x {0,1}" — {0,1}",
is a(€req + €., + 2" %) collision resistant hash function if the following holds:
e The functiomh’ : {0,1}* x {0,1}" — {0,1}"* defined ag/(x,y) = h(x,y)|.—s (i.e. chopping the last
bits from the output of) is a €., collision resistant function.
e his ae.., output regular function.



The proof of this lemma is essentially the same as for corollary 2.2.

NMAC/HMAC coNSTRUCTION We note that using the NMAC constructidty, ... does not help in improving
upon the collision resistance of the plain MD constructinThis is essentially because any collision in the first
application of the plain MD construction &f,,,,. (Using initialization vector/ ;) essentially implies a collision
for the entire construction. Hence, at best, we can restate lemma 2.2 footisisuction as well.

Since the HMAC constructioH ;... is simply a black-box instantiation of the NMAC construction, this does not
help in improving collision resistance. However, we note that it has the kast security ifo; # 1.

2.2 Pseudorandomness

An issue in the pseudorandomness analysis of the MD modes of operatian Iec#iion of the PRF key. As
discussed above, we need to specify the location of the key such thatstléng construction is still a black-box
variant of plain MD. For our analysis, we will assume the key length to be tigtheof a single block (i.ex bits for
the compression functioh : {0, 1}* x {0,1}" — {0,1}"), and we will denote the key ds. We will analyze two
approaches for keying each MD mode of operation:

1. Prepend the key to inpufhe PRF constructiof! outputsH (K || X) on inputX.
2. Append the key to inpufthe PRF constructio&/ outputsH (X || K) on inputX.

Moreover, we will need two versions of pseudorandomness definitmrbé compression function, one where the
key occupies the last bits and other where it occupies the fiksbits. We get the following two assumptions on the
compression function in this manner.

¢ Standard PRF (sPRF) securititere we require that for a uniformly chosé&ne {0, 1}", the functioni(-, K)
must be indistinguishable from a truly random function.

e Dual PRF (dPRF) securityHere we require that for a uniformly chosén € {0, 1}*, the functionh (K, -)
must be indistinguishable from a truly random function.

Depending on the maximum distinguishing advantagean efficient attacker in each case, we call the compression
functionh e-sPRF ore-dPRF.

PLAIN MD CONSTRUCTION In this case if we prepend the PRF key to the hash function input, thenshiimg
construction is not a PRF. This is because an attacker can usgtdresion attacto find H (K || X || Y) by simply
knowing the output{ (K || X) and computing the compression function on the remaining blocks itself (where it
does not need to know the kdy). On the other hand, if we append the PRF key to the input, then we can show
that if the plain MD construction usiniyis collision-resistant and satisfies the dual PRF security, then the plain MD
constructiorH(- || K) is a variable-length input PRF.

Lemma 2.4 The plain MD constructiomd is a O (£ - (€col + €reg) + €dprf) PRF* (with PRF key appended to the
function input) if the following conditions hold:

e h S e.y COllision resistant.

e his ae.., Output regular function.

e his aeqy, ¢ dual pseudorandom function.
The proof of this lemma is rather straightforward. Here, output regulanitiycallision resistance of the compression
function together imply the collision resistance of the plain MD construction.s;Thuthe last round, the-bit

chaining variable is different for two different inputs. Hence a distingeiidor the plain MD construction can be
used directly by the dual-PRF distinguisher for the compression function.

ENCODE-THEN-MD CONSTRUCTION Once again, we will discuss two deterministic coding schemes pieriix-
free encodin@ndsuffix-free encoding_et us first analyze the suffix-free MD constructidg, ;. If we prepend the

4¢ denotes the maximum number it blocks in a hash function input, throughout this paper



key to the (encoded) input, the resulting construction is still insecure sie@xthnsion attaclvorks in this case as
well. On the other hand, if we append the key to the (encoded) input theaghking construction is a PRF if the
suffix-free MD constructior,,, s using the compression functidnis a dual PRF and collision resistant (for which
we only need collision resistance bin this case).

For the prefix-free MD constructioH,,., if we append the key to the (encoded) input then we get no advantage
as compared to the plain MD construction and we can only restate lemma 2.4 inghisQrathe other hand, if we
prepend the PRF key to the (encoded) input then the resulting constrigctionvulnerable to thextension attack
in this case. Indeed, it was shown by Bellare et al. in [3] that the pregixID construction with the PRF key in
the IV is a PRF only assuming that the compression fundiigatisfies the standard PRF security. However, since
we will need to prepend the key to the input (in order to preserve the lblaxlproperty of the construction), we will
need to impose an extra condition on the compression function. In partimelaequire that the function defined as
h(U,, -) is an output regular function. That is, if the firsbits of the compression functionare chosen at random
then the resulting function is output regular with high probability.

Lemma 2.5 The prefix-free MD constructio,,,. is 2 O(e,.., + £ - €5pry) S€Cure PRF (with PRF key prepended to
the input) if the following conditions hold:

e hisaeg,,r SPRF
e h(U,,-)is ae,., output regular function.

reg

The proof of this lemma is similar to the result of [3].

MD-THEN-CHOP CONSTRUCTION If the PRF key is appended to the input to the MD-then-Chop construction
Henop, » then a slight variant of lemma 2.4 can be stated for this construction as widkdnall we need is to specify
the dual PRF and collision-resistance properties for the compressicticiumvith chopped output.

On the other hand, if we prepend the PRF key to the inpti g, , then the extension attack does not seem to
go through as in the case of plain MD construction. This is because theeatt@més not learn the choppedits
of the chaining variable by observing the outputHyf,,,, for the prefix of an input. Indeed, this construction can
be proven to be an arbitrary-length input PRF by making a slightly non-atdrassumption on the compression
function. In particular, we require the compression function to satisfydthening resilient SPRFassumption:
Assumption 3 ((s, €)-resilient SPRF) The function: : {0,1}" x {0,1}" — {0,1}" is a (s, ¢)-resilient sSPRF if it
is ae-secure sSPRF even if the attacker learnsits of then bit key.

Lemma 2.6 The MD-then-Chop constructidti.,,, is aO(e;eg + - Egprf) secure PRF (with PRF key prepended
to the input) if the following conditions hold:

e hisa(s, e, )-resilient sSPRF.
e h(U,,-)is ae.., output regular function.

reg

NMAC/HMAC coNsTRUCTION The NMAC and HMAC constructions were shown to be secure arbiteargth
input PRFs by Bellare [2]. In [2], it is shown that the HMAC constructioithwy; = o =1 (i.e. with the same
IV for both invocations of the plain MD construction) is a secure arbittangth input PRF if the underlying com-
pression function satisfies both the standard and dual PRF securitiidefinThis is done by simply prepending a
differentx-bit key to each invocation of the plain MD constructiin

Lemma 2.7 The NMAC (resp. HMAC) constructiot,,,.o. (resp. Humae) is a O (g% - €sprf + €apry) PRF (with a
differentx-bit key prepended to the input in each call to the MD construction) foridnyand I'V> (resp. «; and
«) if the following conditions hold:

e his aeg, r-secure sPRF.

e his aeqy, p-secure dPRF.

Sif the same key is prepended in both invocations, then the constructionusesender a slightly stronger assumption, called security
againstrelated-key attackm [3, 2]. We ignore this setting here



2.3 Target Collision Resistance

Target collision resistance (TCR) is a strictly weaker property than colligisistance. However, for some purposes,
TCR hash functions (also called UOWHFs) suffice instead of CRHFsinBtance, it is possible to come up with a
signature scheme on arbitrary length messages using one that worksofiked-length messages by using TCR
hash functions. For this reason, this primitive has attracted even gre@tessinsince the discovery of better attacks
against the collision resistance of existing hash functions. We will call atngstione-secure TCR function if the
maximum advantage of an efficient attacker in the TCR attack gasie is

Here, simply assuming TCR security of the compression function will notcauffihis is because the output of
a TCR function need not be random, so that each subsequent applichti@compression function will require
separate key space (and this dedicated-key setting violates our requisefnoen the mode of operation). Instead,
we will assume that the compression function{0, 1}* x {0,1}"™ — {0, 1}™ is an unkeyed function that satisfies
second preimage resistance type properties.

PLAIN MD CONSTRUCTION In order to discuss the TCR security of the plain MD construction, we teeécst
discuss appropriate keying mechanisms for this construction. As we briefi§ioned above, Shoup [24] described
an efficientmasking-based constructidrased on the plain MD construction. However, this construction modifies
the chaining variable which violates our properties of black-box modepexfdion. Unfortunately, we do not know
of any black-box ways of keying the plain MD construction such that itlmashown to be a TCR hash function
only assuming the compression function to be a SPR function.

Halevi and Krawczyk [13] suggested an alternate way of keying the pi@rconstruction that satisfies all the
properties of a black-box mode of operation. The construdtignproposed in [13] uses & bit key K and XORs
the key with each message block in the plain MD constructionHizg(x; || ... || x¢) = MK & xg,h(...,h(K &
x1,IV)...)).

However, in order to prove TCR security of this construction one needsat® a slightly non-standard “SPR
type” assumption on the compression function, callecetr@uated SPR assumpti¢eSPR) [13].

Assumption 4 (evaluated SPR)Consider a functiork : {0,1}"* x {0,1}" — {0, 1}" and letH x be the plain MD
based construction using(described above). The functiaris ¢ evaluated second preimage resistbany efficient
machineA wins in the following game with probability at masfover the random choice @fl” and the coins ofl).

1. A chooses a sequencerobit blocksAq, ..., A;.

2. The challenger chooses a random kéynd sets = Hix (A1 @ K, ..., A1 @ K)andm = A; @ K.

3. Awins ifit can find¢’ andm’ such thath(m/, ¢’) = h(m, ¢).
Halevi and Krawczyk [13] show that if the compression functtois an e-SPR function, then the constructtdp
described above is a secure TCR hash function. However, in theif frey require that the inputs provided to
Hx must be suffix-free. Indeed, this is required for their reduction to gauthin. However, we note that even for

the plain MD construction (with possibly “non-suffix-free” inputs), oraanake an additional assumption on the
compression function to enable us to apply the proof technique of [13].

Lemma 2.8 The constructiom{ i is anO (¢ - (€5 + €cspr))-S€CUre TCR function if the following holds:

e his ane.,,-secure e-SPR function.

e hiseyi,-secure against fixed points.
ENCODE-THEN-MD CONSTRUCTION If we apply a suffix-free encoding to the input before using the canstn,
then the resulting mode of operatibip, i is a TCR hash function based only on the assumptiorviiean e-SPR

function [13]. On the other hand, using a prefix-free encoding doeselp in improving the security of the plain
MD construction and we need all conditions of lemma 2.8 to prove the TCRigecfithe resulting construction.

®Recall that in this game, the attacker first chooses a function input, falltmwéehe challenger choosing the key and finally the attacker
winning if it finds a second colliding input for the chosen key.



MD-THEN-CHOP CONSTRUCTION For the MD-then-Chop construction, we need to make a slightly stronger
assumption on the compression function to prove the TCR security of thiinmgstonstruction. In particular, we
need to assume that the compression fundtige-SPR even if we chop a non-negligible number of its output bits.
If we replace the second condition in lemma 2.8 wit this stronger condition, tHesids for the MD-then-Chop
construction as well.

NMAC/HMAC coONSTRUCTION Using the NMAC or HMAC construction does not lead to improved TCR
security of the resulting construction. Again this is because if the attackis dircollision in the first invocation of
the plain MD construction then it implies a collision for both NMAC and HMAC coustiion.

2.4 One-Wayness

One way functions are also often referred to as preimage resistatiofusicA construction ig-secure OWF if no
efficient attacker can find the input corresponding to the output of heifan (on a random input) with probability
more thare. This security property is even weaker than second preimage resistance

PLAIN MD CONSTRUCTION In this case, we will need to assume that the compression funktisra one way
function. Moreover, we will also require thatis output regular, so that its output is uniformly distributed for a
random input. This is essentially because we need the input to a one-métiofuto be random in order to use the
one-wayness property.
Lemma 2.9 The plain MD constructiomd is O (£ - €,¢4 + €44 ¢)-s€CUre OWF if the following conditions hold:

e his ane,., output regular function.

e N is ae,, p-secure one-way function.
The proof of this lemma is based on the fact that an attacker cannot tell teeedide between the output ldfon a

random input or the compression functibion a random input, if is output regular. Thus the one-wayness attacker
for h can use the one faf directly.

ENCODE-THEN-MD CONSTRUCTION If we use an arbitrary suffix-free encoding with the MD constructioanth
we cannot say much about one-wayness of the construction since thelisfibution could be arbitrary. However,

if we apply Merkle-Damgrd strengthenindo the input, then we can show that the resulting construction is a one-
way function under sufficient assumptions. The proof of this fact istnigial though. In particular, we need to
make an additional assumption about the compression function.

Assumption 5 ((p, €) output consistent) The function: : {0,1}" x {0,1}" — {0,1}" is (p, €) output consistent

if for any x-bit block =z and uniformly distributed; € {0,1}", with probability at least(1 — ¢) the number of

y' € {0,1}" such thath(z,y) = h(z,y’) is at mostp.

Note that this property certainly holds for a random compression funciiog, thus, holds for most compression
functions). By making this additional assumption from the compression funaetie can derive the following result.

Lemma 2.10 The suffix-free MD constructioH,,; that uses MD strengthening for suffix-freenesépig,.s - (¢ -
€reg T €owf) 1 €cons)-SECUrE one-way function, whefrés the maximum length of an inverted input provided by the
OWF attacker, if the following conditions hold:

e his ane.., output regular function.

e his ae,, -secure one-way function.

e 1 iS @(Peons; €cons) OUtpUL consistent.
Proof: The proof for this lemma is essentially based on the proof of lemma 2.9. We @oinatr one-wayness
attackerA’ for the compression function using the attackethat has advantagein inverting H,, ; with MD

strengthening. A’ gets its challenge output and chooses a uniformly randoie {1,...,¢}™. It then gives
z = h((i),y) as a challenge td.

Now A’ succeeds only if the inverseoutputted byA is i-bit long. If so, thenA’ can proceed similar to the
case on the plain MD construction in lemma 2.9 if the chaining variable fior the last round, with(s) in the
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message block, is the challenge However, from our assumptions, with probability at mast,s there are more
thanp.ons n-bit stringsy’ such thati((i),y’) = h({i),y). Thus, we get that the success probabilitydois at most
(pcons : (6 * €reg + 6owf) + 6cons)- Hl

As for prefix-free encoding, once again we cannot say anythingrgé(for the same reason as above), but when
prepending the message length we are essentially back to the setting of platdlisklidsed above, except we
need to assume that the output of the compression function on a randond & faxked message block is random.
In particular, we note that encoding the input in any way does not helgrasfone-wayness of the construction is
concerned. In fact, we only need more assumptions to prove this progpedympared to the plain MD construction.

MD-THEN-CHOP CONSTRUCTION In order to prove the one-wayness of the MD-then-Chop constrystiemeed
to make a stronger assumption on the compression funetibmparticular, we assume thatis one-way withs bits
of the output chopped. Let the one-way security of the fundtiavith truncated output begwf. Then we can show
thatHepep, 1S @O - €reg + e’owf)—secure one-way function (similar to lemma 2.9)

NMAC/HMAC conNsTRUCTION The NMAC construction is a one-way function under the same conditions on
the underlying compression functidras required in lemma 2.9. However, we require that random and indeptende
initialization vectorsl/V; and IV, are used in the NMAC construction. However, it turns out that translatiegeth
results to the setting of the HMAC construction is not straightforward.

3 Implications for Hash Functions in Practice

We will now translate our results into suggestions for usage of actuatddasconstruction based” hash functions,
such as functions from the SHA family. As we mentioned earlier, we havetwiédd the minimal assumptions
needed to make each of the four modes of operation secure (for etdwsecurity properties). Thus, we have left
part of the “decision making” for the practitioner who uses our resultpahticular, the practitioner must consider
the following questions:

1. What one needs to assume about the hash function in order for {hesygtem (that the hash function is

being used for) to be provably secure?

2. What level of trust the practitioner is willing to place in the underlying cosgion function?
The answer to the first question will help in deciding the security propertyaiofior in the hash function mode of
operation. The answer to the second question may not be as straightfaiwee the design of the compression
functions is quite complex and mostly based on heuristic. In this case, thitiprer needs to weigh all the
properties (s)he desires from the cryptosystem, in terms of efficiemoyrigy etc. Thus, while some may be willing
to make a slightly stronger assumption on the compression function to have &fficiemt implementation, others
may be willing to sacrifice some efficiency for better security. Now we will giwene basic recommendations for
actual hash functions with respect to the various security properties.
CoLLISION RESISTANCE Each of the SHA functions are essentially based on the suffix-free dfi3tauction
(using MD strengthening). Hence, collision resistance for each of thask functions is asymptotically same
as finding collisions on the compression function. It does not make mude $eruse the “truncated” versions,
SHA-224 and SHA-384, since this only sacrifices the collision resistahite @riginal “untruncated” version (i.e.
SHA-256 and SHA-512, respectively). Using the NMAC/HMAC constiurtdoes not help in this case.
PSEUDORANDOMNESS We note that using the full SHA-256 or SHA-512 hash functions makee isemse for
pseudorandomness than using the chopped versions (SHA-228 o884)Awhich only have worse security. If
any of the SHA functions are used, as it is, for pseudorandomnesswieecommend appending the PRF key to
the input instead of prepending it. However, we recommend using thesidiusin conjunction with a prefix-free
encoding (such as prepending input length to the input) in which case th&&Rshould b@rependedo the input.
Another option would be to compose two calls to SHA-1, with independent gended in each call, to get
security based on the sPRF and dPRF security of the compression function
RANDOM ORACLE. Note that none of the SHA functions should be used, as itis, if the seofitiy cryptosystem
requires theaandom oracle assumptidior the hash function. This is because the plain MD construction (even with

11



MD strengthening) is vulnerable to simple attacks in the indifferentiability sc@n@ne may think that both SHA-
224 and SHA-384 that correspond to “chop” versions of the funct®idé\-256 and SHA-512 would be secure
(since the MD-then-Chop construction is secure). However, note tiaB@ bits are chopped in the case of SHA-
224, which does not give sufficient security for almost all applicatibtesice, only SHA-384 (that chops 128 bits)
may be suitable to be used directly to instantiate the random oracle.

We recommend using the HMAC construction involving two black-box calls to H feinction (while prepend-
ing different«; andas in each cal) for this purpose. Using any of these hash functions in octiganwith a
prefix-free encoding will also work for this purpose.

MESSAGE AUTHENTICATION. If the SHA functions are used as MACs directly, then the MAC key shoeld b
appended to the input. In this case, security depends on both the MA@tgemd collision resistance of the
compression function. Using the HMAC construction does not help in impgothie security either. Moreover,
when the “chopped” functions SHA-224 or SHA-384 are used as MA@ their security is only worse than the
unchopped versions (SHA-256 and SHA-512).

If one is willing to assume pseudorandomness of the compression funceornthih techniques mentioned above
for pseudorandomness can be used as well. Another approach wetdassume thdedicated-key settindy
inserting the MAC key in each application of the compression function (atdkeaf some input bandwidth) and
then one could use one of the techniques suggested in [1, 20].

TARGET CoLLISION RESISTANCE ORUOWHFs. We recommend using the technique suggested by Halevi and
Krawczyk [13] if the SHA functions are used as UOWHFs. In this case,XORs the UOWHF key to each block
of the input. Since MD strengthening is already used in all these functiensl@WHF security of this construction
is based only on the eSPR [13] (see above) of the compression function.

SECONDPREIMAGE RESISTANCE It makes sense to use the SHA hash functions directly for the purpssearfd
preimage resistanceithout using any additional techniques, since they do not lead to impr@eedity (note that
these functions already incorporate MD strengthening).

RANDOMNESS EXTRACTION. All the positive results forandomness extractiomave reasonable interpretation in
practice, only if we are willing to assume that the SHA compression function $& ¢being a family of random
functions. Even though it is theoretically impossible, since the SHA compre&siation has a short description, it
might still be a more reasonable assumption than assuming the compressitiomftmbe a FIL-RO.

Under this assumption, we can deduce that the SHA functions are godomaess extractors for input distri-
butions with high min entropy overall and in the last block. On the other hameeasaw above, it might be a
good idea to use chopped function SHA-384 for this purpose to get lestraiction properties (SHA-224 does not
have sufficient number of chopped bits to give useful advantageipgllse HMAC construction does not help in
improving the extraction properties.

ONE-WAYNESS. In the case of “one-wayness”, the security of the chopped fun¢t®H#-224 and SHA-384,
seems to rely on stronger assumptions than the security of the corregptmdamopped” versions (SHA-256 and
SHA-384). This is because the one-way security increases with the mwhbatput bits. On the other hand, it
might be the case that SHA-224 still has higher security than SHA-1, wkieims intuitive given the bigger IV of
SHA-224. Moreover, message encoding or HMAC construction onlgtinedy affects the one-wayness.

4 Conclusions

In this work we showed how to efficiently use existing hash functions basédde MD mode (such as the functions
in the SHA family) to build cryptographic hash functions satisfying variousisty properties such as collision-
resistance, pseudorandomness, indifferentiability from random oramsesage authentication, target collision-
resistance, second preimage-resistance, randomness extractiomeandymess. Our constructions are black-box,
support variable-length inputs and provide the same efficiency as theNdRinonstruction, under the minimal
assumptions on the underlying compression function.
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A Preliminaries

In this paper, we will be interested more in the qualitative aspects of theityealiterative hash functions rather
than focusing on the exact security in each case. For this purposejligiver here slightly “less formal” and
asymptotic definitions for each of these security notions related to hastiois.c

A.1 Collision Resistance

A collision resistant function ensemblg, is defined for a sequence of s¢tg, 1}V, {0,1}"V} | _ ., wherem
andn denote the input and output length Bf,, respectively. Such a function ensemble consists of a pair of PPT
machinegGen, Eval). However, we will give an asymptotic version of the definition of collision tesise here.

Definition 1 e-CR function family A function ensemtig, is a e-collision resistant function family if for any prob-
abilistic polynomial time machind:

Pr [hs(m) = hy(z2) |5 — Gen(1Y); (21, 22) — A(ﬂ,s)} <e

Heree is a function of the security parameter
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A.2 Pseudorandomness

Apseudorandom function ensemiil, is defined for a sequence of s€tg, 1}, {0,1}"M}, _ . It consists of
a pair of PPT machine&7en, Eval), the key generation and evaluation machines.

Definition 2 e-PRF family LetR) be the truly random function ensemble. A function ense#iRlis ac-pseudorandom
function family if for any PPT oracle maching&

Pr [Ahs(l)‘) =1 )s — Gen(l)‘)} —Pr [Af =1|f« R)\” <e

Heree is a function of the security parameter

A.3 Unpredictability and MACs

A message authentication code, MAC, is defined for a sequence of A¢fs7)} cn. It consists of a triple
(Gen,Tag, Ver) of PPT machines, denoting the key generation, tagging and tag verificimnittams.

Definition 3 (e-secure MAC) A MAC (Gen, Tag, Ver) is ae-secure MAC if for any PPT oracle machiaethat
outputs a message/tag pdir, t) such that it never queried the tagging oracle on the message

s+ Gen(1*);

(m,t) - ATagS,Vers(l/\) <e

Pr |Vers(m,t) = accept
Heree is a function of the security paramete&r

A.4 TCR and One-Wayness

Target collision resistance is a weaker notion of collision intractability that amiliesistance. A target collision
resistant function ensemble is also calledm@iversal One-Way Hash Functicensemble (or simply UOWHFs).
A TCR function ensemble is defined for a sequence of g1}, {0,1}"}, . and consists of a pair of
algorithms(Gen, Eval). However, the TCR attacker is more restricted than the collision finding attatkere,
since it chooses one of the colliding inputs without knowledge of the hasttifun key.

Definition 4 (e-TCR function family) A function ensemblé is ae-secure TCR function family if for any pair of
PPT machineg$A;, As):

(71,a) — A1(11); 5« Gen(17);

<e
€T < A2(1>\7 o, T, S)

Pr [hs(azl) = hs(z2)

Heree is a function of the security parameter

A notion related to TCR hash functions is thatseicond preimage-resistant functiorignlike TCR hash functions
this security notion is related to unkeyed hash functipng0, 1} — {0, 1}"™ (where we can think ofn as being
the security parameter).

Definition 5 (e-SPR function) A functionf : {0,1}"* — {0,1}" is e-second preimage resistafhfor any PPT
machineA:
Pr|f(z) = f(&) |z & {0,1)™; o/ — AQ1M2)] < e

Related to the notion of SPR functions, we can also define the notipremhage resistancer one-waynessThis
is a slightly weaker property than second preimage resistance.
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Definition 6 e-secure one way function A functign {0,1}™ — {0, 1}" is ane-secure one way functiahfor any
PPT machineA:
Pr [f(ﬂf) =y ‘y S0, x A y)| <e

A.5 Randomness Extraction

A randomness extractds a function that is used to extract uniformly random bits from inputs sampbes &n
imperfect source of randomness. This has been an extremely usediilvarin cryptography, as well as theoretical
computer science in general. We will give here brief definitions for this pmiti

We start by defining the notion afin entropy which is a measure of the amount of randomness in a probability
distribution. For instance consider a distributi@hover {0, 1}™. Themin entropyof the distributionX’, denoted
as Hoo (X), is the minimum integem such thatPry(z) < 27 for all z € {0,1}". HerePry(z) denotes the
probability assigned te by the distribution'.

We will also need a way to quantify the distance between two probability distritgjtid and X,, over a sefs.

The popular measure in this caseiatistical distancdetweent’; andX,. Thestatistical distancdetweent; and

X; is defined aS$D (X, X») 1 > |Pra, (x) — Pra, (x)]. If two distributions have statistical distanedetween

2
SES
them, then they are calledclose distributions.

A randomness extractas a functionh : {0, 1}* x {0,1}" — {0, 1}" that takes a:-bit uniformly random seed
and am-bit input, and outputs a-bit output.

Definition 7 ((k, €) Extractor) A (k,€) extractor is a functiory : {0,1}" x {0,1}" — {0, 1}" such that for every
distribution X on {0, 1}* with H.(X) > k, the distributionf (X, U,,) is e-close to the uniform distribution on
{0,1}", whereU,, denotes the uniform distribution di, 1}.

B Random Oracle

Now we analyze each of the hash function modes of operation for ineliffiability from a random oracle (RO),
under the assumption that the underlying compression function is a fixgthlemput random function oracle (FIL-
RO). We will call a functione RO if the maximum advantage of a distinguishek isnder the indifferentiability
definition.

PLAIN MD cONSTRUCTION The plain MD construction does not give an indifferentiable construci@®O from
a FIL-RO. This is essentially because the plain MD construction is vulneralthe extension attack (see [9]).

ENCODE-THEN-MD CONSTRUCTION The suffix-free MD constructioH,, ; is not indifferentiable from a random
oracle, since applying a suffix-free encoding to the input does nofmalwiding theextension attacf9]. However,

if the input to the MD construction is guaranteed to be prefix-free, then i iwmger vulnerable to the extension
attack. Indeed, it was shown by Coron et al [9] that the prefix-fr&ddnstructiorH,,.. is indifferentiable from a
random oracle if the underlying compression function is a FIL-RO.

Lemma B.1 The prefix-free Merkle-Dandgd constructiort,,,. is aO((¢/)?/2™) RO if the underlying compression
function is a FIL-RO.

MD-THEN-CHOP CONSTRUCTION The Merkle-Dam@rd construction can be shown to be indifferentiable from
RO if we chop a non-negligible (in particular, super-logarithmic) numberebtitput bits. However, the security of
the MD-then-chop constructidd,,,, is worse than other MD based constructions [9] (in particular, it is a biythda
bound ons bits instead of om bits).
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Lemma B.2 The Merkle-Dam@rd then chop constructioH .1, is a O((¢¢)?/2%) RO if the underlying compres-
sion function is a FIL-RO, and we cheits of the output.

NMAC/HMAC CONSTRUCTION It was shown in [9] that the HMAC construction with, = 0F anda, =1 is
indifferentiable from a random oracle. We note thatcan be any:-bit block such thaty; ¢ {1, as}, while ay can
be any bit string in{ L} U {0, 1}*. On the other hand, it is more straightforward to show that the version ckGIM
constructiorH,,,,... described here, is indifferentiable from a random oracle as well, Withz 115.

Lemma B.3 The NMAC/HMAC constructiond,,;,qc (resp. Humae) With IVy # IVs (resp. a1 ¢ {1, as}) are
O((q¢)?/2"™) ROs if the underlying compression function is a FIL-RO.

C Message Authentication Code

We will refer to MACs that work for fixed-length messages as FIL-MA@d ¢hose that work for variable-length
messages as VIL-MACs. We will analyze each of the modes of operatigretd ey satisfy VIL-MAC security.
We call a constructior-secure VIL-MAC if the maximum advantage of an efficient attacker in peoty a valid
forgery ise. Let us first note, that a pseudorandom function can be considetssl adMAC as well (PRF output
serves as the message tag). Thus all the results for PRF security aitd¥ertv/IL-MAC security as well. We will
try to find if these modes are VIL-MACs under weaker assumptions on tim@m@ssion function than those needed
for the case of PRFs.

However, if we assume the compression function to be simply a FIL-MAC,weecannot use the output of one
application of the compression function to key the construction. One solutithristproblem would be to analyze
the construction in theedicated-key settingvhere each call to the compression function has a separate key space.
For current hash functions, one could assume that part of the mdssagespace can be used to securely key the
compression function. That is, for the compression functioq 0, 1}* x {0,1}" — {0, 1}", the key occupies part
of the firstx bits in the input. In this case, we can use the results of [1, 20] to get sERtHRAC constructions.
However, as we discussed earlier, this violates the property that oursmebdeeration should be efficient in terms
of input bandwidth. Thus, we will take a different approach here.

PLAIN MD coNsTRUCTION If we prepend the MAC key< € {0,1}" to the input and apply the plain MD
construction, then the resulting construction is vulnerable to the extensick attece the attacker can obtain the
tag for a message by first getting a tag for the prefix. On the other hana, MAC key is appended to the input,
then we find sufficient assumptions to show tHas a secure VIL-MAC. In particular, we will need the plain MD
construction to be collision-resistant and the compression function to loeieeddAC when the MAC key occupies
the firstx bits of its input.

Lemma C.1 The plain MD constructiofl is aO(¢- (€reg+€col) +€mac)-s€cUre VIL-MAC, when the key is appended
to the input, if the following conditions hold:

e his ae,, collision resistant function.
e his ae.., output regular function.
e his aenq. Secure MAC, when the firstbits of its input is considered to be the key space.

The proof idea here is similar to the corresponding PRF lemma 2.4.

ENCODE-THEN-MD cONSTRUCTION If we use a suffix-free encoding and append the MAC key to the inpen, th
we succeed in reducing the assumptions needed in lemma C.1 for collisionmesistadeed, in this case, we can
show that the suffix-free MD constructidfy,  is O(€mac + £ - €cor) S€CUre VIL-MAC if the compression function is
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€c01 Collision resistant and,,,,. secure FIL-MAC. On the other hand, if we prepend the MAC key to thetirthan
the resulting construction is insecure since it is still vulnerable to the exteatexrk.

If we use a prefix-free encoding, and prepend the MAC key to the thjgutthe resulting construction is a secure
VIL-MAC only if all the conditions stated in lemma 2.5 hold. On the other hand, teépfree MD construction
H,-. with MAC key appended to the input essentially has the same security as thd/@aonstruction in lemma
C.1.

MD-THEN-CHOP CONSTRUCTION If we prepend the MAC key to the input to the MD-then-Chop construction
Henop, » then the resulting construction can be shown to be a VIL-MAC only undecdnditions from lemma 2.6.
On the other hand, if we append the MAC key to the input then we can prewélthMAC security of the resulting
construction by making slightly stronger assumptions on the compressidiofuas compared to lemma C.1.

Lemma C.2 The MD-then-Chop constructidtl.j,qp, iS O (- (€reg + €col) + €1nqe)-S€CUrE VIL-MAC if the following
conditions hold:

e his ae,, collision resistant function.
e his ae.., output regular function.

e h/(:) =h(:)|n—sis ae,,,. secure FIL-MAC.
NMAC/HMAC CONSTRUCTION In this case, if we prepend the MAC key to the input, then we need the same
conditions as lemma 2.7 in order to prove VIL-MAC security as well. On the dthed, if we append the MAC key
to the input, then both NMAC and HMAC constructions can only be proveuarsagsing the same conditions as in
the case of plain MD construction (lemma C.1).

D Second Preimage Resistance

In this section, we will analyze each of the modes of operation for the mininsahgstions on the compression
function needed in order to prove the SPR security of the constructiomnstriction will be called-secure SPR
function if any efficient attacker has success probability at mmosthe SPR attack game.

Unfortunately, to the best of our knowledge, there is no black-box mbdpearation that is property preserving
for second preimage resistance. Hence we will need to make a slightly strasgumption on the compression
functionh.

Assumption 6 (computed SPR (cSPR) [13]A functionh : {0,1}" x {0,1}" — {0,1}" is ae-secure cSPR func-
tion if any efficient machinel has success probability at masin the following game:

1. The challenger randomly selects a sequence-bit blocksz1, ...,z setsc = H(zy || ... || #;—1) and
x = x;. HereH is the plain MD construction using the compression functioand random/V. The
challenger sends, . .., z; to A.

2. Awinsifitfinds(z’, ) € {0,1}" x {0,1}" such thath(2/, ¢') = h(z, ¢).

Note that this assumption is quite similar to the eSPR assumption that we neededT@RMhash function case.

PLAIN MD CcONSTRUCTION Here we will assume that the compression funcfias a cSPR function. However,
in order to prove SPR security of the plain MD construction, we will also neeassume that the attacker cannot
find fixed points starting from a randofV'.
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Lemma D.1 The plain MD constructiomd using the compression functidnis a O (¢ - (ecspr + €£iz))-S€CUrE SPR
function if the following conditions hold:

e his ae.sy-secure cSPR function.

e his ey, secure against fixed points.

ENCODE-THEN-MD CONSTRUCTION If we use a suffix-free encoding on the input, then the resulting carigiru
Hs.r can be proven to be a SPR function solely on the assumption that the coimpfasstion/ is a cSPR function.
On the other hand, the prefix-free MD construction does not help in gpamg improvement in SPR security over
the plain MD construction.

Lemma D.2 ([13]) The suffix-free MD constructiof,,, s is a O(¢ - €., )-secure SPR function if the compression
functionh is ae.g,--secure cSPR function.

MD-THEN-CHOP CONSTRUCTION As in the case of collision resistance and TCR functions, we will need to
impose a slightly stronger assumption on the compression function in ordesve tire SPR security of the MD-
then-Chop constructioH .y, . In particular, we will need to assume that the functid() = h(-)|n—s IS €y,

secure SPR function. This assumption along with the second condition fromdeD.1 suffices to show that the
MD-then-Chop construction is@(¢ - (¢i, + €c,,))-S€CUre SPR function.

NMAC/HMAC coNsTRUCTION The NMAC/HMAC construction do not give any better SPR security as com-
pared to the plain MD construction. This is because a collision in the first@tiocof the MD construction implies
a collision for both the NMAC and HMAC constructions.

E Randomness Extraction

The idea of using the MD construction as a randomness extractor wassksicby Dodis et al in [11]. They
showed that for getting any useful randomness extraction propemiestfre MD construction, one needs to make
a really strong assumption on the compression fundgtiolm particular, they assume that the compression function
h:{0,1}* x {0,1}" — {0,1}" is anideal randomness extractowhich is the same as assuming it to biamnily

of random functions That is, the functiorh(-, z) is a random function froms to n bits whenz is uniformly
distributed. We debate such a compression fundiias a family of random function§h,. } for » € {0,1}".

Let us start by explaining why one needs to make such a strong assumptiorifave assumeh to be a regular
extractor, then the distribution of the output fof-, ) for randomz has a non-zero statistical distance from the
uniform distribution on{0, 1}". If this output is used a seed for the next application of the compressimtida
then one has no guarantee of extraction, since the seed us no longeriddat of the:-bit input block. Actually,
Dodis et al [11] do give a positive result for the MD construction simplgemthe assumption thatis analmost-
universal family of function®. However, for this result they require that every input block for the s4Bstruction
must have some amount obnditional min-entropy (see [11] for more details). However, all the results here are
based on the assumption tltais an ideal randomness extractor.

PLAIN MD CcONSTRUCTION In this case, one can show that for a restricted class of inputs (frof@ircdnigh
min entropy distributions), the output of the plain MD construction, usinglaal randomness extractar, is close
to uniform. The input distribution should be such that it has high overall miropy as well as high conditional
min-entropy in the last input block.

"Note that this is a weaker assumption than assurhitigbe a FIL-RO. In particular, it is a (very inefficiently) realizable asstiomp

8.e., for the functiorh(-, =), wherez uniformly distributed or{0, 1}, for any two distinct inputg andz, the probability thah(z, z) =
h(y, z) is negligibly close to the corresponding probability for a random function

This is the min entropy of an input block conditioned on all the other inputkdsioc
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Lemma E.1 ([11]) Let{H,} be the plain MD construction defined over a family of random functiégng, where
the seed- is essentially the randoml” in the plain MD construction. Lek” be the distribution of the inputs td
(over bit strings with at most x-bit blocks) and letX; be the distribution induced byt on the last block of the
input. If Hyo(X) > n + 2log (1) and Hoo (Xy) > log £ + 2log (1), thenSD(Hyv (X), Uy) = O(e) wherel, is

the uniform distribution om-bit strings.

ENCODE-THEN-MD CONSTRUCTION Note that if one applies a suffix-free encoding to the input in conjunction
with the plain MD construction, then the (encoded) input to the MD constructiayp no longer satisfy the min
entropy requirements from lemma E. 1. Indeed, consider applargle-Damgrd strengtheningo the input before
the MD construction. In this case, the last block has no conditional en{sipge it is simply the input length).
Nonetheless, in [11], Dodis et al. show that adding any fixed padding toput that satisfies all min entropy
requirements still gives a good randomness extractor! Similarly, we caaganuch about a general prefix-free
encoding since it might change the input distribution in an arbitrary way.ddew if we consider prepending input
length to the input, then it still gives a good randomness extractor.

MD-THEN-CHOP CONSTRUCTION Quite surprisingly, if we chop a sufficient number of output bits then @me ¢
prove randomness extraction properties of the resulting constructied bafewer assumption than lemma E.1. In
particular, we can get rid of the requirement that the last input blockuféisisnt conditional min entropy.

Lemma E.2 ([11]) LetHpop, » be the MD-then-Chop construction defined over a family of random fursctfor},
where the seedis essentially the randoi” used in the construction. Lét be the input distribution tél ., (over
bit strings with at most k-bit blocks). IfH . (X') = n+s+log(¢+1), then we get tha®D (Hj,op, (X), Up—s) < 27°
whereU,,_; is the uniform distribution orin — s)-bit strings.

NMAC/HMAC coONSTRUCTION For the NMAC construction, it can be shown that if random and indeg@nd
1V; andIV; are used in the two applications of the plain MD construction, then the resudtivgjractiort, .. is a
good randomness extractor if the compression function represents a &dmatydom functions. We can then restate
lemma E.1 for the constructidn,,,,.. as well, with the same exact security. However, it turns out that translating
these results to the setting of the HMAC construction is not straightforwdid [1
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