
Getting the Best Out of Existing Hash Functions;
or

What if We Are Stuck with SHA?

Yevgeniy Dodis∗ Prashant Puniya†

Abstract

Cascade chaining is a very efficient and popular mode of operation for building various kinds of cryptographic
hash functions. In particular, it is the basis of the most heavily utilized SHA function family. Recently, many
researchers pointed out various practical and theoreticaldeficiencies of this mode, which resulted in a renewed
interest in building specialized modes of operations and new hash functions with better security. Unfortunately,
it appears unlikely that a new hash function (say, based on a new mode of operation) would be widely adopted
before being standardized, which is not expected to happen in the foreseeable future.

Instead, it seems likely that practitioners would continueto use the cascade chaining, and the SHA family
in particular, and try to work around the deficiencies mentioned above. In this paper we provide a thorough
treatment of how to soundly design a secure hash functionH ′ from a given cascade-based hash functionH for
various cryptographic applications, such as collision-resistance, one-wayness, pseudorandomness, etc. We require
each proposed construction ofH ′ to satisfy the following “axioms”.

1. The construction should consist of one or two“black-box” calls to H.
2. In particular, one is not allowed to know/use anything about the internals ofH, such as modifying the

initialization vector or affecting the value of the chaining variable.
3. The construction should support variable-length inputs.
4. Compared to a single evaluation ofH(M), the evaluation ofH ′(M) should make at most a fixed (small

constant) number of extra calls to the underlying compression function ofH. In other words, the efficiency
of H ′ is negligibly close to that ofH.

We discuss several popular modes of operation satisfying the above axioms. For each such mode and for each
given desired security requirement, we discuss the weakestrequirement on the compression function ofH which
would make this mode secure. We also give the implications ofthese results for using existing hash functions
SHA-x, wherex ∈ {1, 224, 256, 384, 512}.

∗Email: dodis@cs.nyu.edu
†Email: puniya@cs.nyu.edu

1 Introduction

TheCascade constructionis a very elegant way to build a hash functionH on arbitrary-length inputs from a given
compression functionh on fixed-length inputs. Recall that for a givenh : {0, 1}κ × {0, 1}n → {0, 1}n, one
can define a hash functionH, parametrized by an initialization vectorIV ∈ {0, 1}n, as follows (where input
x = x1 ‖ . . . ‖ xℓ andxi ∈ {0, 1}κ for i = 1 . . . ℓ):

H(x1 ‖ . . . ‖ xℓ) = h(xℓ, h(. . . , h(x1, IV) . . .))

We will refer to this as the MD mode or the plain MD mode (after Merkle-Damgård). The most abundant use
of the MD mode in practice comes in the design of the industry-standard hash family SHA (which consists of
several specific hash functions SHA-x, wherex ∈ {1, 224, 256, 384, 512}). Unfortunately, despite its elegance and
simplicity, the plain MD mode has several deficiencies. For instance, it does not guarantee that a “global” collision
of H implies a “local” collision of the compression functionh, unless one preprocesses the input into a suffix-
free form before applyingH [10] (as we already mentioned, the particular suffix-free encoding of appending the
message length is calledMD strengthening, and is actually used in the SHA family for this reason). More seriously,
it was shown by Coron et al. [9] that even MD strengthening falls prey to the “extension attack”1 which makes it
insufficient for domain extension of random oracle. Moreover, this deficiency disqualifies the natural use of “plain
MD” in the design of “pseudorandom functions” [3]. Other problems alsoarise when the MD mode is used in
applications such as key derivation [11] and target collision-resistance(or UOWHFs2) [5, 24].

Apart from the issues mentioned above, several other deficiencies of the MD mode against exponential-time
attacks have been discovered [14, 16]. All these deficiencies, coupled with the improved brute-force attacks on the
popular SHA-1 hash function proposed recently [25, 26], suggest that it is time to design a better, more “secure”
mode of operation for building a variable-length input hash function. With thispurpose, NIST has been organizing
several workshops dedicated to coming up with the next generation hash functions [21]. However, this process will
take some time, and it does not appear that such hash functions would be standardized and widely accepted in any
foreseeable future. Therefore, practitioners are “stuck” with the prospect of using existing hash functions, despite
all their deficiencies. Hence, there is a pressing need to design immediate “fixes” to the MD paradigm, without
changing it drastically.

There are two aims in coming up with such “fixes” to the MD mode. The first, and so far the most popular, aim
is to design a slight variant of the MD mode that provably preserves a given security property of the compression
function, and to do so in the most aesthetic and efficient manner. We mention only a few of the many examples of
this approach. For collision-resistance, we already mentioned the well known technique ofMD strengthening. For
another example, by viewing the initialization vector as the key and applying aprefix-free encodingto the message,
one can obtain a variable-length input pseudorandom function from a fixed-length input pseudorandom compression
function [3]. In the case of target collision-resistance, Shoup [24] designed an elegant mode for building target
collision-resistant (TCR) hash functions (or UOWHFs [22]) from a TCRcompression function by cleverly XORing
certain masks to the internal chaining variables in the MD construction. The common feature in all these results
is that one assumesexactly the sameproperty from the compression functionh as the desired property from the
hash functionH. In many cases, such as the PRF and TCR examples, this means that a “secure” mode must be
sufficiently different from the plain MD so that its implementation requires a non-trivial modification to the SHA
implementation. Concretely, the SHA family uses a fixed public IV (as opposed toarbitrary secret IV needed for
PRFs), while in the TCR case one cannot XOR the corresponding masks without modifying the internals of SHA.

Of course, we are not saying that the required modifications are too “complicated” to be correctly implemented by
a serious programmer. In fact, they are not. Our point is that, irrespective of simplicity and conceptual similarity to
the existing implementations, they require one to tinker with the internals of such standard implementations. And this

1I.e., givenH(x) and any extensiony, one can computeH(x ‖ y) without knowingx.
2Which stands for Universal One-Way Hash Functions.

1

is not only error-prone and requiring low-level programming (which could result in less optimized implementations
than those done by the experts), but goes against the whole philosophy of modular design. We do not want our
security engineers to know all the low-level cryptographic details. Instead, they should understand the higher-level
picture of the protocols they are trying to build, and never need to worry about existing low-level libraries.

This brings us to the second approach, where one explicitly aims to design a “secure” mode that uses onlyblack-
box callsto the plain MD mode.3 For instance, MD strengthening satisfies this property. Other important examples
include the HMAC mode for pseudorandom functions [3] and the results for domain extension of random oracle in
[9]. The attractive feature of these results is that they result in a hash function with the desired property without
tinkering with the internals of SHA, and can use any off-the-shelf implementation. Moreover, all these examples
also satisfy theproperty-preservingproperty described above, and do so without any noticeable efficiencypenalties
as compared to the solutions following the first approach. Concretely, at the price of one or two (or sometimes zero!)
extra calls to the compression functionh — which is negligible for all practical purposes —, one manages to achieve
the desired goal without tinkering with the internals of the existing hash functions.
OUR GOAL . Not surprisingly, we will emphasize the latter approach in coming up with “fixes” for existing hash
functions. That is, we consider the question of building a hash functionH ′ achieving a given security property
P using a black-box MD-based hash functionH (with an unknown compression functionh). We require that the
proposed constructionH ′ satisfies the following “axioms”:

1. The construction should consist of one or two“black-box” calls to H. In particular, the construction is not
allowed to use any knowledge of or tinker with the internals of the hash function H.

2. The construction must support variable-length inputs.

3. Compared to a single evaluation ofH(M), the evaluation ofH ′(M) should make at most a fixed (small
constant) number of extra calls to the underlying compression function ofH. In other words, the efficiency of
H ′ is negligibly close to that ofH.

The motivation behind requiring the constructionH ′ to satisfy these axioms is from the viewpoint of a practitioner
who understands the properties of the hash function that are needed for the security of his cryptosystem, but who
wants to use an off-the-shelf standardized hash function implementation without tinkering with its internals. Such a
practitioner would be willing to sacrifice theproperty-preservingaspect of the “fix” in favor of a black-box imple-
mentation.

In fact, the above “axioms” leave very little freedom in choosing the modes ofoperation forH ′. The resulting
modes are essentially themost widely-utilizedconstructions appearing in practical implementations:

1. Plain MD Construction:This captures the notion that the application uses the hash function as it is. Wewill
denote this mode of operation asH.

2. Encode-then-MD Construction:In this case, the user encodes the hash function input before applying the
plain MD construction. Examples of popular encoding schemes used are suffix-free encoding and prefix-free
encoding. We will refer to the corresponding constructions as theprefix-free MD constructionHpre and the
suffix-free MD constructionHsuf .

3. MD-then-Chop Construction:Here the user applies the plain MD mode and only uses part of the output while
discarding the remaining bits. In particular, existing hash functions SHA-224 and SHA-384 are obtained this
way from SHA-256 and SHA-512, respectively. We denote the MD-then-chop construction that chopss bits
of the output asHchops

.

4. NMAC/HMAC Construction:The version of the NMAC construction that we consider simply composes two
applications of the plain MD mode with possibly different initialization vectorsIV1 and IV2. While not
obeying the first axiom, the NMAC construction serves as a nice abstractionfor the HMAC construction which
does satisfy all our axioms (but is slightly harder to formally analyze in some cases). Concretely, the HMAC

3In practice, with MD strengthening, but we ignore this aspect for now.

2

construction uses the NMAC construction withIV1 = h(IV, α1) = H(α1) andIV2 = h(IV, α2) = H(α2),
where eachαi is either the null string⊥ (in which case we leth(IV,⊥) = IV) or a singleκ-bit block. We
denote the NMAC construction asHnmac and the HMAC construction asHhmac.

Now we can finally rephrase our goal as follows. Given a particular desired security propertyP (such as collision-
resistance or pseudorandomness) and one of the4 modes of operation above (which all satisfy our axioms), find the
weakest security assumption(s)P ′ on the compression functionh which would make the corresponding mode satisfy
P (or determine that the construction is insecure for anyh). Ideally, this security propertyP ′ for h would beP itself
(which would result in aproperty-preserving mode of operation). However, unlike most previous work, property
preservation is not our primary concern. In particular, we will not declare a mode of operation to be “insecure” for a
propertyP simply because it is not property-preserving forP . Instead, we will find the weakest security propertyP ′

of the compression function that makes the resulting construction secure. This will allow the practitioners to decide
whether or not it is reasonable to assume that the compression function of existing hash functions, such as SHA,
satisfy the propertyP ′, even ifP ′ is (slightly) stronger thanP .
OUR RESULTS. We achieve our main goal for a very wide variety of security properties including collision-
resistance (CR), pseudorandomness (PR), indifferentiability from random oracle (RO), message authentication (MAC),
target collision-resistance (TCR), second preimage-resistance (SPR), randomness extraction (RE)andone-wayness
(OW). In each case, and for each of the four popular modes above, we will identify the needed propertyP ′ onh. In
some cases, the neededP ′ easily follows from some existing work (for instance, from [9] in the case of domain ex-
tension of random oracle). In other cases, it required some minor, but important modifications to the existing results
in order to satisfy our axioms. For example, by assuming that “h(IV, random) = random” in addition toh being
a PRF when keyed with the firstn bits of its input, we could build a variable length PRF using the encode-then-MD
mode and adjusting the proof of [3]. More interestingly, by making extra assumptions onh, in some cases we can
prove security of the modes which were previously believed “insecure” because they were not property-preserving.
Finally, in some cases the proof will involve careful and non-trivial modification of previous results. For example,
this is the case when analyzing the one-wayness of theHsuf construction.

In addition to giving an exhaustive “mode× property” guide (see figure 1) for achieving a given security property
with a given popular mode, in each section we also mention the practical implicationof our results when using
existing hash functions SHA-x, wherex ∈ {1, 224, 256, 384, 512}.
RELATED WORK. We have already cited many of the relevant papers. In particular, the variants of the MD
mode that are useful in the property-preservation of collision-resistance [10], pseudorandomness [3, 4], message-
authentication [1, 20], random oracles [9] and randomness extraction [11]. We also mention the works of [7, 8]
concerned with multiple property-preservation; namely, designing a single mode of operation which simultaneously
preserves several properties. Unfortunately, the modes of [7, 8] donot satisfy our axioms. Finally, we mention
the work of Halevi and Krawczyk [13], which concentrated on building TCR hash functions, and is the closest in
spirit to our motivation (indeed, we will use their results when discussing the TCR property). The authors built TCR
hash functions using the encode-then-MD mode, and showed a simple coding scheme that yields a secure TCR hash
function under an appropriately strong assumption on the underlying compression functionh (still weaker than CR,
but stronger than TCR).
LOCATION OF THE KEY IN KEYED CONSTRUCTIONS. We note that for keyed constructions, such as constructions
of pseudorandom and TCR functions, there are more than one possibilitiesfor each hash function mode of operation.
In particular, any construction for these primitives must specify the locationof the key. In keeping with the black-
box nature of the modes of operation, we prevent popular keying methodssuch as setting the key to be theIV or
XORing the key into the chaining variables since this violates our basic axioms.

Moreover, we also do not consider the dedicated-key setting [1, 8], where there is separate space for the key in
each application of the compression function. This is because existing hashfunctions do not support such dedicated
keys. Even though we may consider the key to be part of the message blockbits, we do not analyze this method
since it yields constructions with poor input bandwidth (thus violating our lastaxiom). Hence, we will only consider
modes of operation which incur an additive constant overhead comparedto the plain MD mode.

3

Assumptions on compression function:

(8)=computed SPR (cSPR)

(7)=enhanced SPR (eSPR)

(1)=Collision Resistance (CR)

(2)=Output Regular

(3)=standard PRF (sPRF)

(4)=dual PRF (dPRF)

(5)=FIL-RO

(6)=MAC with κ-bit key

(9)=Fixed-point at random IV

(10)=Family of random functions

(11)=One-way function

(7’)=eSPR after Chop

(8’)=cSPR after Chop

(3’)=sPRF after Chop

(2’)=h(Un, ·) is output regular

(1’)=CR after Chop

Misc.

SF=Suffix-free

PF=Prefix-free

MDS=MD Strengtheining

??=not known to be secure

Key ⊕Blks =XOR key to
each block

RExt=Randomness Extrn.

CRHF

RO

PRF
Append key +

Pre-Free+(1)+(2)
(1) + (2) (1’) + (2)

(1)+(2)+(4)

Not Secure
Suf-Free not secure

Pre-Free+(5)

(5) NMAC/HMAC+(5)

IV1 6= IV2 ; α1 6= α2

MAC

Suf-Free+(1)

(prepend)

(append)

PF+(2’)+(3)

SF+(1)+(4)

(append)

Prepend key +

worse security

(1)+(2)+(6’)

(2’)+(3’)

Append key +

Any IV s/αs

TCR

SPR

RExt

OWF

Append key + N/H+(1)+(2)+(6)

SF+(7) (key ⊕ blks)key ⊕ blks key ⊕ blks

Any IV s/αs

α1 6=⊥

(1)+(2)+(6)

(7) + (9) PF+(7)+(9) (7’) + (9)

N/H+(7)+(9)

(8) + (9)
SF+(9)

PF+(8)+(9)
(8’) + (9)

Any IV s/αs

N/H+(8)+(9)

H∞(M) ∧ H∞(mℓ)

(10)

H∞(M) ∧ H∞(mℓ)

(10)

H∞(M) HMAC??

NMAC + (10)

(SF/PF??)

MDS + (10)

(2)+(11)
MDS+(2)+(11)

(2’)+(11)
NMAC+(2)+(11)

HMAC??

(SF/PF??)

SF+(1)+(6)

PF+(1)+(2)+(6)(app.)

N/HMAC+(1)+(2)

(key ⊕ blks)

Any IV s/αs

N/H+(3)+(4)

(append)

(prepend)

Plain MD Encode-then-MD MD-then-Chop NMAC/HMAC

Figure 1: Table for comparing Security Property vs. Mode of operation

ARE WE ASKING TOO MUCH? In our motivation, we advocated the fact that the security officers should not
know (or worry about) the low-level details of the hash function implementations. In particular, we do not want
them to manually modify the internals of SHA. On the other hand, to use our result they have to be “smart enough”
to understand the purpose of their application of the hash function, so theycan use our black-box workarounds.
For example, they need to know ifH ′ is used for collision-resistance, key derivation, one-wayness, etc. Aren’t we
asking too much? Should not the security engineer just believe that the existing hash function will be “magically
applicable” for whatever intuitive use (s)he has in mind (therefore making this paper “useless”)?

We give two answers. First, we personally believe that a person designing a cryptographic protocol using a hash
functionshouldknow what security properties this hash function should satisfy. (And thisdoes not contradict our
desire to protect them from low-level details!) Second, in order for the security engineer to use a hash function in
the “magical” way above, the function should not have the weaknesses ofthe SHA family we mentioned earlier.
Thus, until a new, “magic” hash function is built and standardized, we simplycannot achievea positive answer to
our question, even if wewant our engineers to be “dumb” and not understanding what they is doing (which we
personally disagree with)! Until then, we believe that the results of this paper are meaningful and useful.

4

2 Security of MD modes
We will analyze each of the security properties that actual hash functionsare often required to satisfy, and find the
minimal assumptions on the compression function that are necessary to provethe security of each of the black-box
modes of operation for this security notion. As we discussed, we will not restrict ourselves to the case of property-
preservation and in some cases, we will need to make slightly stronger assumptions on the compression function
than the security notion desired.

Since the focus of our paper is mostly qualitative, in terms of when (i.e. for which applications) does it make
more sense to use some particular mode of operation, so we will keep the discussion “slightly informal” by using
more asymptotic definitions for the security notions. We assume basic familiarity withthese notions, but provide
the formal definitions in the appendix A if one needs. Due to space constraints, we only give the security of the
modes of operation for collision-resistance, pseudorandomness, target collision-resistance and one-wayness in the
main body. The discussion for other security notions can be found in appendices B-E.

2.1 Collision Resistance
We will analyze each of the four modes for minimal assumptions required on thecompression functionh : {0, 1}κ×
{0, 1}n → {0, 1}n needed in order to prove its collision resistance. A construction will be calledǫ collision resistant
if the maximum advantage of an efficient attacker in finding a collision isǫ. As we discussed, in some cases, the
security property needed for the compression functionh may be stronger than collision resistance.

PLAIN MD CONSTRUCTION. It is a well-known fact that simply assuming collision resistance of the compression
function does not suffice to prove collision resistance of the plain MD construction. Indeed, if the compression
functionh has afixed-pointsuch that there is somex ∈ {0, 1}κ such that:h(x, IV) = IV . Then the output of the
plain MD constructionH collides for the inputsx andx ‖ m, for anym. Thus we, at least, need the compression
function to satisfy the following property.

Assumption 1 (No Fixed-Points)A functionh : {0, 1}κ×{0, 1}n → {0, 1}n is aǫ secureagainst fixed points if for
a randomly chosenIV ∈ {0, 1}n no efficient machineA has success probability more thanǫ of finding a sequence
of κ-bit blocksx1 . . . xi such that,

h(xi, h(. . . , h(x1, IV) . . .)) = IV

If the compression function is such that no efficient attacker can find such fixed points (along with being collision
resistant), then the plain MD construction can be proven to be collision resistant.

Observation 1 The plain MD construction can be proven to be collision resistant if the compression function is
collision resistant and is secure against fixed-points. The proof of collision resistance for this case works as in [10],

The no fixed-pointsassumption allows us to prove collision resistance of the plain MD construction,but it is a
non-standard assumption and it is not intuitively clear as to which compression functions satisfy this property. But
since we are already assuming the compression function to be collision-resistant, perhaps we can prove this result by
making a weaker and cleaner additional assumption on the compression function. Fortunately we show that simply
assuming output regularity suffices in this case.

Assumption 2 (Regularity of outputs) A functionh : {0, 1}m → {0, 1}n is a ǫ output regular functionif for any
efficient machineA that gives a1 bit output:

|Pr [A(x) = 1 |x← h(Um)]− Pr [A(x) = 1 |x← Un]| ≤ ǫ

HereUm andUn denote the uniform distributions on{0, 1}m and{0, 1}n, respectively.

We show that if the compression function is output regular (i.e. for a random input, the output is well distributed
over the range) in addition to being collision-resistant, then it is secure against fixed points and thus a CRHF using
the observation above.

5

Lemma 2.1 The compression functionh : {0, 1}κ × {0, 1}n → {0, 1}n is (ǫcol + ǫreg + 2−n)-secure against fixed
points if it satisfies the following properties:

• h is ǫcol collision resistant.

• h is anǫreg output regular function.

Proof: To the contrary, say there is an efficient attacker that finds a fixed pointx1 . . . xi with non-negligible prob-
ability ǫ, then we can show that it either breaks the collision resistance or the outputregularity assumption for the
compression function. In order to show this, choose the initialization vectorIV asIV ← h(x) (for x← Uκ × Un),
instead ofIV ← Un. If the success probability ofA changes by a non-negligible amount then we can break the
output regularity assumption. Thus,ǫ′ ≥ ǫreg + Pr[A succeeds in new game].

To estimate the success probability of the attackerA in the new game, say it finds a sequence ofκ-bit blocks
x1 . . . xi such thath(xi, h(. . . , h(x1, IV) . . .)) = IV with probabilityǫ′. Let y = (xi, h(. . . , h(x1, IV) . . .)). Then
it is the case thath(x) = h(y) (wherex was used to select theIV). Thus, we can deduce that,

ǫ′ = Pr[(A succeeds) ∧ (x = y)] + Pr[(A succeeds) ∧ (x 6= y)]

⇒ ǫ′ ≤ Pr[(x = y)] + ǫcol

⇒ ǫ′ ≤ ǫcol +
∑

IV ∈{0,1}n

#{x s.t. h(x) = IV }

2n+κ
·

1

#{x s.t. h(x) = IV }

≤ ǫcol + 2−n

Thus we get that the maximum success probability of an efficient fixed-point finding attacker isǫreg + ǫcol + 2−n.

Corollary 2.2 The plain MD constructionH using a compression functionh : {0, 1}κ × {0, 1}n → {0, 1}n is a
(ǫreg + ǫcol + 2−n) collision resistant hash function ifh satisfies the following properties:

• h is ǫcol collision resistant.

• h is anǫreg output regular function.

ENCODE-THEN-MD CONSTRUCTION. It makes sense to only consider deterministic input coding schemes, since
the resulting construction must behave like a function. We analyze two of the most popular such coding schemes,
i.e. prefix-free encodingandsuffix-free encoding.

We first note that using a prefix-free encoding on the input does not enable us to get rid of any security properties
in lemma 2.2. Hence we can essentially restate the same result for the prefix-free MD constructionHpre as well. On
the other hand, if we use asuffix-free encoding(such as Merkle-Damg̊ard strengthening) then the resulting suffix-
free MD constructionHsuf can be shown to be collision resistant by simply assuming the collision-resistance of the
compression functionh [10, 18].

MD-THEN-CHOP CONSTRUCTION Note that simply assuming collision resistance of the compression function is
not useful for this construction, since we truncates bits of the output. For instance, consider the case whenh is
collision resistant on theses bits, and is the constant function for all other bits (noted by Kelsey [15]).However, in
our setting this only means that we need to make a stronger assumption on the compression functionh. In particular,
we will instead assume thath is collision resistant even if we remove theses bits from its output.

Lemma 2.3 The MD-then-chop constructionHchops
, using a compression functionh : {0, 1}κ×{0, 1}n → {0, 1}n,

is a (ǫreg + ǫ′col + 2n−s) collision resistant hash function if the following holds:

• The functionh′ : {0, 1}κ × {0, 1}n → {0, 1}n−s defined ash′(x, y) = h(x, y)|n−s (i.e. chopping the lasts
bits from the output ofh) is a ǫ′col collision resistant function.

• h is a ǫreg output regular function.

6

The proof of this lemma is essentially the same as for corollary 2.2.

NMAC/HMAC CONSTRUCTION We note that using the NMAC constructionHnmac does not help in improving
upon the collision resistance of the plain MD constructionH. This is essentially because any collision in the first
application of the plain MD construction ofHnmac (using initialization vectorIV1) essentially implies a collision
for the entire construction. Hence, at best, we can restate lemma 2.2 for this construction as well.

Since the HMAC constructionHhmac is simply a black-box instantiation of the NMAC construction, this does not
help in improving collision resistance. However, we note that it has the best exact security ifα1 6=⊥.

2.2 Pseudorandomness
An issue in the pseudorandomness analysis of the MD modes of operation is the location of the PRF key. As
discussed above, we need to specify the location of the key such that the resulting construction is still a black-box
variant of plain MD. For our analysis, we will assume the key length to be the length of a single block (i.e.κ bits for
the compression functionh : {0, 1}κ × {0, 1}n → {0, 1}n), and we will denote the key asK. We will analyze two
approaches for keying each MD mode of operation:

1. Prepend the key to input:The PRF constructionH outputsH(K ‖ X) on inputX.

2. Append the key to input:The PRF constructionH outputsH(X ‖ K) on inputX.

Moreover, we will need two versions of pseudorandomness definitions for the compression function, one where the
key occupies the lastn bits and other where it occupies the firstκ bits. We get the following two assumptions on the
compression function in this manner.

• Standard PRF (sPRF) security:Here we require that for a uniformly chosenK ∈ {0, 1}n, the functionh(·, K)
must be indistinguishable from a truly random function.

• Dual PRF (dPRF) security:Here we require that for a uniformly chosenK ∈ {0, 1}κ, the functionh(K, ·)
must be indistinguishable from a truly random function.

Depending on the maximum distinguishing advantageǫ of an efficient attacker in each case, we call the compression
functionh ǫ-sPRF orǫ-dPRF.

PLAIN MD CONSTRUCTION. In this case if we prepend the PRF key to the hash function input, then the resulting
construction is not a PRF. This is because an attacker can use theextension attackto findH(K ‖ X ‖ Y) by simply
knowing the outputH(K ‖ X) and computing the compression function on the remaining blocks itself (where it
does not need to know the keyK). On the other hand, if we append the PRF key to the input, then we can show
that if the plain MD construction usingh is collision-resistant and satisfies the dual PRF security, then the plain MD
constructionH(· ‖ K) is a variable-length input PRF.

Lemma 2.4 The plain MD constructionH is aO(ℓ · (ǫcol + ǫreg) + ǫdprf) PRF 4 (with PRF key appended to the
function input) if the following conditions hold:

• h is ǫcol collision resistant.

• h is a ǫreg output regular function.

• h is a ǫdprf dual pseudorandom function.

The proof of this lemma is rather straightforward. Here, output regularity and collision resistance of the compression
function together imply the collision resistance of the plain MD construction. Thus, in the last round, then-bit
chaining variable is different for two different inputs. Hence a distinguisher for the plain MD construction can be
used directly by the dual-PRF distinguisher for the compression function.

ENCODE-THEN-MD CONSTRUCTION. Once again, we will discuss two deterministic coding schemes here,prefix-
free encodingandsuffix-free encoding. Let us first analyze the suffix-free MD constructionHsuf . If we prepend the

4ℓ denotes the maximum number ofκ-bit blocks in a hash function input, throughout this paper

7

key to the (encoded) input, the resulting construction is still insecure since theextension attackworks in this case as
well. On the other hand, if we append the key to the (encoded) input then theresulting construction is a PRF if the
suffix-free MD constructionHsuf using the compression functionh is a dual PRF and collision resistant (for which
we only need collision resistance ofh in this case).

For the prefix-free MD constructionHpre, if we append the key to the (encoded) input then we get no advantage
as compared to the plain MD construction and we can only restate lemma 2.4 in this case. On the other hand, if we
prepend the PRF key to the (encoded) input then the resulting constructionis not vulnerable to theextension attack
in this case. Indeed, it was shown by Bellare et al. in [3] that the prefix-free MD construction with the PRF key in
the IV is a PRF only assuming that the compression functionh satisfies the standard PRF security. However, since
we will need to prepend the key to the input (in order to preserve the black-box property of the construction), we will
need to impose an extra condition on the compression function. In particular,we require that the function defined as
h(Un, ·) is an output regular function. That is, if the firstn bits of the compression functionh are chosen at random
then the resulting function is output regular with high probability.

Lemma 2.5 The prefix-free MD constructionHpre is aO(ǫ′reg + ℓ · ǫsprf) secure PRF (with PRF key prepended to
the input) if the following conditions hold:

• h is a ǫsprf sPRF.

• h(Un, ·) is a ǫ′reg output regular function.

The proof of this lemma is similar to the result of [3].

MD-THEN-CHOP CONSTRUCTION. If the PRF key is appended to the input to the MD-then-Chop construction
Hchops

, then a slight variant of lemma 2.4 can be stated for this construction as well. Indeed, all we need is to specify
the dual PRF and collision-resistance properties for the compression function with chopped output.

On the other hand, if we prepend the PRF key to the input toHchops
, then the extension attack does not seem to

go through as in the case of plain MD construction. This is because the attacker does not learn the choppeds bits
of the chaining variable by observing the output ofHchops

for the prefix of an input. Indeed, this construction can
be proven to be an arbitrary-length input PRF by making a slightly non-standard assumption on the compression
function. In particular, we require the compression function to satisfy the following resilient sPRFassumption:

Assumption 3 ((s, ǫ)-resilient sPRF) The functionh : {0, 1}κ × {0, 1}n → {0, 1}n is a (s, ǫ)-resilient sPRF if it
is a ǫ-secure sPRF even if the attacker learnss bits of then bit key.

Lemma 2.6 The MD-then-Chop constructionHchops
is aO(ǫ′reg + ℓ · ǫ′sprf) secure PRF (with PRF key prepended

to the input) if the following conditions hold:

• h is a (s, ǫ′sprf)-resilient sPRF.

• h(Un, ·) is a ǫ′reg output regular function.

NMAC/HMAC CONSTRUCTION. The NMAC and HMAC constructions were shown to be secure arbitrary-length
input PRFs by Bellare [2]. In [2], it is shown that the HMAC construction with α1 = α2 =⊥ (i.e. with the same
IV for both invocations of the plain MD construction) is a secure arbitrary-length input PRF if the underlying com-
pression function satisfies both the standard and dual PRF security definitions. This is done by simply prepending a
differentκ-bit key to each invocation of the plain MD construction5.

Lemma 2.7 The NMAC (resp. HMAC) constructionHnmac (resp.Hhmac) is aO(q2ℓ · ǫsprf + ǫdprf) PRF (with a
differentκ-bit key prepended to the input in each call to the MD construction) for anyIV1 andIV2 (resp. α1 and
α2) if the following conditions hold:

• h is a ǫsprf -secure sPRF.

• h is a ǫdprf -secure dPRF.
5if the same key is prepended in both invocations, then the construction is secure under a slightly stronger assumption, called security

againstrelated-key attacksin [3, 2]. We ignore this setting here

8

2.3 Target Collision Resistance
Target collision resistance (TCR) is a strictly weaker property than collisionresistance. However, for some purposes,
TCR hash functions (also called UOWHFs) suffice instead of CRHFs. Forinstance, it is possible to come up with a
signature scheme on arbitrary length messages using one that works only for fixed-length messages by using TCR
hash functions. For this reason, this primitive has attracted even greater interest since the discovery of better attacks
against the collision resistance of existing hash functions. We will call a constructionǫ-secure TCR function if the
maximum advantage of an efficient attacker in the TCR attack game isǫ6

Here, simply assuming TCR security of the compression function will not suffice. This is because the output of
a TCR function need not be random, so that each subsequent applicationof the compression function will require
separate key space (and this dedicated-key setting violates our requirements from the mode of operation). Instead,
we will assume that the compression functionh : {0, 1}κ × {0, 1}n → {0, 1}n is an unkeyed function that satisfies
second preimage resistance type properties.

PLAIN MD CONSTRUCTION. In order to discuss the TCR security of the plain MD construction, we needto first
discuss appropriate keying mechanisms for this construction. As we brieflymentioned above, Shoup [24] described
an efficientmasking-based constructionbased on the plain MD construction. However, this construction modifies
the chaining variable which violates our properties of black-box modes of operation. Unfortunately, we do not know
of any black-box ways of keying the plain MD construction such that it canbe shown to be a TCR hash function
only assuming the compression function to be a SPR function.

Halevi and Krawczyk [13] suggested an alternate way of keying the plainMD construction that satisfies all the
properties of a black-box mode of operation. The constructionHK proposed in [13] uses aκ-bit key K and XORs

the key with each message block in the plain MD construction, i.e.HK(x1 ‖ . . . ‖ xℓ)
def
= h(K ⊕ xℓ, h(. . . , h(K ⊕

x1, IV) . . .)).

However, in order to prove TCR security of this construction one needs tomake a slightly non-standard “SPR
type” assumption on the compression function, called theevaluated SPR assumption(e-SPR) [13].

Assumption 4 (evaluated SPR)Consider a functionh : {0, 1}κ × {0, 1}n → {0, 1}n and letHK be the plain MD
based construction usingh (described above). The functionh is ǫ evaluated second preimage resistantif any efficient
machineA wins in the following game with probability at mostǫ (over the random choice ofIV and the coins ofA).

1. A chooses a sequence ofκ-bit blocks∆1, . . . ,∆i.

2. The challenger chooses a random keyK and setsc = HK(∆1 ⊕K, . . . ,∆i−1 ⊕K) andm = ∆i ⊕K.

3. A wins if it can findc′ andm′ such thath(m′, c′) = h(m, c).

Halevi and Krawczyk [13] show that if the compression functionh is an e-SPR function, then the constructionHK

described above is a secure TCR hash function. However, in their proof they require that the inputs provided to
HK must be suffix-free. Indeed, this is required for their reduction to go through. However, we note that even for
the plain MD construction (with possibly “non-suffix-free” inputs), one can make an additional assumption on the
compression function to enable us to apply the proof technique of [13].

Lemma 2.8 The constructionHK is anO(ℓ · (ǫfix + ǫespr))-secure TCR function if the following holds:

• h is anǫespr-secure e-SPR function.

• h is ǫfix-secure against fixed points.

ENCODE-THEN-MD CONSTRUCTION. If we apply a suffix-free encoding to the input before using the construction,
then the resulting mode of operationHsuf,K is a TCR hash function based only on the assumption thath is an e-SPR
function [13]. On the other hand, using a prefix-free encoding does not help in improving the security of the plain
MD construction and we need all conditions of lemma 2.8 to prove the TCR security of the resulting construction.

6Recall that in this game, the attacker first chooses a function input, followed by the challenger choosing the key and finally the attacker
winning if it finds a second colliding input for the chosen key.

9

MD-THEN-CHOP CONSTRUCTION. For the MD-then-Chop construction, we need to make a slightly stronger
assumption on the compression function to prove the TCR security of the resulting construction. In particular, we
need to assume that the compression functionh is e-SPR even if we chop a non-negligible number of its output bits.
If we replace the second condition in lemma 2.8 wit this stronger condition, then itholds for the MD-then-Chop
construction as well.

NMAC/HMAC CONSTRUCTION. Using the NMAC or HMAC construction does not lead to improved TCR
security of the resulting construction. Again this is because if the attacker finds a collision in the first invocation of
the plain MD construction then it implies a collision for both NMAC and HMAC construction.

2.4 One-Wayness
One way functions are also often referred to as preimage resistant functions. A construction isǫ-secure OWF if no
efficient attacker can find the input corresponding to the output of the function (on a random input) with probability
more thanǫ. This security property is even weaker than second preimage resistance.

PLAIN MD CONSTRUCTION. In this case, we will need to assume that the compression functionh is a one way
function. Moreover, we will also require thath is output regular, so that its output is uniformly distributed for a
random input. This is essentially because we need the input to a one-way function to be random in order to use the
one-wayness property.

Lemma 2.9 The plain MD constructionH isO(ℓ · ǫreg + ǫowf)-secure OWF if the following conditions hold:

• h is anǫreg output regular function.

• h is a ǫowf -secure one-way function.
The proof of this lemma is based on the fact that an attacker cannot tell the difference between the output ofH on a
random input or the compression functionh on a random input, ifh is output regular. Thus the one-wayness attacker
for h can use the one forH directly.

ENCODE-THEN-MD CONSTRUCTION. If we use an arbitrary suffix-free encoding with the MD construction, then
we cannot say much about one-wayness of the construction since the input distribution could be arbitrary. However,
if we applyMerkle-Damg̊ard strengtheningto the input, then we can show that the resulting construction is a one-
way function under sufficient assumptions. The proof of this fact is non-trivial though. In particular, we need to
make an additional assumption about the compression function.

Assumption 5 ((p, ǫ) output consistent) The functionh : {0, 1}κ × {0, 1}n → {0, 1}n is (p, ǫ) output consistent
if for any κ-bit block x and uniformly distributedy ∈ {0, 1}n, with probability at least(1 − ǫ) the number of
y′ ∈ {0, 1}n such thath(x, y) = h(x, y′) is at mostp.

Note that this property certainly holds for a random compression function (and, thus, holds for most compression
functions). By making this additional assumption from the compression function, we can derive the following result.

Lemma 2.10 The suffix-free MD constructionHsuf that uses MD strengthening for suffix-freeness is(pcons · (ℓ ·
ǫreg + ǫowf) + ǫcons)-secure one-way function, whereℓ is the maximum length of an inverted input provided by the
OWF attacker, if the following conditions hold:

• h is anǫreg output regular function.

• h is a ǫowf -secure one-way function.

• h is a (pcons, ǫcons) output consistent.

Proof: The proof for this lemma is essentially based on the proof of lemma 2.9. We construct an one-wayness
attackerA′ for the compression function using the attackerA that has advantageǫ in inverting Hsuf with MD
strengthening.A′ gets its challenge outputy and chooses a uniformly randomi ∈ {1, . . . , ℓ}n. It then gives
z = h(〈i〉, y) as a challenge toA.

Now A′ succeeds only if the inversez outputted byA is i-bit long. If so, thenA′ can proceed similar to the
case on the plain MD construction in lemma 2.9 if the chaining variable forz in the last round, with〈i〉 in the

10

message block, is the challengey. However, from our assumptions, with probability at mostǫcons there are more
thanpcons n-bit stringsy′ such thath(〈i〉, y′) = h(〈i〉, y). Thus, we get that the success probability ofA is at most
(pcons · (ℓ · ǫreg + ǫowf) + ǫcons).

As for prefix-free encoding, once again we cannot say anything general (for the same reason as above), but when
prepending the message length we are essentially back to the setting of plain MDdiscussed above, except we
need to assume that the output of the compression function on a random IV and a fixed message block is random.
In particular, we note that encoding the input in any way does not help as far as one-wayness of the construction is
concerned. In fact, we only need more assumptions to prove this property, as compared to the plain MD construction.

MD-THEN-CHOP CONSTRUCTION. In order to prove the one-wayness of the MD-then-Chop construction, we need
to make a stronger assumption on the compression functionh. In particular, we assume thath is one-way withs bits
of the output chopped. Let the one-way security of the functionh with truncated output beǫ′owf . Then we can show
thatHchops

is aO(ℓ · ǫreg + ǫ′owf)-secure one-way function (similar to lemma 2.9)

NMAC/HMAC CONSTRUCTION. The NMAC construction is a one-way function under the same conditions on
the underlying compression functionh as required in lemma 2.9. However, we require that random and independent
initialization vectorsIV1 andIV2 are used in the NMAC construction. However, it turns out that translating these
results to the setting of the HMAC construction is not straightforward.

3 Implications for Hash Functions in Practice
We will now translate our results into suggestions for usage of actual “cascade construction based” hash functions,
such as functions from the SHA family. As we mentioned earlier, we have triedto find the minimal assumptions
needed to make each of the four modes of operation secure (for each ofthe security properties). Thus, we have left
part of the “decision making” for the practitioner who uses our results. Inparticular, the practitioner must consider
the following questions:

1. What one needs to assume about the hash function in order for the cryptosystem (that the hash function is
being used for) to be provably secure?

2. What level of trust the practitioner is willing to place in the underlying compression function?
The answer to the first question will help in deciding the security property to look for in the hash function mode of
operation. The answer to the second question may not be as straightforward since the design of the compression
functions is quite complex and mostly based on heuristic. In this case, the practitioner needs to weigh all the
properties (s)he desires from the cryptosystem, in terms of efficiency, security etc. Thus, while some may be willing
to make a slightly stronger assumption on the compression function to have a moreefficient implementation, others
may be willing to sacrifice some efficiency for better security. Now we will givesome basic recommendations for
actual hash functions with respect to the various security properties.
COLLISION RESISTANCE. Each of the SHA functions are essentially based on the suffix-free MD construction
(using MD strengthening). Hence, collision resistance for each of thesehash functions is asymptotically same
as finding collisions on the compression function. It does not make much sense to use the “truncated” versions,
SHA-224 and SHA-384, since this only sacrifices the collision resistance of the original “untruncated” version (i.e.
SHA-256 and SHA-512, respectively). Using the NMAC/HMAC construction does not help in this case.
PSEUDORANDOMNESS. We note that using the full SHA-256 or SHA-512 hash functions makes more sense for
pseudorandomness than using the chopped versions (SHA-228 or SHA-384), which only have worse security. If
any of the SHA functions are used, as it is, for pseudorandomness, then we recommend appending the PRF key to
the input instead of prepending it. However, we recommend using these functions in conjunction with a prefix-free
encoding (such as prepending input length to the input) in which case the PRF key should beprependedto the input.
Another option would be to compose two calls to SHA-1, with independent keysprepended in each call, to get
security based on the sPRF and dPRF security of the compression function.
RANDOM ORACLE. Note that none of the SHA functions should be used, as it is, if the securityof the cryptosystem
requires therandom oracle assumptionfor the hash function. This is because the plain MD construction (even with

11

MD strengthening) is vulnerable to simple attacks in the indifferentiability scenario. One may think that both SHA-
224 and SHA-384 that correspond to “chop” versions of the functionsSHA-256 and SHA-512 would be secure
(since the MD-then-Chop construction is secure). However, note that only 32 bits are chopped in the case of SHA-
224, which does not give sufficient security for almost all applications.Hence, only SHA-384 (that chops 128 bits)
may be suitable to be used directly to instantiate the random oracle.

We recommend using the HMAC construction involving two black-box calls to the SHA function (while prepend-
ing differentα1 andα2 in each cal) for this purpose. Using any of these hash functions in conjunction with a
prefix-free encoding will also work for this purpose.
MESSAGE AUTHENTICATION. If the SHA functions are used as MACs directly, then the MAC key should be
appended to the input. In this case, security depends on both the MAC security and collision resistance of the
compression function. Using the HMAC construction does not help in improving the security either. Moreover,
when the “chopped” functions SHA-224 or SHA-384 are used as MACs, then their security is only worse than the
unchopped versions (SHA-256 and SHA-512).

If one is willing to assume pseudorandomness of the compression function, then the techniques mentioned above
for pseudorandomness can be used as well. Another approach would be to assume thededicated-key setting, by
inserting the MAC key in each application of the compression function (at the cost of some input bandwidth) and
then one could use one of the techniques suggested in [1, 20].
TARGET COLLISION RESISTANCE ORUOWHFS. We recommend using the technique suggested by Halevi and
Krawczyk [13] if the SHA functions are used as UOWHFs. In this case, one XORs the UOWHF key to each block
of the input. Since MD strengthening is already used in all these functions, the UOWHF security of this construction
is based only on the eSPR [13] (see above) of the compression function.
SECOND PREIMAGE RESISTANCE. It makes sense to use the SHA hash functions directly for the purpose ofsecond
preimage resistancewithout using any additional techniques, since they do not lead to improved security (note that
these functions already incorporate MD strengthening).
RANDOMNESS EXTRACTION. All the positive results forrandomness extractionhave reasonable interpretation in
practice, only if we are willing to assume that the SHA compression function is close to being a family of random
functions. Even though it is theoretically impossible, since the SHA compression function has a short description, it
might still be a more reasonable assumption than assuming the compression function to be a FIL-RO.

Under this assumption, we can deduce that the SHA functions are good randomness extractors for input distri-
butions with high min entropy overall and in the last block. On the other hand, as we saw above, it might be a
good idea to use chopped function SHA-384 for this purpose to get betterextraction properties (SHA-224 does not
have sufficient number of chopped bits to give useful advantage). Using the HMAC construction does not help in
improving the extraction properties.
ONE-WAYNESS. In the case of “one-wayness”, the security of the chopped functions, SHA-224 and SHA-384,
seems to rely on stronger assumptions than the security of the corresponding “unchopped” versions (SHA-256 and
SHA-384). This is because the one-way security increases with the number of output bits. On the other hand, it
might be the case that SHA-224 still has higher security than SHA-1, which seems intuitive given the bigger IV of
SHA-224. Moreover, message encoding or HMAC construction only negatively affects the one-wayness.

4 Conclusions
In this work we showed how to efficiently use existing hash functions basedon the MD mode (such as the functions
in the SHA family) to build cryptographic hash functions satisfying various security properties such as collision-
resistance, pseudorandomness, indifferentiability from random oracle, message authentication, target collision-
resistance, second preimage-resistance, randomness extraction and one-wayness. Our constructions are black-box,
support variable-length inputs and provide the same efficiency as the plainMD construction, under the minimal
assumptions on the underlying compression function.

12

References

[1] J. H. An, M. Bellare,Constructing VIL-MACs from FIL-MACs: Message Authentication underWeakened
Assumptions, CRYPTO 1999,pages 252-269.

[2] M. Bellare,New Proofs for NMAC and HMAC: Security without Collision-Resistance, Advances in Cryptol-
ogy - Crypto 2006 Proceedings, Springer-Verlag, 2006.

[3] M. Bellare, R. Canetti, and H. Krawczyk,Pseudorandom Functions Re-visited: The Cascade Construction and
Its Concrete Security, In Proc. 37th FOCS, pages 514-523. IEEE, 1996.

[4] M. Bellare, R. Canetti, and H. Krawczyk,Keying hash functions for message authentication, Advances in
Cryptology - Crypto 96 Proceedings, LNCS Vol. 1109, Springer-Verlag, 1996.

[5] M. Bellare and P. Rogaway,Collision-Resistant Hashing: Towards Making UOWHFs Practical, In Crypto ’97,
LNCS Vol. 1294.

[6] M. Bellare and P. Rogaway,Random oracles are practical : a paradigm for designing efficient protocols. Pro-
ceedings of the First Annual Conference on Computer and CommunicationsSecurity, ACM, 1993.

[7] M. Bellare and T. Ristenpart,Multi-Property-Preserving Hash Domain Extension and the EMD Transform, in
ASIACRYPT 2006.

[8] M. Bellare and T. Ristenpart,Hash Functions in the Dedicated-Key Setting: Design Choices and MPP Trans-
forms, in ICALP 2007.

[9] J.-S. Coron, Y. Dodis, C. Malinaud and P. Puniya,Merkle-Damg̊ard Revisited: How to Construct a Hash
Function, Advances in Cryptology, Crypto 2005 Proceedings: 430-448, Springer-Verlag, 2006.

[10] I. Damg̊ard,A Design Principle for Hash Functions, In Crypto ’89, pages 416-427, 1989. LNCS No. 435.

[11] Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin,Randomness Extraction and Key Derivation
Using the CBC, Cascade and HMAC Modes, Advances in Cryptology - CRYPTO, August 2004.

[12] FIPS 180-1,Secure hash standard, Federal Information Processing Standards Publication 180-1, U.S. De-
partment of Commerce/N.I.S.T., National Technical Information Service, Springfield, Virginia, April 17 1995
(supersedes FIPS PUB 180).

[13] S. Halevi and H. Krawczyk,Strengthening Digital Signatures Via Randomized Hashing, in Advances in Cryp-
tology - CRYPTO 2006, pp. 41-59.

[14] Antoine Joux,Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions, Advances
in Cryptology - CRYPTO 2004, 306-316.

[15] J. Kelsey, in CRYPTO 2005 Rump Session.

[16] J. Kelsey and T. Kohno,Herding Hash Functions and the Nostradamus Attack, Advances in Cryptology -
EUROCRYPT 2006, 183-200.

[17] RFC 1321,The MD5 message-digest algorithm, Internet Request for Comments 1321, R.L. Rivest, April 1992.

13

[18] R. Merkle,One way hash functions and DES, Advances in Cryptology, Proc. Crypto’89, LNCS 435, G. Bras-
sard, Ed., Springer-Verlag, 1990, pp. 428-446.

[19] U. Maurer, R. Renner, and C. Holenstein,Indifferentiability, Impossibility Results on Reductions, and Appli-
cations to the Random Oracle Methodology, Theory of Cryptography - TCC 2004, Lecture Notes in Computer
Science, Springer-Verlag, vol. 2951, pp. 21-39, Feb 2004.

[20] U. M. Maurer, J. Sj̈odin,Single-Key AIL-MACs from Any FIL-MAC, in ICALP 2005, pp. 472-484.

[21] National Institute of Standards and Technology,NIST’s Plan for New Cryptographic Hash Functions,
http://www.csrc.nist.gov/pki/HashWorkshop/index.html.

[22] Moni Naor and Moti Yung,Universal One-Way Hash Functions and their Cryptographic Applications, STOC
1989: 33-43.

[23] D. R. Simon,Finding Collisions on a One-Way Street: Can Secure Hash Functions Be Based on General
Assumptions?, in Advances in Cryptology - EUROCRYPT 1998, pp. 334-345.

[24] Victor Shoup,A Composition Theorem for Universal One-Way Hash Functions, in Advances in Cryptology -
EUROCRYPT 2000, pp. 445-452.

[25] X. Wang, H. Yu, Y. L. Yin,Efficient Collision Search Attacks on SHA-0, Advances in Cryptology - CRYPTO
2005, 1-16.

[26] X. Wang, Y. L. Yin, H. Yu,Finding Collisions in the Full SHA-1, Advances in Cryptology - CRYPTO 2005:
17-36.

A Preliminaries

In this paper, we will be interested more in the qualitative aspects of the security of iterative hash functions rather
than focusing on the exact security in each case. For this purpose, we will give here slightly “less formal” and
asymptotic definitions for each of these security notions related to hash functions.

A.1 Collision Resistance

A collision resistant function ensembleHλ is defined for a sequence of sets
{

{0, 1}m(λ), {0, 1}n(λ)
}

λ∈N
, wherem

andn denote the input and output length ofHλ, respectively. Such a function ensemble consists of a pair of PPT
machines(Gen, Eval). However, we will give an asymptotic version of the definition of collision resistance here.

Definition 1 ǫ-CR function family A function ensembleHλ is a ǫ-collision resistant function family if for any prob-
abilistic polynomial time machineA:

Pr
[

hs(x1) = hs(x2)
∣

∣

∣
s← Gen(1λ); (x1, x2)← A(1λ, s)

]

≤ ǫ

Hereǫ is a function of the security parameterλ.

14

A.2 Pseudorandomness

Apseudorandom function ensembleHλ is defined for a sequence of sets
{

{0, 1}m(λ), {0, 1}n(λ)
}

λ∈N
. It consists of

a pair of PPT machines(Gen, Eval), the key generation and evaluation machines.

Definition 2 ǫ-PRF family LetRλ be the truly random function ensemble. A function ensembleHλ is aǫ-pseudorandom
function family if for any PPT oracle machineA:

∣

∣

∣
Pr

[

Ahs(1λ) = 1
∣

∣

∣
s← Gen(1λ)

]

− Pr
[

Af = 1 |f ← Rλ

]
∣

∣

∣
≤ ǫ

Hereǫ is a function of the security parameterλ.

A.3 Unpredictability and MACs

A message authentication code, MAC, is defined for a sequence of sets{Mλ, Tλ}λ∈N. It consists of a triple
(Gen, Tag, V er) of PPT machines, denoting the key generation, tagging and tag verification algorithms.

Definition 3 (ǫ-secure MAC) A MAC (Gen, Tag, V er) is a ǫ-secure MAC if for any PPT oracle machineA that
outputs a message/tag pair(m, t) such that it never queried the tagging oracle on the messagem:

Pr

[

V ers(m, t) = accept

∣

∣

∣

∣

s← Gen(1λ);
(m, t)← ATags,V ers(1λ)

]

≤ ǫ

Hereǫ is a function of the security parameterλ.

A.4 TCR and One-Wayness

Target collision resistance is a weaker notion of collision intractability that collision resistance. A target collision
resistant function ensemble is also called aUniversal One-Way Hash Functionensemble (or simply UOWHFs).
A TCR function ensemble is defined for a sequence of sets

{

{0, 1}m(λ), {0, 1}n(λ)
}

λ∈N
, and consists of a pair of

algorithms(Gen, Eval). However, the TCR attacker is more restricted than the collision finding attacker above,
since it chooses one of the colliding inputs without knowledge of the hash function key.

Definition 4 (ǫ-TCR function family) A function ensembleHλ is a ǫ-secure TCR function family if for any pair of
PPT machines(A1, A2):

Pr

[

hs(x1) = hs(x2)

∣

∣

∣

∣

(x1, α)← A1(1
λ); s← Gen(1λ);

x2 ← A2(1
λ, α, x1, s)

]

≤ ǫ

Hereǫ is a function of the security parameterλ.

A notion related to TCR hash functions is that ofsecond preimage-resistant functions. Unlike TCR hash functions
this security notion is related to unkeyed hash functionsf : {0, 1}m → {0, 1}n (where we can think ofm as being
the security parameter).

Definition 5 (ǫ-SPR function) A functionf : {0, 1}m → {0, 1}n is ǫ-second preimage resistantif for any PPT
machineA:

Pr
[

f(x) = f(x′)
∣

∣

∣
x

$
← {0, 1}m; x′ ← A(1λ, x)

]

≤ ǫ

Related to the notion of SPR functions, we can also define the notion ofpreimage resistanceor one-wayness. This
is a slightly weaker property than second preimage resistance.

15

Definition 6 ǫ-secure one way function A functionf : {0, 1}m → {0, 1}n is anǫ-secure one way functionif for any
PPT machineA:

Pr
[

f(x) = y
∣

∣

∣
y

$
← {0, 1}n; x← A(1λ, y)

]

≤ ǫ

A.5 Randomness Extraction

A randomness extractoris a function that is used to extract uniformly random bits from inputs samples from an
imperfect source of randomness. This has been an extremely useful primitive in cryptography, as well as theoretical
computer science in general. We will give here brief definitions for this primitive.

We start by defining the notion ofmin entropy, which is a measure of the amount of randomness in a probability
distribution. For instance consider a distributionX over{0, 1}n. Themin entropyof the distributionX , denoted
asH∞(X), is the minimum integerm such thatPrX (x) ≤ 2−m for all x ∈ {0, 1}n. HerePrX (x) denotes the
probability assigned tox by the distributionX .

We will also need a way to quantify the distance between two probability distributions,X1 andX2, over a setS.
The popular measure in this case isstatistical distancebetweenX1 andX2. Thestatistical distancebetweenX1 and

X2 is defined asSD(X1,X2)
def
= 1

2

∑

s∈S

|PrX1
(x)− PrX2

(x)|. If two distributions have statistical distanceǫ between

them, then they are calledǫ-close distributions.

A randomness extractoris a functionh : {0, 1}κ × {0, 1}m → {0, 1}n that takes aκ-bit uniformly random seed
and am-bit input, and outputs an-bit output.

Definition 7 ((k, ǫ) Extractor) A (k, ǫ) extractor is a functionf : {0, 1}κ × {0, 1}m → {0, 1}n such that for every
distributionX on {0, 1}κ with H∞(X) ≥ k, the distributionf(X , Um) is ǫ-close to the uniform distribution on
{0, 1}n, whereUm denotes the uniform distribution on{0, 1}m.

B Random Oracle

Now we analyze each of the hash function modes of operation for indifferentiability from a random oracle (RO),
under the assumption that the underlying compression function is a fixed-length input random function oracle (FIL-
RO). We will call a functionǫ RO if the maximum advantage of a distinguisher isǫ under the indifferentiability
definition.

PLAIN MD CONSTRUCTION. The plain MD construction does not give an indifferentiable constructionof RO from
a FIL-RO. This is essentially because the plain MD construction is vulnerableto the extension attack (see [9]).

ENCODE-THEN-MD CONSTRUCTION. The suffix-free MD constructionHsuf is not indifferentiable from a random
oracle, since applying a suffix-free encoding to the input does not helpin avoiding theextension attack[9]. However,
if the input to the MD construction is guaranteed to be prefix-free, then it is no longer vulnerable to the extension
attack. Indeed, it was shown by Coron et al [9] that the prefix-free MD constructionHpre is indifferentiable from a
random oracle if the underlying compression function is a FIL-RO.

Lemma B.1 The prefix-free Merkle-Damgård constructionHpre is aO((qℓ)2/2n) RO if the underlying compression
function is a FIL-RO.

MD-THEN-CHOP CONSTRUCTION. The Merkle-Damg̊ard construction can be shown to be indifferentiable from
RO if we chop a non-negligible (in particular, super-logarithmic) number of the output bits. However, the security of
the MD-then-chop constructionHchops

is worse than other MD based constructions [9] (in particular, it is a birthday
bound ons bits instead of onn bits).

16

Lemma B.2 The Merkle-Damg̊ard then chop constructionHchops
is aO((qℓ)2/2s) RO if the underlying compres-

sion function is a FIL-RO, and we chops bits of the output.

NMAC/HMAC CONSTRUCTION. It was shown in [9] that the HMAC construction withα1 = 0k andα2 =⊥ is
indifferentiable from a random oracle. We note thatα1 can be anyk-bit block such thatα1 /∈ {⊥, α2}, whileα2 can
be any bit string in{⊥} ∪ {0, 1}k. On the other hand, it is more straightforward to show that the version of NMAC
constructionHnmac described here, is indifferentiable from a random oracle as well, withIV1 6= IV2.

Lemma B.3 The NMAC/HMAC constructionsHnmac (resp. Hhmac) with IV1 6= IV2 (resp. α1 /∈ {⊥, α2}) are
O((qℓ)2/2n) ROs if the underlying compression function is a FIL-RO.

C Message Authentication Code

We will refer to MACs that work for fixed-length messages as FIL-MACs and those that work for variable-length
messages as VIL-MACs. We will analyze each of the modes of operation to see if they satisfy VIL-MAC security.
We call a constructionǫ-secure VIL-MAC if the maximum advantage of an efficient attacker in producing a valid
forgery isǫ. Let us first note, that a pseudorandom function can be considered tobe a MAC as well (PRF output
serves as the message tag). Thus all the results for PRF security above hold for VIL-MAC security as well. We will
try to find if these modes are VIL-MACs under weaker assumptions on the compression function than those needed
for the case of PRFs.

However, if we assume the compression function to be simply a FIL-MAC, thenwe cannot use the output of one
application of the compression function to key the construction. One solution tothis problem would be to analyze
the construction in thededicated-key setting, where each call to the compression function has a separate key space.
For current hash functions, one could assume that part of the messageblock space can be used to securely key the
compression function. That is, for the compression functionh : {0, 1}κ × {0, 1}n → {0, 1}n, the key occupies part
of the firstκ bits in the input. In this case, we can use the results of [1, 20] to get secureVIL-MAC constructions.
However, as we discussed earlier, this violates the property that our modes of operation should be efficient in terms
of input bandwidth. Thus, we will take a different approach here.

PLAIN MD CONSTRUCTION. If we prepend the MAC keyK ∈ {0, 1}κ to the input and apply the plain MD
construction, then the resulting construction is vulnerable to the extension attack since the attacker can obtain the
tag for a message by first getting a tag for the prefix. On the other hand, if the MAC key is appended to the input,
then we find sufficient assumptions to show thatH is a secure VIL-MAC. In particular, we will need the plain MD
construction to be collision-resistant and the compression function to be a secure MAC when the MAC key occupies
the firstκ bits of its input.

Lemma C.1 The plain MD constructionH is aO(ℓ·(ǫreg+ǫcol)+ǫmac)-secure VIL-MAC, when the key is appended
to the input, if the following conditions hold:

• h is a ǫcol collision resistant function.

• h is a ǫreg output regular function.

• h is a ǫmac secure MAC, when the firstκ bits of its input is considered to be the key space.

The proof idea here is similar to the corresponding PRF lemma 2.4.

ENCODE-THEN-MD CONSTRUCTION. If we use a suffix-free encoding and append the MAC key to the input, then
we succeed in reducing the assumptions needed in lemma C.1 for collision resistance. Indeed, in this case, we can
show that the suffix-free MD constructionHsuf isO(ǫmac + ℓ · ǫcol) secure VIL-MAC if the compression function is

17

ǫcol collision resistant andǫmac secure FIL-MAC. On the other hand, if we prepend the MAC key to the input, then
the resulting construction is insecure since it is still vulnerable to the extensionattack.

If we use a prefix-free encoding, and prepend the MAC key to the inputthen the resulting construction is a secure
VIL-MAC only if all the conditions stated in lemma 2.5 hold. On the other hand, the prefix-free MD construction
Hpre with MAC key appended to the input essentially has the same security as the plainMD construction in lemma
C.1.

MD-THEN-CHOP CONSTRUCTION. If we prepend the MAC key to the input to the MD-then-Chop construction
Hchops

, then the resulting construction can be shown to be a VIL-MAC only under the conditions from lemma 2.6.
On the other hand, if we append the MAC key to the input then we can prove the VIL-MAC security of the resulting
construction by making slightly stronger assumptions on the compression function as compared to lemma C.1.

Lemma C.2 The MD-then-Chop constructionHchops
isO(ℓ · (ǫreg + ǫcol)+ ǫ′mac)-secure VIL-MAC if the following

conditions hold:

• h is a ǫcol collision resistant function.

• h is a ǫreg output regular function.

• h′(·) = h(·)|n−s is a ǫ′mac secure FIL-MAC.

NMAC/HMAC CONSTRUCTION. In this case, if we prepend the MAC key to the input, then we need the same
conditions as lemma 2.7 in order to prove VIL-MAC security as well. On the otherhand, if we append the MAC key
to the input, then both NMAC and HMAC constructions can only be proven secure using the same conditions as in
the case of plain MD construction (lemma C.1).

D Second Preimage Resistance

In this section, we will analyze each of the modes of operation for the minimal assumptions on the compression
function needed in order to prove the SPR security of the construction. A construction will be calledǫ-secure SPR
function if any efficient attacker has success probability at mostǫ in the SPR attack game.

Unfortunately, to the best of our knowledge, there is no black-box mode of operation that is property preserving
for second preimage resistance. Hence we will need to make a slightly stronger assumption on the compression
functionh.

Assumption 6 (computed SPR (cSPR) [13])A functionh : {0, 1}κ × {0, 1}n → {0, 1}n is a ǫ-secure cSPR func-
tion if any efficient machineA has success probability at mostǫ in the following game:

1. The challenger randomly selects a sequence ofκ-bit blocksx1, . . . , xℓ, setsc = H(x1 ‖ . . . ‖ xi−1) and
x = xi. Here H is the plain MD construction using the compression functionh and randomIV . The
challenger sendsx1, . . . , xi to A.

2. A wins if it finds(x′, c′) ∈ {0, 1}κ × {0, 1}n such thath(x′, c′) = h(x, c).

Note that this assumption is quite similar to the eSPR assumption that we needed for the TCR hash function case.

PLAIN MD CONSTRUCTION. Here we will assume that the compression functionh is a cSPR function. However,
in order to prove SPR security of the plain MD construction, we will also needto assume that the attacker cannot
find fixed points starting from a randomIV .

18

Lemma D.1 The plain MD constructionH using the compression functionh is aO(ℓ · (ǫcspr + ǫfix))-secure SPR
function if the following conditions hold:

• h is a ǫcspr-secure cSPR function.

• h is ǫfix secure against fixed points.

ENCODE-THEN-MD CONSTRUCTION. If we use a suffix-free encoding on the input, then the resulting construction
Hsuf can be proven to be a SPR function solely on the assumption that the compression functionh is a cSPR function.
On the other hand, the prefix-free MD construction does not help in gaining any improvement in SPR security over
the plain MD construction.

Lemma D.2 ([13]) The suffix-free MD constructionHsuf is aO(ℓ · ǫcspr)-secure SPR function if the compression
functionh is a ǫcspr-secure cSPR function.

MD-THEN-CHOP CONSTRUCTION. As in the case of collision resistance and TCR functions, we will need to
impose a slightly stronger assumption on the compression function in order to prove the SPR security of the MD-
then-Chop constructionHchops

. In particular, we will need to assume that the functionh′(·) = h(·)|n−s is ǫ′cspr-
secure SPR function. This assumption along with the second condition from lemma D.1 suffices to show that the
MD-then-Chop construction is aO(ℓ · (ǫfix + ǫ′cspr))-secure SPR function.

NMAC/HMAC CONSTRUCTION. The NMAC/HMAC construction do not give any better SPR security as com-
pared to the plain MD construction. This is because a collision in the first invocation of the MD construction implies
a collision for both the NMAC and HMAC constructions.

E Randomness Extraction

The idea of using the MD construction as a randomness extractor was discussed by Dodis et al in [11]. They
showed that for getting any useful randomness extraction properties from the MD construction, one needs to make
a really strong assumption on the compression functionh. In particular, they assume that the compression function
h : {0, 1}κ × {0, 1}n → {0, 1}n is anideal randomness extractor, which is the same as assuming it to be afamily
of random functions7. That is, the functionh(·, x) is a random function fromκ to n bits whenx is uniformly
distributed. We debate such a compression functionh as a family of random functions{hr} for r ∈ {0, 1}n.

Let us start by explaining why one needs to make such a strong assumption on h. If we assumeh to be a regular
extractor, then the distribution of the output ofh(·, x) for randomx has a non-zero statistical distance from the
uniform distribution on{0, 1}n. If this output is used a seed for the next application of the compression function
then one has no guarantee of extraction, since the seed us no longer independent of theκ-bit input block. Actually,
Dodis et al [11] do give a positive result for the MD construction simply under the assumption thath is analmost-
universal family of functions8. However, for this result they require that every input block for the MDconstruction
must have some amount ofconditional min-entropy9 (see [11] for more details). However, all the results here are
based on the assumption thath is an ideal randomness extractor.

PLAIN MD CONSTRUCTION. In this case, one can show that for a restricted class of inputs (from certain high
min entropy distributions), the output of the plain MD construction, using anideal randomness extractorh, is close
to uniform. The input distribution should be such that it has high overall min entropy as well as high conditional
min-entropy in the last input block.

7Note that this is a weaker assumption than assumingh to be a FIL-RO. In particular, it is a (very inefficiently) realizable assumption.
8i.e., for the functionh(·, x), wherex uniformly distributed on{0, 1}n, for any two distinct inputsy andz, the probability thath(z, x) =

h(y, x) is negligibly close to the corresponding probability for a random function
9This is the min entropy of an input block conditioned on all the other input blocks.

19

Lemma E.1 ([11]) Let {Hr} be the plain MD construction defined over a family of random functions{hr}, where
the seedr is essentially the randomIV in the plain MD construction. LetX be the distribution of the inputs toH
(over bit strings with at mostℓ κ-bit blocks) and letXℓ be the distribution induced byX on the last block of the
input. If H∞(X) > n + 2 log

(

1
ǫ

)

andH∞(Xℓ) > log ℓ + 2 log
(

1
ǫ

)

, thenSD(HIV(X),Un) = O(ǫ) whereUn is
the uniform distribution onn-bit strings.

ENCODE-THEN-MD CONSTRUCTION. Note that if one applies a suffix-free encoding to the input in conjunction
with the plain MD construction, then the (encoded) input to the MD constructionmay no longer satisfy the min
entropy requirements from lemma E.1. Indeed, consider applyingMerkle-Damg̊ard strengtheningto the input before
the MD construction. In this case, the last block has no conditional entropy(since it is simply the input length).
Nonetheless, in [11], Dodis et al. show that adding any fixed padding to an input that satisfies all min entropy
requirements still gives a good randomness extractor! Similarly, we cannotsay much about a general prefix-free
encoding since it might change the input distribution in an arbitrary way. However, if we consider prepending input
length to the input, then it still gives a good randomness extractor.

MD-THEN-CHOP CONSTRUCTION. Quite surprisingly, if we chop a sufficient number of output bits then one can
prove randomness extraction properties of the resulting construction based on fewer assumption than lemma E.1. In
particular, we can get rid of the requirement that the last input block has sufficient conditional min entropy.

Lemma E.2 ([11]) LetHchops,r be the MD-then-Chop construction defined over a family of random functions{hr},
where the seedr is essentially the randomIV used in the construction. LetX be the input distribution toHchops

(over
bit strings with at mostℓ k-bit blocks). IfH∞(X) = n+s+log(ℓ+1), then we get thatSD(Hchops

(X), Un−s) ≤ 2−s

whereUn−s is the uniform distribution on(n− s)-bit strings.

NMAC/HMAC CONSTRUCTION. For the NMAC construction, it can be shown that if random and independent
IV1 andIV2 are used in the two applications of the plain MD construction, then the resulting constructionHnmac is a
good randomness extractor if the compression function represents a familyof random functions. We can then restate
lemma E.1 for the constructionHnmac as well, with the same exact security. However, it turns out that translating
these results to the setting of the HMAC construction is not straightforward [11].

20

