
Seedless Fruit is the Sweetest:

Random Number Generation, Revisited

Sandro Coretti*

New York University
corettis@nyu.edu

Yevgeniy Dodis�

New York University
dodis@cs.nyu.edu

Harish Karthikeyan�

New York University
karthik@cs.nyu.edu

Stefano Tessaro§

University of Washington
tessaro@cs.washington.edu

April 11, 2019

Abstract

The need for high-quality randomness in cryptography makes random-number generation one
of its most fundamental tasks.

A recent important line of work (initiated by Dodis et al., CCS ’13) focuses on the notion
of robustness for pseudorandom number generators (PRNGs) with inputs. These are primitives
that use various sources to accumulate sufficient entropy into a state, from which pseudorandom
bits are extracted. Robustness ensures that PRNGs remain secure even under state compromise
and adversarial control of entropy sources. However, the achievability of robustness inherently
depends on a seed, or, alternatively, on an ideal primitive (e.g., a random oracle), independent of
the source of entropy. Both assumptions are problematic: seed generation requires randomness
to start with, and it is arguable whether the seed or the ideal primitive can be kept independent
of the source.

This paper resolves this dilemma by putting forward new notions of robustness which enable
both (1) seedless PRNGs and (2) primitive-dependent adversarial sources of entropy. To bypass
obvious impossibility results, we make a realistic compromise by requiring that the source pro-
duce sufficient entropy even given its evaluations of the underlying primitive. We also provide
natural, practical, and provably secure constructions based on hash-function designs from com-
pression functions, block ciphers, and permutations. Our constructions can be instantiated with
minimal changes to industry-standard hash functions SHA-2 and SHA-3, or HMAC (as used for
the key derivation function HKDF), and can be downgraded to (online) seedless randomness
extractors, which are of independent interest.

On the way we consider both a computational variant of robustness, where attackers only
make a bounded number of queries to the ideal primitive, as well as a new information-theoretic
variant, which dispenses with this assumption to a certain extent, at the price of requiring a high
rate of injected weak randomness (as it is, e.g., plausible on Intel’s on-chip RNG). The latter
notion enables applications such as everlasting security.

Finally, we show that the CBC extractor, used by Intel’s on-chip RNG, is provably insecure
in our model.

*Supported by NSF grants 1314568 and 1619158.
�Partially supported by gifts from VMware Labs, Facebook and Google, and NSF grants 1314568, 1619158, 1815546.
�Supported by NSF grant 1619158.
§Partially supported by NSF grants CNS-1553758 (CAREER), CNS-1719146, CNS-1528178, and IIS-1528041, and

by a Sloan Research Fellowship.

Contents

1 Introduction 3
1.1 Previous Theoretical Models for PRNGs: Seeds . 3
1.2 Seedless PRNGs and Extractors from Cryptographic Hashing 4
1.3 Toy Case: Monolithic Seedless Extraction from Oracle-Dependent Sources 6
1.4 Our Results . 8
1.5 Other Related Work . 10

2 Preliminaries 12
2.1 Statistical Distance and Min-Entropy . 12
2.2 Security Games . 12

3 Seedless Extraction and Key Derivation 12
3.1 Definition . 13
3.2 Seedless Extraction with a Monolithic Random Oracle 14
3.3 Online Extraction . 14
3.4 CBC-Based Extractors Are Insecure . 16
3.5 Seedless HKDF . 17

4 Pseudorandom Number Generators with Input 19
4.1 Syntax . 20
4.2 Security Game . 20

5 Constructions of PRNGs 22
5.1 PRNGs from Merkle-Damg̊ard . 23
5.2 PRNGs from Merkle-Damg̊ard with Davies-Meyer 25
5.3 PRNGs from Sponges . 26

6 Security Proofs for Computational Constructions 28
6.1 The H-Coefficient Technique . 28
6.2 Monolithic Extractor . 29
6.3 Intermediate PRNG Security Notions . 32
6.4 PRNGs from Merkle-Damg̊ard . 34
6.5 PRNGs from Merkle-Damg̊ard with Davies-Meyer 40
6.6 PRNGs from Sponges . 45

7 Security Proofs for IT Constructions 51
7.1 Information-Theoretic Preliminaries . 51
7.2 Monolithic Extractor . 52
7.3 Intermediate IT PRNG Security Notions . 54
7.4 IT PRNGs from Merkle-Damg̊ard . 55
7.5 IT PRNGs from Merkle-Damg̊ard with Davies-Meyer 62
7.6 IT PRNGs from Sponge . 65

A Comparison to Previous PRNG Security Notions 73

1

B Constructions of Online Extractors 74
B.1 Extractors from Merkle-Damg̊ard . 74
B.2 Extractors from Merkle-Damg̊ard with Davies-Meyer 75
B.3 Extractors from Sponges . 76
B.4 Extractors from HMAC . 77

C Hybrid Proofs 81
C.1 Recovering and Preserving Imply Robustness . 81
C.2 IT-Recovering Implies IT-Robustness . 84

2

1 Introduction

Good random number generation is essential for cryptography and beyond. In practice, this difficult
task is solved by a primitive called pseudorandom number generator with input (PRNG), whose aim
is to quickly accumulate entropy from various physical sources in the environment (such as keyboard
presses, timing of interrupts, etc.) into the state of the PRNG and then convert this high-entropy
state into (pseudo) random bits. In particular, entropy accumulation should never stop since one
may need to recover from occasional compromises of the PRNG state. PRNGs are ubiquitous and
have extensive applications. For example, virtually all operating systems come equipped with a
PRNG; e.g., /dev/random [47] for Linux, Yarrow [33] for MacOs/iOS/FreeBSD, and Fortuna [23]
for Windows [22], where the latter two make use of standard cryptographic primitives as part of their
design. Still, as we will argue below in a much broader context, even these widely used PRNGs lack
adequate theoretical understanding and analysis, which are critical if such PRNGs or their future
tweaks continue to be used ubiquitously.

The situation is not better in terms of standardization efforts, where existing PRNG stan-
dards [31, 34, 21, 5] are less mature than those for most other cryptographic primitives. For
starters, there has not been any rigorous competition soliciting PNRG designs, and big parts of
the existing standards concentrate on the difficult (ad-hoc and non-cryptographic) problem of en-
tropy estimation rather than entropy accumulation and extraction. More importantly, standardized
cryptographic PRNG constructions are rather ad-hoc, have no clear security definition/model, often
have confusing syntax, and sometimes have been broken by subsequent analyses of the cryptographic
community. The most widely known example is the DualEC PRNG, which appeared in the first
version of the NIST SP 800-90A standard [5] in 2005 and remained there for years—despite early
warnings by [41, 43] and allowing potential exploitation [12]—until Snowden’s revelations finally
led to its deprecation. Recent work [48] identified a lot of gaps and imprecision (sometimes leading
to attacks or security concerns) in the existing analyses and deployment for the other 3 PRNGs
from the NIST SP 800-90A standard. In a similar vein, [42] found several gaps and misconceptions
in previous analyses and security justifications for the popular Intel Secure Key Hardware PRNG
introduced in 2011.

One of the main goals of this work is to reverse this poor state of affairs and to design a rigorous,
theoretically sound model of PRNGs. This model should be general enough to incorporate practical
entropy sources available in the real world, as well as to formally prove security of “good,” widely
used PRNGs against realistic attackers.

1.1 Previous Theoretical Models for PRNGs: Seeds

In view of their practical importance, we are certainly not the first to formally study PRNGs through
a theoretical lens. Indeed, several theoretical models and analyses of PRNGs have appeared in the
literature [1, 18, 42, 20, 25, 27]. While differing in various details, these important works share two
key principles:

(a) The PRNG should work even against adversarial entropy sources, as long as such sources
eventually provide enough entropy (such sources are called “legitimate” [18]);

(b) assuming more structure beyond entropy is undesirable and brittle,1 as this requires a rather
detailed understanding of one’s entropy sources.

However, while such extremely minimalist assumptions make these PRNG models applicable to
a wide variety of entropy sources, they also come with a subtle, but very important caveat: the

1We do, however, later discuss an interesting approach suggested by [3].

3

randomness extraction module cannot be deterministic, as deterministic extraction from general
entropy sources is impossible [15]. As a result, the PRNGs studied by these works are seeded (with
the seed somehow chosen at initialization), but the entropy sources are assumed to be independent of
the seed. This modeling is inherited from the underlying problem of randomness extraction, where
seeded extractors [39] indeed overcome the impossibility of deterministic (or “seedless”) extraction
from general entropy sources.

While natural and sufficient for some applications of extractors, we argue that the need for
a seed seems rather problematic in the deployment of PRNGs. First, if the reason for random
number generation is the lack of access to high-quality random bits, then we may not have any
way to generate the seed. More importantly, even if we can generate a uniformly random seed,
it is crucial for the analysis that (potentially adversarial) entropy sources remain independent of
the seed, for otherwise the extractor guarantees are lost. For example, if physical entropy sources
inside the computer are used, these sources may be affected by the internal computations of the
PRNG itself, and thus there may be correlations between the seed and the sources. Moreover,
for many seeded PRNGs, the attacker could obtain information about the seed by either directly
reading it from memory, or indirectly when the recently compromised or rebooted RNG is called
on “low-entropy” inputs (so the output is no longer random and leaks information about the seed;
this is called “premature next” attack by [20]).

This means that it is certainly an issue if the seed is just generated once and for all (perhaps
using an expensive source of randomness) and hard-coded within implementations to be used for
all future randomness extractions. Moreover, if multiple entropy sources are used, it is natural
that some of these sources are adversarial and could depend on the seed (which is hard to protect
against with a dedicated attacker). Somewhat paradoxically (considering the common belief that
“more entropy cannot hurt”), the mixing of such seed-dependent sources once again invalidates all
the provable guarantees of seeded PRNGs, even if all the entropy is obtained from other, seed-
independent sources.

We thus face a dilemma:

We want to support general entropy sources, for which seedless extraction is impossible,
and seeded extraction is only possible under very dangerous and hard-to-ensure

independence assumptions, which we would rather avoid.

The goal of this work is to provide a meaningful solution to this dilemma, by keeping the PRNG
design seedless while respecting properties (a) and (b) mentioned above.

1.2 Seedless PRNGs and Extractors from Cryptographic Hashing

We will achieve this goal by using popular cryptographic hash functions (CHF) as our technical
tool, and by carefully defining the notion of entropy in the setting when certain components of
these CHFs are assumed idealized.

Why cryptographic hashing? Before describing our solution in more detail, we explain why
using CHFs appears essential for the design of seedless2 PRNGs. For starters, all general-purpose
software PRNGs used today, as well as all recommendations in existing PRNG standards, are based
on CHFs. Hence, this setting must definitely be understood in order to provide results useful in the
real world.

2Or, in the non-uniform setting, “seed-dependent”

4

However, there is a more glaring theoretical reason as well. The key component of any PRNG is
the shrinking function refresh which takes the current PRNG state S as well as a new entropic input
X and produces a new state S′ ← refresh(S,X). The goal of this function is to absorb the potential
entropy of X into the PRNG state S, in which case the entropy of S′ should be higher than the
original entropy of S. In the extraction literature, this property is called condensing. If one uses a
seed, building such condensers is easy to accomplish information-theoretically. For example, in the
PRNG design of [18], the refresh function is linear: S′ = aS +X, where a is a seed independent of
X.

In the seedless/seed-dependent setting, it is not hard to see [19] that condensers must be built
cryptographically, as they require at least some form of preimage- and collision-resistance.3 For
example, when used in iteration, the simple aS+X condenser function above—which yields (together
with other building blocks) a provably secure seeded PRNG construction [18]—can be broken in a
catastrophic way if the distribution of the input blocks X1, X2, . . . could depend on the constant a:
it is not hard to see that an attacker knowing a can rather easily produce high-entropy inputs such
that if the condenser is applied to it, the resulting would have no entropy at all. In practice, one
cannot imagine a PRNG system which would risk such a catastrophic failure by critically depending
on the fact that the constant a must remain hidden for the lifetime of the PRNG. Therefore,
not surprisingly, all real-world PRNG designs—including those used by Windows, MacOS, and
FreeBSD—critically rely on CHFs, despite lacking adequate theoretical justification.

Cryptographically secure condensers, which at an absolute minimum seedless PRNGs have to
be, can be built using a (very strong form of) collision-resistance [19]. However, the types of
condensers needed for applications, called average-case seedless condensers, seem to require non-
standard cryptographic assumptions. For example, a relatively weak form of such average-case
condensers (called “condensers for leaky sources”) are already sufficient for instantiating the Fiat-
Shamir heuristic for public-coin proof systems [19]—and it is a major open problem to provide such
an instantiation under standard cryptographic assumptions.

To put it differently, even ignoring the fact that we want our PRNGs to be full-blown seedless
extractors—a problem we will address next—just achieving provably secure entropy accumulation
appears to require the use of CHFs as well as either (1) non-standard cryptographic assumptions
(making the results appear somewhat tautologous) or (2) some supporting justification argument
in an idealized model of computation, which is the approach taken by this work.

Our approach: new min-entropy notion. To describe our approach, it is instructive to recall
the basic impossibility of seedless extraction for general entropy sources. Given any candidate
(seedless) extractor G, an adversary can perform a so-called extractor-fixing attack by sampling a
random input X several times until the first bit of G(X) is 0. The resulting distribution X has very
high entropy, but G(X) is clearly not uniformly random. Observe that with a strong enough CHF G,
one might be able to formally argue that the extractor-fixing attack is the “most damaging” attack
possible; for example by showing, that G(X) has almost full entropy (i.e., is a good condenser) for
any efficiently samplable source X, as was done by [19]. In other words, using CHFs will protect
against the completely devastating attacks possible with information-theoretic extractors.

However, our goal is to have a meaningful model where real randomness extraction is possible,
so that we can later extend it all the way to the full PRNG system. Our solution will be to define a
elegant and practically motivated refinement of general min-entropy in settings where CHFs exist,
so that:

3For example, the ability to compute a random preimage of a given element, which is known to imply one-way
functions [30], allows the attacker to produce entropic inputs whose entropy is completely lost by the refresh procedure.

5

(a) somewhat artificial sources resulting from intentionally performing extractor-fixing will not
have much entropy according to our notion (meaning they are no longer “legitimate”); in fact,
seedless extraction will become possible for our notion of min-entropy;

(b) most natural entropy sources, including those used by major operating systems, will likely
have good entropy according to our new measure.

While our final constructions and interpretation of our security analyses will apply to real-world
CHFs, such as those derived from SHA-2, SHA-3, or HKDF, at present the only rigorous way we
know how to achieve our ambitious goals (a) and (b) will be by going to the idealized models of
computation, such as the random oracle, the ideal cipher or the random permutation model. This is
quite standard for many areas of symmetric-key cryptography, and we already indicated that doing
provably secure (non-tautologous) seedless PRNG constructions in the “standard model” appears
beyond our current capabilities, even for much simpler building blocks, such as (average-case)
seedless condensers.

1.3 Toy Case: Monolithic Seedless Extraction from Oracle-Dependent Sources

We start by presenting our new entropy notion for the simpler problem of “monolithic randomness
extraction,” where the entropy source X is assumed to come in one piece (rather than slowly
accumulated using a fixed-length PRNG state), and a monolithic CHF G—modeled as a monolithic
random oracle—is used to output the value R = G(X) (so that we temporarily ignore any find-
grained structure inside G, such as Merkle-Damg̊ard or Sponge [8] iteration).

At first, it appears that we solved our problem in a totally trivial (and uninteresting) way, even
without refining standard min-entropy. Namely, in the random oracle model, the following folklore
proof (see [17]) appears to show that a (seedless) random oracle G is a good extractor: For any min-
entropy γ∗ source X, the probability the distinguisher D can distinguish G(X) is upper bounded
by the probability D queries G on X, which is at most q · 2−γ∗ , where q is the number of random
oracle queries allowed to A.4

Implicit in this simple proof, however, is the key assumption that the distribution X is inde-
pendent of the random oracle G, meaning that our (potentially adversarial) sampler producing X
is not allowed to call the random oracle G. Thus, modeling G as a random oracle is but a fancy
way of introducing an exponentially long seed that is independent of the source, making extraction
trivial.5 Indeed, to capture PRNG sources X arising in the real world, we must allow the source X
to depend on the ideal primitive G. For example, if the timing of computer interrupts is used as our
entropy source X—which is the most common source of randomness in software PRNGs—it seems
unreasonable to assume that none of these interrupts could be affected by frequent hash function
computations done inside and outside the operating system.

Oracle-dependent sources. To fix this problem, in Section 3 we will explicitly model our source
as part of the attacker A, so that AG = (AG1 ,AG2), where AG1 outputs the oracle-dependent source
X and passes state Σ to the second state attacker AG2 (Σ), whose goal is to distinguish R = G(X)
from uniform. Of course, for this definition to make sense, we must require that X is “legitimate,”

4In fact, if the length of G(X) is slightly less than γ∗, we can even let A query all of G and use leftover-hash
lemma [29] to get information-theoretic security.

5Prior to our work, the above modeling of sources as being independent of the ideal primitive, was the only way
to overcome extractor-fixing attacks. Examples of this approach include [17, 35, 48] and many others. While these
results are non-trivial due to the “non-monolithic” structure of their extractors G, none of these works model the
setting where the source could depend on the ideal primitive.

6

meaning it has entropy at least γ∗ given the state information Σ (for some parameter γ∗). In the
standard model, this could be formalized by requiring H∞(X|Σ) ≥ γ∗ (see Section 2). But this
is too weak, as this still allows for extractor-fixing attacks, by sampling a long random X and
remembering a few bits of G(X) in the leakage Σ. In fact, this extractor-fixing attack still works
even if we condition on the entire random oracle G (i.e., require H∞(X|Σ, G) ≥ γ∗). This leads to
a central question of this work:

What is the “right” notion of entropy for oracle-dependent sources X?

The key insight of our work comes from the fact that while it is reasonable to assume that the
source X could depend on the random oracle G, the natural sources of entropy we want to extract
from do not natively evaluate cryptographic hash functions, but somehow add extra entropy in
addition to all hash function evaluations around them. For example, it is unreasonable to assume
that the timing of interrupts could not depend, even slightly, on various hash function evaluations
inside the computer. However, it seems that the real entropy of interrupt timings comes from the
fact that the attacker cannot perfectly predict the exact lower order bits of the timing measurements,
even if the attacker knew all the hash function evaluations. Indeed, instead of only requiring that
H∞(X|Σ, G) ≥ γ∗, our approach will make a stronger requirement that

H∞(X|(Σ,L)) ≥ γ∗ , (1)

where L is the input-output list of random oracle queries made by the sampler A1 to the random
oracle. Another, equivalent way to interpret this legitimacy condition is to mandate that A1 cannot
“forget” any of its random oracle queries when passing its state Σ to A2, but must forget some
other useful information about X, to ensure that X has entropy conditioned on Σ and L.

Notice, our solution places a more stringent requirement than conditioning on the entire G, as
A1 did not touch anything outside L, so these un-queried values do not reduce entropy of X beyond
what is done by L. Also, when the number of queries q is not too large, the extractor-fixing is
no longer a legitimate attack, since X will not have much entropy when conditioned on L (which
contains the pair (X,G(X))). In fact, we can easily show full extraction (see Theorems 1 and 2),
along the lines of the folklore proof for oracle-independent sources mentioned above. The basic
intuition comes from the fact that our conditioning on the list L ensures that with overwhelming
probability the sampler A1 did not himself evaluate G(X), which is essential for the extractor-fixing
attack to succeed.

Did we go too far? Of course, the main question is whether the legitimacy requirement H∞(X|(Σ,
L)) ≥ γ∗ does not overly limit the class of high-entropy sources from which we want to extract. We
believe the answer is negative. First, in the restrictive “folklore case” when X is independent of
G (meaning L = ∅), we get the best-possible min-entropy condition H∞(X|Σ) ≥ γ∗ we had in the
standard (non-random-oracle) model. Namely, our notion of min-entropy relative to G includes all
general min-entropy sources.6

Second, while we certainly allow the source X to substantially depend on G, we ensure that
non-trivial bulk of entropy must come from outside of the actual oracle evaluation queries. In
other words, while “nature,” who outputs X, could conceivably be influenced by a couple of hash
function evaluations, it should generate some intrinsic entropy in addition to (but possibly dependent
on!) these evaluations. We feel that all practically used physical sources (timing of interrupts,
temperature, keystroke dynamics, etc.) have very little to do with hash functions, and should easily
satisfy this requirement.

6Of course, when we instantiate G with a real-world hash function, this is no longer the case, as we discuss below.

7

Thus, we believe that our technical restriction on the legitimacy for extraction using CHFs—by
conditioning min-entropy on the list of hash function evaluations—strikes the right balance between
allowing for seedless extraction, and yet keeping the family of high-entropy sources large and realistic
for applications.

1.4 Our Results

While the above toy example (analyzed in Section 3.2) illustrated the key technical insight behind
our approach, in practice it is uncommon to assume access to a monolithic random oracle G.
Instead, practical hash functions are usually built from (public) compression functions, ciphers, or
permutations. These underlying primitives P have limited input length and will therefore not be
able to process inputs of arbitrary length m. Therefore, extractors and PRNGs should be designed in
such a way that they can process short m-bit input blocks (e.g., m = 256, 512, 1600) and accumulate
their entropy in the internal state.

Online extractors and insecurity of CBC. Thus, in Section 3.3 we formalize the more realistic
notion of online (seedless) extractors, which slowly accumulate their long input into a fixed-length
state (using access to a P), and then finalize their output once the whole input is processed. We
also define both computational and information-theoretic (IT) notions of online extractor security,
where in the latter notion the attacker is allowed to read the entire ideal primitive P after it finished
generating the oracle-dependent source X.

Turning to natural and widely used examples of such online extractors, we show that the popular
CBC mode of operation is insecure as a seedless extractor in our framework. The details of our
attack are given in Section 3.4, but the result is a somewhat unexpected, since CBC is used as
the extractor underlying the CTR DRBG construction in the NIST PRNG standard NIST SP 800-90A
Rev. 1 [4], and also as the extractor for Intel’s on-chip RNG [37]. Moreover, its security was formally
shown by Dodis et al. [17], but in the setting where the entropy source X was independent of the
random permutation π. In contrast, we show that once the latter assumption is relaxed to our
oracle-dependent sources, the CBC extractor is no longer secure (unless one generalizes it to the
Sponge construction in Section 5.3, where the input is only XORed to part of the state). Of course,
our attack is somewhat theoretical, and does not directly translate to attacking the Intel on-chip
RNG, for example. However, coupled with our positive results, we feel our attack suggests using a
different online extractor, if possible.

On a positive side, in Appendix B we show several other (both computational and information-
theoretic) online extractors based on popular modes of operations used inside hash functions SHA-
2 and SHA-3, which are provably secure in our framework: from Merkle-Damg̊ard with a random
compression function, from Merkle-Damg̊ard with the Davies-Meyer compression function, and from
Sponges. Hence, for the first time practitioners can use seedless extractors which are both practical
and have firm theoretical foundation. The security of these natural online extractors follows as
special cases of more general PRNG security results, which we describe next. Due to its wide-
spread use, we also analyze HMAC as a seedless extractor. The four resulting online extractor
constructions are pictorially represented in Figure 1.

In Section 3.5, we also briefly discuss seedless key-derivation functions (seedless KDFs), and
extend the Extract-then-PRF paradigm of Krawczyk [35] to the seedless setting. Using our new
seedless extraction results for HMAC, we get theoretical justification of the widely used HKDF
construction of [35] in the seedless setting.

8

Full-scale seedless PRNGs. Finally, we take all our ideas together to solve our main problem:
defining and building practical, yet provably secure seedless PRNGs. In Section 4 we introduce a
novel security definition for PRNGs that differs from previous notions [18, 1, 25] in several crucial
ways. The detailed comparison appears in Appendix A, but we present the highlights here.

First and foremost, our design is seedless. This is accomplished by carefully defining the legiti-
macy condition (relative to the fixed-length ideal primitive P), by conditioning our entropy notion
on the list L of the queries to P made by the attacker. Second, our seedless design allows us to
merge the “distribution sampler” and the distinguisher used by [18, 25] into a single attacker A,7

making our notion much simpler to describe. Third, the works of [18, 25] used a much weaker
notion of worst-case min-entropy; moreover, the final entropy of the the source X was defined as
sum of individual worst-case min-entropies of the individual blocks of X conditioned on all the other
blocks (before and after). In contrast, we use a much better notion of average-case min-entropy, and
only look at the global average-case min-entropy of the entire (long) vector X. Thus, our notion of
entropy is much less conservative: realistic entropy sources are likely to have much higher entropy
according to our definition, even when conditioning on the list L. Fourth, the notion of [18, 25]
had explicit “entropy estimates” that the attacker had to provide. Our notion gets rid of these
estimates. Finally, and somewhat surprisingly, we still managed to define our notion of legitimacy
of the entropy source in a manner which is construction-independent. This means that one can
potentially study the entropy properties of the source in a manner independent of the PRNG used
on this source.

We also define both computational and information-theoretic (IT) notions of PRNG security.
As with on-line extractors, for IT-PRNGs the attacker is allowed to read the entire ideal primitive
P after it finished generating the last block of it’s oracle-dependent source X used for extraction.
Such a notion is important for applications where privacy must hold well after the PRNG is finished
its operations, or where information-theoretic security is important.

Our PRNG constructions. In Section 5 we then present three main PRNGs which are provably
secure in our framework: based on Merkle-Damg̊ard with a random compression function (see
Figure 3), based on Merkle-Damg̊ard with the Davies-Meyer compression function (see Figure 4),
and based on Sponges (see Figure 5). All these constructions are extremely natural and practical, as
Merkle-Damg̊ard-based functions abstract SHA-2, while Sponges abstract SHA-3—two most widely
used cryptographic hash functions. Moreover, for all three constructions we proved their security
both in the computational and in the information-theoretic settings. See Figures 3, 4, 5 to see how
the corresponding constructions change between the computational and the IT settings.

Thus, our work (including new notion of oracle-dependent entropy) could be used as theoretical
justifications why these popular hash functions yield good seedless PRNGs (as well as online ran-
domness extractors) even for a wide class of oracle-dependent entropy sources. Our three computa-
tional proofs heavily use the “coefficient-H” technique [40, 13], while our three information-theoretic
proofs extend the framework of so-called “graph-counting” proofs [17, 7, 24] to bound the collision
probability of iterated hash constructions. One novel challenge we had to solve here comes from
the fact that theinput source could depend on the list L of the ideal primitive queries, which breaks
the “source-primitive” independence assumption crucially used in these already subtle proofs.

We also showed numeric examples of how we propose to use our constructions. Overall, we
believe all of them are deployment ready, and we hope this work will start influencing future PRNG
deployments, and will be incorporated into next RNG standards.

7Since we no longer need to hide the seed from the distribution sampler, forcing us to separate it from the attacker.

9

Implications to standard model. To overcome the impossibility of seedless extraction, our
entropy notion is defined relative to the ideal primitive P . As we argued in detail in Section 1.2,
working in the idealized model seems somewhat inherent to our approach, provided we wish to
avoid highly non-standard, and likely tautological, cryptographic assumptions about the CHF we
are using in the standard model. Still, it is good to ask what one might expect from our extractor
and PRNG constructions with real-world CHFs, such as those based on SHA-2, SHA-3, HMAC,
HKDF, etc.

As we already mentioned, we believe these constructions are secure for real-world entropy
sources, because our idealized notion of entropy informally corresponds to sources which have fresh
entropy, even given all the hash function evaluations happening around the source, which seems to
be true for all distributions from the class Fpractice of sources encountered in practice. To state the
counter-positive, we believe that any real-world attack against our constructions with existing hash
functions will either require a highly artificial entropy source (outside the class Fpractice), or will find
a surprising weakness in the corresponding CHF. In other words, we heuristically conjecture:

All seedless extractor, PRNG and KDF constructions studied in this work
are secure for all all high-entropy distributions in the class Fpractice.

1.5 Other Related Work

We mention some important categories of related works, in particular with respect to seedless
extraction, PRNGs, and their security.

Seeded extractors and PRNGs. We already mentioned the extensive work on seeded extractors
started by the seminal paper of Nisan and Zuckerman [38], and why they are problematic in our
context. In the context of PRNGs, the first seeded PRNG notion was defined and constructed by
Dodis et al. [18], who extended the prior “monolithic PRNG” definition of Barak and Halevi [1]
(which did not explicitly talk about the seed, assuming the extraction module is “good enough” for
the class of distributions produced by the entropy source). This line of work was extended in various
ways by [20, 25, 28], where the latter two works were also analyzed in the random permutation model
(in addition to the seed). However, none of these works considered a seedless setting for general
entropy sources.

Extractors and PRNGs in ideal models. Extractors and PRNGs were also studied in the ideal
models by several works [17, 9, 42, 48]. While not having explicit seeds, these works nevertheless
modeled the entropy source as being independent of the ideal primitive. As we argued above, such
oracle-independent modeling seems to be too restrictive for many realistic scenarios. Also, from
a theory point of view, it effectively allows an exponentially long seed (the randomness used to
sample the corresponding ideal primitive), making the positive results less interesting theoretically
than the above-mentioned work on seeded extractors and PRNGs.

Indeed, the main motivation of all these papers was not to design theoretically optimal extractors
and PRNGs, but to analyze the heuristic use of various cryptographic hash functions and popular
modes of operations (such as CBC, HMAC, etc.) for randomness generation and extraction—a task
these objects were not natively designed for. From this perspective, and given their widespread use,
analyzing their extraction properties was an important first step in understanding their security,
even under the restrictive oracle-independence assumption. Our work could be viewed as making
a critical leap forward, by dropping—for the first time—the oracle-independence assumption, but

10

instead carefully modeling what constitutes entropy in the much more realistic, oracle-dependent
setting.

Restricting the class of entropy sources. This line of work has primarily focused on the
question of extraction, by assuming that the source X has more structure beyond entropy. Early
examples [46, 16, 10, 36, 14] include various bit-fixing and limited dependence sources, culminating
with the question of extracting from several independent sources [2, 11]. While mathematically very
elegant, the types of sources studied by these works appear “too structured” to be realistic in the
PRNGs scenario.

A different kind of restriction on the entropy source was studied by Barak et al. [3]. Rather
than restrict sources by some property of their distribution, the work of [3] allows for arbitrary
min-entropy sources, but assumes they come from an a-priori bounded number of distributions.
While potentially promising for the setting of PRNGs, there are two disadvantages of the work of
[3] as compared to this work. First, the work of [3] concentrated on the “monolithic” extraction
setting, and did not address the question of entropy accumulation, where the entropy in X might
come slowly from a large number of samples, and has to be accumulated into bounded state. In
particular, it is unclear how to extend their constructions to address entropy accumulation with a
fixed-length state. Second, the particular solutions offers by [3] used so called t-wise independent
hash functions for a large values of t (at least as large as the overall source length). These functions
are quite inefficient, and might not be fast enough for general purpose PRNGs.

We note that our work could also be viewed as overcoming impossibility of extraction by re-
stricting the type of the source. However, we feel that our modeling is more natural for (and, thus,
applicable to) the existing entropy sources, as used by the current PRNGs.

Low-Complexity Samplers. Introduced by Trevisan and Vadhan [45] and later extended by [32],
here one assumes that the entropy source producing input X is unable to run the extractor/PRNG
even once, thus making it impossible to do extractor-fixing. While this might be useful for situations
where the entropy source is extremely simple, it is too restrictive for most applications, such as
general purpose PRNG design studied in this work. In contrast, in this work the entropy source
can easily run the extractor, but the legitimacy condition is defined in a way that doing the trivial
extractor-fixing attack—by running the extractor—will result in a low-entropy, “illegitimate” source.

Randomness condensers. This approach, formalized by Dodis, Ristenpart and Vadhan [19],
relaxes the security guarantees of the randomness extractor to only ensure that the output of the
(seedless or “source-dependent-on-seed”) condenser is almost full entropy, despite not being perfectly
uniform. Indeed, this weaker security turns out to be sufficient for several applications, such as key
derivation schemes for signature schemes. Unfortunately, if we want an extractor rather than a
condenser—which is essential for general purpose PRNGs—this approach is not sufficient.

UCEs and public-seed pseudorandomness. The notion of universal computational extractors
(UCEs) [6], and its generalizations [44], study a complementary problem to the one studies here:
how to extract from any entropy source which is only computationally-hard-to-predict, so it only
has “computational entropy”. On a positive, and similar to this work, when instantiated with
constructions from an ideal primitive P , a UCE hash function yields a good extractor even if
the inputs to it (the actual source) can be sampled depending on the ideal primitive. The issue,
however, is that the current UCE notion inherently requires a seed, making in inapplicable for the
PRNG scenario. An interesting direction for future research could be to extend our work to deal

11

with computational entropy, by defining and constructing seedless UCEs in idealized models, and
possibly extending them to full-blown seedless PRNGs for computational entropy.

2 Preliminaries

2.1 Statistical Distance and Min-Entropy

The statistical distance of two random variablesX and Y is SD(X,Y) = 1
2

∑
x |P[X = x]− P[Y = x]|.

The prediction probability of a random variable X is Pred(X) := maxx P[X = x], and we also denote
Pred(X|y) := maxx P[X = x|Y = y]. The conditional version of prediction probability is defined as

Pred(X|Y) := Ey←Y
[
Pred(X|y)

]
.

The (average-case) conditional min-entropy is H∞(X|Y) = − log(Pred(X|Y)).

2.2 Security Games

All of the security properties considered in this paper are captured by considering a game between
a challenger and an attacker A, both of which may have access to an ideal primitive P . The goal of
the attacker is to guess a random bit b chosen by the challenger, who offers a set of oracles to the
attacker to aid with this task. The advantage of A is defined as

2 ·
∣∣ P[A wins]− 1/2

∣∣ ,
where the probability is over the randomness of A, of the challenger, and of the ideal primitive.
The cases where b = 0 and b = 1 are referred to as the real world and the ideal world, respectively.
One may equivalently consider A’s advantage at telling these two worlds apart, i.e.,∣∣ P[A = 1|b = 0]− P[A = 1|b = 1]

∣∣ .
3 Seedless Extraction and Key Derivation

As a warm-up for full-fledged seedless PRNGs, this section considers the simpler property of ex-
traction, i.e., producing uniformly random bits from weak high-entropy sources. Extraction can be
seen as corresponding to the post-compromise security of PRNGs, and as such it will be implied by
PRNG robustness (as defined in Section 4.2). The definition of extraction security in Section 3.1
considers the entropy of the attacker’s input to the extractor conditioned on the attackers state and
the queries made to an ideal primitive P . A definition is provided for computational or information-
theoretic security. IT extractors differ from computational ones in that the output of the extractor
remains random even if the attacker, after providing the input, is given the entire function table
of the underlying ideal primitive. That is, IT extractors achieve so-called everlasting security (cf.
works in the hybrid bounded-storage model by Harnik and Naor [26]).

Section 3.2 considers extracting with a monolithic random oracle. The corresponding security
proofs (for the computational and IT cases) are instructive for understanding the actual PRNG
constructions provided in Section 5. Since considering a monolithic oracle is not motivated by any
hash function used in practice, Section 3.3 introduces the concept of online extraction. An online
extractor accumulates the entropy of its inputs in an internal state, from which uniform randomness
can be produced. Finally, in order to illustrate the non-triviality of online extraction, Section 3.4
shows that extractors based on the popular CBC mode are not suitable for extraction.

12

Due to their importance, Section 3.5 briefly discusses key-derivation functions (KDFs) and
analyzes the Extract-then-PRF paradigm (on which the widely used HKDF is based) put forth by
Krawczyk [35] in the seedless setting.

3.1 Definition

In a model with idealized primitive P (chosen from some set P), seedless extractors are algorithms
extP : X → Y with oracle access to P . The security definition for such extractors considers a
two-stage attacker A = (A1,A2), where both parts have access to P . The first stage A1 outputs a
value x and some state information σ for A2. The second stage takes an input y ∈ Y and outputs
a single bit (i.e., it acts as a distinguisher).

For an attacker A, denote by L1 and L2 the (random variables corresponding to) the lists of the
P -queries made by A1 and A2, respectively.

Definition 1. An attacker A = (A1,A2) is called a q-attacker if |L1 ∪ L2| ≤ q always; it is called
a q-IT-attacker if |L1| ≤ q always.

That is, for IT-attackers the second stage A2 may make an arbitrary number of queries to P .
Equivalently, A2 can be thought of as being given the entire function table of P .

The security game for seedless extractors in the P -model roughly requires that if the extractor
is given a high-entropy input by A1, then A2 cannot tell the extractor output apart from a random
value in Y, even given the state information σ and access to P . Formally, it proceeds as follows:

1. The challenger chooses b← {0, 1} and P ← P uniformly at random.

2. A1 gets access to P and produces (σ, x)← AP1 .

3. The output of the extractor is computed as y0 ← extP (x). Moreover, the challenger picks a
value y1 ← Y uniformly at random.

4. The second-stage attacker A2 is given σ and yb and outputs a decision bit b′ ← AP2 (σ, yb).
The attacker wins if and only if b′ = b.

The advantage of A in this extraction game is denoted by Advext,P
ext (A).

An attacker has to satisfy a legitimacy condition. Intuitively, this condition requires that the
output X of A1 have high min-entropy even conditioned on the state information Σ and the list of
queries L1.8

Definition 2. An attacker A = (A1,A2) is said to be γ∗-legitimate if, in the extraction game above,

H∞(X|ΣL1) ≥ γ∗ .

The above finally leads to the following definition of seedless extractor in the P -model:

Definition 3. An algorithm extP : X → Y with oracle access to P is a seedless (γ∗, q, ε)-(IT-
)extractor in the P -model if for every γ∗-legitimate q-(IT-)attacker A,

Advext,P
ext (A) ≤ ε .

8Note, in the extraction game the definition of L1 is the same in the real and the ideal worlds. For our future
definitions of PRNGs, however, it will be important that the notion of legitimacy is defined in the ideal world (i.e.,
conditioned on b = 1).

13

3.2 Seedless Extraction with a Monolithic Random Oracle

For instructive purposes it is useful to consider monolithic extraction, i.e., the case where the ideal
primitive P itself is used as an extractor. To exemplify this, assume P is a random oracle, i.e.,
a function G : {0, 1}m → {0, 1}n chosen uniformly at random. Then, the monolithic extractor is
defined as follows:

Construction 1 (Monolithic extractor). The monolithic seedless extractor monoG : {0, 1}m →
{0, 1}n using a random oracle G : {0, 1}m → {0, 1}n is defined by

monoG(x) := G(x) .

Theorem 1 (Monolithic seedless extraction). Construction mono is a (γ∗, q, ε)-extractor in the
G-model for

ε ≤ q

2γ∗
.

The proof of Theorem 1 is deferred and can be found in Section 6.2.

Theorem 2 (Monolithic seedless IT-extraction). Construction mono is a (γ∗, q, ε)-IT-extractor in
the G-model for

ε ≤ 1

2

√
2−(γ∗−n)

1− ρ
+ ρ ,

where ρ = q/2γ
∗
.

The proof of Theorem 2 is deferred and can be found in Section 7.2.

Parameter choices. In terms of concrete parameters, observe the following for the constructions
towards monolithic seedless extraction from above:

� Computational: If we let n = 512 and q = 280. We would need γ∗ ≈ 160 to get 80 bits of
security.

� Information Theoretic: We let n = 512. We also approximate 1/(1−ρ) ≤ 2, very generously
Then, if we set for example q = 280. We would need the entropy loss, i.e, γ∗ = 160 for 80 bits
of security.

3.3 Online Extraction

In practice it is uncommon to assume access to a monolithic random oracle. Instead, practical hash
functions are usually built from (public) compression functions, ciphers, or permutations. These
underlying primitives P have limited input length and will therefore not be able to process inputs
of arbitrary length m. Therefore, extractors (and PRNGs) should be designed in such a way that
they can process short m-bit input blocks (e.g., m = 256, 512, 1600) and accumulate their entropy
in the internal state.

An “accumulating” extractor ext satisfies the same security Definition 3, but its syntax can
be thought of as two algorithms ext = (refresh, finalize), where refresh accumulates entropy in an
internal state and finalize produces the extractor output from the current state.

Definition 4. An online extractor construction consists of two algorithms ext = (refresh, finalize),
where

14

0

x1

F F

x2

. . .
F

x`
y

0

x1

E E

x2

. . .
E

x`

π

y

y

π0

x1r

c

x2

π

x3 x`
. . .

(a)

(b)

(c)

(d)

x2

. . .

x`

FFF

x1

0
F

ipad

0

opad

F F
y

Figure 1: Four online computational extractors are represented in this diagram. These are based on:
(a) Merkle-Damg̊ard with a random compression function; (b) Merkle-Damg̊ard with Davies-Meyer;
(c) Sponge; and (d) HMAC.

Each extractor is shown to process inputs x1 . . . x` (calls to refresh) to compute the output y (call to finalize).
The IT variant for constructions (a), (b), (d) truncates the output y to the the first r bits. For the Sponge
construction (c), the IT variant is identical, as even the computational variant needs a truncated output.

� refresh takes a state s and an input x ∈ {0, 1}m and produces a new state s′ ← refreshP (s, x),
and

� finalize takes a state s and produces an output y ∈ {0, 1}r, i.e., y ← finalizeP (s).

An online extractor processing m-bit inputs and producing r-bit output is called a (m, r)-online
extractor.

The security definition for online extractors additionally considers the number ` of times refresh is
called by the attacker, i.e., it considers (q, `)-attackers.

Definition 5. An algorithm extP : X → Y defined by two algorithms ext = (refresh, finalize) with
oracle access to P is an (γ∗, q, `, ε)-(IT-)online extractor in the P -model if for every γ∗-legitimate
(q, `)-(IT-)attacker A,

Advext,P
ext (A) ≤ ε .

Online extractors can be built just like the PRNG constructions in Section 5, and, in fact, the corre-
sponding security results follow as a special case of PRNG security. Correspondingly, their treatment

15

is deferred until Section 5, where such online extractors (and, in fact, full-fledged PRNGs) can be ob-
tained from Merkle-Damg̊ard with a random compression function, from Merkle-Damg̊ard with the
Davies-Meyer compression function, and from Sponges. For the reader’s convenience, Appendix B
contains the online extractor constructions along with the security bounds—for applications where
extraction is sufficient. In addition, said section in the appendix also considers the HMAC con-
struction as a seedless extractor. HMAC is roughly based on Merkle-Damg̊ard, but it has a few
modifications/additions that are unnecessary for extraction. However, due to its wide-spread use,
we point out how to modify the Merkle-Damg̊ard proofs to obtain a security statement for HMAC.
These constructions are pictorially represented in Figure 1.

In contrast to Merkle-Damg̊ard and Sponges, as shown in the next section, using the CBC
paradigm (which can be thought of as an “extreme sponge”) will not lead to a secure online extractor.

3.4 CBC-Based Extractors Are Insecure

A natural candidate for an online seedless extractor is using a permutation in CBC mode. A CBC-
based extractor construction uses a permutation π : {0, 1}n → {0, 1}n to absorb n-bit inputs. Its
refresh function is defined as

refreshπ(s, x) = π(s⊕ x) .

However, it turns out that this approach does not lead to a secure extractor. This section presents a
simple attack against CBC-based extractors. The attack works irrespective of how the finalization
function is defined.

Theorem 3 (Attack against CBC Extractors). Let refresh as defined above. There exists an `-
legitimate q-attacker A with black-box access to a function finalize, such that for all CBC = (refresh,
finalize)

Advext,π
CBC (A) = 1− 2−(r−1) ,

where r is the output length of the extractor, q = 2`+ 2α, and α is the query complexity of finalize.

The idea of the attack is to have the attacker create the ith input block as either πi(0n)⊕ πi(1n) or
0, each with probability 1/2.9 After ` such steps, the attacker will have provided ` bits of entropy
(even conditioned on its π-queries), but only a single bit will have accumulated in the state, which
will be πi(0n) or πi(1n), each with probability 1/2.

Proof. Consider a two-stage attacker A = (A1,A2). A1 works as follows:

1. Initially, set a = 0n and b = 1n.

2. For blocks i = 1 to `:

(a) Set xi,0 = 0 and xi,1 = a⊕ b. Choose random bit β ← {0, 1} and set xi = xi,β.

(b) Set a← π(a) and b← π(b).

3. Set state information to σ ← (a, b). In particular, forget all values xi,b and all values of β.
Return σ and x = (x1, . . . , x`).

A2, given σ = (a, b) and y as input, proceeds as follows:

1. Compute finalize(a) and finalize(b). If either of them equals y, return 0; else, return 1.

9Here, πi denotes the i-fold application of π.

16

Assume the initial state of the extractor is 0n. In order to understand the attack, consider the state
of the extractor after XORing the first input x1: it is either 0n or 1n, each with probability 1/2.
After applying refresh, which consists of just applying π to the state, the new state is either π(0n)
or π(1n), again with probability 1/2 each.

The second input x2 is either 0n or π(0n)⊕π(1n); XORing it to the state results in either π(0n)
or π(1n). After applying refresh, the new state is π2(0n) or π2(1n). Extending this argument to all
` inputs, the state of the extractor after absorbing them is either a = π`(0n) or a = π`(1n). After
calling finalize, the state is either finalize(a) or finalize(b). Therefore, in the real world (b = 0), A2

will always output 0, whereas in the ideal world (b = 1) this will only happen with probability at
most 2−(r−1).

In terms of efficiency, observe that A1 makes 2` queries to π, and A2 makes twice the number
α of π-queries required to evaluate a call to finalize.

Finally, in order to show that A is legitimate, observe first that the state σ can be computed
from the queries made by A1. It easily seen that given only the queries, the vector x = (x1, . . . , x`)
has ` bits of entropy.

3.5 Seedless HKDF

This section argues about the security of the well-known HKDF [35] key-derivation function (KDF),
where recall that KDFs are used in practice to derive random-looking key material from high-entropy
sources. The work of [35] shows that such a KDF can be generically constructed by composing an
(online) extractor with a (variable-output-length) pseudorandom function (PRF). HKDF is then
a particular instantiation of this general paradigm, where both the extractor and the PRF are
instantiated with HMAC. The original HKDF construction is seeded, since the extractor used is
seeded. This section presents an unseeded version of HKDF, by using a seedless extractor instead.

Standard or Ideal Primitive Security? Before presenting our results, we must decide if we
will consider “standard” or “ideal primitive” security of KDFs when analyzing HKDF. At first a
glance, the latter option seems advantageous, since HMAC is well known to be a PRF in the ideal
model with a random compression function (see [35]), and we also show in Section B.4 that HMAC
is a seedless extractor with respect to the same idealized model (and our new modeling of entropy).

Technically, however, we cannot automatically argue the security of HKDF as a KDF in the
ideal compression function model10 by composing these two individual proofs. This is because the
HKDF construction uses the same compression function for the extractor and the PRF, and it is
well known that standard composition does not generically hold when the same ideal primitive is
reused. While we have no doubt that we could do one long and tedious proof showing that no
such composition problem arises in the case of HKDF, we feel such direct proof is not particularly
illuminating, and does not add much as compared to doing everything in the standard model, which
we explain next.

Namely, the standard model definition of KDFs (and the analysis of HKDF) would be param-
eterized by the family of input distributions F that we care about for our KDF setting. We will
then show that the composition of F-secure (seedless) extractor and (standard model) PRF, ad-
vocated by [35], still gives an F-secure (seedless) KDF in the standard model. Then, we will
use our ideal model results mentioned above to heuristically argue that HMAC is simultaneously
a secure standard-model PRF (something which is widely believed well before this work), but also
Fpractice-secure seedless extractor for the class of sources “encountered in practice”. Combined, we
get a convincing heuristic showing Fpractice-security of HKDF, without formally defining Fpractice.

10Something we would have to first define with respect to our new modeling of entropy.

17

To compare the two approaches outlined above, we see that they would achieve the same end
result: a conjectured security of HKDF against “practically relevant” entropy sources Fpractice.
However, the ideal model approach would have a huge cost — a new definition of KDFs with
respect to our new entropy notion, and a long/tedious direct proof for HKDF, largely repeating
two existing ideal model proofs for HMAC. In contrast, the standard model approach described
above achieves the same effect without needing any new proofs or definitions; by applying the
“random oracle heuristic” one level earlier twice (at the level of extractor and PRF) rather than
one level later once (at the level of KDF). In fact, one can even argue that the “standard model
approach” achieves a stronger counter-positive which is not achieved by using the higher-level KDF
abstraction. If the composed construction is not a secure standard-model KDF, then this would
constitute a natural counterexample to the random-oracle methodology: by virtue of Theorem 4,
either HMAC is not a good standard-model extractor (but secure in the idealized model), or HMAC
is not a good standard-model PRF (but secure in the idealized model). Either one of such non-
contrived counterexamples would be a remarkable breakthrough in the cryptanalysis of HMAC.

Hence, the rest of this section will deviate from the rest of the paper, and follow the “standard
model” approach for our treatment of KDFs.

Syntax. A seedless key-derivation function (SL-KDF) KDF is an algorithm that takes as input

� source material x ∈ {0, 1}m,

� context information c, as well as

� a desired output length o

and outputs an o-bit string
y ← KDF(x, c, o) .

Security. The security definition for seedless KDFs—in the standard model—considers a two-
stage attacker A = (A1,A2). The first stage A1 outputs a value x and some state information σ
for A2. The second stage attacker A2, based on σ, may make particular queries (described below)
and outputs a single bit at the end. Formally, the game proceeds as follows:

1. The challenger chooses b← {0, 1}.
2. A1 produces (σ, x)← A1.

3. The second-stage attacker A2 is given σ and may make construction queries (c, o), which are
answered by KDF(x1, . . . , x`, c, o) if b = 0, and by a uniformly random value in {0, 1}o if b = 1.
A2 is restricted to a single query for every value c.

4. At the end, A2 outputs a decision bit b′ and wins the game if and only if b′ = b.

The advantage of A in this extraction game is denoted by Advkdf
KDF(A).

An attacker A = (A1,A2) is called an (F , T, q)-attacker if (1) the distribution of the values (σ, x)
produced by A1 is from a class of distributions F , (2) A2 runs in time at most T , and (3) makes at
most q queries to the KDF. The above leads to the following definition of seedless key-derivation
functions in the standard model:

Definition 6. An algorithm KDF is a (F , T, q, ε)-SL-KDF if for every (F , T, q)-attacker A,

Advkdf
KDF(A) ≤ ε .

18

Pseudorandom functions. A variable-length pseudorandom function (VL-PRF) is a function
PRF(k, c, o) that, on a uniformly random key, is computationally indistinguishable from a truly
random function that produces outputs of the desired length. Specifically, the security of a VL-
PRF can be captured in the P -model by giving an attacker A access to P and allowing it to make
construction queries to either PRF(k, ·, ·) on a random key or to a truly random function that outputs
a random and independent value from {0, 1}o for every input (c, o); A is restricted to make at most
one construction query for every value c. Function PRF is called a (p, q, ε)-VL-PRF in the P -model
if an attacker making at most p queries to P and at most q construction queries has advantage at
most ε of in telling PRF apart from a random function in the above experiment. Similarly, one can
define a (T, q, ε)-VL-PRF in the standard model, where T is the running time of A.

Extract-then-expand KDFs and HKDF. Seedless KDFs can be generically built by compos-
ing a seedless extractor ext with a variable-length PRF PRF as follows:

KDF(x, c, o) := PRF(ext(x), c, o) .

Observe that the definition of seedless extractor (Definition 3) can be modified to a standard-model
definition of (F , T, ε)-extractors (similarly to Definition 6):

Definition 7. An algorithm ext is a seedless (F , T, ε)-extractor if for every (F , T)-attacker A,

Advext
ext (A) ≤ ε .

The following theorem by [35] is easy to prove (for most reasonable function classes F).

Theorem 4. Let ext be a seedless (F , T, ε)-extractor and let PRF be a (T ′, q′, ε′)-VL-PRF. Then,
KDF as defined above is a seedless (F ,min(T, T ′), q, ε+ ε′)-KDF.

Recall that HKDF instantiates both the extractor and the VL-PRF with HMAC (cf. Section B.4).
The security of HKDF as a KDF can be argued heuristically in the standard model as follows: First,
one infers the standard-model security of HMAC as an extractor—from Theorem 55. In particular,
the heuristic assumption is that the extractor security of HMAC in the random-compression-function
model implies security of HMAC in the standard model against all distributions from the class
Fpractice of sources encountered in practice. Second, one infers the standard-model security of
HMAC as a VL-PRF—from the well-known fact that HMAC is a good VL-PRF in the random-
compression-function model.

4 Pseudorandom Number Generators with Input

A pseudorandom number generator with input (PRNG) is a stateful cryptographic primitive. It
gradually accumulates entropy in its state by absorbing inputs and can be used to output pseu-
dorandom bits once the entropy of the state is sufficiently high. Moreover, it is both forward and
backward secure, i.e., past outputs remain random upon future state compromise, and, by absorbing
sufficient amounts of entropy, a PRNG can recover from state compromise.

This section introduces a novel security definition for PRNGs that differs from previous notions
in several crucial ways. Specifically, a comparison to the original robustness notion by Dodis et
al. [18], based on work by Barak and Halevi [1], as well as to an adaptation of it by Gazi and
Tessaro [25] for idealized models is provided in Appendix A.

This paper considers two notions of PRNGs: computational PRNGs and information-theoretically
secure (IT) PRNGs. IT PRNGs differ from computational PRNGs in that once the attacker stops

19

interacting with the PRNG, the output of the PRNG remains random even if the attacker is given
the entire function table of the underlying ideal primitive. That is, IT PRNGs achieve so-called
everlasting security (cf. works in the hybrid bounded-storage model by Harnik and Naor [26]). This
distinction is analogous to that between seedless extractors and IT seedless extractors (cf. Section 3).

4.1 Syntax

A PRNG consists of two algorithms: one for absorbing new inputs and one for producing pseudo-
random outputs. Formally, it is defined as follows:

Definition 8 (Syntax of PRNGs). A pseudorandom number generator with input (PRNG) is a
pair of algorithms PRNG = (refresh, next) having access to an ideal primitive P and sharing an n-bit
state s, where

� refresh takes a state s and an input x ∈ {0, 1}m and produces a new state s′ ← refreshP (s, x),
and

� next takes a state s and produces a new state and an output y ∈ {0, 1}r, i.e, (s′, y)← nextP (s).

A PRNG processing m-bit inputs and producing r-bit output is called a (m, r)-PRNG.

4.2 Security Game

Robustness game. PRNGs are expected to satisfy the so-called robustness property, which cap-
tures the properties discussed at the beginning of Section 4. The corresponding security game is
depicted in Figure 2. The game initially chooses a random bit b and initializes the state of the
PRNG to 0n. Subsequently, it offers the following oracles to A:

� adv-refresh(x) calls the refresh procedure to absorb x ∈ {0, 1}n into the internal state of the
PRNG;

� get-next and get-next* allow the attacker to get pseudorandom outputs by calling the next
procedure on the current state and returning the output y. The difference between the two
oracles is that get-next is supposed to be called only when the state has high entropy, whereas
get-next* can be called prematurely, i.e., before the state has absorbed enough randomness
for the next function to output pseudorandom values (cf. definition of legitimate attackers
below).

� next-ror works like the get-next-oracle, except that it creates a challenge, i.e., if b = 1, it
outputs a uniform random value y1 ∈ {0, 1}r instead of the PRNG output y0.

� get-state and set-state model state compromises by letting the attacker learn the current
state or set it to an arbitrary value, respectively.

The advantage of A in the robustness game is denoted by Advrob,P
PRNG(A).

Canonical attackers. It will be useful to define to following notion of canonical attackers: Con-
sider the interaction of an attacker A with the robustness game. The following events are called
entropy drains:

� the beginning of the game,

� calls to get-state or set-state, and

20

The PRNG Robustness Game

init
s← 0n

b← {0, 1}

adv-refresh (x)

s← refreshP (s, x)

get-state
return s

next-ror
(s, y0)← nextP (s)
y1 ← {0, 1}r
return yb

get-next/get-next*
(s, y)← nextP (s)
return y

set-state (s∗)
s← s∗

Figure 2: Oracles for the PRNG robustness game.

� calls to get-next*.

In other words, entropy drains are the events that cause the PRNG state to lose its entropy, which
includes premature calls to next. An attacker A is said to be canonical if it does not make get-next*
queries nor the following query pattern: an entropy drain followed by one or more adv-refresh
queries, followed by a get-state query.

Considering canonical attackers only is without loss of generality. This is because the above
sequence of queries can be simulated by the attacker by making a get-state query right away and
computing the output of get-state or get-next* itself. In particular, for every attacker A, there
exists a canonical attacker A with the same advantage. All attackers in the remainder of this work
are therefore assumed to be canonical.

Legitimate attackers. In order to obtain a sensible definition devoid of trivial attacks, attackers
must satisfy a “legitimacy” condition. The condition roughly requires that an attacker only ask for
challenges when it has sufficient amount of uncertainty about the PRNG’s internal state.

Towards formalizing the legitimacy condition, consider the interaction of A with a variant of
the robustness game defined as follows: Whenever oracles next-ror or get-next are called, instead
of evaluating next, the game simply uses two uniformly random and independent values (s, y) as
the output of next.

Observe that this variant of the robustness game, called the legitimacy game corresponds to
an interaction between A and an ideal PRNG, which produces perfect randomness. Moreover, the
legitimacy game is construction-independent.

In the legitimacy game, define now the following random variables immediately before A makes
the ith call to oracle get-next or next-ror:

� Li: the list of P -queries by A and the corresponding answers;

� Σi: the state of A;

� Xi: vector of inputs provided by A since the the most recent entropy drain (MRED); and

� Si: the state of the PRNG immediately after the MRED.

The legitimacy condition requires that A provide inputs that have high min-entropy even condi-
tioned on its current state, the queries so far, and the state of the PRNG after the MRED.

21

Definition 9 (Legitimate attackers). An attacker A is said to be γ∗-legitimate if for all i,

H∞(Xi|ΣiLiSi) ≥ γ∗ ,

where MREDs are defined as above.

In order to capture IT-legitimate attackers (against IT PRNGs), the set of entropy drains is extended
to include

� calls to get-next and next-ror.

With this definition of MRED and notation analogous to that in the previous definition, IT-
legitimate attackers are defined as follows:

Definition 10 (Legitimate IT attackers). An attacker A is said to be γ∗-IT-legitimate if for all i,

H∞(Xi|ΣiLiSi) ≥ γ∗ ,

w.r.t. the extended definition of MRED.

Robust PRNGs. We are now ready to quantify the efficiency of attacker A, and to define our
final notion of PRNG robustness.

Definition 11 (Attacker efficiency). An attacker is called a (q, t, `)-attacker if

� q is the maximum number of P -queries it makes,

� ` is the maximum number of adv-refresh calls between any entropy drain and successive call
to either next-ror or get-next, and

� t is the maximum total number of calls to any oracle in the robustness game other than adv-
refresh.

An attacker is called a (q, t, `)-IT-attacker if it satisfies the above conditions but makes an arbitrary
number of queries to P after the interaction with the challenger ends.

Definition 12 (Robustness of PRNGs). A PRNG construction PRNG = (refresh, next) with oracle
access an ideal primitive P is (γ∗, q, t, `, ε)-(IT-)robust in the P -model if for every γ∗-(IT-)legitimate
(q, t, `)-(IT-)attacker,

Advrob,P
PRNG(A) ≤ ε .

Observe that online extractors (cf. Definition 4) are a special case of robust PRNGs. In terms
of construction, the PRNG next algorithm can be replaced by finalize, which simply discards the
state output by next. If then the PRNG robustness game is relaxed such that the only queries the
attacker can make are (a) arbitrarily many queries to adv-refresh followed by (b) t = 1 query to
next-ror, one obtains a notion equivalent to Definiton 3.

5 Constructions of PRNGs

This section presents three simple, intuitive, and—most importantly—practical PRNG construc-
tions:

22

� a construction based on the Merkle-Damg̊ard paradigm using a public fixed-length compression
function;

� a construction based on the Merkle-Damg̊ard paradigm using the Davies-Meyer compression
function (as in SHA-2), which is built from any public block cipher; and

� a construction based on the Sponge paradigm (as in SHA-3), which uses a public permutation.

For PRNGs based on the MD paradigm, there are in fact two constructions: one achieving normal,
computational PRNG security and one achieving information-theoretic (IT) security. The security
analyses of all three constructions are provided in Sections 6 (computational PNRGs) and 7 (IT
security). There is also an IT candidate based on Sponges, but its security analysis is left for future
work.

For the reader’s convenience, Appendix B states the corresponding online extractor constructions
along with the security bounds—for applications where extraction is sufficient.

5.1 PRNGs from Merkle-Damg̊ard

A PRNG can be obtained from a compression function F as follows (cf. Figure 3):11

Construction 2 (PRNG from Merkle-Damg̊ard). The (m, r)-PRNG construction MD = (refresh,
next) based on Merkle-Damg̊ard with a compression function F : {0, 1}n × {0, 1}m → {0, 1}n is
defined as follows:12

� refreshF (s, x) = F (s, x), and

� nextF (s) = (F (s, 0), F (s, 1)‖ · · · ‖F (s, r/n)).

The security of Construction 2 is proved in the F -model, where F is a uniformly random function.
The proof of the following theorem is deferred to Section 6.4.

Theorem 5 (Robustness of Merkle-Damg̊ard PRNGs). Construction 2 is a (γ∗, q, t, `, εrob)-robust
PRNG in the F -model for

εrob ≤ 2t ·
(
q̃2 + q̃`+ `2

2n
+

q̃

2γ∗

)
,

where q̃ = q + r/n+ 1.

An IT-robust PRNG based on Merkle-Damg̊ard can be obtained if the next function simply outputs
the truncated state (and outputs 0n as the new state):

Construction 3 (IT-PRNG from Merkle-Damg̊ard). The (m, r)-PRNG construction MDr = (refresh,
next) based on Merkle-Damg̊ard with a compression function F : {0, 1}n × {0, 1}m → {0, 1}n is de-
fined as follows:

� refreshF (s, x) = F (s, x), and

� nextF (s) = (0n, s[1..r]).

11To reduce notational clutter, the algorithms refresh and next of the PRNG constructions are not “branded” with
the design name. There will be no ambiguity as to which construction is meant in any place in this paper.

12The integer arguments to the compression function are to be naturally mapped to {0, 1}n.

23

s

xi

0

1

r/n

...

s′

y

refresh next

s

xi

refresh next

r

n− r

y

0n
s′

F

F

F

F

F

Figure 3: Procedures refresh (processing a single-block input xi) and next of Merkle-Damg̊ard PRNG con-
structions with compression function F . Left: Computationally secure Construction 2; right: IT secure
Construction 3.

The security of Construction 3 is proved in the F -model, where F is a uniformly random function.
To state the theorem for the IT construction, for an integer `, let

d′(`) = max
`′∈{1,...,`}

∣∣{d ∈ N : d|`′}
∣∣ .

Observe that, asymptotically, d′(`) grows very slowly, i.e., as `o(1). Furthermore, let F be a random
compression function. The proof of the following theorem is deferred to Section 7.4.

Theorem 6 (IT-Robustness of Merkle-Damg̊ard PRNGs). Construction 3 is a (γ∗, q, t, `, εrob)-IT-
robust PRNG in the F -model, where

εrob-it ≤
t

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2 · q̃

22r

22n
+ tρ ,

for ρ = q̃2

2r where q̃ = q + t`.

Parameter choices. In terms of concrete parameters, observe the following for the Merkle-
Damg̊ard constructions above:

� Computational PRNG: If one were to use SHA-512 as compression function with n = 512,
and, moreover, choose r = n. We let t = 1, q = 280 and let γ∗ = `. This assumes that we get
at least one bit of entropy from each block. We would need γ∗ ≈ 160 to get 80 bits of security.

� IT PRNG: For example, assume SHA-512’s compression function is used, i.e., n = 512. If
we let r = 256, then we get (we also approximate 1/(1− ρ) ≤ 2, very generously)

εrob-it ≤
t

2

√
2257−γ∗ +

` · d′(`)
2256

+ t
q2

2256
,

24

We let ` = γ∗. Then, if we set for example q = 280. We would need the entropy loss, i.e,
γ∗ − r = 162 for 80 bits of security.

5.2 PRNGs from Merkle-Damg̊ard with Davies-Meyer

The Davies-Meyer compression function maps two inputs a ∈ {0, 1}m and b ∈ {0, 1}n to an n-bit
string

E(b, a)⊕ a ,
where E is an arbitrary block cipher (where b is the key and a the input).13 Correspondingly, a
PRNG can be obtained from E as follows (cf. Figure 4):

Construction 4 (PRNG from MD-DM). The (n, r)-PRNG construction DM = (refresh, next) based
on Merkle-Damg̊ard with Davies-Meyer (MD-DM) uses a cipher E : {0, 1}k×{0, 1}n → {0, 1}n and
is defined as follows:14

� refreshE(s, x) = E(x, s)⊕ s, and

� nextE(s) = (E(0, s)⊕ s, E(1, s)⊕ s‖ · · · ‖E(r/n, s)⊕ s).

The security of Construction 4 is proved in the E-model, where E is a cipher chosen uniformly at
random from the set of all ciphers and can be queried in both the forward and backward direction.
The proof of the following theorem is deferred to Section 6.5.

Theorem 7 (Robustness of MD-DM PRNGs). Construction 4 is a (γ∗, q, t, `, εrob)-robust PRNG
in the E-model for

εrob ≤ 4t ·
(
q̃2 + q̃`+ `2

2n
+

q̃

2γ∗

)
,

where q̃ = q + r/n+ 1.

In the IT-secure variant of the MD-DM construction, refresh remains the same, but next will truncate
the input state to r bits, which it outputs, and then zero out the state.

Construction 5 (IT-PRNG from MD-DM). The (n, r)-PRNG construction DMr = (refresh, next)
using Merkle-Damg̊ard with Davies-Meyer (MD-DM) uses a block cipher E : {0, 1}k × {0, 1}n →
{0, 1}n and is defined as follows:

� refreshE(s, x) = E(x, s)⊕ s, and

� nextE(s) = (0n, s[1..r]).

The security of Construction 5 is proved in the E-model, where E is a cipher chosen uniformly at
random from the set of all ciphers and can be queried in both the forward and backward direction.
Let d′(`) be defined as in Section 5.1. The proof of the following theorem is deferred to Section 7.5.

Theorem 8 (IT-Robustness of MD-DM PRNGs). Construction 5 is a (γ∗, q, t, `, εrob)-IT-robust
PRNG in the E-model, where

εrob-it ≤
t

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) 2r

2n−1
+ 64`4 · 2r

22n−2
+ 16`2q̃2 · 2r

22n−2
+ tρ ,

for ρ = q̃2

2r where q̃ = q + t`
13A (block) cipher is an efficiently computable and invertible permutation E(k, ·) : {0, 1}n → {0, 1}n for every key

k ∈ {0, 1}n.
14The integer arguments to the cipher are to be naturally mapped to {0, 1}n.

25

s

xi

...

s′

y

E

refresh next

refresh next

r

n− r

y

0n
s′

0

E

1

E

r/n

E

s

r/n

E

Figure 4: Procedures refresh (processing a single-block input xi) and next of Merkle-Damg̊ard PRNG con-
structions with the Davies-Meyer compression function based on a block cipher E. Left: Computationally
secure Construction 4; right: IT secure Construction 5.

Parameter choices. In terms of concrete parameters, observe the following for the PRNG con-
structions from Merkle-Damg̊ard with Davies-Meyer above:

� Computational PRNG: SHA-512 is a 512-bit block cipher algorithm that encrypts 512
bit hash value using the input as key. Therefore, we let n = 512 and set r = n. We let
t = 1, q = 280 and let ` = γ∗. This assumes that we get at least one bit of entropy from each
block. We would need γ∗ ≈ 163 to get 80 bits of security.

� IT PRNG: We again let n = 512. If we let r = 256, then we get (we also approximate
1/(1− ρ) ≤ 2, very generously)

εrob-it ≤
t

2

√
2129−γ∗ +

` · d′(`)
2127

+ t
q2

2128
,

We let ` = γ∗. Then, if we set for example q = 280. We would need the entropy loss, i.e,
γ∗ − r = 162 for 80 bits of security.

5.3 PRNGs from Sponges

Let n ∈ N and n = r + c. In the following, for an n-bit string s, let s = s(r)‖s(c) be decomposition
of s into an r-bit and c-bit string. A PRNG using the Sponge paradigm can be obtained from a
permutation π as follows (cf. Figure 5):

Construction 6 (PRNG from Sponges). The Sponge-based PRNG construction Spg = (refresh,
next) uses a permutation π : {0, 1}n → {0, 1}n to absorb and produce r-bit inputs and outputs,
respectively, and is defined as follows:

26

s

xi

π

refresh next

yr

c
π s′ s

xi

π

refresh

yr

c
0n

s′

next

Figure 5: Procedures refresh (processing a single-block input xi) and next of Merkle-Damg̊ard PRNG con-
structions with compression function F . Left: Computationally secure Construction 2; right: IT candidate
Construction 3.

� refreshπ(s, x) = π(s⊕ x‖0c), and

� nextπ(s) = (π(s)⊕ 0r‖s(c), s(r)).

The next function design is due to Hutchinson [27], who simplified a proposal by Gazi and Tes-
saro [25]. Recall that the Merkle-Damg̊ard constructions have a “parallel” next function in order to
produce r/n blocks of random output with r/n+ 1 calls to the ideal primitive, where the additional
call is used to produce a new state. Were it not for this optimization, on order to obtain r bits of
output, one would have to apply the next function r/n times in a row, which would results in twice
the number of ideal-primitive calls.

The next function for Sponges, on the other hand, only makes a single call to the ideal primitive
to produce both a new state and the random output. Therefore, no parallel next function is provided
for the Sponge-based PRNG.

The security of Construction 6 is proved in the π-model, where π is a uniformly random permu-
tation, which can be queried in both the forward and backward direction. The proof of the following
theorem is deferred to Section 6.6.

Theorem 9 (Robustness of Sponge PRNGs). Construction 6 is a (γ∗, q, t, `, εrob)-robust PRNG in
the π-model for

εrob ≤ 4t ·
(
q̃2 + q̃`+ `2

2n
+

q̃

2γ∗
+
q̃2

2c

)
,

where q̃ = q + r/n+ 1.

Observe that the bound in Theorem 9 is only reasonable when c is large enough, which matches the
fact that CBC-based PRNGs—which correspond to the case c = 0, are not secure.

In the IT variant of the Sponge construction, refresh remains the same, but next will truncate
the input state to r bits, which it outputs, and then zero out the state.

Construction 7 (IT-PRNG from Sponges). The Sponge-based PRNG construction Spgr = (refresh,
next) uses a permutation π : {0, 1}n → {0, 1}n to absorb and produce r-bit inputs and outputs,
respectively, and is defined as follows:

� refreshπ(s, x) = π(s⊕ x‖0c), and

� nextπ(s) = (0n, s[1..r]).

27

An IT-PRNG based on the Sponge paradigm is a modification of the computational variant where
the output of next is merely the truncated state to the first r bits along with 0n as the new state.

Theorem 10 (IT-Robustness of Sponge PRNGs). Construction 7 is a (γ∗, q, t, `, εrob)-IT-robust
PRNG in the π-model for

εrob-it ≤
t

2

√
2r−γ∗

(1− ρ)
+
` · (`+ q̃)

2c−1
+ tρ ,

for ρ = q̃2

2c where q̃ = q + t`

Parameter choices. In terms of concrete parameters, observe the following for the PRNG con-
structions from Sponges above: above:

� Computational PRNG: SHA-3 like parameters have n = 1600 and c = 1024. We let
t = 1, q = 280 and let ` = γ∗. This assumes that we get at least one bit of entropy from each
block. We would need γ∗ ≈ 163 to get 80 bits of security.

� IT PRNG: We let n = 1600 and c = 1024. In addition, we let t = 1 and q = 280. We also
let ` = γ∗. Therefore, we incur an entropy loss of 160 bits to get 80 bits of security.

6 Security Proofs for Computational Constructions

This section analyzes all previously presented computationally secure constructions. The main
technique in all proofs is the so-called H-coefficient technique, which is discussed first, in Section 6.1.
Section 6.2 then shows the security of the monolithic extractor from Section 3.2. While rather
straight-forward, the corresponding proof is quite instructive for the security proofs of the PRNG
constructions from Section 5. For these proofs, it is convenient to define and establish a number
of intermediate properties, which are discussed in Section 6.3. Finally, Sections 6.4 to 6.6 establish
the robustness (cf. Section 4.2) of the PRNG constructions.

6.1 The H-Coefficient Technique

When considering an adaptive distinguisher D that tries to tell apart two different worlds, usually
termed real and ideal experiments, the H-coefficient technique [40] is a handy tool for analyzing the
distinguishing advantage of D.

The H-coefficient technique considers transcripts between distinguisher D and the challenger.
These transcripts are partitioned into two groups: the good transcripts and the bad transcripts.
For good transcripts τ , an H-coefficient proof will commonly derive a lower bound on the ratio of
the probability of τ occurring in the real world and that of τ occurring in the ideal world. For bad
transcripts, which are normally defined as the transcripts for which said lower bound cannot be
derived, one upper bounds the probability that they occur. This latter bound can be proved in the
ideal world, which usually greatly simplifies the derivation.

Transcripts. The interaction of D with either the real or the ideal experiment produces a tran-
script T that contains the queries made by D and the corresponding answers given by the challenger.
For a fixed transcript τ , denote by p0(τ) and p1(τ) the probabilities that the real and ideal experi-
ments, respectively, the challenger produces the answers in τ if asked the queries in τ .15 Similarly,

15Observe that p0(τ) and p1(τ) depend only on the corresponding experiment and are independent of D.

28

the behavior of a distinguisher D is described by a function pD(τ) that assigns to τ the proba-
bility that D produces the queries in τ if given the answers in τ . Observe that, therefore, the
probability of a particular transcript τ occurring in an interaction of D with the real experiment
is P[T0 = τ] = pD(τ) · p0(τ) and, similarly, P[T1 = τ] = pD(τ) · p1(τ) for the ideal world. In the
following, denote by T the set of all transcripts τ .

Bounding the distinguishing advantage. The distinguishing advantage of D is upper bounded
by the statistical distance

SD(T0, T1) =
∑
τ∈T

max {0,P[T1 = τ]− P[T0 = τ]}

=
∑
τ∈T

max {0, pD(τ) · p1(τ)− pD(τ) · p0(τ)}

=
∑
τ∈T

pD(τ) · p1(τ)

(
1− p0(τ)

p1(τ)

)
=
∑
τ∈T

P[T1 = τ]

(
1− p0(τ)

p1(τ)

)
. (2)

Suppose that for some set Γ ⊆ T of good transcripts, a lower bound

p0(τ)

p1(τ)
≥ 1− ε

is known for all τ ∈ Γ and some ε ≥ 0. Then, (2) becomes∑
τ∈T

P[T1 = τ]

(
1− p0(τ)

p1(τ)

)
≤
∑
τ∈Γ

(
1− p0(τ)

p1(τ)

)
+
∑
τ∈T\Γ

P[T1 = τ]

≤ ε+ P[T1 ∈ T \ Γ] ,

where transcripts τ ∈ T \Γ are commonly referred to as bad transcripts. Given the above, applying
the H-coefficient technique entails defining a set of good transcripts, bounding the fraction above,
and showing that bad transcripts are unlikely. Note that the latter can be done in the ideal
experiment, which is usually considerably easier than doing so in the real experiment.

Theorem 11 (H-coefficient method). For two experiments described by p0(·) and p1(·), respectively,
if there exists a set Γ ⊆ T and ε, δ ≥ 0 satisfying

1. (ratio analysis) p0(τ)/p1(τ) ≥ 1− ε for all τ ∈ Γ and

2. (bad event analysis) P[T1 /∈ Γ] ≤ δ,

then the distinguishing advantage of any distinguisher D is bounded by ε+ δ.

6.2 Monolithic Extractor

From Section 3.2, recall the monolithic extractor mono defined to work with a random oracle
F : {0, 1}m → {0, 1}n:

Construction 1 (Monolithic extractor). The monolithic seedless extractor monoG : {0, 1}m →
{0, 1}n using a random oracle G : {0, 1}m → {0, 1}n is defined by

monoG(x) := G(x) .

29

Construction 1 is a seedless extractor according to Definition 3.

Theorem 1 (Monolithic seedless extraction). Construction mono is a (γ∗, q, ε)-extractor in the
G-model for

ε ≤ q

2γ∗
.

The proof of Theorem 1 is a straight-forward application of the H-coefficient technique. The idea is
to first show that unless A1 or A2 queries the input x provided by A1, the real and ideal worlds (i.e.,
the cases where b = 0 and b = 1, respectively) are indistinguishable. That is, the corresponding
ratio of transcript probabilities is 1. Transcripts where x is in the query list are defined to be bad
transcripts, and the second part of the proof shows that bad transcripts are unlikely to occur due
to the legitimacy of A. The latter proof crucially relies on the fact that the H-coefficient technique
enables performing the bad-event analysis in the ideal world.

Proof. Consider a transcript of the interaction between an attacker A = (A1,A2) and the challenger
of the extraction game (as defined in Section 3.1). It consists of

� the input x provided by A1,

� the value y∗ output by the game (which is either the output y0 of the extractor on x or a
uniformly random value from {0, 1}n), and

� the query/answer list L = L1 ∪ L2 of A1’s and A2’s interaction with F .

That is τ = (y∗, x, L). A bad transcript occurs when A1 or A2 queries F at input x, i.e., when L
contains a pair of the form (x, ∗). In order to apply Theorem 11, one merely needs to bound the
probability ratio for good transcripts (Lemma 12) and the probability of a bad transcript occurring
in the ideal world, i.e, for b = 1 (Lemma 13).

Lemma 12 (Ratio analysis). For all good transcripts τ ,

p0(τ)

p1(τ)
= 1 .

Proof. Fix a good transcript τ and consider first p1(τ). Since in the ideal world y∗ is sampled
uniformly,

p1(τ) = pL · 2−n ,

where pL denotes the probability that a uniform random function is consistent with the queries in
L. In the real world,

p0(τ) = pL · qτ ,

where qτ is the probability that FL(x) = y∗ over a function FL that is sampled uniformly at random
conditioned on being consistent with L. Since τ is a good transcript, FL is not constrained by L at
coordinate x, and, hence, qτ = 2−n.

Remark 1. In the above proof, note that pL does not include the probability that x appears
in the transcript. Recall from Section 6.1 that the behaviors p(τ) are the probabilities that the
experiment produces the answers in τ when given the queries in τ (and the value x is a query by
the distinguisher).

Lemma 13 (Bad event analysis). For the set B of bad transcripts (as defined above),

P[T1 ∈ B] ≤ q

2γ∗
.

30

Extraction Security Next Security Maintaining Security

Robustness

Recovering Security Preserving Security

Figure 6: This figure represents the implication relations between the different intermediate notions of
security. The filled arrows stand for a generic proof, while the unfilled arrows represent a construction-
specific proof.

Proof. Recall that by the γ∗-legitimacy of A = (A1,A2),

H∞(X|ΣL1) ≥ γ∗ .

Observe that in the ideal world, the output of the extraction game is a uniformly random value Y ∗,
which is independent of the input X produced by A1. The sampling order of the ideal experiment
can therefore be changed to be the following:

1. Sample F uniformly at random.

2. Run A1 until it outputs σ and x, thereby also generating the list of queries L1.

3. Choose y∗ uniformly at random.

4. Run A2 on input (σ, y∗), letting it make additional queries L2.

5. Resample the input X conditioned on (Σ,L1) = (σ, L1).

Note that since the conditioning includes L1, A1 makes the same queries, L1, during the first run
and the resampling process. Moreover, since conditioned on the values of (Σ,L1), X and L2 are
independent, the min-entropy condition holds for L = L1 ∪ L2, the list of all queries made by A
during the experiment, as well. That is,

H∞(X|ΣL) ≥ γ∗ .

Thus, the probability that the resampled input X is contained in any query in the list L is at most
q · 2−γ∗ .

31

The PRNG Recovering Game

init
b← {0, 1}

chall (s0, x1, . . . , x`)
for i = 1, . . . , `

si ← refresh(si−1, xi)
if b = 0

return next(s`)
else

(s, y)← {0, 1}n+r

return (s, y)

Figure 7: Oracles for PRNG recovering game.

6.3 Intermediate PRNG Security Notions

In keeping with tradition in PRNG literature, it is useful to define two simple properties called
recovering and preserving. Recovering security requires that that if after an entropy drain, sufficient
amount of entropy has been absorbed into the PRNG state, the output of the next function look
random. Preserving security asks that after absorbing adversarially chosen inputs, a high-entropy
state not become compromised, and the output of the next function after the absorption look
random.

Recovering and preserving security can be shown to generically (i.e., for any PRNG construction)
imply robustness. In order to establish these two properties themselves, it helps to introduce three
further properties called extraction, maintaining, and next security :

� Extraction security: show that the PRNG state is indistinguishable from a uniform one
after sufficient amounts of entropy have been absorbed;

� Maintaining security: show that the PRNG state is indistinguishable from a uniform one
if it is random initially and arbitrary inputs are absorbed;

� Next security: show that the output of the next function is indistinguishable from a random
value if it is called on a random input.

For each PRNG construction considered in this work, extraction and next security imply recovering
security, and maintaining and next security imply preserving security. These proofs, however, are not
generic and must be repeated for each PRNG construction. Figure 6 illustrates these implications.

6.3.1 Recovering and Preserving Security

As stated above, it is useful to define two simple properties called recovering and preserving, which
together generically imply robustness via a hybrid argument.

Recovering security. The intuition behind Recovering security is that if after an entropy drain,
sufficient amount of entropy (from the perspective of the attacker) has been absorbed into the state,
then the output of next is indistinguishable from a uniformly random value in {0, 1}n+r.

The corresponding game is depicted in Figure 7. It lets the attacker specify an initial state s0

and a vector of inputs x1, . . . , x`; the inputs are then absorbed one-by-one, and next is called on
the resulting state. The game returns the output of next if b = 0 and a uniform value if b = 1. The
advantage of an attacker A in the recovering game is denoted by Advrec,P

PRNG(A).

32

The PRNG Preserving Game

init
s0 ← {0, 1}n
b← {0, 1}

chall (x1, . . . , x`)
for i = 1, . . . , `

si ← refresh(si−1, xi)
if b = 0

return next(s`)
else

(s, y)← {0, 1}n+r

return (s, y)

Figure 8: Oracles for PRNG preserving game.

Similarly to the robustness game, an attacker has to satisfy a legitimacy condition. In particular,
A is γ∗-legitimate if

H∞(X1, . . . , X`|ΣLS0) ≥ γ∗ ,

where

� Σ is the state of A just before the call to chall,

� L is the list of query and answers A has made to P up to the call to chall, and

� S0 is the initial state that the adversary provides.

For the recovering game, q again denotes the maximum number of P -queries that A makes, and
` is the maximum number of blocks with which it calls oracle chall; a corresponding attacker is
referred to as (q, `)-attacker.

Definition 13. A PRNG construction PRNG = (refresh, next) is said to be (γ∗, q, `, ε)-recovering
in the P -model if for every γ∗-legitimate (q, `)-attacker,

Advrec,P
PRNG(A) ≤ ε .

Preserving security. At a high level, preserving security requires that by absorbing adversarially
chosen inputs, a high-entropy state cannot become compromised, and the output of next after the
absorption is indistinguishable from a uniformly random value in {0, 1}n+r.

The corresponding game is depicted in Figure 8. It lets the attacker specify a vector of inputs
x1, . . . , x`; the inputs are then absorbed into a randomly chosen state one-by-one, and next is called
on the resulting state. The game returns the output of next if b = 0 and a uniform value if b = 1.
The advantage of an attacker A in the preserving game is denoted by Advpre,P

PRNG(A). There is no
legitimacy constraint on A; the parameters q and ` are defined as before for a (q, `)-attacker.

Definition 14. A PRNG construction PRNG = (refresh, next) is said to be (q, `, ε)-preserving in
the P -model if for every (q, `)-attacker,

Advpre,P
PRNG(A) ≤ ε .

Recovering and preserving imply robustness. As mentioned above, in order to establish
robustness of a PRNG construction, it suffices to prove that it is both recovering and preserving.

Theorem 14. Consider a PRNG construction PRNG = (refresh, next) for which refresh makes α
P -calls and next makes β P -calls. Furthermore, assume PRNG is both

33

� (γ∗, q, `, εrec)-recovering and

� (q, `, εpre)-preserving

in the P -model. Then, PRNG is also (γ∗, q, t, `, εrob)-robust in the P -model, where

εrob ≤ t · (εrec + εpre) .

The proof of Theorem 14 is provided in Appendix C.1.

6.3.2 Extraction, Maintaining, and Next Security

Extraction security. Extraction security requires that after absorbing blocks with high joint en-
tropy, the state of the PRNG be indistinguishable from a uniformly random one. The corresponding
game is a variant of the game for recovering security (cf. Figure 7) in which next is not applied to
s`; instead, s` or a uniformly random value is output, depending on whether b = 0 or b = 1.

The legitimacy of an attacker A as well as parameters q and ` are defined identically to the
recovering game (cf. Section 4.2); the advantage of A against extraction security of PRNG in the
P -model is denoted by Advext,P

PRNG(A).

Maintaining security. Maintaining security is a variant of the preserving game (cf. Figure 7) in
which next is not applied to s`; instead, s` or a uniformly random value is output, depending on
whether b = 0 or b = 1. The parameters q and ` are defined identically to the preserving game (cf.
Section 4.2); the advantage of A against maintaining security of PRNG in the P -model is denoted
by Advmtn,P

PRNG (A).

Next security. Next security requires that the output of the next function on a uniformly random
state be indistinguishable from a uniformly random string. That is, an attacker A, making at most
q queries to the ideal primitive P , tries to distinguish nextP (S) from Un+r for a uniformly random
S ∈ {0, 1}n. Denote by Advnext,P

PRNG (A) the advantage of A.

6.4 PRNGs from Merkle-Damg̊ard

This section establishes the robustness of the PRNG construction MD = (refresh, next) based on
Merkle-Damg̊ard with a random compression function F : {0, 1}n × {0, 1}m → {0, 1}n. Recall that
the construction is defined as follows (cf. Figure 3):

Construction 2 (PRNG from Merkle-Damg̊ard). The (m, r)-PRNG construction MD = (refresh,
next) based on Merkle-Damg̊ard with a compression function F : {0, 1}n × {0, 1}m → {0, 1}n is
defined as follows:16

� refreshF (s, x) = F (s, x), and

� nextF (s) = (F (s, 0), F (s, 1)‖ · · · ‖F (s, r/n)).

Note that iteratively absorbing some input blocks x1, . . . , x` via refresh, starting with a state s0 is
identical to applying the Merkle-Damg̊ard construction to the input with initialization vector (IV)
s0, which is denoted by MDF

s0(x1, . . . , x`) in the remainder of this section.

16The integer arguments to the compression function are to be naturally mapped to {0, 1}n.

34

Theorem 5 (Robustness of Merkle-Damg̊ard PRNGs). Construction 2 is a (γ∗, q, t, `, εrob)-robust
PRNG in the F -model for

εrob ≤ 2t ·
(
q̃2 + q̃`+ `2

2n
+

q̃

2γ∗

)
,

where q̃ = q + r/n+ 1.

As outlined in Section 6.3, the idea of the proof is to first establish extraction, maintaining, as well
as next security, and to then show that extraction and next security imply recovering security and
that maintaining and next security imply preserving security. More precisely, the proof proceeds as
follows:

� Extraction security: In order to establish extraction security using the H-coefficient method
(cf. Theorem 11 in Section 6.1), one first defines bad transcripts as transcripts for which the
attacker has queried F on all coordinates needed to evaluate the PRNG on the inputs it
provided.

For good transcripts, there is at least one missing F query to obtain the output of the PRNG.
The probability ratio is lower bounded by arguing that the output of the PRNG looks random
to the attacker unless there is a collision among the remaining F queries.

The probability of bad transcripts is upper bounded in the ideal world (b = 1). The proof
uses the legitimacy of the attacker in a resampling argument to argue that it is unlikely that
the attacker makes all the queries necessary to evaluate the PRNG on the inputs it provides.
Special care has to be taken to handle collisions in the F queries.

� Maintaining security: The corresponding proof also employs the H-coefficient method, but
is considerably more straightforward. A bad transcript is a transcript for which the initial
(random) state of the PRNG appears in the F -queries. The ratio is bounded analogously to
the extraction proof, and bounding the probability of a bad transcript is trivial.

� Next security: This is again a simple H-coefficient proof, which amounts to showing that
unless the attacker queries F on an input (s, ∗), where s is the (random) state to which next
is applied, the output of next looks random.

� Recovering security: Showing that the Merkle-Damg̊ard construction achieves recovering
security is a simple hybrid argument: First, one uses extraction security to argue that the state
after absorbing the inputs can be replaced by a random value. Second, using next security,
one argues that the output of next on said random value looks random.

� Preserving security: Proving preserving security is also a simple hybrid argument: First,
one uses maintaining security to argue that the state after absorbing the inputs can be replaced
by a random value. Second, using next security, one argues that the output of next on said
random value looks random.

The final bound in Theorem 5 follows by applying Theorem 14.

6.4.1 Extraction Security

Lemma 15 (Extraction security). The advantage of any γ∗-legitimate (q, `)-attacker A against
extraction security of MD is bounded by

Advext,F
MD (A) ≤ εext

MD(γ∗, q, `) :=
q2 + q`+ `2

2n
+

2q

2γ∗
.

35

Proof. In order to prove Lemma 15 using the H-coefficient method, consider a transcript17

τ = (s∗, s0, x1, . . . , x`, L)

of the interaction between the A and the extraction game, where s∗ is the value returned by the
game, L is the set of queries to the oracle made by the adversary A, and where s0 is the initial state
and x1, . . . , x` the inputs provided by A. Let `′ ≥ 0 be maximal such that

((yi−1, xi), yi) ∈ L

for some values y0, y1, . . . , y`′ with y0 = s0. A transcript τ is called a bad transcript if `′ = `;
otherwise, τ is called good.

In order to apply Theorem 11, one merely needs to bound the probability ratio for good tran-
scripts (Lemma 16) and the probability of a bad transcript occurring in the ideal world, i.e, for
b = 1 (Lemma 17).

Lemma 16 (Ratio analysis). For all good transcripts τ ,

p0(τ)

p1(τ)
≥ 1− q`+ `2

2n
.

Proof. Fix a good transcript τ and consider first p1(τ). Since in the ideal world s∗ is sampled
uniformly,

p1(τ) = pL · 2−n ,

where pL denotes the probability that a uniform random function is consistent with the queries in
L. In the real world,

p0(τ) = pL · qτ ,

where qτ is the probability that MDFL
s0 (x1, x2, . . . , x`) = s∗ over a function FL that is sampled

uniformly at random conditioned on being consistent with L.
It remains to derive a lower bound on qτ . To that end, observe that due to τ being a good

transcript, `′ < `. Hence, qτ is the probability (over FL) that

Y` := MDFL
y`′

(x`′+1, . . . , x`) = s∗ .

Consider the intermediate chaining values Y`′+1, . . . , Y`−1 and, for i = `′ + 1, . . . , ` − 1, define the
event FRESHi that Yi is fresh, i.e., there is no query ((Yi, ∗), ∗) ∈ L and Yi 6= Yj for j < i. Let,

FRESH :=
`−1⋂

i=`′+1

FRESHi .

Then,
P[Y` = s∗|FRESH] = 2−n

since the conditioning implies that F (Y`−1, x`) is freshly sampled and, hence, Y` is a uniformly
random value. Moreover,

P

[
FRESHi

∣∣∣∣∣
i−1⋂

k=`′+1

FRESHk

]
≤ q + `

2n

17In order to keep notation simple, `—here and in the following—is the number of inputs in a particular τ , not the
upper bound from Lemma 15.

36

as there are at most q+ ` non-fresh values by the time Yi is sampled. Here, the notation A denotes
the complement of an event A. Therefore,

P[FRESH] ≥ 1− q`+ `2

2n
,

and, finally,

qτ ≥ P[FRESH] · P[Y` = s∗|FRESH]

≥
(

1− q`+ `2

2n

)
· 2−n ,

which implies
p0(τ)

p1(τ)
≥ 1− q`+ `2

2n
.

Lemma 17 (Bad event analysis). For the set B of bad transcripts (as defined above),

P[T1 ∈ B] ≤ 2q

2γ∗
+
q2

2n
.

Proof. Observe that in the ideal world, the output of the extraction game is a uniformly random
value s∗, which is independent of the initial state S0 and the inputs X1, . . . , X`. The sampling order
of the ideal experiment can therefore be changed to be the following:

1. Sample F uniformly at random.

2. Run A until it outputs (s̃0, x̃1, . . . , x̃˜̀), thereby also generating the state σ and the list of
queries L0 before the challenge.

3. Choose s∗ uniformly at random.

4. Continue running A on σ and s∗, letting it make additional queries L1.

5. Resample the inputs (X1, . . . , X`) conditioned on (Σ,L0, S0) = (σ, L0, s0).

Remember that L is the random variable for the set of queries made while L is a particular value
that the random variable takes. Observe that since the conditioning includes L0, A makes the
same queries, L0, during the first run and the resampling process. Moreover, since conditioned on
(Σ,L0, S0), (X1, . . . , X`) and L1 are independent, the min-entropy condition holds for L = L0 ∪L1,
the list of all queries made by A during the experiment, as well. That is,

H∞(X1, . . . , X`|ΣLS0) ≥ γ∗ .

Let E be the event that there exists a collision in L, i.e., two or more queries have the same
answer. Note that

P[T1 ∈ B] ≤ P[T1 ∈ B|E] + P[E] ≤ P[T1 ∈ B|E] +
q2

2n
.

Towards bounding P[T1 ∈ B|E], consider now a particular triple z = (σ, L, s0) ∈ E , which is short-
hand for L being collision-free. Define a potential chain as values y0, y1, . . . , y` for some ` such that
y0 = s0 and

((yi−1, vi), yi) ∈ L .

37

for i = 1, . . . , ` and some values v1, . . . , v`. Observe that without collisions, L can contain at most
q potential chains. Clearly, conditioned on Z = z, T1 ∈ B if and only if for some potential chain,
Xi = vi for all i = 1, . . . , `. Hence, by the legitimacy of A,

P[T1 ∈ B|Z = z] ≤ q · pz ,

where pz := Pred(X |Z = z). In expectation,

P[T1 ∈ B|E] =
∑
z∈E

P[Z = z|E] · P[T1 ∈ B|Z = z]

≤
∑
z∈E

P[Z = z|E] · q · pz

= q · Pred(X |ZE)

≤ q · Pred(X |Z)

1− q2/2n

≤ q

(1− q2/2n) · 2γ∗
≤ 2q

2γ∗
,

using that18 q2/2n ≤ 1/2 and where the penultimate inequality is due to

Pred(X|Z) ≥
∑
z∈E

P[Z = z] · pz

= P[E] ·
∑
z∈E

P[Z = z]

P[E]
· pz

= P[E] · Pred(X |ZE) .

6.4.2 Maintaining Security

Lemma 18 (Maintaining security). The advantage of any (q, `)-attacker A against maintaining
security is bounded by

Advmtn,F
MD (A) ≤ εmtn

MD (q, `) :=
q`+ `2

2n
+

q

2n
.

Proof. To bound the advantage of an attacker A at guessing b via an H-coefficient proof, consider
a transcript

τ = (s∗, s0, x1, . . . , x`, L)

between A and the maintaining game, where s∗ is the output of the game and L are the queries
made by A. A transcript is bad if there is a query of the type ((s0, ∗), ∗) ∈ L and good otherwise.
The probability of a bad transcript occurring in the b = 1 case is clearly at most |L|/2n. Moreover,
for good transcripts τ ,

p1(τ) = 2−2n · pL ,
where pL denotes the probability that a uniform random function is consistent with the queries in
L. Furthermore, by an argument similar to that in the proof of Lemma 16,

p0(τ) ≥
(

1− q`+ `2

2n

)
· 2−2n · pL .

The lemma follows by applying Theorem 11.
18This can always be assumed as the bound would otherwise be vacuous.

38

6.4.3 Next Security

Lemma 19 (Next security). The advantage of any q-attacker A against next security is bounded
by

Advnext,F
MD (A) ≤ εnext

MD (q) :=
q

2n
.

Proof. For a straight-forward H-coefficient proof, consider the transcript

τ = (s, s∗, L) ,

where s is the initial state, s∗ is the input given to A, and L are the queries A makes to F . A
transcript is bad if L contains a query of the form ((s, ∗), ∗) and good otherwise. It is easily seen
that for good transcripts, the probability ratio is 1, whereas, in the ideal world, where A’s view is
completely independent of S, the probability of a bad event is at most q/2n.

6.4.4 Recovering Security

In the following, let εext
MD(γ∗, q, `) and εnext

MD (q) be as in Lemmas 15 and 19. Extraction and next
security together imply recovering security:

Lemma 20 (Recovering Security). For every γ∗-legitimate (q, `)-attacker A,

Advrec,F
MD (A) ≤ εext

MD(γ∗, q + r/n+ 1, `) + εnext
MD (q + r/n+ 1) .

Proof. For b ∈ {0, 1}, denote by Hb the recovering experiment conditioned on the secret bit hav-
ing the value b. Moreover, define a hybrid experiment H 1

2
in which the challenge oracle returns

nextF (Un) to A. By the triangle inequality, to prove the lemma, it suffices to bound the distance
between experiments H0 and H 1

2
and H 1

2
and H1.

� Towards bounding the distance between H0 and H 1
2
, consider the following attacker Aext

against extraction security of MD: Aext runs A answering its oracle queries by passing queries
to F . At some point, A outputs (s0, x1,, x`). Aext forwards (s0, x1, x2, ..., x`) to the chal-
lenger. Aext receives s∗ as response from the challenger. Aext now computes next on the
input s∗, by making r/n + 1 additional queries to the primitive, on the inputs (s∗, i) for
i = 0, 1, . . . , r/n. It forwards to A the values (F (s∗, 0), F (s∗, 1)|| . . . ||F (s∗, r/n)). It proceeds
to respond to A’s oracle calls as before and waits for A’s guess bit. It merely forwards the
same bit as its guess to the challenger.

When the challenger’s bit is 0, Aext perfectly simulates towards A the distribution H0. When
the challenger’s bit is 1, A is given next(Un). This corresponds to the hybrid distribution
H 1

2
. Moreover, it is easily seen that if A is γ∗-legitimate, so is Aext. Thus, the advantage

of A in distinguishing hybrids H0 and H 1
2

is upper-bounded by the advantage of Aext in the

extraction game which is εext
MD(γ∗, q + r/n+ 1, `).

� Towards bounding the distance between H 1
2

and H1, consider the following attacker Anext

against next security of MD: Anext runs A answering its oracle queries by passing queries to
F . When A outputs (s0, x1,, x`), Anext returns its own distinguishing challenge, continuing
to answer oracle queries for A. In the end, it outputs A’s guess bit.

It is straight-forward to verify that Anext perfectly simulates H 1
2

to A when given nextF (Un)

and H1 when given Un+r. Thus, the advantage of A in distinguishing hybrids H 1
2

and H1 is

upper-bounded by the advantage of Anext in the next game, which is εnext
MD (q + r/n+ 1).

39

6.4.5 Preserving Security

In the following, let εmtn
MD (q, `) and εnext

MD (q) be as in Lemmas 18 and 19. Maintaining and next
security together imply preserving security:

Lemma 21 (Preserving Security). For every (q, `)-attacker A,

Advpre,F
MD (A) ≤ εmtn

MD (q + r/n+ 1, `) + εnext
MD (q + r/n+ 1) .

Proof. For b ∈ {0, 1}, denote by Hb the preserving experiment conditioned on the secret bit hav-
ing the value b. Moreover, define a hybrid experiment H 1

2
in which the challenge oracle returns

nextF (Un) to A. By the triangle inequality, to prove the lemma, it suffices to bound the distance
between experiments H0 and H 1

2
and H 1

2
and H1.

� Towards bounding the distance between H0 and H 1
2
, consider the following attacker Amtn

against maintaining security of MD: Amtn runs A answering its oracle queries by passing
queries to F . At some point, A outputs (x1,, x`). Amtn forwards (x1, x2, ..., x`) to the
challenger. Amtn receives s∗ as response from the challenger. Amtn now computes next on
the input s∗, by making r/n + 1 additional queries to the primitive, on the inputs (s∗, i) for
i = 0, 1, . . . , r/n. It forwards to A the values (F (s∗, 0), F (s∗, 1)|| . . . ||F (s∗, r/n)). It proceeds
to respond to A’s oracle calls as before and waits for A’s guess bit. It merely forwards the
same bit as its guess to the challenger.

When the challenger’s bit is 0, the Amtn perfectly simulates towards A the distribution H0.
When the challenger’s bit is 1, A is given next(Un). This corresponds to the hybrid distribution
H 1

2
. Thus, the advantage of A in distinguishing hybrids H0 and H 1

2
is upper-bounded by the

advantage of Amtn in the extraction game which is εmtn
MD (q + r/n+ 1, `).

� Towards bounding the distance between H 1
2

and H1, consider the following attacker Anext

against next security of MD: Anext runs A answering its oracle queries by passing queries to
F . When A outputs (x1,, x`), Anext returns its own distinguishing challenge, continuing to
answer oracle queries for A. In the end, it outputs A’s guess bit.

It is straight-forward to verify that Anext perfectly simulates H 1
2

to A when given nextF (Un)

and H1 when given Un+r. Thus, the advantage of A in distinguishing hybrids H0, H 1
2

is

upper-bounded by the advantage of Anext in the next game which is εnext
MD (q + r/n+ 1).

6.5 PRNGs from Merkle-Damg̊ard with Davies-Meyer

This section establishes the robustness of the PRNG construction DM = (refresh, next) based on
Merkle-Damg̊ard with the Davies-Meyer compression function, which is analyzed using an ideal
cipher E : {0, 1}k × {0, 1}n → {0, 1}n. Recall that the construction is defined as follows (cf.
Figure 4):

Construction 4 (PRNG from MD-DM). The (n, r)-PRNG construction DM = (refresh, next) based
on Merkle-Damg̊ard with Davies-Meyer (MD-DM) uses a cipher E : {0, 1}k×{0, 1}n → {0, 1}n and
is defined as follows:19

19The integer arguments to the cipher are to be naturally mapped to {0, 1}n.

40

� refreshE(s, x) = E(x, s)⊕ s, and

� nextE(s) = (E(0, s)⊕ s, E(1, s)⊕ s‖ · · · ‖E(r/n, s)⊕ s).

Note that iteratively absorbing some input blocks x1, . . . , x` via refresh, starting with a state s0 is
identical to applying the MD-DM construction to the input with initialization vector (IV) s0, which
is denoted by MD-DME

s0(x1, . . . , x`) in the remainder of this paper.

Theorem 7 (Robustness of MD-DM PRNGs). Construction 4 is a (γ∗, q, t, `, εrob)-robust PRNG
in the E-model for

εrob ≤ 4t ·
(
q̃2 + q̃`+ `2

2n
+

q̃

2γ∗

)
,

where q̃ = q + r/n+ 1.

The robustness of the MD-DM PRNG construction is proved along similar lines as that of the MD
construction with a random compression function (cf. Section 6.5). It is highly recommended to
read that proof first. The proof again establishes extraction, maintaining, and next security, before
showing that these imply recovering and preserving security. The final bound in Theorem 5 follows
by applying Theorem 14.

6.5.1 Extraction Security

Lemma 22 (Extraction security). The advantage of any γ∗-legitimate (q, `)-attacker A against
extraction security of DM is bounded by

Advext,E
DM (A) ≤ εext

MD(γ∗, q, `) :=
q2 + 2(q`+ `2)

2n
+

4q

2γ∗
.

Proof. The transcript has the identical format as previously, i.e.,

τ = (s?, s0, x1, . . . , x`, L)

except that L is now the set of E-queries. To define bad transcripts, let `′ ≥ 0 be maximal such
that

((xi, yi−1), yi ⊕ yi−1) ∈ L

for some values y0, y1, . . . , y`′ with y0 = s0. A transcript τ is a bad transcript if

� `′ = ` or

� `′ = `− 1 and there exists a query ((x`, ∗), y`−1 ⊕ s?) ∈ L.

As before, to apply Theorem 11, one merely needs to bound the probability ratio for good transcripts
(Lemma 23) and the probability of a bad transcript occurring in the ideal world, i.e, for b = 1
(Lemma 24).

Lemma 23 (Ratio analysis). For all good transcripts τ ,

p0(τ)

p1(τ)
≥ 1− 2(q`+ `2)

2n
.

41

Proof. As in Section 5.1, for a good transcript,

p1(τ) = pL · 2−n and p0(τ) = pL · qτ ,

where pL denotes the probability that a uniform random cipher is consistent with the queries in L
and where qτ is the probability that

MD-DMEL
s0 (x1, x2, . . . , x`) = s?

over a cipher EL that is sampled uniformly at random conditioned on being consistent with L.
To derive a lower bound on qτ , due to τ being a good transcript, it suffices to consider the two

cases

(1) `′ ≤ `− 2 and

(2) `′ = `− 1.

For (1), qτ is the probability (over EL) that

Y` := DMEL
y`′

(x`′+1, . . . , x`) = s? .

Consider the intermediate chaining values Y`′ = y`′ , Y`′+1, . . . , Y`−1 (defined via evaluations of E).
Moreover, let L`′ , L`′+1, . . . , L`−2 be the set of points at which E is defined after evaluating these
intermediate values, i.e., L`′ := L and

Li := Li−1 ∪ {((xi, Yi−1), Yi ⊕ Yi−1)}

for i = `′ + 1, . . . , `− 2. Furthermore, for a set L̃ of E-queries define the sets Free-InL̃ of free inputs
and Free-OutL̃ of free outputs, i.e.,

y ∈ Free-InL̃ :⇐⇒ ((∗, y), ∗) /∈ L̃ and y ∈ Free-OutL̃ :⇐⇒ ((∗, ∗), y) /∈ L̃ .

Finally, for i = `′ + 1, . . . , `− 2, define the event FRESHi that Yi is a fresh input, i.e.,

Yi ∈ Free-InLi−1 .

However, for Y`−1, let FRESH`−1 be the event not only that Y`−1 ∈ Free-InL`−2
but also that Y`−1⊕s?

is a free output, i.e.,
Y`−1 ⊕ s? ∈ Free-OutL`−2

.

Let,

FRESH :=
`−1⋂

i=`′+1

FRESHi .

Then, on the one hand,

P[Y` = s?|FRESH] = P[E(x`, Y`−1) = Y`−1 ⊕ s?|FRESH]

=
1

|Free-OutL`−2
|
≥ 1

2n

since the conditioning implies that (x`, Y`−1) is a fresh input to E and that Y`−1 ⊕ s? actually is in
Free-OutL`−2

. On the other hand, in order to bound

P

[
FRESH`−1

∣∣∣∣∣
`−2⋂

k=`′+1

FRESHk

]
,

42

observe that, for any values y`′+1, . . . , y`−2 consistent with the conditioning, FRESH`−1 is violated
if20

EL(x`−1, y`−2) ∈ Free-InL`−2
⊕ y`−2

or
EL(x`−1, y`−2) ∈ Free-OutL`−2

⊕ y`−2 ⊕ s? .

The probability that the former condition is violated is at most

|Free-OutL`−2
∩ Free-InL`−2

⊕ y`−2|
|Free-OutL`−2

|
≤
|Free-InL`−2

⊕ y`−2|
|Free-OutL`−2

|

≤ q + `

2n − (q + `)
.

The same bound via a similar argument is obtained for the latter condition as well as

P

[
FRESHi

∣∣∣∣∣
i−1⋂

k=`′+1

FRESHk

]
≤ q + `

2n − (q + `)

for i = `′ + 1, . . . , `− 2. Therefore,

P[FRESH] ≥ 1− q`+ `2

2n − (q + `)
,

and, finally,

qτ ≥ P[FRESH] · P[Y` = s?|FRESH]

≥
(

1− q`+ `2

2n − (q + `)

)
· 2−n ,

for case (1). For case (2), note that due to `′ = ` − 1, (x`, y`−1) is a fresh input to E, and,
furthermore, y`−1 ⊕ s? ∈ Free-OutL. Thus, in this case the probability that Y` = s? is at least 2−n.

Combining both cases, case (1) dominating, one obtains

p0(τ)

p1(τ)
≥ 1− q`+ `2

2n − (q + `)
≥ 1− 2(q`+ `2)

2n
,

using that q + ` ≤ 2n−1, an assumption one may always make since the bound in the lemma is
vacuous otherwise.

Lemma 24 (Bad event analysis). For the set B of bad transcripts (as defined above),

P[T1 ∈ B] ≤ 4q

2γ∗
+
q2

2n
.

Proof. The same resampling approach as in the proof of Lemma 17 applies here as well. However,
the collisions require additional care. Two queries E queries ((k, u), v) and ((k′, u′), v′) are said to
collide if

v ⊕ u = v′ ⊕ u′ .

20Using the notation A⊕ b = {x⊕ b | x ∈ A}.

43

It is easily verified that the probability, over E, that any two such queries collide is at most (2n−1)−1.
Let E be the event that there exists such a collision in L. Note that

P[T1 ∈ B] ≤ P[T1 ∈ B|E] + P[E] ≤ P[T1 ∈ B|E] +
q2

2n
.

Towards bounding P[T1 ∈ B|E], consider a triple z = (σ, L, s0) ∈ E , which, once more, is shorthand
for L being collision-free. Define a potential chain as `, for some `, values y0, y1, . . . , y` such that
y0 = s0 and, for some values k1, . . . , k`,

(a) ((ki, yi−1), yi ⊕ yi−1) ∈ L for i = 1, . . . , ` or

(b) ((ki, yi−1), yi ⊕ yi−1) ∈ L for i = 1, . . . , `− 1 and ((k`, y`), y`−1 ⊕ s?) ∈ L.21

Without collisions, L can contain at most 2q potential chains; this can be proved by induction:
Consider a set collision-free set L′ of E-queries and assume that the number of potential chains is
at most 2|L′|. Consider an additional query ((k, u), v) that does not cause a collision; it may only
(but need not) create a new potential chain in two ways:

� u = v′ ⊕ u′: this corresponds to extending in the sense of (a) above and can only be true for
a single previous query ((k′, u′), v′) if L is collision-free;

� v = v′⊕u′⊕ s?: this corresponds to creating a chain of type (b) and, again, can only hold for
one query ((k′, u′), v′) ∈ if L is collision-free.

Summarizing, the new query creates at most two new potential chains.
Clearly, conditioned on Z = z, T1 ∈ B if and only if for some potential chain, Xi = ki for all

i = 1, . . . , `. Hence, by the legitimacy of A,

P[T1 ∈ B|Z = z] ≤ 2q · pz ,

where pz := Pred(X |Z = z). The remainder of the proof proceeds in the exact same fashion as the
proof of Lemma 17.

6.5.2 Maintaining Security

The maintaining security of the Davies-Meyer PRNG construction DM is proved along similar lines
as that of the MD construction with a random compression function. This section discusses the few
differences.

Lemma 25 (Maintaining security). The advantage of any (q, `)-attacker A against maintaining
security is bounded by

Advmtn,E
DM (A) ≤ εmtn

DM (q, `) :=
2(q`+ `2)

2n
+

q

2n
.

Proof. Similarly to Lemma 18, maintaining security is shown via an H-coefficient proof. Once more,
one considers transcripts

τ = (s?, s0, x1, . . . , x`, L) ,

with the difference that L refers to E-queries here. A bad transcript contains a query of the type
((∗, s0), ∗) ∈ L. Again, the probability of a bad transcript occurring in the b = 1 case is at most
|L|/2n, and for good transcripts,

p1(τ) = 2−2n · pL and p0(τ) ≥
(

1− 2(q`+ `2)

2n

)
· 2−2n · pL ,

where the latter follows via an argument similar to that in the proof of Lemma 23.
21Observe that in case (b) the “intuitive chain” goes up to y`−1 but y` is not part of it.

44

6.5.3 Next Security

Next security of DM is defined and proved in a fashion analogous to the case with a random
compression function.

Lemma 26 (Next security). The advantage of any q-attacker A against next security is bounded
by

Advnext,E
DM (A) ≤ εnext

DM (q) :=
q

2n
.

Proof. For a straight-forward H-coefficient proof, consider the transcript

τ = (s, s?0, s
?
1, . . . , s

?
r/n, L) ,

where s is the initial state, the values s?i are the input to A, and L are the queries A makes to F . A
transcript is bad if L contains a query of the form ((i, s), ∗) or ((i, ∗), s⊕ s?i) for some i; otherwise,
τ is called good. It is easily seen that for good transcripts, the probability ratio is at least 1, and,
in the ideal world, where A’s view is completely independent of S, the probability of a bad event is
at most q/2n.

6.5.4 Recovering Security

In the following, let εext
DM(γ∗, q, `) and εnext

DM (q) be as in Lemmas 22 and 26. Once more, extraction
and next security together imply recovering security:

Lemma 27 (Recovering Security). For every γ∗-legitimate (q, `)-attacker A,

Advrec,E
DM (A) ≤ εext

DM(γ∗, `, q + r/n+ 1) + εnext
DM (q + r/n+ 1) .

The proof of the lemma is completely analogous to that of Lemma 20 and is omitted.

6.5.5 Preserving Security

In the following, let εmtn
MD (q, `) and εnext

MD (q) be as in Lemmas 18 and 19. Maintaining and next
security together imply preserving security:

Lemma 28 (Preserving Security). For every adversary A,

Advpre,E
DM (A) ≤ εmtn

DM (q + r/n+ 1, `) + εnext
DM (q + r/n+ 1) .

The proof of the lemma is completely analogous to that of Lemma 21 and is omitted.

6.6 PRNGs from Sponges

This section establishes the robustness of the PRNG construction Spg = (refresh, next) based on the
Sponge paradigm with a random permutation π : {0, 1}n → {0, 1}n. Recall that the construction is
defined as follows (cf. Figure 5):

Construction 6 (PRNG from Sponges). The Sponge-based PRNG construction Spg = (refresh,
next) uses a permutation π : {0, 1}n → {0, 1}n to absorb and produce r-bit inputs and outputs,
respectively, and is defined as follows:

� refreshπ(s, x) = π(s⊕ x‖0c), and

45

� nextπ(s) = (π(s)⊕ 0r‖s(c), s(r)).

Note that iteratively absorbing some input blocks x1, . . . , x` via refresh, starting with a state s0 is
identical to applying the Sponge construction to the input with initialization vector (IV) s0, which
is denoted by Spongeπs0(x1, . . . , x`) in the remainder of this section.

Theorem 9 (Robustness of Sponge PRNGs). Construction 6 is a (γ∗, q, t, `, εrob)-robust PRNG in
the π-model for

εrob ≤ 4t ·
(
q̃2 + q̃`+ `2

2n
+

q̃

2γ∗
+
q̃2

2c

)
,

where q̃ = q + r/n+ 1.

The proof of the robustness of the Sponge PRNG construction follows the same outline as that of
the MD construction (cf. Section 6.4). It is highly recommended to read that proof first. One crucial
difference between the Merkle-Damg̊ard constructions and Sponges is that Sponges do not satisfy
extraction/maintaining security (with good parameters). For example, given the state of a Sponge
PRNG after absorbing a single (possibly high-entropy) input, a simple inverse query to π results in
a value of the form a‖0c, which is unlikely to happen in the ideal world (b = 1). This is handled by
explicitly introducing a “hit” probability, i.e., the probability that the attacker queries π−1 on the
final state of the Sponge. Recovering and preserving security are then established by arguing that
the hit probability is low when next is applied to the state. The final bound in Theorem 9 follows
by applying Theorem 14.

6.6.1 Extraction Security

The extraction security of the Sponge PRNG construction is defined and proved along similar lines
as that of the previous constructions. This section discusses the differences. Denote by Advinv,π

Spg (A)

the probability that A queries π−1 on the value s? returned by the challenger.

Lemma 29 (Extraction security). The advantage of any γ∗-legitimate (q, `)-attacker A against
extraction security of DM is bounded by

Advext,π
Spg (A) ≤ εext

Spg(γ∗, `, q) :=
q + 2(q`+ `2)

2n
+

2q

2γ∗
+
q2

2c
+ Advinv,π

Spg (A) .

In the following, for convenience, let

δext
Spg(γ∗, `, q) :=

q + 2(q`+ `2)

2n
+

2q

2γ∗
+
q2

2c
.

Proof. The transcript has the identical format as previously, i.e.,

τ = (s?, s0, x1, . . . , x`, L)

except that L is now the set of π-queries. To define bad transcripts let `′ ≥ 0 be maximal such that
there exist (ui, vi) ∈ L with u1 = s0 ⊕ x1‖0c and

ui = vi−1 ⊕ xi‖0c

for i = 2, . . . , `− 1. A transcript τ is a bad transcript if

� (hit) (∗, s?) ∈ L or

46

� (chain) `′ = `.

As before, to apply Theorem 11, one merely needs to bound the probability ratio for good transcripts
(Lemma 30) and the probability of a bad transcript occurring in the ideal world, i.e, for b = 1
(Lemma 31).

Lemma 30 (Ratio analysis). For all good transcripts τ ,

p0(τ)

p1(τ)
≥
(

1− 2(q`+ `2)

2n

)
.

Proof. As in Section 5.1, for a good transcript,

p1(τ) = pL · 2−n and p0(τ) = pL · qτ ,

where pL denotes the probability that a uniform random permutation is consistent with the queries
in L and where qτ is the probability that

SpongeπLs0 (x1, x2, . . . , x`) = s?

over a permutation πL that is sampled uniformly at random conditioned on being consistent with
L.

To derive a lower bound on qτ , note that due to τ being a good transcript `′ < `. Hence, qτ is
the probability (over πL) that

V` := SpongeπLv`′ (x`′+1, . . . , x`) = s? .

Consider the intermediate values U`′+1, V`′+1, U`′+2, V`′+2, . . . , V`−1, U`, where

U`′+1 = v`′ ⊕ x`′+1‖0c

and
Ui = Vi−1 ⊕ xi‖0c

for i = `′ + 2, . . . , ` as well as
Vi = π(Ui)

for i = `′ + 1, . . . , `− 1. Define, for i = `′ + 1, . . . , `, the event FRESHi that

� Ui is fresh, i.e., there is no query of type (Ui, ∗) ∈ L and Ui 6= Uj for j < i, and

� Vi−1 is not a hit, i.e., Vi 6= s?;

observe that FRESH`′+1 is always true due to the maximality of `′ and the fact that τ is a good
transcript. Let,

FRESH :=
⋂̀

i=`′+1

FRESHi .

Then,
P[V` = s?|FRESH] ≥ 2−n

since the conditioning implies that U` is a fresh input and therefore V` is chosen uniformly form a
set of size at most 2n, which contains s? due to τ being a good transcript and no hits occurring
while evaluating the intermediate values.

47

Moreover, observe that if Ui−1 is a fresh input, the probability that Vi−1 hits is at most (2n −
(q+ `))−1, and the probability that Ui is not fresh is at most (q+ `)(2n − (q− `))−1 as there are at
most q + ` non-fresh values when Ui is sampled uniformly from a set of size at least 2n − (q + `).
Hence,

P

[
FRESHi

∣∣∣∣∣
i−1⋂

k=`′+1

FRESHk

]
≤ q + `+ 1

2n − (q + `)
,

and

P[FRESH] ≥ 1− q`+ `2 + `

2n − (q − `)
,

and, finally,

qτ ≥ P[FRESH] · P[Y` = s?|FRESH]

≥
(

1− q`+ `2 + `

2n − (q − `)

)
· 2−n ,

which implies
p0(τ)

p1(τ)
≥ 1− q`+ `2

2n − (q − `)
≥ 1− 2(q`+ `2)

2n
.

Lemma 31 (Bad event analysis). For the set B of bad transcripts (as defined above),

P[T1 ∈ B] ≤ 2q

2γ∗
+

q

2n
+
q2

2c
+ Advinv,π

Spg (A) .

Proof. The same resampling approach as in the proof of Lemma 17 applies here as well. First,
observe that a hit occurs if either one of the forward queries returns s? or if the attacker makes a
backward query on s?. Hence, the probability of a hit is at most

q

2n
+ Advinv,π

Spg (A) .

Consider the following directed graph G = (V,E) based on the query set L:

� the nodes are the capacity parts that appear in L, i.e.,

V = {v(c) | (v, ∗) ∈ L ∨ (∗, v) ∈ L} ;

� two nodes are connected by a labeled edge if a corresponding query has been made, i.e.,

E = {(u(c), v(c), l) | (u, v) ∈ L ∧ l = u(r) ⊕ v(r)} .

L is called collision-free if there is at most one path with unique labels from s
(c)
0 to every other node

in G. Let E be the event that L is not collision-free. Note that

P[T1 ∈ B] ≤ P[T1 ∈ B|E] + P[E] ≤ P[T1 ∈ B|E] +
q2

2c
.

Towards bounding P[T1 ∈ B|E], consider a triple z = (σ, L, s0) ∈ E , which, once more, is shorthand
for L being collision-free. Define a potential chain to be, for some `, any sequence (u1, v1), . . . , (u`, v`) ∈
L such that u1 = s0 ⊕ µ1‖0c and

ui = vi−1 ⊕ µi‖0c

48

for i = 2, . . . , ` − 1 and some values µ1, . . . , µ`. Note that (u
(c)
1 , v

(c)
1), . . . , (u

(c)
` , v

(c)
`) describe a

path from s
(c)
0 to v

(c)
` with labels µ1, . . . , µ`. Hence, that for a collision-free L, there are at most q

potential chains.
Clearly, conditioned on Z = z, T1 ∈ B if and only if for some potential chain, Xi = µi for all

i = 1, . . . , `. Hence, by the legitimacy of A,

P[T1 ∈ B|Z = z] ≤ q · pz ,

where pz := Pred(X |Z = z). The remainder of the proof proceeds in the exact same fashion as the
proof of Lemma 17.

6.6.2 Maintaining Security

The maintaining security of the Sponge PRNG construction Spg is proved along similar lines as
that of the previous constructions. This section discusses the differences.

Lemma 32 (Maintaining security). The advantage of any (q, `)-attacker A against maintaining
security is bounded by

Advmtn,π
Spg (A) ≤ εmtn

Spg (q, `) :=
2(q`+ `2)

2n
+

2q

2n
+ Advinv,π

Spg (A) .

In the following, for convenience, let

δmtn
Spg (γ∗, `, q) :=

2(q`+ `2)

2n
+

2q

2n
.

Proof. Similarly to the preceding maintaining proofs, maintaining security of Spg is shown via an
H-coefficient proof. Once more, one considers transcripts

τ = (s?, s0, x1, . . . , x`, L) ,

where L refers to π-queries here. In a bad transcript, L contains a query of the type

� (s0, ∗), which happens (with in the case b = 1) with probability at most |L|/2n since s0 is
completely independent of A’s view, or

� (∗, s?), which happens (in the case b = 1) with probability |L|/2n via a forward query or with
probability Advinv,π

Spg (A) via a backward query.

As for good transcripts

p1(τ) = 2−2n · pL and p0(τ) ≥
(

1− 2(q`+ `2)

2n

)
· 2−2n · pL ,

where the latter follows via an argument similar to that in the proof of Lemma 30.

6.6.3 Next Security

Recall that the next function next of the Sponge construction computes, on an input state s0,

(s, y) = nextπ(s0) = (π(s0)⊕ 0r‖s(c)
0 , s

(r)
0) ,

where s is the new state and y is the output. Next security demands that if s0 is chosen uniformly
at random, then the output of next be indistinguishable from Un+r to an attacker A making at most
to q queries to π. Denote by Advnext,π

Spg (A) the advantage of A.

49

Lemma 33 (Next security). The advantage of any q-attacker A against next security is bounded
by

Advnext,π
Spg (A) ≤ εnext

Spg (q) :=
2q

2c
.

Proof. For a simple H-coefficient proof, consider a transcript

τ = (s
(c)
0 , s?, y?, L),

where s0 is the initial state, s? is the new state, y? is the output value, and L are the queries to π.
A bad transcript is a transcript with a query of the type

� (y?‖s(c)
0 , ∗) ∈ L or

� (∗, s? ⊕ 0r‖s(c)
0) ∈ L.

Since the view of A in the ideal world, where A’s view is independent of s
(c)
0 , the probability of a

bad transcript is at most 2q/2c.
For a good transcript, observe that

p1(τ) = 2−c · 2−r · 2−n · pL ,

where pL denotes the probability that a uniform random permutation is consistent with the queries
in L. Moreover,

p0(τ) = 2−c · 2−r · qτ · pL .

Note that since τ is a good transcript, (y?, s
(c)
0) is a fresh input to π and s⊕0r‖s(c)

0 is still available;
hence qτ ≥ 2−n.

6.6.4 Recovering Security

In the following, let εext
Spg(γ∗, q, `) and εnext

Spg (q) be as in Lemmas 29 and 33. Once more, extraction
and next security together imply recovering security:

Lemma 34 (Recovering Security). For every γ∗-legitimate (q, `)-attacker A,

Advrec,π
Spg (A) ≤ δext

Spg(γ∗, `, q + r/n+ 1) +
q + r/n+ 1

2n
+ 2 · εnext

Spg (q + r/n+ 1) .

Proof. As in the proof of Lemma 20 consider, for b ∈ {0, 1}, the recovering experiment Hb con-
ditioned on the secret bit having the value b. Moreover, again define a hybrid experiment H 1

2
in

which the challenge oracle returns nextπ(Un) to A.

� The distance between H0 and H 1
2

is bounded by a similar reduction Aext to extraction security

as in Lemma 20. Hence, it is at most

εext
Spg(γ∗, `, q + r/n+ 1) ≤ δext

Spg(γ∗, `, q + r/n+ 1) + Advinv,π
Spg (Aext) .

In order to bound the probability of a hit in the ideal world of extraction security, one analyses
this event in a hybrid world similar to H1. By next security and the fact that hit occurs with
probability at most (q + r/n+ 1) · 2−n in H1 in that hybrid,

Advinv,π
Spg (Aext) ≤

q + r/n+ 1

2n
+ εnext

Spg (q + r/n+ 1) .

� By an argument similar to that in Lemma 20, one uses next security to show that the advantage
of A in distinguishing hybrids H 1

2
and H1 is upper-bounded by εnext

MD (q).

50

6.6.5 Preserving Security

In the following, let εmtn
Spg (q, `) and εnext

Spg (q) be as in Lemmas 29 and 33. Once more, maintaining
and next security together imply preserving security:

Lemma 35 (Preserving Security). For every (q, `)-attacker A,

Advpre,π
Spg (A) ≤ δmtn

Spg (`, q + r/n+ 1) +
q + r/n+ 1

2n
+ 2 · εnext

Spg (q + r/n+ 1) .

The proof proceeds similarly to that of Lemma 34—except that reductions to maintaining security
are made instead of extraction security—and is omitted.

7 Security Proofs for IT Constructions

This section analyzes all previously presented IT secure constructions. Used by all proofs in this
section are the three propositions stated and proved in Section 7.1. Section 7.2 then shows the secu-
rity of the monolithic extractor from Section 3.2. While rather straight-forward, the corresponding
proof is quite instructive for the security proofs of the PRNG constructions from Section 5. For
these proofs, it is convenient to define and establish an intermediate property, which is discussed
in Section 7.3. Finally, Sections 7.4 and 7.5 establish the robustness (cf. Section 4.2) of the PRNG
constructions.

7.1 Information-Theoretic Preliminaries

The collision probability of a random variable X is defined simply as Coll(X) :=
∑

x P[X = x]2.
Moreover, let Coll(X|y) :=

∑
x P[X = x|Y = y]2, and define the conditional collision probability

Coll(X|Y) := Ey←Y
[
Coll(X|y)

]
.

The following two propositions relate the statistical distance from uniform to the collision prob-
ability. The first is well known and at the core of the proof of the leftover hash lemma [29]; the
latter is proved for self-containment.

Proposition 1. For any random variable X with size-N range, and a uniformly distributed U with
the same range,

SD(X,U) ≤ 1

2

√
N · Coll(X)− 1 .

Proposition 2. Let F be chosen uniformly at random from a set F . Then, for any random variable
X with size-N range (arbitrarily correlated with F), and a uniformly distributed U with the same
range, independent of F ,

SD((X,F), (U,F)) ≤ 1

2

√
N · Coll(X|F)− 1 .

Proof. By Proposition 1,

SD((X,F), (U,F)) ≤ 1

2

√
N |F| · Coll(X,F)− 1 .

51

Moreover,

Coll(X,F) =
∑
x,f

P[(X,F) = (y, f)]2

=
1

|F|
∑
f

P[F = f]
∑
x

P[X = x|F = f]2

=
Coll(X|F)

|F|
,

from which the proposition follows.

The following proposition will also be useful.

Proposition 3. Consider two random variables X and Y with identical range and let E and E ′ be
events on their respective probability spaces. Assume P[E] = P[E ′], then

SD(X,Y) ≤ SD(X|E , Y |E ′) + P[E] .

Proof. Observe that

SD(X,Y) =
1

2

∑
x

|PX(x)− PY (y)|

=
1

2

∑
x

∣∣∣PX|E(x)P[E] + PX|E(x)P[E]− PY |E ′(x)P[E ′]− PY |E ′(x)P[E ′]
∣∣∣

≤ P[E] · 1

2

∑
x

∣∣PX|E(x)− PY |E ′(x)
∣∣+ P[E] · 1

2

∑
x

∣∣∣PX|E(x)− PY |E ′(x)
∣∣∣

≤ SD(X|E , Y |E ′) + P[E] .

7.2 Monolithic Extractor

From Section 3.2, recall the monolithic extractor mono defined to work with a random oracle
F : {0, 1}m → {0, 1}n:

Construction 1 (Monolithic extractor). The monolithic seedless extractor monoG : {0, 1}m →
{0, 1}n using a random oracle G : {0, 1}m → {0, 1}n is defined by

monoG(x) := G(x) .

Construction 1 is an IT seedless extractor according to Definition 3.

Theorem 2 (Monolithic seedless IT-extraction). Construction mono is a (γ∗, q, ε)-IT-extractor in
the G-model for

ε ≤ 1

2

√
2−(γ∗−n)

1− ρ
+ ρ ,

where ρ = q/2γ
∗
.

52

The proof of Theorem 2 proceeds by bounding the statistical distance of A2’s views in the real and
ideal experiments via the corresponding collision probabilities (as done in the proof of the left-over
hash lemma). In the proofs of the actual PRNG constructions in the following sections, bounding
said collision probabilities constitutes the bulk of the proof and is quite involved.

Proof. Consider the extraction game corresponding to Definition 3 (cf. Section 3.1). Since A2 gets
to make an unbounded number of queries to the random oracle G, one may equivalently consider
the game where A2 simply gets the entire function table of G as input. Therefore, the distinguishing
advantage of A2 is upper bounded by

SD((Σ, Y0,L1, G), (Σ, Y1,L1, G)) ,

where Σ is (the random variable corresponding to) the state information output by A1, Y0 = G(X),
Y1 a uniform random string, and L1 the query/answer list by A1.

Let E be the event that A1 does not query the value X it provides as input to the extractor.
Observe that this event can be defined in both the real (b = 0) and ideal (b = 1) experiments. In the
ideal experiment, the probability of E not occurring is easy to bound: Since Y1 is uniformly random
and independent of X, consider the following equivalent way of sampling a tuple (Σ, X, Y1,L1, G):

1. Sample Y1 and G uniformly at random.

2. Run AG1 to produce Σ, X̃, and L1.

3. Rerun AG1 with fresh randomness, but conditioned on the state information being Σ and the
queries being L1. This results in a new value X.

4. Output (Σ, X, Y1,L1, G).

It is easily seen that the distribution produced via resampling is identical to that of the actual
experiment.

Note that for particular values σ and L1,

P[E|σL1] ≤ q · Pred(X|σL1) ,

which can be easily seen due to the alternative sampling above. Hence, taking expectations,

P[E] ≤ q · Pred(X|ΣL1) ≤ q · 2−γ∗ ,

using the γ∗-legitimacy of A in the last step.
Using Proposition 3, one obtains

SD((Σ, Y0,L1, G), (Σ, Y1,L1, G)) ≤ SD((Σ, Y0,L1, G)|E , (Σ, Y1,L1, G)|E) + q · 2−γ∗ .

In order to bound the statistical distance conditioned on E , condition additionally on arbitrary
values z = (σ, L1) (with non-zero probability given E). Observe that under such conditioning, G is
chosen uniformly at random from all functions consistent with G. Using Proposition 2, one bounds
the desired statistical distance as

SD((Y0, G)|zE , (Y1, G)|zE) ≤ 1

2

√
2n · Coll(Y0|GzE)− 1 .

To bound the collision probability Coll(Y |GzE), consider the following experiment:22

22Observe that, in general, Coll(U |V) is equal to the probability that U = U ′ in the experiment where one jointly
samples U and V , and then resamples U ′ conditioned on the value of V .

53

1. Sample G uniformly at random consistent with L1.

2. Sample inputs X ← AG1 and X ′ ← AG1 independently but conditioned on Z = z and E .

3. Compute Y0 ← monoG(X) and Y ′0 ← monoG(X ′) respectively.

The collision probability Coll(Y |Gz) is therefore equal to

P[Y0 = Y ′0] ≤ P[X = X ′] + P[Y = Y ′|X 6= X ′]

in the experiment above. The former term is at most pz := Pred(X|Z = z, E). For the latter term,
consider arbitrary x 6= x′. Since neither x nor x′ is covered by L1, Y0 = Y ′0 occurs with probability
2−n. Hence,

SD((Y0, G)|zE , (Y1, G)|zE) ≤ 1

2

√
2n(pz + 2−n)− 1 ≤ 1

2

√
2npz .

Using Jensen’s inequality, one obtains

SD((Y0, G)|zE , (Y1, G)|zE) ≤ 1

2

√
2n · Pred(X|ZE)

≤ 1

2

√
2−(γ∗−n)

(1− ρ)
,

where the last inequality follows from

Pred(X|Z) ≥
∑
z

P[Z = z ∧ E] · pz

= P[E] ·
∑
z∈E

P[Z = z ∧ E]

P[E]
· pz

= P[E] · Pred(X |ZE) .

and Pred(X|Z) ≤ 2−γ
∗
, by the legitimacy of A.

7.3 Intermediate IT PRNG Security Notions

Similarly to the computational case, it is useful to consider a simplified security notion, recovering
security, for IT PRNGs. Recall that for the computational case, recovering security requires that
the output of the next function next look random once sufficient amounts of entropy have been
accumulated in the PRNG’s state. In the IT case, the requirement is relaxed by only requiring that
the output be indistinguishable from (0n, Ur). That is, call to next always resets the PRNG state
to 0n. This is without loss, as the definition of legitimacy considers every call to next an entropy
drain.

The IT recovering game is represented in Figure 9. The advantage of an attacker A in this game
is denoted by Advrec-IT,P

PRNG (A). An attacker A in this game is γ∗-legitimate if

H∞(X1, . . . , X`|ΣLS0) ≥ γ∗ ,

where

� Σ is the state of A just before the call to chall,

54

Oracles of PRNG Recovering-IT Game

init
b← {0, 1}

chall (s0, x1, . . . , x`)
for i = 1, . . . , `

si ← refresh(si−1, xi)
if b = 0

return next(s`)
else

y ← {0, 1}r
return (0n, y)

Figure 9: Oracles for PRNG Recovering-IT game.

� L is the list of query and answers A has made to P up to the call to chall, and

� S0 is the initial state that the adversary provides.

A (q, `)-IT-attacker here is one that can make at most q queries to P before its challenge (and
arbitrarily many afterwards), and such that the input to chall consists of at most ` blocks.

Definition 15. A PRNG construction PRNG = (refresh, next) is said to be (γ∗, q, `, ε)-IT-recovering
in the P -model if for every γ∗-IT-legitimate (q, `)-IT-attacker,

Advrec-IT,P
PRNG (A) ≤ ε .

Observe that the definition of recovering security for IT PRNGs is—up to syntactical differences—
equivalent to the security of the PRNG as an extractor, which is obtained by replacing the PRNG
next algorithm by an algorithm finalize that simply discards the state output by next. In other
words, an IT-robust PRNG can be viewed as an IT-secure online extractor. In particular, the
following theorem is in principle little more than just a union bound.

Theorem 36. Let PRNG = (refresh, next) be a PRNG for which refresh makes α P -calls and next
makes β P -calls. Let the PRNG be (γ∗, q, `, εrec)-IT-recovering in the P -model. Then, PRNG is also
(γ∗, q, t, `, εrob)-IT-robust in the P -model, where

εrob ≤ t · εrec .

The proof can be found in Appendix C.2.

7.4 IT PRNGs from Merkle-Damg̊ard

This section establishes the robustness of the PRNG construction MDr = (refresh, next) based on
Merkle-Damg̊ard with a random compression function F : {0, 1}n × {0, 1}m → {0, 1}n. Recall that
the construction is defined as follows (cf. Figure 3):

Construction 3 (IT-PRNG from Merkle-Damg̊ard). The (m, r)-PRNG construction MDr = (refresh,
next) based on Merkle-Damg̊ard with a compression function F : {0, 1}n × {0, 1}m → {0, 1}n is de-
fined as follows:

� refreshF (s, x) = F (s, x), and

� nextF (s) = (0n, s[1..r]).

55

Construction 3 achieves the following security:

Theorem 6 (IT-Robustness of Merkle-Damg̊ard PRNGs). Construction 3 is a (γ∗, q, t, `, εrob)-IT-
robust PRNG in the F -model, where

εrob-it ≤
t

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2 · q̃

22r

22n
+ tρ ,

for ρ = q̃2

2r where q̃ = q + t`.

The theorem will be a direct consequence of the following lemma, and Theorem 36 above, which
adds a multiplicative factor t to obtain the bound in the theorem.

Lemma 37. For every γ∗-IT-legitimate (q, `)-attacker in the ideal compression function model,

Advrec-IT,γ∗

MDr
(A) ≤ 1

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2

q22r

22n
+ ρ ,

where ρ = q2

2r .

Before we turn to a proof, we note the challenges here. In particular, the core of the proof will be to
show a bound on the collision probability of the output of next for a random compression function
F , which in turn will reduce to outputting the truncation of the output of the MD construction.
This problem resembles that studied by [17] and by [24]. However, the difficulty here is that we
need to consider the set of queries previously done by the adversary A. This will significantly
complicate the proof—we also modify slightly the graph-theoretic formalization adopted by these
previous works to something more amenable to our more complex setting.

Proof (of Lemma 37). We define a few random variables which we will be using in our proofs.

� F a randomly chosen compression function, to which the adversary is given access. We use
F both for the oracle itself, as well as for the random variable describing the entire function
table.

� `: Number of blocks input to the challenge oracle (which is a random variable itself, we
overload notation here, using the same letter we use in the bound on ` in the lemma statement).

� X = (X1, . . . , X`): the blocks input to the challenge oracle.

� Ỹ`: output of MDr. Let us remind ourselves that this is s truncated to r bits (the output of
next);

� Z = (Σ,L, S0): “side information” where Σ is the attacker state before challenge, L is the
attacker query/answers to F before challenge , S0 is the initial PRNG state provided by A;

� Ur: uniform r-bit string.

The advantage of the adversary A in the recovering game is bounded by SD((Ỹ`, Z, F), (Ur, Z, F)).
Therefore, it is sufficient to upper-bound that. The reasoning is quite simple. Note that Z contains
the state of the attacker Σ just before it makes the challenge query. This means that A cannot tell
apart real from random.

We also define an event E where the answers to the F -queries by A are distinct when truncated
to the first r bits. Note that there are a maximum of q queries in this list. We would like to point

56

out that E has the same probability of occurring in either experiment, since the experiments are
identical up to the point when this even is defined. Therefore, by Proposition 3,

SD((Ỹ`, Z, F), (Ur, Z, F)) ≤ SD((Ỹ`, Z, F)|E , (Ur, Z, F)|E) +
q2

2r
;

For convenience we let ρ := q2/2r for the remainder of the proof. In order to bound the statistical
distance conditioned on E , we can rewrite the same as as

SD((Ỹ`, Z, F)|E , (Ur, Z, F)|E) =
∑
z∈E

P[Z = z|E] · SD((Ỹ`, F)|z, (Ur, F)|z) , (3)

where z ∈ E is to denote that the sum is taken over all side informations Z = z, satisfying E .23

Define pz := Pred(X |Z = z), and observe that

Ez[pz] = Pred(X |Z) ≤ 2−γ
∗
,

where the latter inequality follows from the assumption H∞(X |Z) ≥ γ∗. Moreover,

H∞(X |ZE) ≥ γ∗ − log(1− ρ)−1 ,

which is due to

Pred(X |Z) ≥
∑
z∈E

P[Z = z] · pz

= P[E] ·
∑
z∈E

P[Z = z]

P[E]
· pz

= P[E] · Pred(X |ZE) .

From Lemma 38 we prove below, we will get,

SD((Ỹ`, F)|z, (Ur, F)|z) ≤ 1

2

√
2rpz + ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2q2 · 2r

22n
.

Using Jensen’s inequality, (3) becomes, for α = 2r and β = ` · d′(`) · 2r

2n + 64`4 · 2r

22n
+ 16`2q2 · 2r

22n
,

SD((Ỹ`, F)|E , (Ur, F)|E) ≤ 1

2

√
αPred(X |LE) + β

≤ 1

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2

q22r

22n
.

Lemma 38. For z ∈ E and the random variables as defined earlier,

SD((Ỹ`, F)|z, (Ur, F)|z) ≤ 1

2

√
2rpz + ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2q2 · 2r

22n
.

Proof. Fix z = (σ, L, s0). Observe that, conditioned on z, F is distributed uniformly over the set
of all functions that agree with L. Thus, by Proposition 2,

SD((Ỹ`, F)|z, (Ur, F)|z) ≤ 1

2

√
2r · Coll(Ỹ`|Fz)− 1 . (4)

To bound the collision probability, we consider the following experiment:

23Therefore E can be omitted in the conditioning of the statistical distance.

57

� choose F uniformly consistent with L

� sample inputs X = (X1, . . . , X`) and X
′

= (X
′
1, . . . , X

′
`′) independently but conditioned on

Z = z.

� compute Ỹ` and Ỹ ′` as the truncated MD evaluations with F of X and X
′

Then, we bound the probability that Ỹ` = Ỹ ′` in this experiment as

P[Ỹ` = Ỹ ′`] ≤ P[X = X
′
] + P[Ỹ` = Ỹ ′` |X 6= X

′
] . (5)

Clearly, the former is at most pz. To bound the latter, we fix arbitrary inputs x 6= x′ of lengths `
and `′, respectively. We also assume, wlog, that the evaluation of x′ is not completely covered by
L; due to the collision-freeness of L. Let xk+1 be the first block of x not covered by L and similarly
x′k+1 for x′ . We let k = ` if all blocks are covered.

The structure graph. We will now model the evaluation producing Ỹ` and Ỹ ′` as a (labeled)
graph process. In particular, let us define for convenience

x(i) :=

{
xi i ≤ `
x′(i−`) otherwise

for all i = 1, . . . , `+ `′, and we let ˜̀= `+ `′.
For a given compression function F (consistent with L), first define a labeled (multi-)graph

HF (x,x′) = (V, E .L) vertex set V ⊆ {0, 1}n. Each edge will have a label L(e) = (x, c) – where
x ∈ {0, 1}m and c ∈ {red, blue}. Now we add edges as follows, allowing replications of edges (we
will then explain below how to remove duplicates). We will implicitly define V as the set of n-bit
strings which are endpoint to an edge:

Blue edges. For every ((x, y), y′) in L we add an edge (y, y′) with label (x, blue), and refer to such
edges as the blue edges.

Red edges. Define

si :=


0n i = 0

F (si−1, xi) 1 ≤ i ≤ `
F (0n, x′1) i = `+ 1

F
(
si−1, x

′
(i−`)

)
`+ 2 ≤ i ≤ ˜̀ .

Now for i = 1, . . . , `, we add edge (si−1, si) with label (xi, red), unless the edge (si−1, si) is
already present with label (xi, c) for c ∈ {blue, red}. We add the edge (0n, s`+1) with label
(x′1, red), unless the edge (si−1, si) is already present with label (x′1, c) for c ∈ {blue, red}.
Finally, we add each (si−1, si) for i = `+ 2, . . . , ˜̀ with label (x′i, red), unless the edge (si−1, si)
is already present with label (x′i, c) for c ∈ {blue, red}. We refer to these edges we added as
the red edges.

Note in particular that we may have two identical edges e1 and e2, but in this case they will have
labels (x1, c1) and (x2, c2) with x1 6= x2, and moreover, at least one of them is red by our assumption
on L.

58

Definition 16. The structure graph of GF = GF (x,x′) = (V, E ,L) is the graph obtained from HF

as follows. We first look at all isomorphic graphs to GF with vertices {0, . . . , |V| − 1} such that 0n

is mapped to 0. We then pick the lexicographically first such graph.24

Let GL(x, x′) be the set of all GF (x, x′) for an F compatible with L. Note that GF will have
two (possibly overlapping) paths starting from 0 with edges labeled by x and x′, containing blue
and red edges. We say that GF is colliding if these two paths end in the same vertex, and let
CollL(x, x′) ⊆ GL(x, x′) be the set of colliding structure graphs.

Definition 17 (Accidents). Let now B be the set of vertices of the sub-graph of GF induced by the
blue edges, plus 0. We now traverse the path induced by x, and then the path induced by x′. Each
time we encounter a vertex which is not in B, we add it to it. Each time we encounter a vertex
which is already in B, we say that an accident has occurred. We let Acc(GF) be the number of
accidents in GF .

We also let GaL(x, x′) to be the set of H ∈ GL(x, x′) with Acc(H) = a. We state the following
lemmas.

Lemma 39. Let F be sampled randomly consistent with L, and x 6= x′. Then, let Ỹ` and Ỹ ′` be
values obtained after truncating at the end of the MD evaluations on inputs x and x′ respectively.
Then,

P[Ỹ` = Ỹ ′`] ≤ P[GF (x, x′) ∈ CollL(x, x′)] +
1

2r
.

Proof. We rewrite P[Ỹ` = Ỹ ′`] as:

P[Ỹ` = Ỹ ′`] ≤ P[GF (x, x′) ∈ CollL(x, x′)] + P[Ỹ` = Ỹ ′` |GF (x, x′) 6∈ CollL(x, x′)]

We take a closer look at the latter term. Note that the graph is a fixed graph and it has no collision
at the end nodes. We proceed to assign random, yet distinct values to the vertices. These are chosen
from {0, 1}n. Note that it is sufficient to look at the two output vertices locally without looking
at the global state. There are 2n(2n − 1) pairs of values for these output vertices such that these
values are distinct. However, of these, 2r2n−r(2n−r − 1) have values which are equal in the first r
bits and yet are distinct n-bit strings. Therefore,

P[Ỹ` = Ỹ ′` |GF (x, x′) 6∈ CollL(x, x′)] ≤ 2r2n−r(2n−r − 1)

2n(2n − 1)

=
2n−r − 1

2n − 1

≤ 2n−r

2n
=

1

2r
.

Putting it together, we have:

P[Ỹ` = Ỹ ′`] ≤ P[GF (x, x′) ∈ CollL(x, x′)] +
1

2r
. (6)

Lemma 40. Let F be sampled randomly consistent with L, and x 6= x′. Let H ∈ GL(x, x′). Then,

P[GF (x, x′) = H] =
1

2n·Acc(H)
.

24Indeed, the actual labeling of graphs will not matter below.

59

Proof. We have two messages x 6= x′ and let x(i) be as defined before. We have a randomly sampled
F which is consistent with L. Let us assume that the values S1, . . . , S˜̀ are revealed to us stepwise.
Si is the random variable representing the vertex after block i. Let GF = GF (x, x′). We define a
consistency notion as follows: GF is consistent with a given graph H after step i ≤ ˜̀, denoted by

Consi if the structure graphs G
(i)
F and H(i) are equal as triples (V, E .L) where G

(i)
F is the graph GF

obtained after the first i blocks are processed. We define H(i) similarly. We assume that Consi is
true for some i. We now bound P[Consi+1|Consi]. We look at the step i + 1 in H and there are
three possibilities on how the edge for message block x(i+1) looks:

� Fresh: It arrives at a new vertex which is not present in H(i).

� Determined : It follows an existing edge, i.e there exists a label for the edge of the form
(x(i+1), .)

� Accident : It causes an accident. In this case, G
(i+1)
F will only be consistent if the edge

corresponding to x(i+1) lands on the same vertex as in H(i+1). Note that this accident is a
fresh-evaluation, i.e the output is not determined in the first i steps and is therefore chosen
randomly from 2n values. In other words, P[Consi+1|Consi] = 1

2n in this case.

Note that the third case happens Acc(H) times. Therefore, we have:

P[GF (x, x′) = H] = P[Cons˜̀] ≤
1

2n·Acc(H)
.

The latter inequality arises by upper-bounding P[Consi+1|Consi] with 1 in the case of Fresh and
Determined edges.

Lemma 41. Let F be sampled randomly consistent with L, and x 6= x′. Then,

P[Acc(GF) ≥ 2] ≤ 64`4

22n
+

16`2q2

22n
.

Proof. We define GaL, as before, to be the set of all structure graphs containing exactly a accidents.

P[Acc(GF) ≥ 2] =
∞∑
a=2

P[Acc(GF) ≥ 2]

=

∞∑
a=2

∑
g∈GaL

P[GF = g]

≤
∞∑
a=2

|GaL|
2n·a

.

The last step follows from Lemma 40. Observe that for fixed base graph and fixed messages, entire
graph is defined by list of accidents. Each accident is defined by an edge (i, j), where there are
˜̀ := `+ `′ choices for i and ˜̀+ q for j. Thus, there are at most (˜̀(˜̀+ q))c graphs with a accidents.

P[Acc(GF) ≥ 2] ≤
∞∑
a=2

|GaL|
2n·a

≤
∞∑
a=2

(
˜̀(˜̀+ q)

2n

)a

≤

(
˜̀(˜̀+ q)

2n

)2

≤ 4˜̀4

22n
+

4˜̀2q2

22n
≤ 64`4

22n
+

16`2q2

22n
.

60

where we assume ˜̀≤ 2`

Note that H ∈ CollL = CollL(x, x′) necessarily implies Acc(H) ≥ 1. We can then say, for
GF = GF (x, x′),

P[GF ∈ CollL] ≤ P[GF ∈ CollL ∧ Acc(GF) = 1] + P[Acc(GF) ≥ 2]

≤
∣∣CollL ∩ G1

L

∣∣
2n

+
64`4

22n
+

16`2q2

22n

. (7)

by Lemmas 40 and 41. We are going to upper bound the number of graphs in CollL ∩ G1
L.

We reduce handling the case of a general L now to the simpler case where L = ∅, so that we
can resort to the counting argument of [24].

Now, let G ∈ CollL ∩ G1
L(x, x′). Let EB be the set of all blue edges which are on the x- and the

x′-paths. Moreover, let E ′B ⊆ EB be the set of all initial blue edges, i.e., the set of blue edges on
these paths which are not preceded by any red edge. We prove the following lemma.

Lemma 42. If G ∈ CollL ∩ G1
L(x, x′), then E ′B = EB

Proof. We prove by contradiction by assuming that this is not true. In other words, there exists
at least one edge e ∈ EB \ E ′B. We now proceed to show that this necessarily leads to at least two
collisions, contradicting G ∈ CollL ∩ G1

L(x, x′). Wlog, assume that this lies on the x path, and let
ei = (ui, vi) be the first such edge. Then, this edge must be preceded by a red-edge, ei−1. Then,
clearly this implies that the graph contains at least one accident.

Now, let us take a look at the x′ path. We have, by our definition of G (it is in the set CollL),
that there should exist a path from ei to the end point of the x′ path. We will sketch a proof to
show that this is not possible without having a second collision. We take a look at this path from
ei to the end point of x′, V ′.

� The path is of entirely blue edges.

We look at the edge into V ′ on the x′ path. Note that this cannot be a new blue edge as
it would violate the no-collision constraint on L. If this was a red edge we have a second
collision, by our definition. The only option is to take the same blue edge as on the ei-path.
In other words, the penultimate vertex on ei-path and x′ path are the same. We can argue
similarly for the penultimate vertex by showing that the edges into them should be the same
blue edge on both the paths. Working backwards we arrive at the point ui. Thus, we have
shown that the message blocks corresponding to the edges along the path from ei to V ′ is the
same on both x and x′. We have also assumed that ei is the first non-initial blue edge. In
other words, the path before ei should be all red. Since x 6= x′, there should be a block before
ei which would differ in the message and hence this would constitute a collision on the red
edges. Therefore, in this case it is impossible to have the final outputs to be the same without
causing a second collision.

� The path is of entirely red edges.

The argument is similar to the previous case. The only difference is that the x′-path could
take a blue edge into the ei-path. However, this would still constitute a new collision. The
same reasoning follows giving us the same conclusion.

� The path is mixed red and blue edges.

We have already shown that if a blue edge follows a red edge on the path then it is a collision.
We can therefore assume that the set of blue edges occur together, followed by the set of red
edges. The reasoning is pretty similar to the previous two cases.

61

In other words, a graph G cannot be in CollL and G1
L(x, x′) when there exist non-initial blue

edges.

The direct consequence of Lemma 42 is that the number of colliding structure graphs with one
accident is the same even if we remove all the non-initial blue edges. In addition, removing the
initial blue edges will also not decrease the number of colliding graphs with one accident. This is
true because the initial blue edges can be replaced by red edges without increasing the number of
accidents by the properties of L. In other words, if we define L′ ⊆ L to be the set of queries which
define the initial blue edges, we have∣∣CollL ∩ G1

L(x, x′)
∣∣ =

∣∣CollL′ ∩ G1
L′(x, x

′)
∣∣ ≤ ∣∣Coll∅ ∩ G1

∅(x, x
′)
∣∣ ≤ `d′(`) . (8)

where the last inequality is from [24]. Here d′(n) is defined as follows:

d′(n) := max
n′∈{1,...,n}

∣∣{d ∈ N : n′ mod d = 0
}∣∣ .

Combining Equations 15, 7 and 8 we get,

P[Ỹ` = Ỹ ′`] ≤ 1

2r
+
` · d′(`)

2n
+

64`4

22n
+

16`2q2

22n

Substituting the above value in Equations 17 and 18, we get:

SD((Ỹ`, F)|z, (Ur, F)|z) ≤ 1

2

√
2rpz + ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2q2 · 2r

22n
.

This concludes the proof of Lemma 38

7.5 IT PRNGs from Merkle-Damg̊ard with Davies-Meyer

This section establishes the robustness of the PRNG construction DMr = (refresh, next) based on
Merkle-Damg̊ard with the Davies-Meyer compression function in the ideal-cipher model. Recall
that the construction is defined as follows (cf. Figure 4):

Construction 5 (IT-PRNG from MD-DM). The (n, r)-PRNG construction DMr = (refresh, next)
using Merkle-Damg̊ard with Davies-Meyer (MD-DM) uses a block cipher E : {0, 1}k × {0, 1}n →
{0, 1}n and is defined as follows:

� refreshE(s, x) = E(x, s)⊕ s, and

� nextE(s) = (0n, s[1..r]).

Construction 5 achieves the following security:

Theorem 8 (IT-Robustness of MD-DM PRNGs). Construction 5 is a (γ∗, q, t, `, εrob)-IT-robust
PRNG in the E-model, where

εrob-it ≤
t

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) 2r

2n−1
+ 64`4 · 2r

22n−2
+ 16`2q̃2 · 2r

22n−2
+ tρ ,

for ρ = q̃2

2r where q̃ = q + t`

62

Our robustness proof for this construction uses the analysis from Section 7.4. The intuition here is
that the structure graphs were defined for a compressing function F and we instantiate it with a
Davies-Meyer construction and extend the arguments. However, there is a subtle difference because
of the underlying primitive. In Davies-Meyer the primitive is an ideal cipher. Thus, we state and
prove Lemma 45 which is the counterpart of Lemma 40 for the Davies-Meyer instantiation. We then
apply the results of Lemma 45 in the proofs of Lemma 41 and results from [24] to prove Theorem
7.

Proof. The proof follows from Lemma 43 and Theorem 36.

Lemma 43. For every γ∗-IT-legitimate (q, `)-attacker, in the ideal cipher model,

Advrec-IT,γ∗

DM (A) ≤ 1

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) 2r

2n−1
+

64`42r

22n−2
+

16`2q22r

22n−2
+ ρ .

where ρ = q2

2r

Proof. The arguments for this proof is similar to the proof of Lemma 37. As before we define
the random variables Ỹ`, Z,Σ, Ur. The difference arises in the definition of Z = (Σ,L, S0). We
define the L as follows: If L′ is the set of queries made by A to the ideal cipher E, then for every
((x, y), z) ∈ L′, add ((x, y), z⊕y) to L. This is to ensure that the L is consistent with the evaluation
of Davies-Meyer on the input (x, y). We now upper-bound the adversary A in the IT-recovering
game by showing an upperbound for SD((Ỹ`, Z,E), (Ur, Z,E)).

We also define the event E which denotes the event when L entries are distinct when truncated
to the first r bits. Note that there are a maximum of q queries in this list. We would like to point
out that E has the same probability of occurring in either experiment. Therefore, by Proposition 3,

SD((Ỹ`, Z,E), (Ur, Z,E)) ≤ SD((Ỹ`, Z,E)|E , (Ur, Z,E)|E) +
q2

2r
;

We let ρ := q2/2r for the remainder of the proof. In order to bound the statistical distance
conditioned on E , we can rewrite the same as

SD((Ỹ`, Z,E)|E , (Ur, Z,E)|E) =
∑
z∈E

P[Z = z|E] · SD((Ỹ`, E)|z, (Ur, E)|z) , (9)

where z ∈ E is to denote that the sum is taken over all side informations Z = z, satisfying E .25 We
define pz := Pred(X |Z = z), and as shown in Lemma 37, we have

H∞(X |ZE) ≥ γ∗ − log(1− ρ)−1 ,

From Lemma 44 we get,

SD((Ỹ`, E)|z, (Ur, E)|z) ≤ 1

2

√
2rpz + ` · d′(`) 2r

2n−1
+ 64`4

2r

22n−2
+ 16`2q2

2r

22n−2

Using Jensen’s inequality, (9) becomes, for α = 2r and β = ` ·d′(`) · 2r

2n−1 +64`4 · 2r

22n−2 +16`2q2 · 2r

22n−2 ,

SD((Ỹ`, E)|E , (Ur, E)|E) ≤ 1

2

√
αPred(X |LE) + β

≤ 1

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) 2r

2n−1
+ 64`4

2r

22n−2
+ 16`2

q22r

22n−2
.

25Therefore E can be omitted in the conditioning of the statistical distance.

63

Lemma 44. For z ∈ E and the random variables as defined earlier,

SD((Ỹ`, E)|z, (Ur, E)|z) ≤ 1

2

√
2rpz + ` · d′(`) 2r

2n−1
+ 64`4

2r

22n−2
+ 16`2q2

2r

22n−2

Proof. We fix z = (σ, L, s0). We have that z, E is distributed uniformly over the set of all ideal
ciphers that agree with L. Thus, by Proposition 2,

SD((Ỹ`, E)|z, (Ur, E)|z) ≤ 1

2

√
2r · Coll(Ỹ`|Ez)− 1 . (10)

To bound the collision probability, we consider the following experiment:

� choose E uniformly consistent with L

� sample inputs X = (X1, . . . , X`) and X
′

= (X
′
1, . . . , X

′
`′) independently but conditioned on

Z = z.

� compute Ỹ` and Ỹ ′` as the truncated MD evaluations with E of X and X
′

Now, we have that:
P[Ỹ` = Ỹ ′`] ≤ P[X = X

′
] + P[Ỹ` = Ỹ ′` |X 6= X

′
] . (11)

Clearly, the former is at most pz. To get a bound on the second term, we proceed to fix arbitrary
inputs x 6= x′ of lengths ` and `′, respectively. This is similar to the process that is adopted
in the proof of Lemma 38. We construct a similar Structure Graph. Note that in Lemma 38,
we assumed that the primitive was a compressing function. In particular, Davies Meyer is also
a compressing function. Therefore, we can define similar structure graph for this construction by
viewing F (y, x) := E(x, y)⊕ y. From Lemma 39 we get the following result:

P[Ỹ` = Ỹ ′`] ≤ P[GF (x, x′) ∈ CollL(x, x′)] +
1

2r
.

However, the proof of Lemma 40 changes. We prove a corresponding Lemma as follows:

Lemma 45. For an E sampled randomly consistent with L with F defined as above, and x 6= x′.
Let H ∈ GL(x, x′). Then,

P[GF (x, x′) = H] =
1

2(n−1)·Acc(H)
.

Proof. We have two messages x 6= x′ and let x(i) be as defined before. We have a randomly sampled
E which is consistent with L. The proof is similar to Lemma 40. However, the proof differs in the

case of a colliding edge, i.e the edge causes an accident. In this case, G
(i+1)
F will only be consistent

if the edge corresponding to x(i+1) lands on the same vertex as in H(i+1). However, the evaluation
is not a random function F which chooses a value, uniformly at random, from 2n values. The
evaluation is dependent on the definition of the ideal cipher E. The output in this case is chosen,
from a minimum of 2n − q − i values. In other words, P[Consi+1|Consi] ≤ 1

2n−q−i ≤
1

2(n−1) in this
case. Note that the third case happens Acc(H) times. Therefore, we have:

P[GF (x, x′) = H] = P[Cons˜̀] ≤
1

2(n−1)·Acc(H)
.

Applying this Lemma to the proof of Lemma 41 and the result from [24], we get:

SD((Ỹ`, E)|z, (Ur, E)|z) ≤ 1

2

√
2rpz + ` · d′(`) 2r

2n−1
+ 64`4

2r

22n−2
+ 16`2q2

2r

22n−2
.

64

7.6 IT PRNGs from Sponge

This section establishes the robustness of the PRNG construction Spgr = (refresh, next) based on
the Sponge Construction in the ideal permutation model. Recall that the construction is defined as
follows (cf. Figure 5):

Construction 7 (IT-PRNG from Sponges). The Sponge-based PRNG construction Spgr = (refresh,
next) uses a permutation π : {0, 1}n → {0, 1}n to absorb and produce r-bit inputs and outputs,
respectively, and is defined as follows:

� refreshπ(s, x) = π(s⊕ x‖0c), and

� nextπ(s) = (0n, s[1..r]).

Construction 7 achieves the following security:

Theorem 10 (IT-Robustness of Sponge PRNGs). Construction 7 is a (γ∗, q, t, `, εrob)-IT-robust
PRNG in the π-model for

εrob-it ≤
t

2

√
2r−γ∗

(1− ρ)
+
` · (`+ q̃)

2c−1
+ tρ ,

for ρ = q̃2

2c where q̃ = q + t`

In this section, we take a look at the proof of robustness for the IT-PRNG based on the Sponge
construction.

Lemma 46. For every γ∗-IT-legitimate (q, `)-attacker, in the ideal permutation model,

SD((Ỹ`, π)|E , (Ur, π)|E) ≤ 1

2

√
2r−γ∗

(1− ρ)
+
` · (`+ q)

2c−1
+ ρ .

where ρ = q2

2c

Proof (of Lemma 46). We define a few random variables which we will be using in our proofs.

� π: a randomly chosen permutation, to which the adversary is given access. We use π both for
the oracle itself, as well as for the random variable describing the entire function table.

� `: Number of blocks input to the challenge oracle (which is a random variable itself, we
overload notation here, using the same letter we use in the bound on ` in the lemma statement).

� X = (X1, . . . , X`): the blocks input to the challenge oracle.

� Ỹ`: output of MDr. Let us remind ourselves that this is s truncated to r bits (the output of
next);

� Z = (Σ,L, S0): “side information” where Σ is the attacker state before challenge, L is the
attacker query/answers to π before challenge , S0 is the initial PRNG state provided by A;

� Ur: uniform r-bit string.

65

The advantage of the adversary A in the recovering game is bounded by SD((Ỹ`, Z, π), (Ur, Z, π)).
Therefore, it is sufficient to upper-bound that. The reasoning is quite simple. Note that Z contains
the state of the attacker Σ just before it makes the challenge query. This means that A cannot
tell apart real from random. For ease of this discussion we define the idea of supernode. State
nodes have values in {0, 1}n. They are clustered to supernodes where a super node with label in
{0, 1}c contains all state nodes having that same values in the last c bits. Therefore, there are 2c

supernodes with each having 2r state nodes.
We also define an event E where the queries in L land do not collide on the last c bits of other

elements. This is true even for inverse queries, i.e π−1(v) should result in a new supernode. We
would like to point out that E has the same probability of occurring in either experiment, since the
experiments are identical up to the point when this event is defined. Therefore, by Proposition 3,

SD((Ỹ`, Z, π), (Ur, Z, π)) ≤ SD((Ỹ`, Z, π)|E , (Ur, Z, π)|E) +
q2

2c
;

For convenience we let ρ := q2

2c for the remainder of the proof. In order to bound the statistical
distance conditioned on E , we can rewrite the same as as

SD((Ỹ`, Z, π)|E , (Ur, Z, π)|E) =
∑
z∈E

P[Z = z|E] · SD((Ỹ`, π)|z, (Ur, π)|z) , (12)

where z ∈ E is to denote that the sum is taken over all side informations Z = z, satisfying E .26

Define pz := Pred(X |Z = z), and observe that

Ez[pz] = Pred(X |Z) ≤ 2−γ
∗
,

where the latter inequality follows from the assumption H∞(X |Z) ≥ γ∗. Moreover,

H∞(X |ZE) ≥ γ∗ − log(1− ρ)−1 ,

which is due to

Pred(X |Z) ≥
∑
z∈E

P[Z = z] · pz

= P[E] ·
∑
z∈E

P[Z = z]

P[E]
· pz

= P[E] · Pred(X |ZE) .

From Lemma 47 we prove below, we will get,

SD((Ỹ`, π)|z, (Ur, π)|z) ≤ 1

2

√
2rpz +

` · (`+ q)

2c−1
.

Using Jensen’s inequality, (12) becomes, for

SD((Ỹ`, π)|E , (Ur, π)|E) ≤ 1

2

√
2rPred(X |LE) +

` · (`+ q)

2c−1

≤ 1

2

√
2r−γ∗

(1− ρ)
+
` · (`+ q)

2c−1
.

26Therefore E can be omitted in the conditioning of the statistical distance.

66

Lemma 47. For z ∈ E and the random variables as defined earlier,

SD((Ỹ`, π)|z, (Ur, π)|z) ≤ 1

2

√
2rpz +

` · (`+ q)

2c−1
.

Proof. We fix z = (σ, L, s0). We have that z, π is distributed uniformly over the set of all ideal
permutations that agree with L. Thus, by Proposition 2,

SD((Ỹ`, π)|z, (Ur, π)|z) ≤ 1

2

√
2r · Coll(Ỹ`|πz)− 1 . (13)

We consider the following experiment to bound the collision probability:

� choose π uniformly consistent with L

� sample inputs X = (X1, . . . , X`) and X
′

= (X
′
1, . . . , X

′
`′) independently but conditioned on

Z = z.

� compute Ỹ` and Ỹ ′` as the Sponge evaluation of X and X
′

Now, we have that:
P[Ỹ` = Ỹ ′`] ≤ P[X = X

′
] + P[Ỹ` = Ỹ ′` |X 6= X

′
] . (14)

By definition, we have that the former term is pz. We take a closer look at the latter term. We fix
arbitrary inputs x and x′. Let the length of them be ` and `′ respectively. We also assume, wlog,
that the evaluation of x′ is not completely covered by L; due to the collision-freeness of L. Let xk+1

be the first block of x not covered by L and similarly x′k+1 for x′ . We let k = ` if all blocks are
covered. We then apply Lemma 48 to conclude the proof.

Lemma 48. Let π be sampled randomly consistent with L, and x 6= x′. Then, let Ỹ` and Ỹ ′` be
values obtained after truncating at the end of the Sponge evaluations on inputs x and x′ respectively.
Then,

P[Ỹ` = Ỹ ′`] ≤
˜̀(q + ˜̀)

2n−1
+

1

2r
.

Proof. We denote by CollL(x, x′) the event that the sponge evaluation on inputs x, x′ collide at the
final state node, for a permutation π sampled consistently with L. We rewrite P[Ỹ` = Ỹ ′`] as:

P[Ỹ` = Ỹ ′`] ≤ P[CollL(x, x′)] + P[Ỹ` = Ỹ ′` |CollL(x, x′)]

We take a closer look at the latter term. Note that the evaluation of the inputs is fixed and
it has no collision at the end nodes. We proceed to assign random, yet distinct values to the final
state nodes. These are chosen from {0, 1}n. Note that it is sufficient to look at the two output
vertices locally without looking at the global state. There are 2n(2n − 1) pairs of values for these
output vertices such that these values are distinct. However, of these, 2r2n−r(2n−r − 1) have values
which are equal in the first r bits and yet are distinct n-bit strings. Therefore,

P[Ỹ` = Ỹ ′` |CollL(x, x′)] ≤ 2r2n−r(2n−r − 1)

2n(2n − 1)

=
2n−r − 1

2n − 1

≤ 2n−r

2n
=

1

2r
.

67

Putting it together, we have:

P[Ỹ` = Ỹ ′`] ≤ P[CollL(x, x′)] +
1

2r
. (15)

Now we bound the value of P[CollL(x, x′)]. Consider the intermediate evaluations starting from
k + 1. These are the inputs not covered by the list L. Define them as: Uk+1, Vk+1, . . . , U˜̀, V˜̀ such
that:

Uk+1 = sk ⊕ xk+1||0c

and for i = k + 2, . . . , ˜̀,
Ui = Vi−1 ⊕ xi||0c .

In addition, for i = k + 1, . . . , ˜̀

Vi = π(Ui) .

For i = k + 1, . . . , ˜̀, denote by FRESHi be the event Ui is fresh, i.e, π(Ui) has not yet been defined.
It is clear that FRESHk+1 is true. Let

FRESH =

˜̀−1⋂
i=k+1

FRESHi

Then,
P[CollL(x, x′)] ≤ P[CollL(x, x′)|FRESH] + P[FRESH]

Clearly the former term is,

P[CollL(x, x′)|FRESH] ≤ 1

2n − ˜̀− q
Given that FRESHi−1 is true, this implies that Vi−1 = π(Ui−1) was freshly chosen. Therefore, for
FRESHi to be false, Vi−1 must have been chosen such that Ui = Vi−1 ⊕ xi is not fresh. Remember
that, Vi−1 would have been uniformly sampled from at least 2n − q − ˜̀ values. Therefore,

P[FRESHi|
i−1⋂

j=k+1

FRESHj] ≤
(q + i)

2n − ˜̀− q
.

In other words, P[FRESH] ≤ (˜̀−1)(q+˜̀−1)
2n−1 .

References

[1] Boaz Barak and Shai Halevi. A model and architecture for pseudo-random generation with
applications to /dev/random. In Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels,
editors, ACM CCS 05, pages 203–212, Alexandria, Virginia, USA, November 7–11, 2005. ACM
Press.

[2] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using few in-
dependent sources. In 45th FOCS, pages 384–393, Rome, Italy, October 17–19, 2004. IEEE
Computer Society Press.

[3] Boaz Barak, Ronen Shaltiel, and Eran Tromer. True random number generators secure in
a changing environment. In Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors,
CHES 2003, volume 2779 of LNCS, pages 166–180, Cologne, Germany, September 8–10, 2003.
Springer, Heidelberg, Germany.

68

[4] Elaine Barker and John Kelsey. NIST Special Publication 800-90A (A revision of SP 800-90)
Recommendation for random number generation using deterministic random bit generators.
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final, 2012.

[5] Elaine Barker and John Kelsey. Recommendation for random number generation using deter-
ministic random bit generators. NIST Special Publication 800-90A, 2012.

[6] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via
UCEs. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 398–415, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg,
Germany.

[7] Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved security analyses for CBC
MACs. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 527–545, Santa
Barbara, CA, USA, August 14–18, 2005. Springer, Heidelberg, Germany.

[8] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the indifferentiability
of the sponge construction. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of
LNCS, pages 181–197, Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg, Germany.

[9] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge-based pseudo-
random number generators. In Stefan Mangard and François-Xavier Standaert, editors,
CHES 2010, volume 6225 of LNCS, pages 33–47, Santa Barbara, CA, USA, August 17–20,
2010. Springer, Heidelberg, Germany.

[10] Manuel Blum. Independent unbiased coin flips from a correlated biased source-a finite stae
markov chain. Combinatorica, 6(2):97–108, 1986.

[11] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient
functions. In Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC, pages 670–683,
Cambridge, MA, USA, June 18–21, 2016. ACM Press.

[12] Stephen Checkoway, Ruben Niederhagen, Adam Everspaugh, Matthew Green, Tanja Lange,
Thomas Ristenpart, Daniel J. Bernstein, Jake Maskiewicz, Hovav Shacham, and Matthew
Fredrikson. On the practical exploitability of dual EC in TLS implementations. In Proceedings
of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014., pages
319–335, 2014.

[13] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating ciphers. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 327–350, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

[14] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity (extended abstract). In 26th FOCS, pages 429–442, Port-
land, Oregon, October 21–23, 1985. IEEE Computer Society Press.

[15] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

[16] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Friedman, Steven Rudich, and Roman
Smolensky. The bit extraction problem of t-resilient functions (preliminary version). In 26th
FOCS, pages 396–407, Portland, Oregon, October 21–23, 1985. IEEE Computer Society Press.

69

https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final

[17] Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal Rabin. Random-
ness extraction and key derivation using the CBC, cascade and HMAC modes. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 494–510, Santa Barbara, CA,
USA, August 15–19, 2004. Springer, Heidelberg, Germany.

[18] Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergnaud, and Daniel Wichs.
Security analysis of pseudo-random number generators with input: /dev/random is not robust.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 647–
658, Berlin, Germany, November 4–8, 2013. ACM Press.

[19] Yevgeniy Dodis, Thomas Ristenpart, and Salil P. Vadhan. Randomness condensers for effi-
ciently samplable, seed-dependent sources. In Ronald Cramer, editor, TCC 2012, volume 7194
of LNCS, pages 618–635, Taormina, Sicily, Italy, March 19–21, 2012. Springer, Heidelberg,
Germany.

[20] Yevgeniy Dodis, Adi Shamir, Noah Stephens-Davidowitz, and Daniel Wichs. How to eat your
entropy and have it too - optimal recovery strategies for compromised RNGs. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 37–54,
Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[21] D. Eastlake, J. Schiller, and S. Crocker. RFC 4086 - Randomness Requirements for Security,
June 2005.

[22] Niels Ferguson. Private communication, 2013.

[23] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley & Sons, Inc., New
York, NY, USA, 1 edition, 2003.

[24] Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. The exact PRF-security of NMAC and
HMAC. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616
of LNCS, pages 113–130, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg,
Germany.

[25] Peter Gazi and Stefano Tessaro. Provably robust sponge-based PRNGs and KDFs. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS,
pages 87–116, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

[26] Danny Harnik and Moni Naor. On everlasting security in the hybrid bounded storage model.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP
2006, Part II, volume 4052 of LNCS, pages 192–203, Venice, Italy, July 10–14, 2006. Springer,
Heidelberg, Germany.

[27] Daniel Hutchinson. A robust and sponge-like PRNG with improved efficiency. In Roberto
Avanzi and Howard M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages 381–398, St.
John’s, NL, Canada, August 10–12, 2016. Springer, Heidelberg, Germany.

[28] Daniel Hutchinson. A robust and sponge-like PRNG with improved efficiency. Cryptology
ePrint Archive, Report 2016/886, 2016. http://eprint.iacr.org/2016/886.

[29] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from
one-way functions (extended abstracts). In 21st ACM STOC, pages 12–24, Seattle, WA, USA,
May 15–17, 1989. ACM Press.

70

http://eprint.iacr.org/2016/886

[30] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In 30th FOCS, pages 230–235, Research Triangle Park,
North Carolina, October 30 – November 1, 1989. IEEE Computer Society Press.

[31] Information technology - Security techniques - Random bit generation. ISO/IEC18031:2011,
2011.

[32] Jesse Kamp, Anup Rao, Salil P. Vadhan, and David Zuckerman. Deterministic extractors for
small-space sources. J. Comput. Syst. Sci., 77(1):191–220, 2011.

[33] John Kelsey, Bruce Schneier, and Niels Ferguson. Yarrow-160: Notes on the design and analysis
of the yarrow cryptographic pseudorandom number generator. In In Sixth Annual Workshop
on Selected Areas in Cryptography, pages 13–33. Springer, 1999.

[34] Killmann, W. and Schindler, W. A proposal for: Functionality classes for random number
generators. AIS 20 / AIS31, 2011.

[35] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Tal
Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648, Santa Barbara, CA,
USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[36] David Lichtenstein, Nathan Linial, and Michael E. Saks. Some extremal problems arising form
discrete control processes. Combinatorica, 9(3):269–287, 1989.

[37] John M. Intel digital random number generator (DRNG) software im-
plementation guide. https://software.intel.com/en-us/articles/

intel-digital-random-number-generator-drng-software-implementation-guide,
2014.

[38] Noam Nisan and David Zuckerman. More deterministic simulation in logspace. In Proceedings
of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San
Diego, CA, USA, pages 235–244, 1993.

[39] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,
52(1):43–52, 1996.

[40] Jacques Patarin. The “coefficients H” technique (invited talk). In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, SAC 2008, volume 5381 of LNCS, pages 328–345,
Sackville, New Brunswick, Canada, August 14–15, 2009. Springer, Heidelberg, Germany.

[41] Berry Schoenmakers and Andrey Sidorenko. Cryptanalysis of the dual elliptic curve pseudo-
random generator. Cryptology ePrint Archive, Report 2006/190, 2006. http://eprint.iacr.
org/2006/190.

[42] Thomas Shrimpton and R. Seth Terashima. A provable-security analysis of Intel’s secure key
RNG. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 77–100, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[43] Dan Shumow and Niels Ferguson. On the possibility of a back door in the nist sp800-90 dual
ec prng. CRYPTO Rump Session, 2007.

[44] Pratik Soni and Stefano Tessaro. Public-seed pseudorandom permutations. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 412–441, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

71

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
http://eprint.iacr.org/2006/190
http://eprint.iacr.org/2006/190

[45] Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distributions. In
41st FOCS, pages 32–42, Redondo Beach, CA, USA, November 12–14, 2000. IEEE Computer
Society Press.

[46] John von Neumann. Various techniques used in connection with random digits. In A.S.
Householder, G.E. Forsythe, and H.H. Germond, editors, Monte Carlo Method, pages 36–
38. National Bureau of Standards Applied Mathematics Series, 12, Washington, D.C.: U.S.
Government Printing Office, 1951.

[47] Wikipedia. /dev/random. http://en.wikipedia.org/wiki//dev/random, 2004. [Online;
accessed 09-February-2014].

[48] Joanne Woodage and Dan Shumow. An analysis of the NIST SP 800-90A standard. In Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19 - May 23, 2019.

72

http://en.wikipedia.org/wiki//dev/random

A Comparison to Previous PRNG Security Notions

Overview. The first robustness notion for PRNGs was proposed by Barak and Halevi [1] and
required that PRNGs be:

� resilient, i.e., the attacker cannot predict the output of the PRNG even if he can influence the
inputs;

� forward secure, i.e., upon state compromise, previous outputs of the PRNG remain random;
and

� post-compromise secure, i.e., if sufficient entropy is absorbed into the PRNG state, the outputs
regain security.

The definition was developed further in a crucial way by Dodis et al. [18], who considered the
setting where entropy only gradually accumulates in the state (as opposed to the model in [1],
where inputs are required to have high entropy in order to recover from compromise. In order to
analyse constructions such as sponges, Gazi and Tessaro [25] extended the robustness definition
further to a setting with a public random permutation.

Distribution samplers. In order to capture distributions for which the PRNG is expected to be
robust, Dodis et al. [18] considered distribution samplers Sam, which with every input xi for the
PRNG would also provide an entropy estimate γi and a leakage value zi. A sampler was considered
legitimate if every input xi has the promised min entropy γi even conditioned on all other inputs
(i.e., past and future) as well as on all values γj and zj . A very important consequence of this
definition is that (it can be shown that) extraction with such a sampler Sam is impossible without
a randomly chosen seed about which the sampler has no information. Dodis et al. provided a
construction that uses such a seed and whose refresh function actually is information-theoretically
secure. However, security completely breaks down as soon as the sampler can depend on the seed,
which is why said construction was deemed unsuitable by practitioners since seed-independence of
the input may not be guaranteed in practice.

In an effort to analyze more practical constructions Gazi and Tessaro [25] extended the ro-
bustness notion to incorporate ideal primitives. In particular, for their analysis of Sponge, they
considered samplers Samπ with oracle access to a random permutation π and required an entropy
notion related to that above, but required, informally, that inputs be unpredictable even if in addi-
tion to the above, one also conditions on the queries by the sampler (albeit the sampler is allowed
private queries for every input it generates). While the extension to ideal models allows to analyze
constructions used in practice, the work by Gazi and Tessaro does not solve the need for a seed
(about which Samπ has no information), without which the aforementioned impossibility still holds.

Main differences between existing notions and the new one. The new definition put forth
in this work differs from previous ones in several ways: First, the legitimacy notion is such that
there is no need for a seed. Second, because of that, the sampler and the distinguisher are merged
into a single attacker, which would not be possible with the previous notions due to the need to
hide the seed from Sam. Third, the new legitimacy notion measures not the sum of entropies
of particular blocks conditioned on each other, but the entropy of an entire sequence of inputs
as a whole. Finally, the new notion dispenses with the need for entropy estimates by simply only
considering attackers that provide inputs for which the average min-entropy at certain points is high
enough conditioned on the state and the queries of the attacker. Observe that the entropy estimates

73

were originally introduced to circumvent the impossibility of randomness estimation, which would
have been needed in reductions to computationally secure primitives (such as using a PRG for the
next function). Hence, entropy estimates were an unnatural artifact of the definition anyway.

B Constructions of Online Extractors

This section presents four simple, intuitive, and—most importantly—practical seedless online-
extractor constructions:

� a construction based on the Merkle-Damg̊ard paradigm using a public fixed-length compression
function;

� a construction based on the Merkle-Damg̊ard paradigm using the Davies-Meyer compression
function (as in SHA-2), which is built from any public block cipher; and

� a construction based on the Sponge paradigm (as in SHA-3), which uses a public permutation.

� a construction based on the HMAC function, which is a variant of the Merkle-Damg̊ard
paradigm, using a public fixed-length compression function.

The four resulting online extractor constructions are pictorially represented in Figure 1. For all
these 4 variants we actually present two constructions: one achieving computational security, and
one achieving information-theoretic (IT) security. Except for the sponges, where the computational
and IT variants are syntactically identical, for the other three setting the IT variant simply truncates
the computational variant to the first r bits.

B.1 Extractors from Merkle-Damg̊ard

An online extractor can be obtained from a compression function F as follows:27

Construction 8 (Online extractor from Merkle-Damg̊ard). The (m,n)-online extractor construc-
tion MD = (refresh, finalize) based on Merkle-Damg̊ard with a compression function F : {0, 1}n ×
{0, 1}m → {0, 1}n is defined as follows:

� refreshF (s, x) = F (s, x), and

� finalizeF (s) = s.

The security of Construction 8 is proved in the F -model, where F is a uniformly random function.
The theorem below is identical to Lemma 15.

Theorem 49 (Online extractor from Merkle-Damg̊ard). Construction 8 is a (γ∗, q, ε)-online ex-
tractor in the F -model for

ε ≤ q2 + q`+ `2

2n
+

2q

2γ∗
.

An IT-secure online extractor based on Merkle-Damg̊ard can be obtained if the finalize function
simply truncates the state:

27To reduce notational clutter, the algorithms refresh and finalize of the extractor constructions are not “branded”
with the design name. There will be no ambiguity as to which construction is meant in any place in this paper.

74

Construction 9 (IT online extractor from Merkle-Damg̊ard). The (m, r)-IT-online extractor con-
struction MDr = (refresh, finalize) based on Merkle-Damg̊ard with a compression function F :
{0, 1}n × {0, 1}m → {0, 1}n is defined as follows:

� refreshF (s, x) = F (s, x), and

� finalizeF (s) = s[1..r].

The security of Construction 9 is proved in the F -model, where F is a uniformly random function.
To state the theorem for the IT construction, for an integer `, let

d′(`) = max
`′∈{1,...,`}

∣∣{d ∈ N : d|`′}
∣∣ .

Observe that, asymptotically, d′(`) grows very slowly, i.e., as `o(1). Furthermore, let F be a random
compression function. The following theorem is equivalent to Lemma 37.

Theorem 50 (IT online extractor from Merkle-Damg̊ard). Construction 9 is a (γ∗, q, ε)-IT-online
extractor in the F -model, where

ε ≤ 1

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2

q22r

22n
+ ρ ,

where ρ = q2

2r .

B.2 Extractors from Merkle-Damg̊ard with Davies-Meyer

The Davies-Meyer compression function maps two inputs a ∈ {0, 1}m and b ∈ {0, 1}n to an n-bit
string

E(b, a)⊕ a ,

where E is an arbitrary block cipher (where b is the key and a the input).28 Correspondingly, an
online extractor can be obtained from E as follows:

Construction 10 (Online extractor from MD-DM). The (k, n)-online extractor construction DM =
(refresh, finalize) based on Merkle-Damg̊ard with Davies-Meyer (MD-DM) uses a cipher E : {0, 1}k×
{0, 1}n → {0, 1}n and is defined as follows:

� refreshE(s, x) = E(x, s)⊕ s, and

� finalizeF (s) = s.

The security of Construction 10 is proved in the E-model, where E is a cipher chosen uniformly at
random from the set of all ciphers and can be queried in both the forward and backward direction.
The theorem below is identical to Lemma 22

Theorem 51 (Online extractor from MD-DM). Construction 10 is a (γ∗, q, εrob)-robust online
extractor in the E-model for

εrob ≤
q2 + 2(q`+ `2)

2n
+

4q

2γ∗
.

28A (block) cipher is an efficiently computable and invertible permutation E(k, ·) : {0, 1}n → {0, 1}n for every key
k ∈ {0, 1}n.

75

An IT-secure online extractor based on MD-DM can be obtained if the finalize function simply
truncates the state:

Construction 11 (IT online extractor from MD-DM). The (k, r)-IT-online construction DMr =
(refresh, finalize) using Merkle-Damg̊ard with Davies-Meyer (MD-DM) uses a block cipher E :
{0, 1}k × {0, 1}n → {0, 1}n and is defined as follows:

� refreshE(s, x) = E(x, s)⊕ s, and

� finalizeE(s) = s[1..r].

The security of Construction 11 is proved in the E-model, where E is a cipher chosen uniformly at
random from the set of all ciphers and can be queried in both the forward and backward direction.
Let d′(`) be defined as in Section 5.1. The following theorem is equivalent to Lemma 43.

Theorem 52 (IT online extractor from MD-DM). Construction 11 is a (γ∗, q, εrob)-IT-online ex-
tractor in the E-model, where

Advrec-IT,γ∗

DM (A) ≤ 1

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) 2r

2n−1
+

64`42r

22n−2
+

16`2q22r

22n−2
+ ρ .

where ρ = q2

2r .

B.3 Extractors from Sponges

Let n ∈ N and n = r + c. In the following, for an n-bit string s, let s = s(r)‖s(c) be decomposition
of s into an r-bit and c-bit string. An online extractor using the Sponge paradigm can be obtained
from a permutation π as follows:

Construction 12 (Online extractor from Sponges). The Sponge-based online-extractor construc-
tion Spg = (refresh, finalize) uses a permutation π : {0, 1}n → {0, 1}n to absorb and produce r-bit
inputs and outputs, respectively, and is defined as follows:

� refreshπ(s, x) = π(s⊕ x‖0c), and

� finalizeπ(s) = s[1..r].

Observe that for Sponge-based extractors, even the computational variant needs to truncate the
state, otherwise the output of the extractor could be inverted by the attacker, which renders the
constructions insecure.

The security of Construction 12 is proved in the π-model, where π is a uniformly random
permutation, which can be queried in both the forward and backward direction. The proof of the
following theorem follows along similar lines as that of Lemma 34.

Theorem 53 (Online extractor from Sponges). Construction 12 is a (γ∗, q, `, ε)-online extractor
in the π-model for

ε ≤ 2 ·
(
q + q`+ `2

2n
+
q2

2c
+

q

2γ∗

)
.

Observe that the bound in Theorem 9 is only reasonable when c is large enough, which matches the
fact that CBC-based online extractors—which correspond to the case c = 0, are not secure.

As pointed out before, the IT-secure online extractor based on Sponge would be similar to the
computational variant. We reproduce the definition for completeness.

76

Construction 13 (IT Online extractor from Sponges). The Sponge-based IT-online-extractor con-
struction Spg = (refresh, finalize) uses a permutation π : {0, 1}n → {0, 1}n to absorb and produce
r-bit inputs and outputs, respectively, and is defined as follows:

� refreshπ(s, x) = π(s⊕ x‖0c), and

� finalizeπ(s) = s[1..r].

The security of Construction 13 is proved in the π-model, where π is an ideal permutation chosen
uniformly at random from the set of all permutations and can be queried in both the forward and
backward direction. The following theorem is equivalent to Lemma 46.

Theorem 54 (IT online extractor from Sponges). Construction 13 is a (γ∗, q, εrob)-IT-online ex-
tractor in the π-model, where

Advrec-IT,γ∗

Spg (A) ≤ 1

2

√
2r−γ∗

(1− ρ)
+
` · (`+ q)

2c−1
+ ρ .

where ρ = q2

2c .

B.4 Extractors from HMAC

In practice, uniformly random key material is often derived from high-entropy inputs (resulting,
e.g., from a key-agreement protocol) using a key-derivation function (KDF). A common paradigm,
suggested by Krawczyk [35], to construct KDFs is to combine an extractor with a variable-length
pseudorandom function (VL-PRF). The most widely used KDF is HKDF, which uses the HMAC
mode of operation for compression functions (CF) to instantiate both the extractor and the VL-
PRF. This section considers the security of HMAC as a seedless extractor w.r.t. the new legitimacy
condition put forth by this work. Together with a VL-PRF, the seedless HMAC extractor can then
be used to justify security for the seedless variant of HKDF. The latter extension is discussed in
Section 3.5.

HMAC. HMAC is similar to Merkle-Damg̊ard, but requires additional CF calls, designed to
prevent extension attacks when HMAC is used as a PRF. Concretely, for a compression function
F : {0, 1}n × {0, 1}m → {0, 1}n, the HMAC construction takes a key k ∈ {0, 1}m as well as inputs
x1, . . . , x` ∈ {0, 1}m and outputs29

HMAC(k, x1, . . . , x`) := MDF (k ⊕ opad,MDF (k ⊕ ipad, x1, . . . , x`)) ,

where ipad 6= opad ∈ {0, 1}m are arbitrary constants. HMAC can be used as seedless extractor by
fixing, say, k := 0. That is, the online extractor based on HMAC would be defined as follows:

Construction 14 (Online extractor from HMAC.). The (m,n)-online extractor construction HMAC
= (refresh, finalize) based on HMAC with a compression function F : {0, 1}n × {0, 1}m → {0, 1}n is
defined as follows:

� the initial state is s0 = F (0, ipad);

� refreshF (s, x) = F (s, x); and

29The IV to the Merkle-Damg̊ard construction is 0.

77

� finalizeF (s) = F (F (0, opad), s).

The security of Construction 8 is proved in the F -model, where F is a uniformly random function.

Theorem 55 (Online extractor from HMAC). Construction 14 is a (γ∗, q, ε)-online extractor in
the F -model for

ε ≤ q2 + q + q`+ `2

2n
+

2q

2γ∗
.

Proof (sketch). To prove the security of HMAC as an extractor according to Definition 3, one first
considers a hybrid experiment, in which the output of the extractor is computed as

F (F (0, opad), U) ,

for a value chosen uniformly at random. The indistinguishability of the original extraction game
and the hybrid experiment is established via a simple hybrid argument: essentially, the reduction
(to the security of MD as an extractor) simply prepends a block ipad to the inputs x1, . . . , x`, and
upon receiving a value y, it additionally computes F (F (0, opad), y). It is easily seen that adding
ipad to the input does not affect the conditional entropy of the input—and therefore the legitimacy
of the reduction.

Finally, it is easily seen that in the hybrid experiment, the advantage of any attacker is zero
unless it queries F (F (0, opad), U), which happens with probability at most q/2n.

An IT-secure online extractor based on Merkle-Damg̊ard can be obtained if the finalize function
additionally truncates the output:

Construction 15 (IT online extractor from HMAC.). The (m, r)-IT-online extractor construction
HMAC′ = (refresh, finalize) based on HMAC with a compression function F : {0, 1}n × {0, 1}n →
{0, 1}n is defined as follows:

� the initial state is s0 = F (0, ipad);

� refreshF (s, x) = F (s, x); and

� finalizeF (s) = F (F (0, opad), s)[1..r].

The security of Construction 15 is proved in the F -model, where F is a uniformly random function.
To state the theorem for the IT construction, for an integer `, let

d′(`) = max
`′∈{1,...,`}

∣∣{d ∈ N : d|`′}
∣∣ .

Observe that, asymptotically, d′(`) grows very slowly, i.e., as `o(1). Furthermore, let F be a random
compression function. The following theorem is equivalent to Lemma 37.

Theorem 56 (IT online extractor from HMAC). Construction 15 is a (γ∗, q, ε)-IT-online extractor
in the F -model, where

ε ≤ 1

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2q2 · 2r

22n
+ (q + `+ 2) · 2r

2n
+ ρ ,

where ρ = q2

2n .

Proof. We define a few random variables which we will be using in our proofs.

78

� F a randomly chosen compression function, to which the adversary is given access. We use
F both for the oracle itself, as well as for the random variable describing the entire function
table.

� `: Number of blocks input to the challenge oracle (which is a random variable itself, we
overload notation here, using the same letter we use in the bound on ` in the lemma statement).

� X = (X1, . . . , X`): the blocks input to the challenge oracle.

� Ỹ`: output of HMAC′. Let us remind ourselves that this is s truncated to r bits (the output
of finalize);

� Z = (Σ,L, S0): “side information” where Σ is the attacker state before challenge, L is the
attacker query/answers to F before challenge, S0 is the initial state provided by A;

� Ur: uniform r-bit string.

� S: the state of the extractor. For the purposes of this proof, we will be using S to indicate
the state of the extractor that is the input to finalize.

The advantage of the adversaryA in the online extractor game is bounded by SD((Ỹ`, Z, F), (Ur, Z, F)).
Therefore, it is sufficient to upper-bound just that. The reason follows from the fact that Z contains
the state of the attacker Σ just before it makes the challenge query. This means that A cannot tell
apart real from random.

Much like the earlier proofs, we define an event E where the answers to the F -queries by A
are distinct when truncated to the first r bits. Note that there are a maximum of q queries in this
list. As pointed out earlier E has the same probability of occurring in either experiment, since the
experiments are identical up to the point when this event is defined. Therefore, by Proposition 3,

SD((Ỹ`, Z, F), (Ur, Z, F)) ≤ SD((Ỹ`, Z, F)|E , (Ur, Z, F)|E) +
q2

2r
;

For convenience we let ρ := q2/2r for the remainder of the proof. In order to bound the statistical
distance conditioned on E , we can rewrite the same as as

SD((Ỹ`, Z, F)|E , (Ur, Z, F)|E) =
∑
z∈E

P[Z = z|E] · SD((Ỹ`, F)|z, (Ur, F)|z) , (16)

where z ∈ E is to denote that the sum is taken over all side informations Z = z, satisfying E .30

Define pz := Pred(X |Z = z), and observe that

Ez[pz] = Pred(X |Z) ≤ 2−γ
∗
,

where the latter inequality follows from the assumption H∞(X |Z) ≥ γ∗. Moreover,

H∞(X |ZE) ≥ γ∗ − log(1− ρ)−1 ,

which is due to

Pred(X |Z) ≥
∑
z∈E

P[Z = z] · pz

= P[E] ·
∑
z∈E

P[Z = z]

P[E]
· pz

= P[E] · Pred(X |ZE) .

30Therefore E can be omitted in the conditioning of the statistical distance.

79

From Lemma 57 we prove below, we will get,

SD((Ỹ`, F)|z, (Ur, F)|z) ≤ 1

2

√
2rpz + ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2q2 · 2r

22n
+ (q + `+ 2) · 2r

2n
.

Using Jensen’s inequality, (16) becomes, for α = 2r and
β = ` · d′(`) · 2r

2n + 64`4 · 2r

22n
+ 16`2q2 · 2r

22n
+ (q + `+ 1) · 2r

2n ,

SD((Ỹ`, F)|E , (Ur, F)|E) ≤ 1

2

√
αPred(X |LE) + β

≤ 1

2

√
2r−γ∗

(1− ρ)
+ ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2q2 · 2r

22n
+ (q + `+ 2) · 2r

2n
.

Lemma 57. For z ∈ E and the random variables as defined earlier,

SD((Ỹ`, F)|z, (Ur, F)|z) ≤ 1

2

√
2rpz + ` · d′(`) · 2r

2n
+ 64`4 · 2r

22n
+ 16`2q2 · 2r

22n
+ (q + `+ 2) · 2r

2n
.

Proof. Fix z = (σ, L, s0). When we condition on z, it becomes evident that F is uniformly dis-
tributed over all functions that agree with L. We now use Proposition 2 to get that:

SD((Ỹ`, F)|z, (Ur, F)|z) ≤ 1

2

√
2r · Coll(Ỹ`|Fz)− 1 . (17)

To bound the collision probability, we consider the following experiment:

� choose F uniformly consistent with L

� sample inputs X = (X1, . . . , X`) and X
′

= (X
′
1, . . . , X

′
`′) independently but conditioned on

Z = z.

� compute S, S′ as the refresh evaluations with F of inputs X and X
′

respectively.

� compute Ỹ` and Ỹ ′` as the truncated HMAC′ evaluations with F of X and X
′
, i.e Ỹ` =

F (F (0, opad), S)[1..r] and Ỹ ′` = F (F (0, opad), S′)[1..r]

We first condition on the event E that F (0, opad) 6= F (0, ipad). Then, we bound the probability
that Ỹ` = Ỹ ′` in this modified experiment which is conditioned on E as

P[Ỹ` = Ỹ ′`] ≤ 1

2n
+ P[X = X

′
] + P[Ỹ` = Ỹ ′` |X 6= X

′
]31 . (18)

Now, the first term reduces to at most pz. Towards bounding the second term, we fix arbitrary
inputs x 6= x′ of lengths ` and `′, respectively. We also assume, wlog, that the evaluation of x′ is
not completely covered by L; otherwise it would violate the collision-freeness of L. Let xk+1 be the
first block of x not covered by L and similarly x′k+1 for x′ . We let k = ` if all blocks are covered.

We now use the results of Lemma 58 to upperbound P[Ỹ` = Ỹ ′`]. This concludes the proof.

Lemma 58. For fixed inputs x 6= x′ and the random variables as defined earlier,

P[Ỹ` = Ỹ ′`] ≤ ` · d′(`)
2n

+
64`4

22n
+

16`2q2

22n
+
q + `+ 1

2n
+

1

2r
.

31The conditioning on E is dropped from the latter two terms.

80

Proof. Upon fixing it to be arbitrary inputs, we can drop the conditioning on X 6= X
′
. In this

setting, we can condition on the equality of S and S′ as follows:

P[Ỹ` = Ỹ ′`] ≤ P[S = S′] + P[Ỹ` = Ỹ ′` |S 6= S′] . (19)

Let us take a look at the first term. Notice that this is the collision probability of S when run on two
fixed inputs x and x′. In other words, this proof is similar to the bounding of collision probability
of truncated outputs of MD when run on X with side information z. We now proceed to construct
the structure graph as done in the Proof of Lemma 38. The key difference here is that we need the
structure graph to be colliding, i.e P[S = S′] = P[GF (x, x′) ∈ CollL(x, x′)] where CollL(x, x′) are the
set of colliding structure graphs. We now use the results of Lemmas 40, 41 and 42 to conclude that:

P[S = S′] ≤ ` · d′(`)
2n

+
64`4

22n
+

16`2q2

22n
. (20)

Again, we look at the second term. We can fix the values to be arbitrary s 6= s′. Note that
conditioning could impact the randomness of the function F . However, when we run on fixed inputs
x, x′. This would mean that F is uniformly random conditioned on the set of queries in L and the
set of evaluations of x, x′ resulting in states s, s′ respectively. In this setting, define a bad event as
an event E such that the final output are not the same. Therefore, we can bound:

P[Ỹ` = Ỹ ′`] ≤ P[Ỹ` = Ỹ ′` |E] + P[¬E] ≤ 1

2r
+
q + `+ 1

2n

where the last inequality is a result of Lemma 39.
We can look at P[¬E] as conditioned on an event that the output of F (0, opad) collides with one

of the other at most q + ` values corresponding to the L and the evaluations of the inputs. When
this output does not collide, then the final output is freshly sampled and by the randomness of F
we get that the final outputs can collide with probability at most 1

2n . Furthermore, the probability

that output of F (0, opad) collides is q+`
2n . This concludes the proof.

C Hybrid Proofs

C.1 Recovering and Preserving Imply Robustness

Theorem 14. Consider a PRNG construction PRNG = (refresh, next) for which refresh makes α
P -calls and next makes β P -calls. Furthermore, assume PRNG is both

� (γ∗, q, `, εrec)-recovering and

� (q, `, εpre)-preserving

in the P -model. Then, PRNG is also (γ∗, q, t, `, εrob)-robust in the P -model, where

εrob ≤ t · (εrec + εpre) .

For the proof of Theorem 14, consider a γ∗-legitimate (canonical) (q, t, `)-attacker A. The proof is
through a series of hybrid games, where the advantage of A in the final game is easily seen to be 0.
In order to define the hybrids, let a nice next query be either get-next or next-ror. A nice next
query is

81

� recovering if it is the first such query after the MRED and
� preserving otherwise.

Define the hybrid robi to be the robustness game for PRNG where for first i nice next queries,
the output of next is replaced by a uniform random string of length n + r. Moreover, consider an
intermediate hybrid robi+ 1

2
, where the challenger also replaces the output of next with a random

string if the (i+ 1)st query is preserving.
Denote by ηi the probability that A outputs 1 when interacting with hybrid robi. In the

following, preserving security will be used to argue the indistinguishability of hybrids robi and
robi+ 1

2
(Claim 59), and recovering security (Claim 60) for robi+ 1

2
and robi.

Claim 59. For all i = 0, . . . , t, |ηi − ηi+ 1
2
| ≤ εpre.

Proof. The two hybrids only differ in the case when (i+ 1)st next query is preserving. Hence, assume
that the adversary A ensures that the (i+ 1)st query is indeed preserving, which serves to maximize
its advantage. Consider the following attacker A′ against the preserving security of PRNG: Initially,
A′ sets

� b←$ {0, 1},
� s← 0n,

� j ← 0, and

� χ← λ, where λ is the empty string.

Then, A′ runs A, simulating all oracle calls made by A answering the queries from A as follows: At
all times, P -queries by A are simply forwarded by A′ to its own P -oracle and back. Furthermore,
while j ≤ i:

� adv-refresh(x): A′ simply ignores the query.

� set-state(s′): A′ just sets s← s′.

� get-state: A′ returns s.

� get-next or next-ror: A′ chooses (s, y)←$ {0, 1}(n+r) uniformly at random, increments j ←
j + 1, and returns y.

Once j = i+ 1, A′ simulates the oracles as follows:

� adv-refresh(x): A′ appends x to χ, i.e., χ← χ||x.

� set-state(s′): A′ sets s← s′.

� get-state: A′ returns s.

� get-next: A′ calls its challenge oracle to obtain (s, y) ← chall(s, χ), increments j ← j + 1,
and returns y.

� next-ror: A′ calls its challenge oracle to obtain (s, y0) ← chall(s, χ), chooses y1←$ {0, 1}r,
increments j ← j + 1, and returns yb.

82

Subsequently, i.e., once j > i + 1, A′ uses the state s returned by chall and its P -access to keep
simulating the oracles consistent with robi+1. In the end, A′ outputs whatever A outputs.

Let the challenge bit of the challenger for A′ be b̃. Note that when b̃ = 0, A′ perfectly simulates
hybrid robi+ 1

2
for A. Similarly, if b̃ = 1, A′ perfectly simulates hybrid robi+1 for A. (Recall that A

is canonical.)

The next step is to show that the hybrids robi+ 1
2

and robi+1 are indistinguishable from each other.

Claim 60. For all i = 0, . . . , t− 1, |ηi+ 1
2
− ηi+1| ≤ εrec.

Proof. The two hybrids only differ in the case when (i+ 1)st next query is recovering. Hence, assume
that the adversary A ensures that the (i+ 1)st query is indeed recovering, which serves to maximize
its advantage. Consider the following attacker A′ against the recovering security of PRNG: Initially,
A′ sets

� b←$ {0, 1},
� s← 0n,

� j ← 0, and

� χ← λ, where λ is the empty string.

Then, A′ runs A, simulating all oracle calls made by A answering the queries from A as follows: At
all times, P -queries by A are simply forwarded by A′ to its own P -oracle and back. Furthermore,
while j ≤ i:

� adv-refresh(x): A′ simply ignores the query.

� set-state(s′): A′ just sets s← s′.

� get-state: A′ returns s.

� get-next or next-ror: A′ chooses (s, y)←$ {0, 1}(n+r) uniformly at random, increments j ←
j + 1, and returns y.

Once j = i+ 1, A′ simulates the oracles as follows:

� adv-refresh(x): A′ appends x to χ, i.e., χ← χ||x.

� set-state(s′): A′ sets s← s′.

� get-state: A′ returns s.

� get-next: A′ calls its challenge oracle to obtain (s, y) ← chall(s, χ), increments j ← j + 1,
and returns y.

� next-ror: A′ calls its challenge oracle to obtain (s, y0) ← chall(s, χ), chooses y1←$ {0, 1}r,
increments j ← j + 1, and returns yb.

Subsequently, i.e., once j > i + 1, A′ uses the state s returned by chall and its P -access to keep
simulating the oracles consistent with robi+1. In the end, A′ outputs whatever A outputs.

Let the challenge bit of the challenger for A′ be b̃. Note that when b̃ = 0, A′ perfectly simulates
hybrid robi+ 1

2
for A. Similarly, if b̃ = 1, A′ perfectly simulates hybrid robi+1 for A. (Recall that A

is canonical.)

83

It remains to argue that A′ is γ∗-legitimate. To that end, recall from Section 4.2 that the
legitimacy condition is defined in the legitimacy game. Observe in particular, that up to the time
A′ makes its challenge queries, A’s view is exactly as it would be in the legitimacy game, in which
one considers the following random variables immediately before A makes the ith call to oracle
get-next or next-ror:

� Li: the list of P -queries by A and the corresponding answers;

� Σi: the state of A;

� Xi: vector of inputs provided by A since the the most recent entropy drain (MRED); and

� Si: the state of the PRNG immediately after the MRED.

In a similar fashion, consider the following random variables pertaining to A′ just before its call to
the challenge oracle:

� X, the input vector A′ provides to chall;

� Σ, the state of A′ just before the call to chall;

� L, the list of P -queries and answers by A′ before the call to chall; and

� S0; the state A′ provides to chall.

That is, it needs to be established that

H∞(X|ΣLS0) ≥ γ∗ . (21)

using the argument of the γ∗-legitimacy of A,

H∞(Xi|ΣiLiSi) ≥ γ∗ .

First, it is easily verified that S = Si. Second, observe that Σ only needs to contain, in addition to
Σi, the values of b and j, which are clearly independent of X. Third, clearly L = Li. Finally, note
that X = Xi. From the preceding, (21) follows.

C.2 IT-Recovering Implies IT-Robustness

Theorem 36. Let PRNG = (refresh, next) be a PRNG for which refresh makes α P -calls and next
makes β P -calls. Let the PRNG be (γ∗, q, `, εrec)-IT-recovering in the P -model. Then, PRNG is also
(γ∗, q, t, `, εrob)-IT-robust in the P -model, where

εrob ≤ t · εrec .

As seen in the proof of Theorem 14, define the hybrid robi to be the IT-robustness game for PRNG
where for first i nice next queries, the output of next is replaced by a uniform random string of
length n+ r. We denote by ηi the probability that A outputs 1 when interacting with hybrid robi.

Claim 61. For all i = 0, . . . , t− 1, |ηi − ηi+1| ≤ εrec.

The proof of Claim 61 is completely analogous to that of Claim 60 and is therefore omitted.

84

	Introduction
	Previous Theoretical Models for PRNGs: Seeds
	Seedless PRNGs and Extractors from Cryptographic Hashing
	Toy Case: Monolithic Seedless Extraction from Oracle-Dependent Sources
	Our Results
	Other Related Work

	Preliminaries
	Statistical Distance and Min-Entropy
	Security Games

	Seedless Extraction and Key Derivation
	Definition
	Seedless Extraction with a Monolithic Random Oracle
	Online Extraction
	CBC-Based Extractors Are Insecure
	Seedless HKDF

	Pseudorandom Number Generators with Input
	Syntax
	Security Game

	Constructions of PRNGs
	PRNGs from Merkle-Damgård
	PRNGs from Merkle-Damgård with Davies-Meyer
	PRNGs from Sponges

	Security Proofs for Computational Constructions
	The H-Coefficient Technique
	Monolithic Extractor
	Intermediate PRNG Security Notions
	Recovering and Preserving Security
	Extraction, Maintaining, and Next Security

	PRNGs from Merkle-Damgård
	Extraction Security
	Maintaining Security
	Next Security
	Recovering Security
	Preserving Security

	PRNGs from Merkle-Damgård with Davies-Meyer
	Extraction Security
	Maintaining Security
	Next Security
	Recovering Security
	Preserving Security

	PRNGs from Sponges
	Extraction Security
	Maintaining Security
	Next Security
	Recovering Security
	Preserving Security

	Security Proofs for IT Constructions
	Information-Theoretic Preliminaries
	Monolithic Extractor
	Intermediate IT PRNG Security Notions
	IT PRNGs from Merkle-Damgård
	IT PRNGs from Merkle-Damgård with Davies-Meyer
	IT PRNGs from Sponge

	Comparison to Previous PRNG Security Notions
	Constructions of Online Extractors
	Extractors from Merkle-Damgård
	Extractors from Merkle-Damgård with Davies-Meyer
	Extractors from Sponges
	Extractors from HMAC

	Hybrid Proofs
	Recovering and Preserving Imply Robustness
	IT-Recovering Implies IT-Robustness

