
Non-Malleable Encryption: Simpler, Shorter, Stronger*

Sandro Coretti�

IOHK
sandro.coretti@iohk.io

Yevgeniy Dodis�

New York University
dodis@cs.nyu.edu

Ueli Maurer§

ETH Zurich
maurer@inf.ethz.ch

Björn Tackmann¶

DFINITY Foundation
bjoern@dfinity.org

Daniele Venturi
Sapienza University of Rome
venturi@di.uniroma1.it

Abstract

One approach towards basing public-key encryption (PKE) schemes on weak and credible assump-
tions is to build “stronger” or more general schemes generically from “weaker” or more restricted ones.
One particular line of work in this context was initiated by Myers and shelat (FOCS ’09) and con-
tinued by Hohenberger, Lewko, and Waters (Eurocrypt ’12), who provide constructions of multi-bit
CCA-secure PKE from single-bit CCA-secure PKE.

It is well-known that encrypting each bit of a plaintext string independently is not CCA-secure—the
resulting scheme is malleable. We therefore investigate whether this malleability can be dealt with using
the conceptually simple approach of applying a suitable non-malleable code (Dziembowski et al., ICS
’10) to the plaintext and subsequently encrypting the resulting codeword bit-by-bit. We find that an
attacker’s ability to ask multiple decryption queries requires that the underlying code be continuously
non-malleable (Faust et al., TCC ’14). Since, as we show, this flavor of non-malleability can only
be achieved if the code is allowed to “self-destruct,” the resulting scheme inherits this property and
therefore only achieves a weaker variant of CCA security.

We formalize this new notion of so-called indistinguishability under self-destruct attacks (IND-SDA)
as CCA security with the restriction that the decryption oracle stops working once the attacker submits
an invalid ciphertext. We first show that the above approach based on non-malleable codes yields a
solution to the problem of domain extension for IND-SDA-secure PKE, provided that the underlying
code is continuously non-malleable against (a reduced form of) bit-wise tampering. Then, we prove
that the code of Dziembowski et al. is actually already continuously non-malleable against bit-wise
tampering.

We further investigate the notion of security under self-destruct attacks and combine IND-SDA
security with non-malleability under chosen-ciphertext attacks (NM-CPA) to obtain the strictly stronger
notion of non-malleability under self-destruct attacks (NM-SDA). We show that NM-SDA security can
be obtained from basic IND-CPA security by means of a black-box construction based on the seminal
work by Choi et al. (TCC ’08). Finally, we provide a domain extension technique for building a multi-
bit NM-SDA scheme from a single-bit NM-SDA scheme. To achieve this goal, we define and construct
a novel type of continuous non-malleable code, called secret-state NMC, since, as we show, standard
continuous NMCs are insufficient for the natural “encode-then-encrypt-bit-by-bit” approach to work.

*This paper is the full version of the papers “From Single-Bit to Multi-bit Public-Key Encryption via Non-malleable
Codes” (appeared in TCC 2015, LNCS 9014, pp. 532-560, Springer, 2015) and “Non-Malleable Encryption: Simpler, Shorter,
Stronger” (appeared in TCC 2016-A, LNCS 9562, pp. 306-335, Springer, 2016).

�Supported by SNF project no. 200020-132794. Work done while author was at ETH Zurich.
�Partially supported by gifts from VMware Labs and Google, and NSF grants 1319051, 1314568, 1065288, 1017471.
§Supported by SNF project no. 200020-132794.
¶Work done while author was at ETH Zurich and UC San Diego. Author was partially supported by the SNF Fellow-

ship P2EZP2 155566 and NSF grants CNS-1228890 and CNS-1116800.

Contents

1 Introduction 2
1.1 Contributions . 3
1.2 Related Work . 5
1.3 Paper Organization . 6

2 Preliminaries 6
2.1 Notation . 6
2.2 Linear Error-Correcting Secret Sharing . 7
2.3 One-Time Signatures . 7
2.4 Message Authentication Codes . 8
2.5 Miscellaneous . 8

3 A General Indistinguishability Paradigm 8
3.1 Parallel Stateless Self-Destruct Games . 8
3.2 The Self-Destruct Lemma . 9

4 Non-Malleability under Self-Destruct Attacks 10
4.1 The Definition . 10
4.2 Relating Indistinguishability and Non-Malleability . 11

5 Non-Malleable Codes 14
5.1 Stateful and Stateless Codes . 14
5.2 Non-Malleability under Continuous Tampering . 15
5.3 Non-Malleability under Continuous Parallel Tampering . 19
5.4 Impossibility for Codes without State . 25

6 Domain Extension 27
6.1 Combining Single-Bit PKE and Non-Malleable Codes . 27
6.2 Security Analysis . 28
6.3 Variations . 33

7 Construction from CPA Security 33
7.1 The CDMW Construction . 33
7.2 Security Proof of the CDMW Construction . 34
7.3 LECSS for the CDMW Construction . 38

1

1 Introduction

A public-key encryption (PKE) scheme enables a sender A to send messages to a receiver B confidentially
if B can send a single message, the public key, to A authentically. A encrypts a message with the public
key and sends the ciphertext to B via a channel that could be authenticated or insecure, and B decrypts
the received ciphertext using the private key. Following the seminal work of Diffie and Hellman [37], the
first formal definition of public-key encryption has been provided by Goldwasser and Micali [49], and to
date numerous instantiations of this concept have been proposed, e.g., [71, 41, 32, 46, 51, 57, 72, 70], for
different security properties and based on various different computational assumptions.

Many security notions for public-key encryption (PKE) have been proposed. The most basic one
is that of indistinguishability under chosen-plaintext attacks (IND-CPA) [49], which requires that an
adversary with no decryption capabilities be unable to distinguish between the encryption of two messages.
Although extremely important and useful for a number of applications, in many cases IND-CPA security
is not sufficient. For example, consider the simple setting of an electronic auction, where the auctioneer
U publishes a public key pk, and invites several participants P1, . . . , Pq to encrypt their bids bi under
pk. As was observed in the seminal paper of Dolev et al. [38], although IND-CPA security of encryption
ensures that P1 cannot decrypt a bid of P2 under the ciphertext e2, it leaves open the possibility that
P1 can construct a special ciphertext e1 which decrypts to a related bid b1 (e.g., b1 = b2 + 1). Hence, to
overcome such “malleability” problems, stronger forms of security are required.

The strongest such level of PKE security is indistinguishability under chosen-ciphertext attacks (IND-
CCA), where the adversary is given unrestricted, adaptive access to a decryption oracle (modulo not
being able to ask on the “challenge ciphertext”). This notion is sufficient for most natural applications
of PKE, and several generic [38, 66, 73, 15, 61] and concrete [32, 33, 58, 52] constructions of IND-
CCA secure encryption schemes are known by now. Unfortunately, all these constructions either rely on
specific number-theoretic assumptions, or use much more advanced machinery (such as non-interactive
zero-knowledge proofs or identity-based encryption) than IND-CPA secure encryption. Indeed, despite
numerous efforts (e.g., a partial negative result [48]), the relationship between IND-CPA and IND-CCA
security remains unresolved until now. This motivates the study of various “middle-ground” security
notions between IND-CPA and IND-CCA, which are sufficient for applications, and, yet, might be con-
structed from simpler basic primitives (e.g., any IND-CPA encryption).

One such influential notion is non-malleability under chosen-plaintext attacks (NM-CPA), originally
introduced by Dolev et al. [38] with the goal of precisely addressing the auction example above, by
demanding that an adversary not be able to maul ciphertexts to other ciphertexts encrypting related
plaintexts. As was later shown by Bellare and Sahai [14] and by Pass et al. [69], NM-CPA is equivalent to
security against adversaries with access to a non-adaptive decryption oracle, meaning that the adversary
can only ask one “parallel” decryption query. Although NM-CPA appears much closer to IND-CCA than
IND-CPA security, a seminal result by Pass et al. [68] showed that one can generically build NM-CPA
encryption from any IND-CPA-secure scheme, and Choi et al. [25] later proved that this transformation
can also be achieved via a black-box construction. Thus, NM-CPA schemes can be potentially based on
weaker assumptions than IND-CCA schemes, and yet suffice for important applications.

Looking beyond non-malleable encryption, Cramer et al. [31] build bounded-query chosen-ciphertext
secure schemes from chosen-plaintext secure ones, and Lin and Tessaro [60] show how the security of
weakly chosen-ciphertext secure schemes can be amplified. A line of work started by Myers, Sergi, and
shelat [64] and continued by Dachman-Soled [34] shows how to obtain chosen-ciphertext secure schemes
from plaintext-aware ones. Most relevant for our work, however, are the results of Myers and shelat [65]
and Hohenberger, Lewko, and Waters [53], who generically build a multi-bit chosen-ciphertext secure
scheme from a single-bit chosen-ciphertext secure one.

2

IND-CCA

NM-SDA

NM-CPA IND-SDA

IND-CPA

Figure 1: Diagram of the main relationships between the security notions considered in this paper. X → Y
means that X implies Y ; X 9 Y indicates a separation between X and Y . Notions with the same color are
equivalent under black-box transformations; notions with different colors are not known to be equivalent.

1.1 Contributions

Non-malleability under self-destruct attacks. In this work, we introduce a strengthening of NM-
CPA security for PKE that we term non-malleability under (chosen-ciphertext) self-destruct attacks (NM-
SDA). Intuitively, in NM-SDA the adversary is allowed to ask many adaptive “parallel” decryption queries
(i.e., a query consists of many ciphertexts) up to the point when the first invalid ciphertext is submitted.
In such a case, the whole parallel decryption query containing an invalid ciphertext is still answered in
full, but no future decryption queries are allowed.

An interesting degenerate case of NM-SDA is when each decryption query consists of a single ci-
phertext. The latter yields a notion weaker than full CCA, which we term indistinguishability under
(chosen-ciphertext) self-destruct attacks (IND-SDA). Roughly, IND-SDA security is CCA security with
the twist that the decryption oracle stops working once the adversary submits an invalid ciphertext.

As we argue below, both IND-SDA and NM-SDA seem to apply better to the auction example above.
First, unlike with basic NM-CPA, with both IND-SDA and NM-SDA the auctioneer can reuse the same
public key pk, provided no invalid ciphertexts were submitted. Second, with IND-SDA the auctioneer
can reuse the secret key for subsequent auctions, as long as all encrypted bids are valid; unfortunately,
if an invalid ciphertext is submitted, even the results of the current auction should be discarded, as
IND-SDA security is not powerful enough to argue that the decryptions of the remaining ciphertexts are
unrelated w.r.t. prior plaintexts. Third, unlike IND-SDA, with NM-SDA the current auction can be safely
completed, even if some ciphertexts are invalid. Compared to IND-CCA, however, the auctioneer will
still have to change its public key for subsequent auctions if some of the ciphertexts are invalid. Still, one
can envision situations where parties are penalized for submitting such malformed ciphertexts, in which
case NM-SDA security might be practically sufficient, leading to an implementation under (potentially)
weaker computational assumptions as compared to using a full-blown IND-CCA PKE.

Having introduced and motivated NM-SDA and IND-SDA security, we provide a comprehensive study
of these notions, and their relationship to other PKE security definitions. First, we observe that the
notions of NM-CPA and IND-SDA are incomparable, meaning that there are (albeit contrived) schemes
that satisfy the former but not the latter notion and vice versa. This also implies that our notion of
NM-SDA security, which naturally combines NM-CPA and IND-SDA, is strictly stronger than either of
the two other notions (cf. Figure 1). By being stronger than both NM-CPA and IND-SDA, NM-SDA
security appears to be the strongest natural PKE security notion that is still weaker (as we give evidence
below) than IND-CCA—together with q-bounded CCA-secure PKE [31], to which it seems incomparable.

Domain-extension for PKE. Consider the problem of transforming a single-bit PKE scheme into a
multi-bit PKE scheme. A näıve attempt at solving this problem would be to encrypt each bit mi of a
plaintext m = m1 · · ·mk under an independent public key pki of the single-bit scheme. Unfortunately,

3

the resulting scheme is malleable (even if the underlying single-bit scheme is not): given a ciphertext
e = (e1, . . . , ek), where ei is an encryption of mi, an attacker can generate a new ciphertext e′ 6= e that
decrypts to a related message, for instance by copying the first ciphertext component e1 and replacing
the other components by fresh encryptions of, say, 0.

The above malleability issue suggests the following natural “encode-then-encrypt-bit-by-bit” approach:
first encode the message using a non-malleable code1 (a concept introduced by Dziembowski et al. [40]) to
protect its integrity, obtaining an n-bit codeword c = c1 · · · cn; then encrypt each bit ci of the codeword
using public key pki as in the näıve protocol from above.

It turns out that non-malleable codes as introduced by [40] are not sufficient: Since they are only
secure against a single tampering, the security of the resulting scheme would only hold with respect to a
single decryption. Continuously non-malleable codes (Faust et al. [44]) allow us to extend this guarantee
to multiple decryptions. However, such codes “self-destruct” once an attack has been detected, and,
therefore, so must any PKE scheme built on top of them. This is a restriction that we prove to be
unavoidable for this approach based on non-malleable codes.

We first prove that the above approach allows to build multi-bit NM-SDA-secure (resp. NM-CPA-
secure) PKE from single-bit NM-SDA-secure (resp. NM-CPA-secure) PKE, provided that the underlying
code satisfies a suitable strengthening (see below) of continuous non-malleable against (a reduced form
of) bit-wise tampering, which we denote by the tampering family Fset. Summarizing:

Theorem 1 (Informal). Let λ be the security parameter. There is a black-box construction of a λ-bit NM-
SDA (resp. NM-CPA, IND-SDA) PKE scheme from a single-bit NM-SDA (resp. NM-CPA, IND-SDA)
PKE scheme, making O(λ) calls to the underlying single-bit scheme.2

The main technical challenge when analyzing the “encode-then-encrypt-bit-by-bit” approach for the
cases of NM-CPA and NM-SDA is to deal with the parallel decryption queries: in order for the combined
scheme to be NM-CPA or NM-SDA secure, the NMC needs to be resilient against parallel tamper queries
as well. However, we show that no standard non-malleable code (as originally defined by Dziembowski
et al. [40]) can achieve this flavor of non-malleability already for a single, big enough, parallel tampering
query. Fortunately, we observe that the NMC concept can be extended to allow the decoder to make use of
(an initially generated) secret state, which simply becomes part of the secret key in the combined scheme.
This modification of NMCs—called secret-state NMCs—allows us to achieve resilience against parallel
tampering and may be useful for analyzing other constructions of (non-malleable) cryptographic primitives
using NMCs. Hence, our question reduces to building a secret-state non-malleable code resilient against
continuous parallel tampering attacks from Fset. We build such a code unconditionally, by combining the
notion of linear error-correcting secret sharing (see [40]) with the idea of a secret “trigger set” [25].

On the other hand, in the case of IND-SDA, where each decryption query consists of a single ciphertext,
it suffices to use any standard (i.e., without secret state) continuously non-malleable code against Fset. To
this end, we show that a simplified variant of the code by Dziembowski et al. [40] is already continuously
non-malleable against Fset.

3 This constitutes the first information-theoretically secure continuously non-
malleable code, a contribution that we believe is of independent interest, and forms one of the technical
cores of this paper.

Improving security achievable from IND-CPA. Finally, we also prove that there exists a black-box
construction of NM-SDA-secure PKE from any IND-CPA-secure PKE scheme. Given the negative result
in [48], we take this as evidence that NM-SDA is a strictly weaker notion than full-blown IND-CCA.

1Roughly, a code is non-malleable w.r.t. a function class F if the message obtained by decoding a codeword modified via
a function in F is either the original message or a completely unrelated value.

2For longer than λ-bit messages, one can also use standard hybrid encryption.
3The full variant of said code achieves continuous non-malleability even against full bit-wise tampering.

4

Theorem 2 (Informal). There exists a black-box construction of an NM-SDA-secure PKE scheme with
rate Ω(1/λ) from an IND-CPA-secure PKE scheme with constant rate, in which the encryption algorithm
calls the underlying IND-CPA encryption algorithm Θ(λ2) times.

Specifically, we show that a generalization of the construction by Choi et al. [25] already achieves NM-SDA
security (rather than only NM-CPA security). Our proof much follows the pattern of the original one,
except for one key step in the proof, where a brand new proof technique is required. Intuitively, one needs
to argue that no sensitive information about the secret “trigger set” is leaked to the adversary, unless one
of the ciphertexts is invalid. This is achieved via a rather general technique for analyzing security of so
called “parallel stateless self-destruct games,” which may be interesting in its own right (e.g., it is also
used for several other proofs in this work).

Along the way, we also manage to slightly abstract the transformation of [25] and to re-phrase it
in terms of certain linear error-correcting secret-sharing schemes (LECSSs) satisfying a special property
(as opposed to using Reed-Solomon codes directly as an example of such a scheme). Aside from a more
modular presentation (which gives a more intuitive explanation for the elegant scheme of Choi et al. [25]),
this also allows us to instantiate the required LECSS more efficiently and thereby improve the rate of the
transformation of [25] by a factor linear in the security parameter (while also arguing NM-SDA, instead
of NM-CPA, security).4

1.2 Related Work

Non-malleable codes. Several non-malleable codes constructions exist in the literature, both in the
information-theoretic and in the computational setting, covering a plethora of models including bit-wise
independent tampering and permutations [40, 24, 6, 7, 36], block-wise [17] constant-state [21, 55, 3] and
split-state [40, 62, 39, 2, 24, 23, 44, 4, 1, 18, 5, 19, 56, 59, 42, 67, 28, 35], tampering by functions with few
fixed points and high entropy [54], space-bounded tampering [43, 22], tampering by circuits with limited
complexity [45, 54, 10, 20, 8, 11, 12], and bounded polynomial-time tampering [9].

PKE domain extension. For several security notions in public-key cryptography, it is known that
single-bit public-key encryption implies multi-bit public-key encryption. For IND-CPA, this question is
simple [49], since the parallel repetition of a single-bit scheme (i.e., encrypting every bit of a message
separately) yields an IND-CPA secure multi-bit scheme.

For the other notions considered in this paper, i.e., for NM-CPA, IND-SDA, and NM-SDA, as well as
for IND-CCA, the parallel repetition (even using independent public keys) is not a scheme that achieves
the same security level as the underlying single-bit scheme. While we provide a single-to-multi-bit trans-
formation for NM-CPA, IND-SDA, and NM-SDA, Myers and Shelat [65], as well as Hohenberger et al. [53],
provide (much) more complicated transformations for IND-CCA security.

Damg̊ard et al. [36] showed how to reduce the public/secret key size of our single-to-multi-bit transform
for IND-SDA by using a continuously non-malleable code resistant to permutations and overwrites.

Non-malleability from semantic security. The transformation of [25] gives an NM-CPA scheme
such that its encryption algorithm calls the underlying IND-CPA scheme Θ(λ2) times, where λ is the
security parameter. For example, assuming a constant-rate IND-CPA encryption, this gives a Θ(λ)-bit
NM-CPA scheme with the ciphertext length of Θ(λ3). In contrast, our analysis of their transformation
allows to obtain Θ(λ3)-bit ciphertexts to encrypt Θ(λ2)-bit messages while at the same time achieving
the stronger notion of NM-SDA.

4Note that Choi et al. [25] consider the ciphertext blow-up between the underlying IND-CPA scheme and the resulting
scheme as quality measure of their construction, while we consider the rate (number of plaintext bits per ciphertext bit) of
the resulting scheme.

5

Construction Ciphertext length Security
` = o(λ) ` = Θ(λ) ` = Ω(λ2)

[25] Θ(λ3) Θ(λ2`) Θ(λ2`) NM-CPA
[26] Θ(λ2) Θ(λ`) Θ(`) NM-CPA

Ours Θ(λ3) Θ(λ2`) Θ(λ`) NM-SDA

Construction Ciphertext length Security
` = Θ(λ) ` = Θ(λ2) ` = Ω(λ3)

[25] + [50] Θ(λ2`) Θ(λ`) Θ(`) NM-CPA
[26] + [50] Θ(λ`) Θ(`) Θ(`) NM-CPA

Ours + [50] Θ(λ2`) Θ(λ`) Θ(`) NM-SDA

Figure 2: A comparison of black-box constructions of non-malleable PKE from semantically-secure PKE.
The parameter λ is the security parameter, and ` is the plaintext length. We assume the underlying
IND-CPA encryption has a constant rate for messages of length Ω(λ); encrypting o(λ)-long messages with
IND-CPA encryption is assumed to be Θ(λ)-long. The table on the right uses the hybrid encryption scheme
of Herranz et al. [50].

In a recent and concurrent5 work, Choi et al. [26] presented a new transformation that allows to achieve
the first black-box construction making Θ(λ) calls to the underlying IND-CPA encryption algorithm;
this yields an improved rate, although for the weaker notion of NM-CPA. We provide a more detailed
comparison in Figure 2.

Previous publications. An abridged version of this work appeared as [29, 27]. In particular, in [29]
we introduced the notion of IND-SDA security,6 and solved the problem of domain extension for that
notion. In [27], instead, we considered NM-SDA security, solved the problem of domain extension for that
notion, and showed how to obtain NM-SDA security from IND-CPA security in a black-box way. This
paper is the full version of the aforementioned works.

1.3 Paper Organization

The rest of this paper is organized as follows. We start with some preliminary definition, in Section 2.
Our general indistinguishability paradigm for analyzing “parallel stateless self-destruct games” can be
found in Section 3. The formal notions of NM-CPA, IND-SDA, and NM-SDA are given in Section 4,
where we also show that IND-SDA and NM-CPA are incomparable.

Section 5 contains all our results regarding non-malleable codes, in particular the information-theoretic
code constructions for continuous bit-wise independent tampering (for both parallel and non-parallel
attacks), and the impossibility result for stateless codes in the case of parallel tampering. The proof of
Theorem 1 can be found in Section 6, whereas Section 7 is focused on the proof of Theorem 2.

2 Preliminaries

This section introduces notational conventions and basic concepts that we use throughout the work.

2.1 Notation

Bits and symbols. If x ∈ {0, 1}n is an n-bit string, then x[i] denotes its ith bit. For two n-bit strings
x and y, dH(x, y) denotes their hamming distance (i.e., the number of bit positions in which they differ),
and wH(x) denotes the hamming weight of x (i.e., the number of positions i ∈ [n] such that x[i] = 1).

Oracle algorithms. Oracle algorithms are algorithms that can make special oracle calls. An algorithm
A with an oracle O is denoted by A(O). Note that oracle algorithms may make calls to other oracle
algorithms (e.g., A(B(O))).

5[26] was published in 2018, while our paper was still under review.
6The original name used in [29] is self-destruct chosen-ciphertext attacks security.

6

Distinguishers and reductions. A distinguisher is an (possibly randomized) oracle algorithm D(·)
that outputs a single bit. The distinguishing advantage on two (possibly stateful) oracles S and T is
defined by

∆D(S, T) := |P[D(S) = 1]− P[D(T) = 1]|,

where the probabilities are taken over the randomness of D as well as S and T , respectively.
Reductions between distinguishing problems are modeled as oracle algorithms as well. Specifically,

when reducing distinguishing two oracles U and V to distinguishing S and T , one exhibits an oracle
algorithm R(·) such that R(U) behaves as S and R(V) as T ; then, ∆D(S, T) = ∆D(R(U), R(V)) =
∆D(R(·))(U, V).

2.2 Linear Error-Correcting Secret Sharing

Definition 1 (Coding scheme). A (k, n)-coding scheme (Enc,Dec) over a field F consists of a randomized
encoding function Enc : Fk → Fn and a deterministic decoding function Dec : Fn → Fk ∪ {⊥} such that
Dec(Enc(x)) = x (with probability 1 over the randomness of the encoding function) for each x ∈ Fk. The
special symbol ⊥ indicates an invalid codeword.

The following notion of linear error correcting secret sharing, introduced by Dziembowski et al. [40], is
used in several places in this paper.

Definition 2 (Linear error-correcting/detecting sharing scheme). Let F be a finite field. A (k, n, δ, τ)
linear error-correcting secret sharing (LECSS) over F is a triple of algorithms (E,D,R) over F such that
(E,D) is a coding scheme and the following properties are satisfied:

� Linearity: For any vector w output by E and any c ∈ Fn,

D(w + c) =

{
⊥ if D(c) = ⊥, and

D(w) + D(c) otherwise.

� Minimum distance: For any c ∈ Fn with 0 < wH(c) < δn, D(c) = ⊥.

� Secrecy: The symbols of a codeword are individually uniform over F and τn-wise independent (over
the randomness of E).

� Error correction: It is possible to efficiently correct up to δn/2 errors, i.e., for any x ∈ Fk and any
w output by E(x), if dH(c, w) ≤ t for some c ∈ Fn and t < δn/2, then R(c, t) = w.

A LECSS without the error correction property is called a linear error-detecting sharing scheme (LEDSS).

This paper considers various instantiations of LECSSs, which are described in Sections 5.3.2 and 7.3,
where they are used.

2.3 One-Time Signatures

A digital signature scheme (DSS) is a triple of algorithms Σ = (KG , S, V), where the key-generation
algorithm KG outputs a key pair (sk, vk), the (probabilistic) signing algorithm S takes a message m and
a signing key sk and outputs a signature σ ← Ssk(m), and the verification algorithm takes a verification
key vk, a message m, and a signature σ and outputs a single bit Vvk(m,σ). A (strong) one-time signature
(OTS) scheme is a digital signature scheme that is secure as long as an adversary only observes a single
signature. More precisely, OTS security is defined using the following game GΣ,ots played by an adversary
A: Initially, the game generates a key pair (sk, vk) and hands the verification key vk to A. Then, A can
specify a single message m for which he obtains a signature σ ← Ssk(m). Then, the adversary outputs a
pair (m′, σ′). The adversary wins the game if (m′, σ′) 6= (m,σ) and Vvk(m

′, σ′) = 1. The advantage of A
is the probability (over all involved randomness) that A wins the game, and is denoted by ΓA(GΣ,ots).

7

Definition 3 (One-time signature). A DSS scheme Σ is a (t, ε)-strong one-time signature scheme if for
all adversaries A with running time at most t, ΓA(GΣ,ots) ≤ ε.

2.4 Message Authentication Codes

A message authentication code (MAC) is a pair of algorithms (T, V), where the tagging algorithm T takes
as input a message m and a key K ∈ {0, 1}λ and outputs a tag φ ← TK(m), and where the verification
algorithm V takes a key K, a message m, and a tag φ and outputs a bit VK(m,φ).

MAC security is defined using the following game Gmac played by an adversary A: Initially, the game
chooses a random key K. Then, A gets access to a tagging oracle, which returns a tag φ← TK(m) when
given a message m, and to a verification oracle, which outputs VK(m,φ) when given a message m and a
tag K. The adversary wins the game if he submits to the verification oracle a pair (m,φ) that is not a
query-answer pair for the tagging oracle and for which VK(m,φ) = 1.

Definition 4 (Security of MACs). A MAC (T, V) is (t, u, v, ε)-secure if for all adversaries A with running
time at most t, making at most u tag queries and at most v verification queries, ΓA(Gmac) ≤ ε.

2.5 Miscellaneous

We make use of the following Chernoff bound.

Theorem 3. Let X1, . . . , Xn be i.i.d. with Xi ∼ Be(pi). Then, for X :=
∑

iXi and µ :=
∑

i pi,

P[X ≤ (1− ε)µ] ≤ e−µε
2/2

for any ε ∈ (0, 1].

The following fact will be useful:

Proposition 4 ([75, Lemma 3.1.15]). Let X and Y be random variables with statistical distance d :=
∆(X,Y), and let X̄ (resp. Ȳ) be n independent copies of X (resp. Y). Then,

∆(X̄, Ȳ) ≥ 1− 2e−nd
2/2.

2.5.1 Plotkin Bound

The following theorem allows to bound the number of codewords of a code over a binary alphabet with
relative minimum distance δ > 1/2.

Theorem 5. For a code over a binary alphabet with block length n and distance d ≥ n
2 + 1, the maximum

number of codewords is

A(n, d) ≤ d

d− n
2

≤ 1 +
1

2ε

where ε = d
n −

1
2 .

A proof can be found in [63, p. 41].

3 A General Indistinguishability Paradigm

3.1 Parallel Stateless Self-Destruct Games

A recurring issue in this paper are proofs that certain self-destruct games answering successive parallel
decryption/tampering queries are indistinguishable. We formalize such games as parallel stateless self-
destruct games. Examples of such games include those for defining NM-CPA, IND-SDA, and NM-SDA.

8

Definition 5 (Parallel stateless self-destruct game). An oracle U is a parallel stateless self-destruct
(PSSD) game if

� it accepts parallel queries in which each component is from some set X and answers them by vectors
with components from some set Y,

� ⊥ ∈ Y,
� there exists a function g : X × R → Y such that every query component x ∈ X is answered by
g(x, r), where r ∈ R is the internal randomness of U , and

� the game self-destructs, i.e., after the first occurrence of ⊥ in an answer vector all further outputs
are ⊥.

3.2 The Self-Destruct Lemma

A PSSD game can be transformed into a related one by “bending” the answers to some of the queries
x ∈ X to the value ⊥. This is captured by the following definition:

Definition 6 (Bending of a PSSD). Let U be a PSSD game that behaves according to g and let B ⊆ X .
The B-bending of U , denoted by U ′, is the PSSD game that behaves according to g′, where

g′(x, r) =

{
⊥ if x ∈ B,

g(x, r) otherwise.

The self-destruct lemma below states that in order to bound the distinguishing advantage between a
PSSD and its bending, one merely needs to analyze a single, non-parallel query, provided that all non-bent
queries x can only be answered by a unique value yx or ⊥. Intuitively, the lemma says that adaptivity
does not help distinguish in such cases.

Lemma 6. Let U be a PSSD game and U ′ its B-bending for some B ⊆ X . If for all x /∈ B there exists
yx ∈ Y such that

{g(x, r) | r ∈ R} = {yx,⊥},

then, for all distinguishers D,

∆D(U,U ′) ≤ p ·max
x∈B

P[g(x,R) 6= ⊥],

where the probability is over the choice of R.

Proof. Fix a distinguisher D and denote by R and R′ the random variables corresponding to the internal
randomness of U and U ′, respectively. Call a value x ∈ X dangerous if x ∈ B and a query dangerous if it
contains a dangerous value.

In the random experiment corresponding to the interaction between D and U , define the event E that
the first dangerous query contains a dangerous value X with g(X,R) 6= ⊥ and that the self-destruct has
not been provoked yet. Similarly, define the event E′ for the interaction between D and U ′ that the first
dangerous query contains a dangerous value X ′ with g(X ′, R′) 6= ⊥ and that the self-destruct has not
been provoked yet.7

Clearly, U and U ′ behave identically unless E resp. E′ occur. Thus, it remains to bound P[E] = P[E′].
To that end, note that adaptivity does not help in provoking E. For any distinguisher D, there exists
a non-adaptive distinguisher D̃ such that whenever D provokes E, so does D′. D′ proceeds as follows:
First, it interacts with D only. Whenever D asks a non-dangerous query, D′ answers every component
x /∈ B by yx. As soon as D specifies a dangerous query, D′ stops its interaction with D and sends all
queries to U .

7Note that the function g is the same in the definitions of either event.

9

Fix all randomness in experiment D′(U), i.e., the coins of D (inside D′) and the randomness r of U .
Suppose D would provoke E in the direct interaction with U . In such a case, all the answers by D′ are
equal to the answers by U , since, by assumption, the answers to components x /∈ B in non-dangerous
queries are yx or ⊥ and the latter is excluded if E is provoked. Thus, whenever D provokes E, D′ provokes
it as well.

The success probability of non-adaptive distinguishers D is upper bounded by the probability over R
that their first dangerous query provokes E, which is at most p ·maxx∈B P[g(x,R) 6= ⊥].

4 Non-Malleability under Self-Destruct Attacks

A public-key encryption (PKE) scheme with message spaceM⊆ {0, 1}∗ and ciphertext space C is defined
as three algorithms Π = (KG , E,D), where the key-generation algorithm KG outputs a key pair (pk, sk),
the (probabilistic) encryption algorithm E takes a message m ∈ M and a public key pk and outputs a
ciphertext e ← Epk(m), and the decryption algorithm takes a ciphertext e ∈ C and a secret key sk and
outputs a plaintext m ← Dsk(e). The output of the decryption algorithm can be the special symbol ⊥,
indicating an invalid ciphertext. A PKE scheme is correct if m = Dsk(Epk(m)) (with probability 1 over
the randomness in the encryption algorithm) for all messages m and all key pairs (pk, sk) generated by
KG .

4.1 The Definition

Security notions for PKE schemes in this paper are formalized using the distinguishing game GΠ,q,p
b , de-

picted in Figure 3: The distinguisher (adversary) is initially given a public key and then specifies two
messages m0 and m1. One of these, namely mb, is encrypted and the adversary is given the resulting chal-
lenge ciphertext. During the entire game, the distinguisher has access to a decryption oracle that allows
him to make at most q decryption queries, each consisting of at most p ciphertexts. Once the distinguisher
specifies an invalid ciphertext, the decryption oracle self-destructs, i.e., no additional decryption queries
are answered.

The general case is obtained when both q and p are arbitrary (denoted by q = p = ∗), which leads
to our main definition of non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). For

readability, set GΠ,nm-sda
b := GΠ,∗,∗

b for b ∈ {0, 1}. Formally, NM-SDA is defined as follows:

Definition 7 (Non-malleability under self-destruct attacks). A PKE scheme Π is (t, q, p, ε)-NM-SDA-
secure if for all distinguishers D with running time at most t and making at most q decryption queries of
size at most p each,

∆D(GΠ,nm-sda
0 , GΠ,nm-sda

1) ≤ ε.

All other relevant security notions in this paper can be derived as special cases of the above definition,
by setting the parameters q and p to different values.

Chosen-plaintext security (IND-CPA). In this variant, the distinguisher is not given access to a

decryption oracle, i.e., q = p = 0. For readability, set GΠ,ind-cpa
b := GΠ,0,0

b for b ∈ {0, 1} in the remainder
of this paper. We say that Π is (t, ε)-IND-CPA-secure if it is, in fact, (t, 0, 0, ε)-NM-SDA-secure.

Non-malleability (NM-CPA). A scheme is non-malleable under chosen-plaintext attacks [68] (NM-
CPA), if the adversary can make a single decryption query consisting of arbitrarily many ciphertexts, i.e.,
q = 1 and p arbitrary (denoted by p = ∗). Similarly to above, set GΠ,nm-cpa

b := GΠ,1,∗
b for b ∈ {0, 1}. We

say that Π is (t, p, ε)-NM-CPA-secure if it is, in fact, (t, 1, p, ε)-NM-SDA-secure.8

8Note that the way NM-CPA is defined here is slightly stronger than the normal notion. This is due to the adversary’s
ability to ask a parallel decryption query at any time—as opposed to only after receiving the challenge ciphertext in earlier
definitions (cf., e.g., [68]).

10

Distinguishing Game GΠ,q,p
b

init
ctr← 0
(pk, sk)← KG
output pk

on (chall,m0,m1) with |m0| = |m1|
e← Epk(mb)
output e

on (dec, e(1), . . . , e(p))
ctr← ctr + 1
for j ← 1 to p

m(j) ← Dsk(e
(j))

if e(j) = e

m(j) ← test

output (m(1), . . . ,m(p))

if ∃j : m(j) = ⊥ or ctr ≥ q
self-destruct

Figure 3: Distinguishing game GΠ,q,p
b , where b ∈ {0, 1}, used to define security of a PKE scheme Π =

(KG , E,D). The numbers q, p ∈ N specify the maximum number of decryption queries and their size,
respectively. The command self-destruct results in all future decryption queries being answered by ⊥.
Whenever one of the ciphertexts e(j) equals the challenge ciphertext e, the corresponding message m(j) is
set to the string test.

Indistinguishability under self-destruct attacks (IND-SDA). This variant, introduced in [29],
allows arbitrarily many queries to the decryption oracle, but each of them may consist of a single ciphertext
only, i.e., q arbitrary (denoted by q = ∗) and p = 1. Once more, set GΠ,ind-sda

b := GΠ,∗,1
b . We say that Π

is (t, q, ε)-IND-SDA-secure if it is, in fact, (t, q, 1, ε)-NM-SDA-secure.

Chosen-ciphertext security (IND-CCA). The standard notion of IND-CCA security can be ob-
tained as a strengthening of NM-SDA where q = ∗, p = 1, and the decryption oracle never self-destructs.
We do not define this notion formally, as it is not the main focus of this paper.

Asymptotic formulation. To allow for concise statements, sometimes we prefer to use an asymptotic
formulation instead of stating concrete parameters. More precisely, we will say that a PKE scheme Π is X-
secure (for X ∈ {IND-CPA, NM-CPA, IND-SDA, NM-SDA}) if for all efficient adversaries the advantage
ε in the corresponding distinguishing game is negligible in the security parameter.

4.2 Relating Indistinguishability and Non-Malleability

In this section we provide a separation between the notions of NM-CPA and IND-SDA security. Given
such a separation, our notion of NM-SDA security (see Definition 7) is strictly stronger than either of the
two other notions.

4.2.1 NM-CPA Does Not Imply IND-SDA

The modified scheme. Let λ be the security parameter and Π = (KG , E,D) be a NM-CPA-secure
PKE scheme with message spaceM = {0, 1}λ. Consider the following modification Π′ = (KG ′, E′, D′) of
Π (cf. Figure 4):

� The key generation algorithm KG ′ works as KG but additionally samples a uniformly random
message ρ←M, which becomes part of the secret key.

� The encryption algorithm E′ works as E except that it prepends a zero-bit to all ciphertexts.

� The decryption algorithm D′ proceeds as follows, upon receiving a ciphertext e′ = β‖e. If β = 1, it
outputs ρ. If β = 0, it decrypts m← Dsk(e). If m = ρ, the decryption algorithm outputs the secret
key, and otherwise m.

11

PKE Scheme Π′ = (KG ′, E′, D′)

Key Generation KG ′

(pk, sk)← KG
ρ←$M
pk′ ← pk
sk′ ← (ρ, sk)
return (pk′, sk′)

Encryption E′
pk′

(m)

e← Epk(m)
e′ ← 0‖e
return e′

Decryption D′
sk′

(e′)

β ‖e← e′

m← Dsk(e)
if β = 1

return ρ
else

if m = ρ
return sk

else
return m

Figure 4: PKE scheme Π′ based on an NM-CPA-secure PKE scheme Π.

Security of the modified scheme. PKE scheme Π′ clearly is not IND-SDA-secure: A distinguisher
simply queries 1‖Epk(m) for some message m to obtain message ρ. By subsequently querying 0‖Epk(ρ),
the distinguisher obtains the secret key.

The modified scheme is, however, still NM-CPA-secure as implied by the following lemma:

Lemma 7. For all p ∈ N, and all distinguishers D′, there exists a distinguisher D such that

∆D′(GΠ′,1,p
0 , GΠ′,1,p

1) ≤ ∆D(GΠ,1,p
0 , GΠ,1,p

1) + 2p · 2−λ.

Proof. Fix p and a distinguisher D′. Distinguisher D internally runs a copy of D′ and works as follows:
Initially, it chooses ρ ← M uniformly at random and outputs the public key received from its oracle.
Upon receiving (chall,m0,m1) from D′, D forwards it to its oracle, which returns a ciphertext e∗. D′ then
passes the value 0‖e∗ to D′.

Moreover, D answers each component e′ of the parallel decryption query received from D′ as follows:
It first parses e′ as β‖e. Then, if β = 1, the answer to the query is ρ. Otherwise, D uses its own decryption
oracle to decrypt e and answers the query by the answer m. (Of course, D actually asks a single parallel
query with the ciphertexts e for all components.)

It is easily seen that D simulates the view D′ would have in a direct interaction with the game for Π′

unless D′ asks a ciphertext that decrypts to ρ. This event occurs with probability at most p · |M| = p ·2−λ.
The lemma now follows using a simple triangle inequality.

4.2.2 IND-SDA Does Not Imply NM-CPA

The modified scheme. Let λ be the security parameter and Π = (KG , E,D) be an IND-SDA-secure
PKE scheme with message spaceM = {0, 1}λ. Moreover, let (Enc,Dec) be a (k, λ)-coding scheme with τ -
secrecy for some constant τ > 0 and some k > 0. Consider the following modification Π′′ = (KG ′′, E′′, D′′)
of Π (cf. Figure 5):

� The key generation algorithm KG ′′ is the same as KG .

� The encryption algorithm E′′ works as follows: To encrypt a message m ∈ {0, 1}k, it computes
c← Enc(m) and e← Epk(c) and outputs e′′ ← 0‖0‖0ν‖e, where ν := dlog λe.

� The decryption algorithm D′′ proceeds as follows, upon receiving a ciphertext e′′ = β‖d‖i‖e. If
β = 0, d = 0, and i = 0ν , it decrypts c ← Dsk(e), computes m ← Dec(c), and outputs m. If β = 1
and c[i] = d (i.e., if d is a correct guess for the ith bit of the encoding), D′′ outputs 0k. In all other
cases, it outputs ⊥.9

9Note that in general, not all ν-bit strings i are valid indices. If the decryption algorithm encounters an invalid index, it
also outputs ⊥. For readability this issue is ignored in the remainder of this section.

12

PKE Scheme Π′′ = (KG ′′, E′′, D′′)

Key Generation
KG ′′

(pk, sk)← KG
return (pk, sk)

Encryption E′′pk(m)

c← Enc(m)
e← Epk(c)
e′′ ← 0‖0‖0ν ‖e
return e′′

Decryption D′′sk(e
′′)

β ‖d‖ i‖e← e′′

c← Dsk(e)
m← Dec(c)
if β = 0

if (d = 0) ∧ (i = 0ν)
return m

else
return ⊥

else
if (c[i] = d)

return 0k

else
return ⊥

Figure 5: PKE scheme Π′′ based on an IND-SDA-secure PKE scheme Π.

Security of the modified scheme. PKE scheme Π′′ is not NM-CPA-secure: A distinguisher can
recover each bit i ∈ [n] of the encoding c∗ encrypted in the challenge ciphertext 0‖0‖0ν‖e∗ by a single
parallel query containing ciphertexts

e(i) := 1‖0‖ i‖e∗.

If the answer to the ith query is 0k, then c∗[i] = 0; otherwise c∗[i] = 1. Computing Dec(c∗) yields the
plaintext encrypted by the challenge.

The modified scheme is, however, still IND-SDA-secure as implied by the following lemma:

Lemma 8. For all q ∈ N, and all distinguishers D′′, there exist distinguishers D0 and D1 such that

∆D′′(GΠ′′,q,1
0 , GΠ′′,q,1

1) ≤ ∆D0(GΠ,q,1
0 , GΠ,q,1

1) + ∆D1(GΠ,q,1
0 , GΠ,q,1

1) + 2−τλ.

Proof. Let b ∈ {0, 1} and consider the hybrid game Hb that works exactly as GΠ,q,1
b except that:

� The ciphertext e∗ in the challenge ciphertext 0‖0‖0ν‖e∗ is computed as the encryption of a random
λ-bit string ρ (instead of an encoding of mb);

� Decryption queries of the form 1‖d‖i‖e∗ are answered based on an internally generated encoding
cb = Enc(mb), i.e., the answer is 0k if cb[i] = d and ⊥ otherwise.

Db internally runs a copy of D′′ and proceeds as follows: Initially, it obtains a public key pk from its oracle
which it forwards to D′′. When (chall,m0,m1) is received from D′′, Db chooses a random λ-bit string ρ,
computes cb ← Enc(mb) and outputs (chall, cb, ρ) to its oracle. Subsequently, it obtains a ciphertext e∗ and
outputs 0‖0‖0ν‖e∗ to D′′. Db answers decryption queries β‖d‖i‖e made by D′′ as follows (implementing
the self-destruct mode if the answer is ⊥):

� If β = 0, d = 0, and i = 0ν , Db proceeds as follows: If e = e∗, the answer to the query is test.
Otherwise, it outputs e to its own decryption oracle. The value c subsequently received is decoded
to m← Dec(c) and output. If β = 0 but d 6= 0 or i 6= 0ν , Db responds with ⊥.

� If β = 1 and e = e∗, Db outputs 0k if cb[i] = d and ⊥ otherwise.

� If β = 1 and e 6= e∗, Db outputs e to its own decryption oracle and subsequently obtains a value c.
Db outputs 0k if c[i] = d and ⊥ otherwise.

By inspection, one verifies that for b ∈ {0, 1}:

13

� If Db interacts with GΠ,q,1
0 , then the view of D′′ is the view it would have when interacting with

GΠ′′,q,1
b ;

� If Db interacts with GΠ,q,1
1 , then the view of D′′ is the view it would have when interacting with Hb.

Moreover, observe that that the hybrids Hb do not leak any information about cb except when answer-
ing decryption queries with β = 1 and e = e∗. Due to the τλ-secrecy of the coding scheme (Enc,Dec),
H0 and H1 can only be told apart if a distinguisher D manages to guess τλ random bits of the encoding.
Thus, ∆D(H0, H1) ≤ 2−τλ.

The lemma now follows using a simple triangle inequality.

5 Non-Malleable Codes

We start by defining non-malleable codes with secret state, in Section 5.1. Our information-theoretic
constructions of continuously non-malleable codes for the case of non-parallel and parallel tampering
appear in Section 5.2 and 5.3, respectively. Finally, in Section 5.4, we show that the concept of secret
state is inherent for achieving non-malleability against parallel tampering.

5.1 Stateful and Stateless Codes

Non-malleable codes were introduced by Dziembowski et al. [40]. Intuitively, they protect encoded mes-
sages in such a way that any tampering with the codeword causes the decoding to either output the
original message or a completely unrelated value.

Definition 8 (Code with secret state). A (k, n)-code with secret state (CSS) is a triple of algorithms
(Gen,Enc,Dec), where the (randomized) state-generation algorithm Gen outputs a secret state s from
some set S, the (randomized) encoding algorithm Enc takes a k-bit plaintext x and outputs an n-bit
encoding c← Enc(x), and the (deterministic) decoding algorithm Dec takes an encoding as well as some
secret state s ∈ S and outputs a plaintext x ← Dec(c, s) or the special symbol ⊥, indicating an invalid
encoding.

Note that the secret state is generated once and for all, and can be potentially used to decode multiple
codewords. In this sense, CSSs are different from codes with randomized decoding [10], where decoding
multiple codewords requires fresh and independent randomness. CSSs are also different from codes in the
common reference string (CRS) model, where a public CRS is sampled once and for all and given as input
to both the encoding and decoding algorithm.

Some of the codes in this work do not need to make use of the secret state; they are fully specified by
the algorithms Enc and Dec, and the latter does not take any secret state as input. Sometimes we refer
to such codes as stateless; see Definition 1.

Tampering attacks are captured by functions f , from a certain function class F , that are applied to
an encoding. The original definition by [40] allows an attacker to apply only a single tamper function.
This notion was later generalized in [44] to capture continuous attacks, where the adversary can tamper
many times with the same target encoding until a tamper query results in an invalid codeword.10

In addition to continuous non-malleability, this work considers yet another extension, called continuos
parallel non-malleability: The attacker may repeatedly specify parallel tamper queries, consisting of
multiple tampering functions f . The self-destruct occurs as soon as a single component of a parallel query
results in an invalid codeword, but the entire query containing the invalid tampering is answered fully.
In order to capture continuous parallel attacks, the definition below permits the attacker to repeatedly
specify parallel tamper queries, each consisting of several tamper functions. The process ends as soon as
one of the tamper queries leads to an invalid codeword.

10Continuous non-malleability is known to be impossible without such a self-destruct feature [47, 44, 29].

14

Game RF

init
s← Gen

on (encode, x)
c←$ Enc(x)

on (tamper, (f (1), . . . , f (p)))
for j ← 1 to p

c′ ← f (j)(c)

x(j) ← Dec(c′, s)

output (x(1), . . . , x(p))

if ∃j : x(j) = ⊥
self-destruct

Game SF ,sim

on (encode, x)
store x

on (tamper, (f (1), . . . , f (p)))

(x(1), . . . , x(p))←$ sim((f (1), . . . , f (p)))

for all x(j) = same

x(j) ← x

output (x(1), . . . , x(p))

if ∃j : x(j) = ⊥
self-destruct

Figure 6: Distinguishing game (RF , SF,sim) used to define non-malleability of a secret-state coding scheme
(Gen,Enc,Dec). The command self-destruct has the effect that all future queries are answered by ⊥.

The non-malleability requirement is captured by considering a real and an ideal experiment. In both
experiments, an attacker is allowed to encode a message of his choice. In the real experiment, he may
tamper with an actual encoding of that message, whereas in the ideal experiment, the tamper queries are
answered by a (stateful) simulator. The simulator is allowed to output the special symbol same, which
the experiment replaces by the originally encoded message. In either experiment, if a component of the
answer vector to a parallel tamper query is the symbol ⊥, a self-destruct occurs, i.e., all future tamper
queries are answered by ⊥. The experiments are depicted in Figure 6.

Definition 9 (Non-malleable code with secret state). Let q, p ∈ N and ε > 0. A CSS (Gen,Enc,D) is
(F , q, p, ε)-non-malleable if the following properties are satisfied:

� Correctness: For each x ∈ {0, 1}k and all s ∈ S output by Gen, D(Enc(x), s) = x with probability 1
over the randomness of Enc.

� Non-Malleability: There exists a (possibly stateful) simulator sim such that for any distinguisher D
asking at most q parallel queries, each of size at most p, ∆D(RF , SF ,sim) ≤ ε.

The above definition is similar to the notion of many-many non-malleable codes [19]. The main differences
are that Definition 9: (i) is specifically tailored to codes with secret state; and (ii) includes the self-destruct
feature. It is well-known that, already in case of bit-wise tampering, assumption (ii) is necessary when
considering an arbitrary number of tampering queries (i.e., q = ∗).

It is also easy to adapt Definition 9 to codes without secret state (as the ones considered in [40]).
Note that in such a case one obtains the standard notion of non-malleability [40] by setting q = p = 1,
and continuous non-malleability [44] by letting p = 1 and q arbitrary (i.e., q = ∗).

5.2 Non-Malleability under Continuous Tampering

It turns out that a LEDSS with a sufficiently large distance (δ > 1/4) is already continuously non-
malleable against the class Fset, where a function f ∈ Fset is characterized by (f [1], . . . , f [n]), such that
f [j] : {0, 1} → {0, 1} is the action of f on the jth bit, for f [j] ∈ {zero, one, keep}, with the meaning that
it either sets the jth bit to 0 (zero), or to 1 (one), or leaves it unchanged (keep).

Theorem 9. Let (E,D) be a (k, n, δ, τ)-LEDSS with δ > 1/4 and δ ≥ τ .11 Then, for any q ∈ N, (E,D) is
(Fset, q, 1, ε)-non-malleable for

ε = 2−(τn−1) +

(
τ

(δ − 1/4)2

)τn/2
.

11Note that the requirement δ ≥ τ can always be achieved by “ignoring” some of the secrecy.

15

5.2.1 Security Proof (of Theorem 9)

In the remainder of this section, let F := Fset. For the proof of Theorem 9, fix an arbitrary distinguisher
D and let sim be a simulator determined later. The theorem is proved conditioned on the message x
encoded by D.

Tamper-query types. Define A(f) to be the set of all indices j such that f [j] ∈ {zero, one}, and let
q(f) := |A(f)|; define B(f) to be the set of the indices not in A(f). Moreover, let val(zero) := val(keep) :=
0 and val(one) := 1. In the following, queries f ∈ F with 0 ≤ q(f) ≤ τn, τn < q(f) < (1 − τ)n, and
(1− τ)n ≤ q(f) ≤ n are called low queries, middle queries, and high queries, respectively.

On a high level, the proof proceeds as follows: First, one shows that middle queries are rejected with
high probability. Then, one proves that issuing low and high queries actually corresponds to guessing bits
of the encoding that is being tampered with. Using the secrecy property of the LEDSS, one can show
that only with negligible probability, some attacker can guess sufficiently many of those bits before the
self-destruct in order to be able to distinguish tampering with an actual encoding from tampering with
uniformly random bits, which leads to a simulation strategy.

Analyzing low and high queries. Consider the game RF and let c = c[1] · · · c[n] = E(x; r) be the
encoding of the message x initially specified by D, where r are the random bits used by E. Moreover, for
a query f , let c̃ = c̃[1] · · · c̃[n] = f(E(x; r)) be the tampered encoding. By the linearity of the LEDSS,

D(c̃) = D(c) + D(d),

where d = c̃− c.

� Consider a low query f . It fully determines the bits i ∈ B(f) of d; namely, d[i] = val(f [i]). Let
d∗ be a codeword such that d∗[i] = val(f [i]) for all i ∈ B(f). Due to the fact that the LEDSS has
distance δ ≥ τ and |B(f)| ≥ (1− τ)n, d∗ is unique (and determined solely by f).

Therefore, D(c̃) 6= ⊥ if and only if for all i ∈ A(f), d[i] = d∗[i] or, equivalently, val(f [i])−c[i] = d∗[i].

� Consider a high query f . It fully determines the bits i ∈ A(f) of c̃; namely, c̃[i] = val(f [i]). Let
c̃∗ be a codeword such that c̃∗[i] = val(f [i]) for all i ∈ A(f). Due to the fact that the LEDSS has
distance δ ≥ τ and |A(f)| ≥ (1− τ)n, c̃∗ is unique (and determined solely by f).

Therefore, D(c̃) 6= ⊥ if and only if for all i ∈ B(f), c̃[i] = c̃∗[i] or, equivalently, c[i]+val(f [i]) = c̃∗[i].

Handling middle queries. Consider the hybrid game H that proceeds as RF except that as soon as
D specifies a middle query, it outputs ⊥ and self-destructs.

Lemma 10. ∆D(RF , H) ≤ 2−τn +
(

τ
(δ−1/4)2

)τn/2
.

Proof. The proof uses the self-destruct lemma (cf. Lemma 6 in Section 3).12 Note that both RF and H
answer queries from X := F by values from Y := {0, 1}k ∪ {⊥}. Moreover, observe that their internal
randomness is an element uniformly chosen from the space R of random strings r for the encoding
algorithm E.

Let g : X ×R → Y be the function according to which RF answers queries, i.e.,

g(f, r) := D(f(E(x; r))).

Hence, RF is a PSSD game and H is its B-bending (cf. Definition 6) where B ⊆ F is the set of middle
queries. Moreover, given the above it is easy to see that queries f /∈ B, i.e., low and high queries, can
only be answered by a unique value yf or ⊥. For

12Note that Lemma 6 is stated for games that accept parallel queries. This is not needed here, i.e., p = 1 in the statement
of the lemma.

16

Wrapper W (·)

init
∀i ∈ [n] : c[i]← ∅

on first (encode, x)
output x internally

on (tamper, f) with 0 ≤ q(f) ≤ τn
if ∃codeword d∗: ∀i ∈ B(f) : val(f [i]) = d∗[i]

for i where f [i] ∈ A(f)
g ← val(f [i])− d∗[i]
if c[i] = ∅

output (i, g) internally
get a ∈ {⊥, 1}
if a = ⊥

self-destruct
c[i]← g

else
if c[i] 6= g

self-destruct

if Dec(d∗) = ⊥
self-destruct

else
output x+ Dec(d∗)

else
self-destruct

on (tamper, f) with τn < q(f) < n− τn
self-destruct

on (tamper, f) with n− τn ≤ q(f) ≤ n
if ∃codeword c̃∗ : ∀i ∈ A(f) : val(f [i]) = c̃∗[i]

for i where f [i] ∈ B(f)
g ← c̃∗[i]− val(f [i])
if c[i] = ∅

output (i, g) internally
get a ∈ {⊥, 1}
if a = ⊥

self-destruct
c[i]← g

else
if c[i] 6= g

self-destruct

if Dec(c̃∗) = ⊥
self-destruct

else
output Dec(c̃∗)

else
self-destruct

Figure 7: The wrapper W (·). The command self-destruct causes W (·) to output ⊥ at B and to halt.

� low queries that value is yf := x+ D(d∗) and for

� high queries that value is yf := D(c̃∗).

Finally, note that by the original analysis of middle queries f in [40],

P[D(f(E(x; r))) 6= ⊥] ≤
(

τ

(δ − 1/4)2

)τn/2
.

Bit-guessing. Consider the hybrid game H. Making tamper queries to this system essentially amounts
to trying to “guess” the bits of the encoding E(x) with the caveat that an incorrect guess leads to the
self-destruct. This intuition is formalized by defining a core game B capturing the bit-guessing and a
wrapper W (·) such that W (B) and H behave identically.

The core game B works as follows: Initially, it takes a value x ∈ {0, 1}k, computes an encoding
c[1] · · · c[n] ← E(x) of it, and outputs nothing. Then, it repeatedly accepts guesses gi = (j, b), where
(j, b) is a guess b for cj . If a guess gi is correct, B returns ai = 1. Otherwise, it outputs ai = ⊥ and
self-destructs (i.e., all future answers are ⊥).

The wrapper W (·) (cf. Figure 7) initially forwards the message x the distinguisher wishes to encode
to B, which internally creates an encoding c[1] · · · c[n] of x. Then, W (·) deals with tampering queries as
follows:

� A low query f results in x+ D(d∗) if c[i] = val(f [i])− d∗[i] for all i ∈ A(f).

� A middle query f results in ⊥.

17

� A high query f results in D(c̃∗) if c[i] = c̃∗[i]− val(f [i]) for all i ∈ B(f).

Hence, upon receiving a low or a high query, W (·) issues the corresponding guesses to B. If all guesses
succeed, W (·) outputs x+ D(d∗) resp. D(c̃∗). Otherwise, it outputs ⊥ and self-destructs.

Lemma 11. ∆D(H,W (B)) = 0.

Proof. By inspecting Figure 7, one can see that the wrapper is implemented exactly along the lines argued
above, and therefore W (B) perfectly simulates H.

Simulation. Consider the core game B′ that behaves as B except that the initial input x is ignored
and the values c1, . . . , cn are chosen uniformly at random and independently.

Lemma 12. ∆D(B,B′) ≤ 2−τn.

Proof. For both random experiments defined by the interaction of D with B and B′, respectively, define
the event that D guesses more than τn bits correctly. Until this event occurs, both B and B′ answer
guesses according to bits ci chosen uniformly at random and independently. Therefore, the distinguishing
advantage is bounded by the probability 2−τn thatD provokes this event (in either of the experiments).

Consider now the game W (B′). Due to the nature of B′, the behavior of W (B′) is independent of the
value x that is initially encoded. This allows to easily design a simulator sim such that W (B′) and SF ,sim
behave identically. It internally creates a simulated encoding consisting of uniformly random bits (just as
W (B′)) and then follows the intuition above. The simulator is described in Figure 8. By inspection, one
easily verifies:

Lemma 13. ∆D(W (B′), SF ,sim) = 0.

The proof of Theorem 9 now follows from a simple triangle inequality.

Proof (of Theorem 9). From Lemmas 10-13, one obtains that for all distinguishers D,

∆D(RF , SF ,sim)

≤ ∆D(RF , H) + ∆D(H,W (B))︸ ︷︷ ︸
=0

+ ∆D(W (B),W (B′))︸ ︷︷ ︸
≤2−τn

+ ∆D(W (B′), SF ,sim)︸ ︷︷ ︸
=0

≤ 2−τn +

(
τ

(δ − 1/4)2

)τn/2
+ 2−τn

≤ 2−(τn−1) +

(
τ

(δ − 1/4)2

)τn/2
.

5.2.2 Instantiating the Construction

A suitable LEDSS is provided by Dziembowski et al. [40] (who consider security against non-continuous
tampering).

18

Simulator sim

init
∀i ∈ [n] : c[i]← {0, 1}

on (tamper, f) with 0 ≤ q(f) ≤ τn
for i where f [i] ∈ A(f)

d′[i]← val(f [i])⊕ c[i]
for i where f [i] ∈ B(f)

d′[i]← val(f [i])
d′ ← d′[1] · · · d′[n]
if Dec(d′) = ⊥

output ⊥
else

output same

on (tamper, f) with τn < q(f) < (1− τ)n
output ⊥

on (tamper, f) with (1− τ)n ≤ q(f) ≤ n
for i where f [i] ∈ A(f)

c′[i]← val(f [i])
for i where f [i] ∈ B(f)

c′[i]← c[i]⊕ val(f [i])
c′ ← c′[1] · · · c′[n]
output Dec(c′)

Figure 8: The simulator sim.

5.3 Non-Malleability under Continuous Parallel Tampering

Next, we construct a secret-state non-malleable code resilient against continuous parallel tampering at-
tacks from Fset. Later, we will prove that the restriction of the code being stateful is necessary. The
intuition behind our construction is the following: If a code has the property (as has been the case with
previous schemes secure against (non-parallel) bit-wise tampering) that changing a single bit of a valid
encoding results in an invalid codeword, then the tamper function that fixes a particular bit of the en-
coding and leaves the remaining positions unchanged can be used to determine the value of that bit; this
attack is parallelizable, and thus a code of this type cannot provide security against parallel tampering.
A similar attack is also possible if the code corrects a fixed (known) number of errors. To circumvent this
issue, our construction uses a—for the lack of a better word—“dynamic” error-correction bound: The
secret state (which is initially chosen at random) is used to determine the positions of the encoding in
which a certain amount of errors is tolerated.

Construction. Let F = GF(2) and α > 0. Let (E,D,R) be a (k, n, δ, τ)-LECSS (cf. Definition 2 in
Section 2) with minimum distance δ and secrecy τ over F such that:13

� Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.
� Constant rate: k/n = Ω(1).
� Constant secrecy: τ = Ω(1).

In the following, we assume that α ≥ τ , an assumption that can always be made by ignoring some of the
secrecy. Consider the following (k, n)-code with secret state (Gen,Enc,Dec):

� Gen: Choose a subset T of [n] of size τn uniformly at random and output it.
� Enc(x) for x ∈ {0, 1}k: Compute c = E(x) and output it.
� Dec(c, T) for c ∈ {0, 1}n: Find a codeword w = (w[1], . . . , w[n]) with dH(w, c) ≤ αn, i.e., compute
w ← R(c, αn). If no such w exists, i.e., w = ⊥, output ⊥. Moreover, if w[j] 6= c[j] for some j ∈ T ,
output ⊥ as well. Otherwise, decode w to its corresponding plaintext x and output it.

We prove the following theorem:

Theorem 14. For all q, p ∈ N, the (k, n)-code (Gen,Enc,Dec) based on a (k, n, δ, τ)-LECSS satisfying
the three conditions above is (Fset, q, p, εnmc)-non-malleable with

εnmc = p(O(1) · e−τn/16 + e−τ
2n/4) + pe−τ

2n.
13The reasons for these restrictions become apparent in the proof; of course, α must be chosen small enough in order for

these constraints to be satisfiable.

19

5.3.1 Security Proof

For the proof of Theorem 14, fix q, p ∈ N and a distinguisher D making at most q tamper queries of size
p each. Set F := Fset for the rest of the proof. The goal is to show

∆D(RF , SF ,sim) ≤ εnmc = p(O(1) · e−τn/16 + e−τ
2n/4) + pe−τ

2n

for a simulator sim to be determined.
On a high level, the proof proceeds as follows: First, it shows that queries that interfere with too

many bits of an encoding and at the same time do not fix enough bits (called middle queries below) are
rejected with high probability. For the remaining query types (called low and high queries), one can show
that their effect on the decoding process can always be determined from the query itself and the bits of
the encoding at the positions indexed by the secret trigger set T . Since the size of T is τn, these symbols
are uniformly random and independent of the encoded message, which immediately implies a simulation
strategy for sim.

Tamper-query types. Recall that f ∈ Fset can be characterized by (f [1], . . . , f [n]), where f [j] :
{0, 1} → {0, 1} is the action of f on the jth bit, for f [j] ∈ {zero, one, keep}, with the meaning that it
either sets the jth bit to 0 (zero) or to 1 (one) or leaves it unchanged (keep). Define A(f) to be the set
of all indices j such that f [j] ∈ {zero, one}, and let q(f) := |A(f)|. Moreover, let val(zero) := 0 and
val(one) := 1.

A tamper query f is a low query if q(f) ≤ τn, a middle query if τn < q(f) < (1 − τ)n, and a high
query if q(f) ≥ (1− τ)n.

Analyzing query types. The following lemma states that an isolated middle query is rejected with
high probability.

Lemma 15. Let f ∈ Fset be a middle query. Then, for any x ∈ {0, 1}k,

P[Dec(f(Enc(x))) 6= ⊥] ≤ O(1) · e−τn/16 + e−τ
2n/4

where the probability is over the randomness of E and the choice of the secret trigger set T .

Proof. Fix x ∈ {0, 1}k and a middle query f = (f [1], . . . , f [n]). Suppose first that q(f) ≥ n/2. Define

W := {w ∈ Fn | w is codeword ∧ ∃r : dH(f(Enc(x; r)), w) ≤ αn},

where r is the randomness of E. That is, W is the set of all codewords that could possibly be considered
while decoding an encoding of x tampered with via f . Consider two distinct codewords w,w′ ∈ W. From
the definition of W it is apparent that w[j] 6= val(f [j]) for at most αn positions j ∈ A(f) (and similarly
for w′), which implies that w and w′ differ in at most 2αn positions j ∈ A(f). Therefore, w and w′ differ
in at least (δ − 2α)n positions j /∈ A(f).

For w ∈ W, let w̃ be the projection of w onto the unfixed positions j /∈ A(f) and set W̃ :=
{w̃ | w ∈ W}. The above distance argument implies that |W| = |W̃|. Moreover, W̃ is a binary code
with block length n− q(f) and relative distance at least

(δ − 2α)n

n− q(f)
≥ (δ − 2α)n

n/2
= 2δ − 4α > 1/2,

where the last inequality follows from the fact that δ and α are such that δ − 2α > 1/4. Therefore, by
the Plotkin bound (Theorem 5),14

|W| = |W̃| ≤ O(1).

14The size constant absorbed by O(1) here depends on how close 2δ − 4α is to 1/2.

20

Denote by c = (c[1], . . . , c[n]) and c̃ = (c̃[1], . . . , c̃[n]) the (random variables corresponding to the)
encoding c = E(x) and the tampered encoding c̃ = f(c), respectively. For an arbitrary (n-bit) codeword
w ∈ W,

E[dH(c̃, w)] =
n∑
j=1

E[dH(c̃[j], w[j])] ≥
∑
j∈J

E[dH(c̃[j], w[j])],

where J ⊆ [n] is the set containing the indices of the first τn bits not fixed by f . Note that by the
definition of middle queries, there are at least that many, i.e., |J | = τn.

Observe that for j ∈ J , dH(c̃[j], w[j]) is an indicator variable with expectation E[dH(c̃[j], w[j])] ≥ 1
2 ,

since c[j] is a uniform bit. Thus, E[dH(c̃, w)] ≥ τn
2 . Additionally, (dH(c̃[j], w[j]))j∈J are independent.

Therefore, using a Chernoff bound (Theorem 3), for ε > 0

P[dH(c̃, w) < (1− ε)τn/2] ≤ e−τε
2n/4.

It follows that the probability that there exists w ∈ W for which the above does not hold is at most

|W| · e−τε2n/4 ≤ O(1) · e−τε2n/4,

by a union bound. Suppose now that dH(c̃, w) ≥ (1 − ε)τn/2 for all codewords w ∈ W. Then, over the
choice of T , with |T | = τn,

P[∀j ∈ T : dH(c̃[j], w[j]) = 0] ≤ (1− (1− ε)τ/2)τn ≤ e−(1−ε)τ2n/2.

The lemma now follows by setting ε := 1
2 .

If q(f) < n/2 an analogous argument can be made for the difference d := c− c̃ between the encoding
and the tampered codeword, as such a query f fixes at least half of the bits of d (to 0, in fact) and
D(d) 6= ⊥ implies D(c̃) 6= ⊥.

It turns out that low and high queries always result in ⊥ or one other value.

Lemma 16. Low queries f ∈ Fset can result only in ⊥ or the originally encoded message x ∈ {0, 1}k.
High queries f ∈ Fset can result only in ⊥ or one other value xf ∈ {0, 1}k, which solely depends on f .
Furthermore, xf , if existent, can be found efficiently given f .

Proof. The statement for low queries is trivial, since a low query f cannot change the encoding beyond
the error correction bound αn.

Consider now a high query f and the following efficient procedure:

1. Compute c̃f ← f(0n).
2. Find a codeword wf with dH(wf , c̃f) ≤ 2αn (which is possible since 2α < δ/2).
3. Output wf or ⊥ if none exists.

Consider an arbitrary encoding c and let c̃← f(c) be the tampered encoding. Assume there exists w with
dH(w, c̃) ≤ αn. Since a high query f fixes all but τn bits, dH(c̃, c̃f) ≤ τn ≤ αn, and, thus, dH(w, c̃f) ≤ 2αn,
by the triangle inequality. Hence, w = wf .

In other words, if the reconstruction algorithm R on c̃ finds a codeword w = wf within distance αn,
one can find it using the above procedure, which also implies that high queries can only result in ⊥ or
one other message xf = R(wf , αn).

21

Handling middle queries. Consider the hybrid game H1 that behaves as RF , except that it answers
all middle queries by ⊥.

Lemma 17. ∆D(RF , H1) ≤ p(O(1) · e−τn/16 + e−τ
2n/4).

Proof. The lemma is proved using the self-destruct lemma (cf. Lemma 6 in Section 3), conditioned on the
message x encoded by D. Note first that both RF and H1 answer parallel tamper queries in which each
component is from the set X := F by vectors whose components are in Y := {0, 1}k ∪ {⊥}. Moreover,
both hybrids use as internal randomness a uniformly chosen element from R := {0, 1}ρ × S, where ρ is
an upper bound on the number of random bits used by E and S is the set of all τn-subsets T of [n]. RF
answers each component of a query f ∈ X by

g(f, (r, T)) := Dec(f(Enc(x; r)), T).

Define B ⊆ X to be the set of all middle queries; H1 is the B-bending of RF (cf. Definition 6).
Observe that queries f /∈ B are either low or high queries. For low queries f , the unique answer is

yf = x, and for high queries f , yf = xf (cf. Lemma 16). Thus, by Lemmas 6 and 15,

∆D(RF , H1) ≤ p ·max
f∈B

P[g(f, (r, T)) 6= ⊥] ≤ p(O(1) · e−τn/16 + e−τ
2n/4),

where the probability is over the choice of (r, T).

Handling high queries. Consider the following hybrid game H2: It differs from H1 in the way it
decodes high queries f . Instead of applying the normal decoding algorithm to the tampered codeword c̃,
it proceeds as follows:

1. Find wf (as in the proof of Lemma 16).
2. If wf does not exist, return ⊥.
3. If c̃[j] = wf [j] for all j ∈ T , return D(w). Otherwise, return ⊥.

Lemma 18. ∆D(H1, H2) ≤ pe−τ
2n.

Proof. The lemma is proved conditioned on the message x encoded by D and the randomness r of the
encoding. For the remainder of the proof, r is therefore considered fixed inside H1 and H2. The proof,
similarly to that of Lemma 17, again uses the self-destruct lemma.

Set X := F and Y := {0, 1}k ∪ {⊥}. However, this time, let R := S. For f ∈ X and T ∈ R, define

g(f, T) := Dec(c̃, T),

where c̃ := f(E(x; r)). The bending set B ⊆ X is the set of all high queries f such that wf exists and
dH(wf , c̃) > αn.15 It is readily verified that H2 is a parallel stateless self-destruct game (cf. Definition 5)
that behaves according to g, and that H1 is its B-bending.

Consider a query f /∈ B. If f is a low query, the unique answer is yf = x; if it is a middle query,
yf = ⊥; if it is a high query, yf = xf (cf. Lemma 16). Therefore,

∆D(H1, H2) ≤ max
f∈B

P[g(f, T) 6= ⊥] ≤ pe−τ
2n,

where the first inequality follows from the self-destruct lemma (Lemma 6) and the second one from the
fact that dH(xf , c̃) > τn for queries f ∈ B, and therefore the probability over the choice of T that it is

accepted is at most (1− τ)τn ≤ e−τ2n.

15These are queries potentially accepted by H2 but not by H1.

22

Simulation. By analyzing hybrid H2, one observes that low and high queries can now be answered
knowing only the query itself and the symbols of the encoding indexed by the secret trigger set T ∈ S.

Lemma 19. Consider the random experiment of distinguisher D interacting with H2. There is an effi-
ciently computable function Dec′ : Fset×S ×{0, 1}τn → {0, 1}k ∪{same,⊥} such that for any low or high
query f , any fixed message x, any fixed encoding c thereof, and any output T of Gen,[

Dec′(f, T, (c[j])j∈T)
]
same/x

= Dec(f(c)),

where [·]same/x is the identity function except that same is replaced by x and where (c[j])j∈T are the symbols
of c specified by T .

Proof. Consider a low query f . Due to the error correction, Dec(f(c)) is the message originally encoded if
no bit indexed by T is changed and ⊥ otherwise. Which one is the case can clearly be efficiently computed
from f , T , and (c[j])j∈T .

For high queries f the statement follows by inspecting the definition of H2 and Lemma 16.

In H2, by the τn-secrecy of the LECSS, the distribution of the symbols indexed by T is independent of
the message x encoded by D. Moreover, the distribution of T is trivially independent of x. This suggests
the following simulator sim: Initially, it chooses a random subset T from

(
[n]
τn

)
and chooses τn random

symbols (c[j])j∈T . Every component f of any tamper query is handled as follows: If f is a low or a high
query, the answer is Dec′(f, T, (c[j])j∈T); if f is a middle query, the answer is ⊥. This implies:

Lemma 20. H2 ≡ SF ,sim.

Proof of Theorem 14. Follows from Lemmas 17, 18, and 20 and a triangle inequality.

5.3.2 Instantiating the Construction

We detail how a LECSS satisfying the properties of Theorem 14 can be constructed by combining high-
distance binary codes with a recent result by Cramer et al. [30] which essentially allows to “add” secrecy to
any code of sufficient rate. The resulting LECSS has secrecy τ = Ω(1) and rate ρ = Ω(1) (cf. Corollary 23
below). The secrecy property depends on the random choice of a universal hash function. Thus, the
instantiated code can be seen as a construction in the CRS model.

Let F = GF(2) and α > 0. We need to construct a (k, n, δ, τ)-LECSS (E,D,R) (cf. Definition 2 in
Section 2) with minimum distance δ and secrecy τ over F and the following properties (as required in
Section 5.3):

� Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.
� Constant rate: k/n = Ω(1).
� Constant secrecy: τ = Ω(1).

Let C be a (n, l)-code with rate R = l
n over F. In the following we write C(x) for the codeword

corresponding to x ∈ Fl and C−1(c, e) for the output of the efficient error-correction algorithm attempting
to correct up to e errors on c, provided that e < δn/2;16 the output is ⊥ if there is no codeword within
distance e of c.

16This assumes that C is efficiently decodable up to relative distance δ/2. However, while the codes we consider here have
this property, for our non-malleable code construction, it would be sufficient to have efficient error correction up to distance
2α for whatever particular choice of the constant α.

23

Adding secrecy. Let l be such that k < l < n. The construction by [30] combines a surjective linear
universal hash function h : Fl → Fk with C to obtain a LECSS (E,D,R) as follows:17

� E(x) for x ∈ {0, 1}k: Choose s ∈ {0, 1}l randomly such that h(s) = x and output c = C(s).

� D(c) for c ∈ {0, 1}n: Compute s = C−1(c, 0). If s = ⊥, output ⊥. Otherwise, output x = h(s).

� R(c, e) for c ∈ {0, 1}n and e < δn/2: Compute s = C−1(c, e). If s = ⊥, output ⊥. Otherwise, output
x = h(s).

The resulting LECSS has rate ρ = k
ln and retains all distance and error-correction properties of C.

Additionally, if R is not too low, the LECSS has secrecy. More precisely, Cramer et al. prove the following
theorem:

Theorem 21 ([30]). Let τ > 0 and η > 0 be constants and H be a family of linear universal hash functions
h : Fl → Fk. Given that R ≥ ρ+ η + τ + h(τ), there exists a function h ∈ H such that (E,D,R) achieves
secrecy τ . Moreover, such a function h can be chosen randomly with success probability 1− 2−ηn.

It should be pointed out that the version of the above theorem in [30] does not claim that any τn bits of
an encoding are uniform and independent but merely that they are independent of the message encoded.
However, by inspecting their proof, it can be seen that uniformity is guaranteed if τn ≤ l − k, which is
the case if and only if τ ≤ l

n −
k
n = R− ρ, which is clearly implied by the precondition of the theorem.

Zyablov bound. For code C, we use concatenated codes reaching the Zyablov bound:

Theorem 22. For every δ < 1/2 and all sufficiently large n, there exists a code C that is

� linear,
� efficiently encodable,
� of distance at least δn,
� allows to efficiently correct up to δn/2 errors,

and has rate

R ≥ max
0≤r≤1−h(δ+ε)

r

(
1− δ

h−1(1− r)− ε

)
,

for ε > 0 and where h(·) is the binary entropy function.

The Zyablov bound is achieved by concatenating Reed-Solomon codes with linear codes reaching the
Gilbert-Varshamaov bound (which can be found by brute-force search in this case). Alternatively,
Shen [74] showed that the bound is also reached by an explicit construction using algebraic geometric
codes.

Choice of parameters. Set α := 1/200 and δ := 1/4 + 2α+ ε for ε := 1/500, say. Then, δ− 2α > 1/4,
as required. Moreover, the rate of the Zyablov code with said distance δ can be approximated to be
R ≥ 0.0175. Setting, τ := 1/1000 yields τ + h(τ) ≤ 0.0125, leaving a possible rate for the LECSS of up
to ρ ≈ 0.005− η. Hence:

Corollary 23. For any α > 0 there exists a (k, n, δ, τ)-LECSS (E,D,R) with the following properties:

� Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.
� Constant rate: k/n = Ω(1).
� Constant secrecy: τ = Ω(1).

17Note that we switched the roles of l and k here in order to remain consistent with the notation in this paper.

24

5.4 Impossibility for Codes without State

This section shows that codes without secret state (as originally defined in [40]) cannot achieve (uncon-
ditional) non-malleability against parallel tampering. Specifically, the following theorem is proved:

Theorem 24. Let F := Fset. Let (Enc,Dec) be a (k, n)-code without secret state and noticeable rate.
There exists a distinguisher D asking a single parallel tampering query of size n6 such that, for all simu-
lators sim and all n large enough, ∆D(RF , SF ,sim) ≥ 1/2.

The above impossibility result requires that the rate of the code be sufficiently large (n = o(2k/6)
suffices, see below for the exact parameters). The distinguisher D is inefficient, so it might still be
possible to construct a non-malleable code against parallel tampering with only computational security.
This is left as an interesting open problem.

5.4.1 Perfect Correctness

It is instructive to first consider the case where Dec is deterministic and has perfect correctness. The
main idea is to define an extraction algorithm that (almost) always succeeds in extracting the encoded
message when it interacts with RF but only does so with a small probability when interacting with SF ,sim
(for any sim).

A position i ∈ [n] is relevant if there exists a pair of codewords (c′i, c
′′
i), differing only at position i, for

which decoding c′i and c′′i leads to different values. Clearly, in order to decode any codeword c ∈ {0, 1}n,
one needs to know only the values c[i] for the relevant positions i; all other values play no role in decoding
a codeword.

Consider now the following distinguisher D that is given a pair (c′i, c
′′
i) (as above) for each relevant

position i ∈ [n]. D encodes a value x, which defines a target encoding c. Then, D attempts to extract the
ith relevant bit of c via a tampering query fi ∈ F that keeps the bit in position i and replaces all other
values with the bits of c′i (or, equivalently, c′′i). Since c′i and c′′i decode to different values, D can determine
with a single tampering query (of size at most n) all relevant values c[i] with certainty. Distinguisher D
outputs 1 if and only if the above extraction procedure leads to the chosen value x. Clearly, D always
outputs 1 when interacting with RF . On the other hand, one can show that D almost never outputs 1
when interacting with SF ,sim, which concludes the proof.

5.4.2 The General Case

For the general case, assume that Dec is probabilistic and let ν be the correctness error of the coding
scheme, i.e.,

P[Dec(Enc(x)) = x] ≥ 1− ν

for all messages x, where the probability is over the coins of both Enc and Dec. Define a position i ∈ [n]
as µ-relevant if there exist two codewords c′i, c

′′
i ∈ {0, 1}n (i.e., in the range of Enc) differing exactly in

position i such that
∆(Dec(c′i),Dec(c′′i)) ≥ µ.

Let Encµ be the encoding algorithm obtained from Enc by setting all output positions that are not
µ-relevant to 0.

Lemma 25. If (Enc,Dec) has correctness error ν, then (Encµ,Dec) has correctness error ν ′ = ν + nµ.

Proof. Fix r and x and let c = Enc(x; r) as well as cµ = Encµ(x; r). By the triangle inequality,

∆(Dec(c),Dec(cµ)) ≤ nµ,

25

for there are at most n non-relevant positions. Note that this inequality also holds if (additionally) r is
chosen randomly. Consequently,

P[Dec(Encµ(x)) 6= x] ≤ P[Dec(Enc(x)) 6= x] + nµ ≤ ν + nµ.

The distinguisher. Let ρ ∈ N. For each µ-relevant position i = 1, . . . , n, let Ai be an optimal distin-
guisher for the ρ-fold independent repetitions of Dec(c′i) and Dec(c′′i), where Ai “indicates” ρ-fold c′i by
outputting c′i[i] (and similarly ρ-fold c′′i by outputting c′′i [i]).

18 Consider now the following distinguisher D:

1. Choose x← {0, 1}k uniformly at random and have it encoded.

2. For each µ-relevant position i = 1, . . . , n, let fi = (fi[1], . . . , fi[n]) where for j 6= i

fi[j] =

{
zero if c′i[j] = 0,

one if c′i[j] = 1,

and where fi[i] = keep.

3. Ask the parallel tamper query consisting of ρ copies of each function fi. For l = 1, . . . , ρ, denote by
x′il the answer corresponding to the lth copy of function fi.

4. For each µ-relevant position i = 1, . . . , n, compute c̄[i] ← Ai(x
′
i1, . . . , x

′
iρ). For the remaining

positions i, set c̄[i]← 0.

5. Output 1 if Dec(c̄[1] · · · c̄[n]) = x and if x′il 6= x for all i, l.19 Output 0 otherwise.

Real experiment. Consider the interaction of D with the real experiment RF for (Enc,Dec). Fix a rel-
evant position i and let c[i] be the corresponding bit of the encoding of Enc(x). Since ∆(Dec(c′i),Dec(c′′i))

≥ µ, by virtue of Proposition 4, their ρ-fold independent repetitions have distance at least 1− 2e−ρµ
2/2,

which implies that Ai guesses c[i] incorrectly with probability at most e−ρµ
2/2. By a union bound over all

of the at most n µ-relevant positions i, all bits c[i] are guessed correctly except with probability at most
ne−ρµ

2/2.
Furthermore, the probability that x′il = x for some i, l is bounded by nρ2−(k−1) since each query fi

overrides all but a single bit of the encoding.
Finally, using the correctness of Encµ (Lemma 25), the probability that D outputs 1 when interacting

with RF is at least 1− (ν + nµ+ nρ2−(k−1) + ne−ρµ
2/2).

Ideal experiment. Let sim be an arbitrary simulator and consider the interaction of D and SF ,sim.
Note that if sim outputs same, then D outputs 0, since the ideal experiment replaces same by x. If sim
does not output same, after step 1, the interaction of D and SF ,sim is independent of x, and hence, the
probability that Dec(c̄[1] · · · c̄[n]) = x is at most 2−k.

Parameter choices. Summarizing, the advantage ofD is at least 1−(ν+nµ+nρ2−(k−1)+2−k+ne−ρµ
2/2)

which is at least 1/2 for large enough n if one sets, e.g., µ = n−2 and ρ = n5 (assuming that ν is negligible).

18In other words, Ai outputting c′i[i] (resp. c′′i [i]) is interpreted as Ai “believing” that it is given a sample of ρ-fold
independent repetitions of Dec(c′i) (resp. Dec(c′′i)).

19The latter condition helps in the analysis of the advantage of D.

26

PKE Scheme Π′ = (KG ′, E′, D′)

Key Generation KG ′

for i← 1 to n
(pki, ski)←$ KG

pk← (pk1, . . . , pkn)
sk← (sk1, . . . , skn)
s← Gen
return (pk, (sk, s))

Encryption E′pk(m)

c = (c[1], . . . , c[n])← Enc(m)
for i← 1 to n

ei←$ Epki(c[i])
return e = (e1, . . . , en)

Decryption D′(sk,s)(e)

(e1, . . . , en)← e
for i← 1 to n

c[i]←$Dski(ei)
if c[i] = ⊥

return ⊥
m← Dec(c[1] · · · c[n], s)
return m

Figure 9: The k-bit PKE scheme Π′ = (KG ′, E′, D′) built from a 1-bit PKE scheme Π = (KG , E,D) and
a (k, n)-coding scheme with secret state (Gen,Enc,Dec).

6 Domain Extension

This section contains one of our main technical results. We show how single-bit NM-SDA PKE can
be combined with secret-state non-malleable codes resilient against continuous parallel tampering, see
Section 5.3, to achieve multi-bit NM-SDA-secure PKE. Moreover, the same transformation works also for
the weaker notions of NM-CPA and IND-SDA, where in the latter case it suffices to rely on a stateless
code. (Whereas for NM-CPA and NM-SDA secret-state non-malleable codes are necessary.)

In Section 6.1, we describe our non-malleable code based domain extender for NM-SDA PKE, and we
analyze its security in Section 6.2. Finally, in Section 6.3, we explain how to adapt the analysis to the
cases of NM-CPA and IND-SDA.

6.1 Combining Single-Bit PKE and Non-Malleable Codes

Our construction of a multi-bit NM-SDA-secure PKE scheme Π′ from a single-bit NM-SDA-secure scheme
Π and a secret-state non-malleable (k, n)-code works as follows: It encrypts a k-bit message m by first
computing an encoding c = (c[1], . . . , c[n]) of m and then encrypting each bit c[j] under an independent
public key of Π; it decrypts by first decrypting the individual components and then decoding the resulting
codeword using the secret state of the non-malleable code; the secret state is part of the secret key. The
scheme is depicted in detail in Figure 9.

Intuitively, NM-SDA security (or CCA security in general) guarantees that an attacker can either leave
a message intact or replace it by an independently created one. For our construction, which separately
encrypts every bit of an encoding of the plaintext, this translates to the following capability of an adversary
w.r.t. decryption queries: It can either leave a particular bit of the encoding unchanged or fix it to 0 or
to 1. Therefore, the tamper class against which the non-malleable code must be resilient is the class
Fset ⊆ {f | f : {0, 1}n → {0, 1}n} of functions that tamper with each bit of an encoding individually and
can either leave it unchanged or set it to a fixed value. More formally, f ∈ Fset can be characterized by
(f [1], . . . , f [n]), where f [j] : {0, 1} → {0, 1} is the action of f on the jth bit and f [j] ∈ {zero, one, keep}
with the meaning that it either sets the jth bit to 0 (zero) or to 1 (one) or leaves it unchanged (keep).

Importantly, the PKE Π′ of Figure 9 achieves only the so-called replayable variant of NM-SDA security.
The notion of replayable CCA (RCCA) security (in general) was introduced by Canetti et al. [16] to deal
with the fact that for many applications (full) CCA security is unnecessarily strict. In particular, RCCA
does not rule out attackers able to maul a given ciphertext into a different valid ciphertext, so long as the
underlying plaintext does not change.20 This flavor of security naturally applies to NM-SDA as well.

Among other things, Canetti et al. provide a MAC-based generic transformation of RCCA-secure

20The intuitive reason why the construction of Figure 9 only achieves replayable security is that the underlying non-
malleable code does not rule out the possibility of changing a given codeword into a different valid codeword that encodes
the same message.

27

PKE Scheme Π′′ = (KG ′′, E′′, D′′)

Key Generation KG ′′

(pk, sk)←$ KG ′

return (pk, sk)

Encryption E′′pk(m)

K←$ {0, 1}λ
e1 ← E′pk(m‖K)

e2 ← TK(e1)
return e = (e1, e2)

Decryption D′′sk(e)
(e1, e2)← e
m‖K = D′sk(e1)
if VK(e1, e2) = 0

return ⊥
return m

Figure 10: The PKE scheme Π′′ = (KG ′′, E′′, D′′) built from a PKE scheme Π′ = (KG ′, E′, D′) and a
MAC (T, V).

schemes into CCA-secure ones, which we can also apply in our setting (as we show) to obtain a fully NM-
SDA-secure scheme Π′′. Let Π′ = (KG ′, E′, D′) be a PKE scheme and (T, V) be a MAC (cf. Section 2.4).
The transformation, which is depicted in Figure 10, yields a new PKE Π′′ and roughly works as follows.
The key generation remains unchanged. To encrypt a message m, the new encryption algorithm first
chooses a key K for the MAC and computes an encryption e1 ← E′pk(m ‖ K) and e2 ← TK(e1); the
ciphertext is (e1, e2). The new decryption algorithm decrypts e1 to (m,K) and verifies the tag e2. If the
tag is valid, the decryption algorithm outputs m; otherwise, it outputs ⊥. Combining the transformations
of Figure 9 and Figure 10, we obtain the following theorem.

Theorem 26. Let q, p ∈ N and Π be a (t + t1bit, q, p, ε1bit)-NM-SDA-secure 1-bit PKE scheme, (T, V)
a (t+ tmac, 1, qp, εmac)-MAC, and (Gen,Enc,Dec) a (Fset, q, p, εnmc)-non-malleable (k, n)-code with secret
state. Then, the PKE scheme Π′′ obtained by combining the transformations of Figure 9 and Figure 10
is (t, q, p, ε)-NM-SDA-secure PKE scheme with

ε = 2(3(nε1bit + εnmc) + qp · 2−` + εmac),

where t1bit and tmac are the overheads incurred by the corresponding reductions and ` is the length of a
verification key for the MAC.

6.2 Security Analysis

The proof of Theorem 26 is divided in two parts. First, we prove that the PKE scheme Π′ resulting from
combining a single-bit PKE Π and a non-malleable code with secret state (Gen,Enc,Dec) as shown in
Figure 9 is replayable NM-SDA secure (NM-RSDA). Then, we show that a MAC-based transformation
suggested by [16] to obtain IND-CCA security from IND-RCCA security also works in our setting, i.e.,
the transformation of Figure 10 applied to Π′ yields a fully NM-SDA secure PKE scheme Π′′.

6.2.1 Replayable NM-SDA Security

The notion of replayable CCA security was introduced by Canetti et al. [16] to deal with the artificial
strictness of CCA security. Intuitively, it potentially allows an attacker to maul a target ciphertext into
one that decrypts to the same message.21 This idea carries over seamlessly to the definition of NM-
SDA security; the corresponding distinguishing game GΠ,nm-rsda

b is obtained by changing GΠ,nm-sda
b (cf.

Figure 3) to answer test whenever a ciphertext e(j) decrypts to m0 or m1 (instead of only when e(j) equals
the challenge ciphertext).

Definition 10. A PKE scheme Π is replayable (t, q, p, ε)-NM-SDA-secure (NM-RSDA) if for all dis-
tinguishers D with running time at most t and making at most q decryption queries of size at most p
each,

∆D(GΠ,nm-rsda
0 , GΠ,nm-rsda

1) ≤ ε.
21In contrast, full CCA security requires that any ciphertext created by the attacker (other than the target ciphertext)

decrypt to an independent message.

28

6.2.2 Non-Malleable Codes and PKE

In this section we show that the PKE scheme Π′ is NM-RSDA if the underlying single-bit scheme Π is
NM-SDA secure. Concretely, we prove:

Theorem 27. Let q, p ∈ N and Π be a (trsda + t1bit, q, p, ε1bit)-NM-SDA-secure 1-bit PKE scheme and let
(Gen,Enc,Dec) be (Fset, q, p, εnmc)-non-malleable. Then, Π′ is (trsda, q, p, εrsda)-NM-RSDA-secure PKE
scheme with

εrsda = 2(nε1bit + εnmc),

where t1bit, trsda represents the overhead incurred by the reductions.

Before coming to the proof of the above theorem, we discuss some intuition. The proof considers a
series of n hybrid experiments. In very rough terms, the ith hybrid generates the challenge ciphertext by
computing an encoding c = (c[1], . . . , c[n]) of the challenge plaintext and by replacing the first i bits c[i]
of c by random values c̃[i] before encrypting the encoding bit-wise, leading to the challenge (e∗1, . . . , e

∗
n).

Moreover, when answering decryption queries (e′1, . . . , e
′
n), if e′j = e∗j for j ≤ i, the ith hybrid sets the

outcome of e′j ’s decryption to be the corresponding bit c[j] of the original encoding c, whereas if e′j 6= e∗j , it
decrypts normally (then it decodes the resulting n-bit string normally). This follows the above intuition
that a CCA-secure PKE scheme guarantees that if a decryption query is different from the challenge
ciphertext, then the plaintext contained in it must have been created independently of the challenge
plaintext. The indistinguishability of the hybrids follows from the security of the underlying single-bit
scheme Π.

In the nth hybrid, the challenge consists of n encryptions of random values. Thus, the only information
about the encoding of the challenge plaintext that an attacker gets is that leaked through decryption
queries. But in the nth hybrid there is a 1-to-1 correspondence between decryption queries and the
tamper function f = (f [1], . . . , f [n]) applied to the encoding of the challenge plaintext: The case e′j = e∗j
corresponds to f [j] = keep, and the case e′j 6= e∗j corresponds to f [j] = zero or f [j] = one, depending on
whether e′j decrypts to zero or to one. This allows a reduction to the security of the non-malleable code.

Formally, the proof of Theorem 27 follows directly from the following lemma:

Lemma 28. For b ∈ {0, 1} and i ∈ [n], there exist reductions Rb,i(·) and Wb(·) such that for all distin-
guishers D,

∆D(GΠ′,nm-rsda
0 , GΠ′,nm-rsda

1) ≤
∑
b,i

∆D(Rb,i(·))(GΠ,nm-sda
0 , GΠ,nm-sda

1) +
∑
b

∆D(Wb(·))(RF , SF ,sim),

where sim is the simulator for the non-malleable code. Moreover, all reductions preserve the number q
and the size p of the queries.

Proof (of Theorem 27). Let t1bit be the maximal occurring overhead caused by the reductions Rb,i(·).
Fix a distinguisher D having running time trsda and making at most q decryption queries of size at
most p. Due to the preservation property of the reductions, ∆D(Rb,i(·))(GΠ,nm-sda

0 , GΠ,nm-sda
1) ≤ ε1bit and

∆D(Wb(·))(RF , SF ,sim) ≤ εnmc, which using Lemma 28 completes the proof.

Towards a proof of Lemma 28, consider the following hybrids for b ∈ {0, 1} and i ∈ [n]: Hb,i proceeds

as GΠ′,nm-rsda
b except that the challenge query (chall,m0,m1) and decryption queries (dec, e(1), . . . , e(p))

are handled differently:

� Challenge query: The first i bits of the encoding c = (c[1], . . . , c[n]) of mb are replaced by
uniformly random and independent bits. The resulting n-bit string is then encrypted bit-wise (as
done by E′). This results in the challenge ciphertext e∗ = (e∗1, . . . , e

∗
n).

29

� Decryption query: Every component e(l) = (e′1, . . . , e
′
n) is answered as follows: Hybrid Hb,i

computes c′ = (c′[1], . . . , c′[n]), where

c′[i] =

{
c[j] if e′j = e∗j , and

Dskj (e
′
j) otherwise.

Then, Hb,i outputs Dec(c′, s) as the answer to the component of the decryption query.22

Let Hb,0 := GΠ′,nm-rsda
b .

Lemma 29. For all b ∈ {0, 1} and i ∈ [n], there exist a reduction Rb,i(·) such that for all D

∆D(Hb,i−1, Hb,i) = ∆D(Rb,i(·))(GΠ,nm-sda
0 , GΠ,nm-sda

1).

Proof. Fix b and i. Hybrid Rb,i(·) works as follows: Initially, it generates the secret state s ← Gen and

n − 1 key pairs (pkj , skj) for j ∈ [n] \ {i}, obtains pki (but not ski) from the oracle (from GΠ,nm-sda
0 or

GΠ,nm-sda
0), and outputs pk := (pk1, . . . , pkn). When it receives (chall,m0,m1), it computes an encoding

c = (c[1], . . . , c[n])← Enc(mb). Then, it chooses i random bits c̃[1], . . . , c̃[i] and computes

e∗j =

{
Epkj (c̃[j]) for j < i, and

Epkj (c[j]) for j > i.

Moreover, it outputs (chall, c[i], c̃[i]) to its oracle and obtains a ciphertext e∗i . It finally returns e∗ =
(e∗1, . . . , e

∗
n).

When Rb,i(·) receives a (parallel) decryption query, for each component e′ = (e′1, . . . , e
′
n) it proceeds

as follows: For j 6= i, it computes c′[j] as Hb,i does. Moreover, if e′i = e∗i , it sets c′[i] ← c[i]. Otherwise,
it outputs (dec, e′i) to its oracle and obtains the answer c′[i].23 Then, it computes m′ ← Dec(c′). The
answer to the component of the decryption query is m′, unless m′ ∈ {m0,m1}, in which case the it is test.
If one of the component answers is ⊥, Rb,i(·) implements the self-destruct mode, i.e., answers all future
queries by ⊥.

Consider Rb,i(G
Π,nm-sda
0) and Hb,i−1. Both generate the public key in the same fashion. As to the

challenge ciphertext, the first i−1 ciphertext components ej generated by Rb,i(G
Π,nm-sda
0) are encryptions

of random bits c̃[j], whereas the ith and the remaining components are encryptions of the corresponding

bits of an encoding of mb (generated by GΠ,nm-sda
0 and Rb,i(·), respectively). The same is true for Hb,i−1.

The answer to a decryption query component sent to Rb,i(G
Π,nm-sda
0) is Dec(c′) for c′ = (c′[1], . . . , c′[n]),

where c′[j] = Dskj (e
′
j) unless j < i and e′j = ej , in which case c′[j] = c̃[j]. Again, the same holds for

Hb,i−1. Moreover, both Rb,i(G
Π,nm-sda
0) and Hb,i−1 answer test if Dec(c′) ∈ {m0,m1}. Thus, they behave

identically.
Rb,i(G

Π,nm-sda
1) and Hb,i are compared similarly. This concludes the proof.

Lemma 30. For b ∈ {0, 1}, there exists a wrapper Wb(·) such that

� Wb(RF) behaves as Hb,n, and
� W0(SF ,sim) and W1(SF ,sim) behave identically.

Proof. Wrapper Wb(·) works as follows: Initially, it generates n key pairs (pki, ski) for i ∈ [n] and outputs
pk := (pk1, . . . , pkn). When it receives (chall,m0,m1), it picks n random values c̃[1], . . . , c̃[n], computes
e∗i ←$ Epk(c̃[i]) for i = 1, . . . , n, and returns e = (e1, . . . , en). Additionally, it outputs (encode,mb) to its
oracle.

22Assume here and below that Dec(c′) = ⊥ if any of the bits c′[j] equal ⊥.
23In fact, it is important that Rb,i(·) output a single parallel decryption query containing all e′i for the individual compo-

nents; but it is less cumbersome to describe how individual components are handled.

30

When it gets a (parallel) decryption query, for every component e′ = (e′1, . . . , e
′
n), it proceeds as

follows: First, it creates a tamper query f = (f [1], . . . , f [n]) where

f [i] =


zero if e′i 6= e∗i and Dski(e

′
i) = 0,

one if e′i 6= e∗i and Dski(e
′
i) = 1, and

keep if e′i = e∗i .

Then, it outputs (tamper, f) to its oracle and obtains an answer x′. If x′ ∈ {m0,m1}, the answer to the
component query test.24 Otherwise, it is x′. If one of the component answers is ⊥, Wb(·) implements the
self-destruct mode, i.e., answers all future queries by ⊥.

Consider Wb(RF) and Hb,n. Both generate the public key in the same fashion. Furthermore, in either
case, the challenge ciphertext consists of n encryptions of random bits. Finally, both answer a decryption
query by applying the same tamper function to an encoding of mb before decoding it. When the decoding
of the tampered codeword results in m0 or m1, both answer test. Therefore, they behave identically.

Due to the fact that test is output when a decryption query results in m0 or m1, the observable
behavior is the same in W0(SF ,sim) and W1(SF ,sim).25

Proof (of Lemma 28). Lemma 28 follows using a triangle inequality. Specifically, for any distinguisher D,

∆D(GΠ′,nm-rsda
0 , GΠ′,nm-rsda

1) ≤
∑
i

∆D(H0,i−1, H0,i) + ∆D(W0(RF),W0(SF ,sim))

+ ∆D(W1(SF ,sim),W1(RF)) +
∑
i

∆D(H1,i−1, H1,i)

≤
∑
b,i

∆D(Rb,i(G
Π,nm-sda
0), Rb,i(G

Π,nm-sda
1))

+
∑
b

∆D(Wb(·))(RF , SF ,sim),

where the last inequality follows from Lemmas 29 and 30.

6.2.3 From Replayable to Full NM-SDA Security

Next, we analyze the security of the transformation in Figure 10.

Theorem 31. Let Π′ be a (t+trsda, q, p, εrsda)-NM-RSDA secure PKE scheme and (V, T) a (t+tmac, εmac)-
secure MAC. Then, Π′′ is a (t, q, p, ε)-NM-SDA-secure PKE scheme for

ε ≤ 2(εrsda + qp · 2−` + εmac) + εrsda,

where ` is the length of the MAC key.

The theorem follows from the following lemma:

Lemma 32. For b ∈ {0, 1} there exist reductions Rb(·), R′(·), and R′′b (·), such that for all distinguishers
D,

∆D(GΠ′′,nm-sda
0 , GΠ′′,nm-sda

1) ≤
∑
b

(
∆D(Rb(·))(GΠ′,nm-rsda

b , GΠ′,nm-rsda
1) + qp · 2−` + ΓD(R′′b (·))(Gmac)

)
+ ∆D(R′(·))(GΠ′,nm-rsda

0 , GΠ′,nm-rsda
1).

24Again, Wb(·) needs to output a single parallel tamper query containing the tamper functions f for the individual
components.

25This is where the proof reflects that Π′ is only NM-RSDA secure.

31

where ` is the length of the MAC key. Moreover, reductions Rb(·) and R′(·) preserve the number q and
the size p of the queries, and reduction R′′b (·) asks a single tag query and q · p verification queries.

Proof of Theorem 31. Let trsda be the maximal occurring overhead caused by the reductions Rb(·), R′(·)
and tmac that by the reductions R′′b (·). Fix a distinguisher D having running time trsda and making at
most q decryption queries of size at most p. Due to the preservation properties of the above reductions,

the distinguishing advantages on GΠ′,nm-rsda
b are at most εrsda and ΓD(R′′b (·))(Gmac) is at most εmac.

Hybrid 1. The first hybrid Hb captures the fact that the MAC key in the challenge ciphertext is

computationally hidden; it differs from GΠ′′,nm-sda
b as follows:

� It generates the challenge ciphertext using two independent MAC keys K∗ and K, i.e., (e∗1, e
∗
2) ←

(E′pk(mb ‖K∗), TK(e∗1)).
� When answering (components of parallel) decryption queries (e′1, e

′
2) ← (E′pk(mb ‖K ′), e′2), if K ′ =

K∗, the tag is verified using K instead of K∗.

Lemma 33. There exists a reduction Rb(·) such that for all distinguishers D asking at most q parallel
queries of size at most p each,

∆D(GΠ′′,nm-sda
b , Hb) ≤ ∆D(Rb(·))(GΠ′,nm-rsda

0 , GΠ′,nm-rsda
1) + qp · 2−`,

where ` is the length of the MAC key.

Proof (sketch). Initially, reduction Rb(·) outputs (to D) the public key obtained from its oracle. When
it gets (chall,m0,m1), it outputs ((chall,mb ‖K,mb ‖K∗)) to its oracle and gets a response e∗1. Then,
it computes e∗2 ← TK(e∗1) and outputs (e∗1, e

∗
2). As long as no self-destruct has occurred, Rb(·) answers

(components of parallel) decryption queries (e′1, e
′
2) (different from the challenge ciphertext) as follows: It

outputs (dec, e′1) to its oracle. If the answer is test, Hb verifies the tag e′2 with K and returns mb to D if
it is valid. If the answer is m′ ‖K ′, Hb verifies the tag with K ′ and returns m′ if it is valid.

By inspection one observes that Rb(G
Π′,nm-rsda
0) behaves as GΠ′′,nm-sda

b unless D asks a query (e′1, e
′
2)

where e′1 is an encryption of a message concatenated with K∗; however, since the view of D when

interacting with Rb(G
Π′,nm-rsda
0) is independent of K∗, the probability of this event is bounded by 2−`.

On the other hand, observe that Rb(G
Π′,nm-rsda
1) behaves exactly as hybrid Hb.

Hybrid 2. The second hybrid H ′b behaves as Hb except that queries (e′1, e
′
2) where e′1 contains K∗ are

always rejected.

Lemma 34. There exists a reduction R′′b (·) such that for all distinguishers D,

∆D(Hb, H
′
b) ≤ ΓD(R′′b (·))(Gmac).

Proof. R′′b (·) is a standard reduction to the strong unforgeability of the MAC.

Reduction to NM-RSDA. Distinguishing GΠ′,nm-rsda
0 and GΠ′,nm-rsda

1 can now be reduced to distin-
guishing H ′0 and H ′1.

Lemma 35. There exists a reduction R′(·) such that for all distinguishers D,

∆D(H ′0, H
′
1) = ∆DR′(·)(GΠ′,nm-rsda

0 , GΠ′,nm-rsda
1).

Proof (sketch). The reduction translates between the NM-SDA game for Π′′ and the NM-RSDA game for
Π′, using the fact that decryption queries for which the first component contains K∗ can be rejected. In
particular, when the NM-RSDA game outputs test, a ciphertext can be rejected.

32

Putting it together. The proof of Lemma 32 follows by combining Lemma 33, Lemma 34, and
Lemma 35.

6.3 Variations

By combining Theorem 26, Theorem 14, and Corollary 23, we obtain a 1-to-k-bit black-box domain
extension for NM-SDA making O(k) calls to the underlying 1-bit scheme.26 Moreover, it is easy to see
that the very same construction works for the case of NM-CPA security, the difference being that one
only needs a secret-state non-malleable code tolerating a single parallel tampering query (i.e., p = 1).
This proves Theorem 1 for the case of NM-SDA and NM-CPA.

The above construction also works for IND-SDA security by instantiating the construction with the
coding scheme from Section 5.2 (cf. Theorem 9).27 This yields Theorem 1 for the case of IND-SDA.
Note that the resulting PKE has a shorter secret key, as we do not need to store the secret state for the
non-malleable code. The security proof is a special case of that of Theorem 26 where each decryption
query has parallelism 1.

7 Construction from CPA Security

In this section we show that NM-SDA security can be achieved in a black-box fashion from IND-CPA
security. Specifically, we prove that a generalization using LECSS (cf. Section 2) of the scheme by Choi
et al. [25] (dubbed the CDMW construction in the remainder of this section) is NM-SDA secure. Using
a constant-rate LECSS allows to improve the rate of the CDMW construction from Ω(1/λ2) to Ω(1/λ),
where λ is the security parameter. This abstraction might also give a deeper understanding of the result
of [25]. The main difficulty in the analysis is to extend their proof to deal with adaptively chosen parallel
decryption queries (with self-destruct).

7.1 The CDMW Construction

The CDMW construction uses a randomized Reed-Solomon code, which is captured as a special case by
the notion of a linear error-correcting secret sharing (LECSS) (E,D,R) (cf. Section 2).

The LECSS has to satisfy an additional property, which is that given a certain number of symbols
chosen uniformly at random and independently and a plaintext x, one can efficiently produce an encoding
that matches the given symbols and has the same distribution as E(x). It is described in more detail in
the proof of Lemma 41, where it is needed.28

Let Π = (KG , E,D) be a PKE scheme with message spaceM = {0, 1}` (we assume ` = Ω(λ)), and let
Σ = (KGots, S, V) be a one-time signature scheme with verification keys of length κ = O(λ). Moreover,
let α > 0 be any constant and (E,D) a (k, n, δ, τ)-LECSS over GF(2`) with δ > 2α.

The CDMW construction (cf. Figure 11), to encrypt a plaintext m ∈ {0, 1}k`, first computes an
encoding (c1, . . . , cn) ← E(m) and then creates the (κ × n)-matrix C in which this encoding is repeated
in every row. For every entry Cij of this matrix, there are two possible public keys pkbi,j ; which of them

is used to encrypt the entry is determined by the ith bit v[i] of the verification key verk = (v[1], . . . , v[κ])
of a freshly generated key pair for Σ. In the end, the encrypted matrix E is signed using verk, producing
a signature σ. The ciphertext is (E, verk, σ).

26Note that for the construction to be secure, it is necessary that n = Ω(λ) and, therefore, due to the constant rate of the
LECSS, the plaintext length is k = Ω(λ) as well.

27This requires only a small, purely syntactical change to the coding scheme. In particular, the secret state is simply the
empty string.

28 This property is also known as “reconstruction from partial views”, and ECSSs (i.e., LECSSs without linearity) with
this additional guarantee are known as reconstructable probabilistic encodings [26]. Of course, the Reed-Solomon-based
LECSS from [25] satisfies the reconstruction property.

33

PKE Scheme Π′ = (KG ′, E′, D′)

Key Generation KG ′

for (b, i, j) ∈ {0, 1} × [κ]× [n]

(pkbi,j , sk
b
i,j)← KG

PK← (pkbi,j)b,i,j
SK← (skbi,j)b,i,j

T ←$

(
[n]
τn

)
return (PK, (SK, T))

Encryption E′PK(m)
(c1, . . . , cn)← E(m)
(verk, sigk)← KGots

(v[1], . . . , v[κ])← verk
for (i, j) ∈ [κ]× [n]

ei,j ← E
pk
v[i]
i,j

(cj)

E← (ei,j)i,j
σ ← Ssigk(E)
return (E, verk, σ)

Decryption D′(SK,T)(E, verk, σ)

if Vverk(E, σ) = 0
return ⊥

for j ∈ T
decrypt jth column of E
if not all entries identical

return ⊥
decrypt first row of E to c
(m,w)← R(c, αn)
if w = ⊥ or ∃j ∈ T : cj 6= wj

return ⊥
return m

Figure 11: The CDMW PKE scheme Π′ constructed from a CPA-secure scheme Π [25]. We write
(

[n]
τn

)
for the collection of all subsets of [n] with size τn.

The decryption first verifies the signature. Then, it decrypts all columns indexed by a set T ⊂ [n],
chosen as part of the secret key, and checks that each column consists of a single value only. Finally,
it decrypts the first row and tries to find a codeword with relative distance at most α. If so, it checks
whether the codeword matches the first row in the positions indexed by T . If all checks pass, it outputs
the plaintext corresponding to the codeword; otherwise it outputs ⊥.

In the remainder of this section, we sketch the proof of the following theorem, which implies Theorem 2.

Theorem 36. Let t ∈ N and Π be a (t + tcpa, εcpa)-IND-CPA-secure PKE scheme, α > 0, (E,D) a
(k, n, δ, τ)-LECSS with δ > 2α, and Σ a (t+ tots, εots)-secure OTS scheme with verification-key length κ.
Then, for any q, p ∈ N, PKE scheme Π′ is (t, q, p, ε)-NM-SDA-secure with

ε = (1− τ)κn · εcpa + 2 · εots + 4 · p(1− τ)αn,

where tcpa and tots represent the overhead incurred by corresponding reductions.

Instantiating the construction. Note that the security proof below does not use the linearity of the
LECSS. The CDMW construction can be seen as using a Reed-Solomon-based LECSS with rate O(1/κ).
If the construction is instantiated with a constant-rate LECSS, the final rate improves over CDMW by
a factor of Ω(κ) = Ω(λ). More concretely, assuming a constant-rate CPA encryption, a ciphertext of
length O(λ3) can encrypt a plaintext of length Ω(λ2) as compared to Ω(λ) for plain CDMW. As shown
in Section 7.3, the LECSS can be instantiated with constructions based on Reed-Solomon or algebraic
geometric codes (which also satisfy the additional property mentioned above), both with constant rate.
Among the constant-rate codes, algebraic geometric codes allow to choose the parameters optimally also
for shorter plaintexts.

7.2 Security Proof of the CDMW Construction

7.2.1 Overview

The proof follows the original one by [25]. The main change is that one needs to argue that, unless they
contain invalid ciphertexts, adaptively chosen parallel queries do not allow the attacker to obtain useful
information, in particular on the secret set T . This is facilitated by using the self-destruct lemma (cf.
Section 3). The proof proceeds in three steps using two hybrid games Hb and H ′b:

� The first hybrid Hb gets rid of signature forgeries for the verification key used to create the challenge

ciphertext. The indistinguishability of the hybrid from GΠ′,nm-sda
b follows from the security of the

OTS scheme and requires only minor modifications compared to the original proof.

34

� The second hybrid H ′b uses an alternative decryption algorithm. The indistinguishability of H ′b and
Hb holds unconditionally; this step requires new techniques compared to the original proof.

� Finally, the distinguishing advantage between H ′0 and H ′1 is bounded by a reduction to the IND-CPA
security of the underlying scheme Π; the reduction again resembles the one in [25].

7.2.2 Dealing with Forgeries

For b ∈ {0, 1}, hybrid Hb behaves as GΠ′,nm-sda
b but generates the signature key pair (sigk∗, verk∗) used for

the challenge ciphertext initially and rejects any decryption query (E′, σ′, verk′) if verk′ = verk∗.

Lemma 37. For b ∈ {0, 1}, there exists a reduction R′b(·) such that for all distinguishers D,

∆D(GΠ′,nm-sda
b , Hb) ≤ ΓR

′
b(D)(GΣ,ots).

Proof. R′b(·) is a standard reduction to the unforgeability of Σ.

7.2.3 Alternative Decryption Algorithm

For b ∈ {0, 1}, hybrid H ′b behaves as Hb but for the way it answers decryption queries (E′, σ′, verk′): As
before, it first verifies the signature σ′ and checks that each column of E′ consists of encryptions of a
single value. Then, it determines the first position i at which verk′ and verk∗ differ, i.e., where v′[i] 6= v∗[i].
It decrypts the ith row of E and checks if there is a codeword w within distance 2αn.29 If such w does
not exist or else if w does not match the first row in a position indexed by T , the check fails. Otherwise,
the plaintext corresponding to w is output.

Lemma 38. For b ∈ {0, 1} and all distinguishers D, ∆D(Hb, H
′
b) ≤ 2 · p(1− τ)αn.

The proof of Lemma 38 shows that the original and alternative decryption algorithms are indistin-
guishable not just for a single parallel query (as is sufficient for NM-CPA) but even against adaptively
chosen parallel queries (with self-destruct). It is the main technical contribution of this section.

At the core of the proof is an analysis of how different types of encoding matrices C are handled
inside the two decryption algorithms. To that end, one can define two games B and B′ (below) that
capture the behaviors of the original and the alternative decryption algorithms, respectively. The proof is
completed by bounding ∆(B,B′) (for all distinguishers) and showing the existence of a wrapper Wb such
that Wb(B) behaves as Hb and Wb(B

′) as H ′b (also below). This proves the lemma since ∆D(Hb, H
′
b) =

∆D(Wb(B),Wb(B
′)) = ∆D(Wb(·))(B,B′).

The games B and B′ behave as follows: Both initially choose a random size-τ subset of [n]. Then,
they accept parallel queries with components of the type (C, i) for C ∈ Fκ×n and i ∈ [κ]. The answer to
each component is computed as follows:

1. Both games check that all columns indexed by T consist of identical entries.
2. Game B tries to find a codeword w with distance less than αn from the first row (regardless of i),

whereas B′ tries to find w within 2αn of row i. Then, if such a w is found, both games check that
it matches the first row of C in the positions indexed by T .

3. If all checks succeed, the answer to the (component) query is w; otherwise, it is ⊥.

Both games then output the answer vector and implement the self-destruct, i.e., if any of the answers is
⊥, all future queries are answered by ⊥.

Claim 39. For b ∈ {0, 1} and all distinguishers D, ∆D(B,B′) ≤ 2 · p(1− τ)αn.

29Recall that the actual decryption algorithm always decrypts the first row and tries to find w within distance αn.

35

Encoding matrices. Towards a proof of Claim 39, consider the following partition of the set of encoding
matrices C (based on the classification in [25]):

1. There exists a codeword w within αn of the first row of C, and all rows have distance at most αn.
2. (a) There exist two rows in C with distance greater than αn.

(b) The rest; in this case the first row differs in more than αn positions from any codeword.

Observe that queries (C, i) with C of type 1 are treated identically by both B and B′: A codeword w
within αn of the first row of C is certainly found by B; since all rows have distance at most αn, w is
within 2αn of row i and thus also found by B′. Furthermore, note that if C is of type 2b, it is always
rejected by B (but not necessarily by B′).

Consider the hybrids C and C ′ that behave as B and B′, respectively, but always reject all type-2
queries. Since type-1 queries are treated identically, C and C ′ are indistinguishable. Moreover:

Claim 40. For all distinguishers D,

∆D(B,C) ≤ p(1− τ)αn and ∆D(C ′, B′) ≤ p(1− τ)αn.

The proof of Claim 40 follows a generic paradigm, at whose core is the so-called self-destruct lemma,
which deals with the indistinguishability of hybrids with the self-destruct property and is explained in
detail in Section 3. Roughly, this lemma applies whenever the first hybrid (in this case B resp. B′) can
be turned into the second one (in this case C resp. C ′) by changing (“bending”) the answers to a subset
(the “bending set”) of the possible queries to always be ⊥, and when additionally non-bent queries have
a unique answer (cf. the statement of Lemma 6). Intuitively, the lemma states that parallelism and
adaptivity do not help distinguish (much) in such cases.

Proof. To use the self-destruct lemma, note that B, C, C ′, and B′ all answer queries from X := Fκ×n× [κ]
by values from Y := Fn. Moreover, note that they use as internal randomness a uniformly chosen element
T from the set R :=

(
[n]
τn

)
of size-τn subsets of [n].

Consider first B and C. Let g : X ×R → Y correspond to how B answers queries (C, i) (see above).
Let B be the set B of all type-2a-queries. Then, C is its B-bending (cf. Definition 6). Observe that queries
x = (C, i) /∈ B are either of type 1 or 2b. For the former, the unique answer yx is the codeword w within
αn of the first row of C; for the latter, yx is ⊥. Therefore, using the self-destruct lemma (Lemma 6), for
all distinguishers D,

∆D(B,C) ≤ p · max
(C,i)∈B

P[g((C, i), T) 6= ⊥],

where the probability is over the choice of T . Since type-2a queries have two rows with distance greater
than αn, the probability over the choice of T that this remains unnoticed is at most (1− τ)αn.

For the second part of the claim, consider B′ and C ′. Now, let g : X × R → Y correspond to how
B′ answers queries (C, i) (see above again), and let B be the set B of all type-2-queries. Then, C ′ is the
B-bending of B′.

Note that all queries x = (C, i) /∈ B′ are of type 1, and the unique answer yx is the codeword w within
2αn of row i of C. Therefore, using Lemma 6 again, for all distinguishers D,

∆D(B′, C ′) ≤ p · max
(C,i)∈B′

P[g′((C, i), T) 6= ⊥],

where the probability is again over the choice of T . Since type-2a queries have two rows with distance
greater than αn and in type-2b queries the first row differs in more than αn positions from any codeword,
the probability over the choice of T that this remains unnoticed is at most (1− τ)αn.

Proof (of Claim 39). The proof follows using the triangle inequality:

∆D(B,B′) ≤ ∆D(B,C) + ∆D(C,C ′) + ∆D(C ′, B′) ≤ 2 · p(1− τ)αn.

36

Wrapper. It remains to show that there exists a wrapperWb such thatWb(B) behaves asHb andWb(B
′)

as H ′b. The construction of Wb is straight forward: Hb and H ′b generate all keys and the challenge in the
identical fashion; therefore, Wb can do it the same way. Wb answers decryption queries (E′, verk′, σ′) by
first verifying the signature σ′ and rejecting queries if σ′ is invalid or if verk′ is identical to the verification
key verk∗ chosen for the challenge, decrypting the entire matrix E′ to C′ and submitting (C′, i) to the
oracle (either B or B′), where i is the first position at which verk′ and verk∗ differ, and decoding the
answer w and outputting the result or simply forwarding it if it is ⊥. Moreover, Wb implements the
self-destruct. By inspection it can be seen that Wb(B) implements the original decryption algorithm and
Wb(B

′) the alternative one.

7.2.4 Reduction to IND-CPA Security

Lemma 41. There exists a reduction R(·) such that for all distinguishers D,

∆D(H ′0, H
′
1) = (1− τ)κn ·∆D(R(·))(GΠ,ind-cpa

0 , GΠ,ind-cpa
1).

Proof (sketch). The proof is a straight-forward generalization of the original proof by [25]; the only dif-
ference is that it needs to process multiple parallel decryption queries and implement the self-destruct
feature appropriately. For ease of exposition, we describe the reduction to a many-public-key version of
the CPA game for Π.30

Reduction R(·) initially chooses the secret set T and creates the challenge OTS key pair with verifi-
cation key verk∗ = (v∗[1], . . . , v∗[κ]) and all key pairs (pkbi,j , sk

b
i,j) with j ∈ T or b 6= v∗[i]. The remaining

(1− τ)κn key pairs are generated by the CPA game.
Recall that the LECSS is assumed to satisfy the following property: Given τn symbols (ci)i∈T chosen

uniformly at random and independently and any plaintext x ∈ Fk, one can efficiently sample symbols
(ci)i/∈T such that (c1, . . . , cn) has the same distribution as E(x). Using this fact, R(·) creates the challenge
for m0 and m1 as follows: It picks the random symbols (ci)i∈T and completes them to two full encodings
cm0 and cm1 with the above procedure, once using m0 and once using m1 as the plaintext. Let Cm0

and Cm1 be the corresponding matrices (obtained by copying the encodings κ times). Observe that
the two matrices match in the columns indexed by T . These entries are encrypted by R(·), using the
public key pkbi,j for entry (i, j) for which b 6= v∗[i]. Denote by C′m0

and C′m1
the matrices Cm0 and Cm1

with the columns in T removed. The reduction outputs (chall,C′m0
,C′m1

) to its oracle and obtains the
corresponding ciphertexts, which it combines appropriately with the ones it created itself to form the
challenge ciphertext.

Finally, note that since the reduction knows all the secret keys pkbi,j with b 6= v∗[i], it can implement
the alternative decryption algorithm (and the self-destruct).

7.2.5 Overall Proof

Proof (of Theorem 36). Let tcpa be the overhead caused by reduction R(·) and tots the larger of the
overheads caused by R′0(·) and R′1(·). Moreover, let D be a distinguisher with running time at most t.
Using the triangle inequality, and Lemmas 37, 38, and 41,

∆D(GΠ′,nm-sda
0 , GΠ′,nm-sda

1) ≤ ∆D(GΠ′,nm-sda
0 , H0) + ∆D(H0, H

′
0)

+ ∆D(H ′0, H
′
1) + ∆D(H ′1, H1) + ∆D(H1, G

Π′,nm-sda
1)

≤ ΓD(R′0(·))(GΣ,ots) + 2 · p(1− τ)αn

+ (1− τ)κn ·∆D(R(·))(GΠ,ind-cpa
0 , GΠ,ind-cpa

1)

+ 2 · p(1− τ)αn + ΓD(R′1(·))(GΣ,ots)

30In the many-public-key version of the CPA game, an attacker can play the CPA game for several independently generated
public keys simultaneously; this is equivalent to the normal formulation by a standard hybrid argument [13].

37

≤ εots + 2 · p(1− τ)αn

+ (1− τ)κn · εcpa + 2 · p(1− τ)αn + εots.

7.3 LECSS for the CDMW Construction

In this section we show how to instantiate the LECSS used for the CDMW construction in Section 7.
Let F be a finite field of size L = 2`, where ` is the plaintext length of the IND-CPA scheme used in the
construction. Then, there are the following variants of a (k, n, δ, τ)-LECSS:

� CDMW Reed-Solomon codes: The original CDMW construction can be seen as using a Reed-
Solomon-based LECSS with rate Θ(1/λ), which is suboptimal (see next item).

� Constant-Rate Reed-Solomon codes: Cheraghchi and Guruswami [24] provide a LECSS based on a
construction by Dziembowski et al. [40] and on Reed-Solomon (RS) codes with ` = Θ(log n). One
can show that it achieves the following parameters (not optimized): α = 1/8, τ = 1/8 and rate
k/n ≥ 1/4 (i.e., all constant).

� Algebraic geometric codes: Using algebraic geometric (AG) codes, Cramer et al. [31] provide a
LECSS with ` = O(1) and still constant error correction, secrecy, and rate (but with worse concrete
constants than Reed-Solomon codes).

Note that asymptotically, RS and AG codes are equally good: both have constant rate, distance, and
secrecy. However, since with AG codes ` is constant (i.e., they work over an alphabet of constant size),
the minimal plaintext length can be shorter than with RS codes.

38

References

[1] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-malleable reductions
and applications. In STOC, pages 459–468, 2015.

[2] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive combi-
natorics. In STOC, pages 774–783, 2014.

[3] Divesh Aggarwal, Nico Döttling, Jesper Buus Nielsen, Maciej Obremski, and Erick Purwanto. Con-
tinuous non-malleable codes in the 8-split-state model. In EUROCRYPT, pages 531–561, 2019.

[4] Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Leakage-resilient
non-malleable codes. In TCC, pages 398–426, 2015.

[5] Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski. Inception makes non-malleable codes
stronger. In TCC, pages 319–343, 2017.

[6] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Explicit non-malleable codes against bit-wise tampering and permutations. In CRYPTO, pages
538–557, 2015.

[7] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran. A
rate-optimizing compiler for non-malleable codes against bit-wise tampering and permutations. In
TCC, pages 375–397, 2015.

[8] Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-malleable codes
for small-depth circuits. In IEEE FOCS, pages 826–837, 2018.

[9] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, Huijia Lin, and Tal Malkin. Non-malleable
codes against bounded polynomial time tampering. In EUROCRYPT, pages 501–530, 2019.

[10] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable codes for
bounded depth, bounded fan-in circuits. In EUROCRYPT, pages 881–908, 2016.

[11] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tampering. In EURO-
CRYPT, pages 618–650, 2018.

[12] Marshall Ball, Siyao Guo, and Daniel Wichs. Non-malleable codes for decision trees. In CRYPTO,
pages 413–434, 2019.

[13] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user setting:
Security proofs and improvements. In EUROCRYPT, pages 259–274, 2000.

[14] Mihir Bellare and Amit Sahai. Non-malleable encryption: Equivalence between two notions, and an
indistinguishability-based characterization. In CRYPTO, pages 519–536, 1999.

[15] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based en-
cryption. In EUROCRYPT, pages 207–222, 2004.

[16] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security. In
CRYPTO, pages 565–582, 2003.

[17] Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj Upadhyay. Block-
wise non-malleable codes. In ICALP, pages 31:1–31:14, 2016.

39

[18] Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman. Information-theoretic local
non-malleable codes and their applications. In TCC, pages 367–392, 2016.

[19] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with their
many tampered extensions. In ACM STOC, pages 285–298, 2016.

[20] Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth circuits, and
affine functions. In ACM STOC, pages 1171–1184, 2017.

[21] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant split-state tam-
pering. In FOCS, pages 306–315, 2014.

[22] Binyi Chen, Yilei Chen, Kristina Hostáková, and Pratyay Mukherjee. Continuous space-bounded
non-malleable codes from stronger proofs-of-space. In CRYPTO, pages 467–495, 2019.

[23] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In Innovations in
Theoretical Computer Science, pages 155–168, 2014.

[24] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and split-state
tampering. In TCC, pages 440–464, 2014.

[25] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box construction of a
non-malleable encryption scheme from any semantically secure one. In TCC, pages 427–444, 2008.

[26] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved, black-box, non-
malleable encryption from semantic security. Des. Codes Cryptogr., 86(3):641–663, 2018.

[27] Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi. Non-malleable encryption:
Simpler, shorter, stronger. In TCC, pages 306–335, 2016.

[28] Sandro Coretti, Antonio Faonio, and Daniele Venturi. Rate-optimizing compilers for continuously
non-malleable codes. In ACNS, pages 3–23, 2019.

[29] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to multi-bit
public-key encryption via non-malleable codes. In TCC, pages 532–560, 2015.

[30] Ronald Cramer, Ivan Bjerre Damg̊ard, Nico Döttling, Serge Fehr, and Gabriele Spini. Linear secret
sharing schemes from error correcting codes and universal hash functions. In EUROCRYPT, pages
313–336, 2015.

[31] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael Pass, Abhi
Shelat, and Vinod Vaikuntanathan. Bounded CCA2-secure encryption. In ASIACRYPT, pages
502–518, 2007.

[32] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In CRYPTO, volume 1462 of LNCS, pages 13–25, 1998.

[33] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen cipher-
text secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[34] Dana Dachman-Soled. A black-box construction of a CCA2 encryption scheme from a plaintext
aware encryption scheme. In Hugo Krawczyk, editor, PKC, LNCS. Springer, 2014.

[35] Dana Dachman-Soled and Mukul Kulkarni. Upper and lower bounds for continuous non-malleable
codes. In PKC, pages 519–548, 2019.

40

[36] Ivan Damg̊ard, Tomasz Kazana, Maciej Obremski, Varun Raj, and Luisa Siniscalchi. Continuous
NMC secure against permutations and overwrites, with applications to CCA secure commitments.
In TCC, pages 225–254, 2018.

[37] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976.

[38] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

[39] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-source
extractors. In CRYPTO, pages 239–257, 2013.

[40] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In Innovations in
Theoretical Computer Science, pages 434–452, 2010.

[41] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
CRYPTO, pages 10–18, 1984.

[42] Antonio Faonio, Jesper Buus Nielsen, Mark Simkin, and Daniele Venturi. Continuously non-malleable
codes with split-state refresh. In ACNS, pages 121–139, 2018.

[43] Sebastian Faust, Kristina Hostáková, Pratyay Mukherjee, and Daniele Venturi. Non-malleable codes
for space-bounded tampering. In CRYPTO, pages 95–126, 2017.

[44] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous non-
malleable codes. In TCC, pages 465–488, 2014.

[45] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-malleable
codes and key-derivation for poly-size tampering circuits. In EUROCRYPT, pages 111–128, 2014.

[46] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA-OAEP is secure
under the RSA assumption. In Joe Kilian, editor, CRYPTO, volume 2139 of LNCS, pages 260–274,
Heidelberg, 2001. Springer.

[47] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic tamper-
proof (ATP) security: Theoretical foundations for security against hardware tampering. In TCC,
pages 258–277, 2004.

[48] Yael Gertner, Tal Malkin, and Steven Myers. Towards a separation of semantic and CCA security
for public key encryption. In TCC, pages 434–455, 2007.

[49] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[50] Javier Herranz, Dennis Hofheinz, and Eike Kiltz. Some (in)sufficient conditions for secure hybrid
encryption. Inf. Comput., 208(11):1243–1257, 2010.

[51] Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from factoring. In An-
toine Joux, editor, EUROCRYPT, volume 5479 of LNCS, pages 313–332, Heidelberg, 2009. Springer.

[52] Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from factoring. In
EUROCRYPT, pages 313–332, 2009.

[53] Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous queries: A new
approach for chosen ciphertext security. In EUROCRYPT, pages 663–681, 2012.

41

[54] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable codes. In TCC,
pages 451–480, 2015.

[55] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-state non-malleable
codes with explicit constant rate. In TCC, pages 344–375, 2017.

[56] Aggelos Kiayias, Feng-Hao Liu, and Yiannis Tselekounis. Practical non-malleable codes from l-more
extractable hash functions. In ACM CCS, pages 1317–1328, 2016.

[57] Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung. A new randomness extraction
paradigm for hybrid encryption. In Antoine Joux, editor, EUROCRYPT, volume 5479 of LNCS,
pages 590–609, Heidelberg, 2009. Springer.

[58] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme. In CRYPTO,
pages 426–442, 2004.

[59] Xin Li. Improved non-malleable extractors, non-malleable codes and independent source extractors.
In ACM STOC, pages 1144–1156, 2017.

[60] Huijia Lin and Stefano Tessaro. Amplification of chosen-ciphertext security. In EUROCRYPT, pages
503–519, 2013.

[61] Yehuda Lindell. A simpler construction of CCA2-secure public-key encryption under general assump-
tions. In EUROCRYPT, pages 241–254, 2003.

[62] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model. In
CRYPTO, pages 517–532, 2012.

[63] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-holland Pub-
lishing Company, 2nd edition, 1978.

[64] Steven Myers, Mona Sergi, and Abhi Shelat. Blackbox construction of a more than non-malleable
CCA1 encryption scheme from plaintext awareness. In Ivan Visconti and Roberto De Prisco, editors,
Security and Cryptography for Networks, volume 7485 of LNCS, pages 149–165. Springer, 2012.

[65] Steven Myers and Abhi Shelat. Bit encryption is complete. In FOCS, pages 607–616, 2009.

[66] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC, pages 427–437, 1990.

[67] Rafail Ostrovsky, Giuseppe Persiano, Daniele Venturi, and Ivan Visconti. Continuously non-malleable
codes in the split-state model from minimal assumptions. In CRYPTO, pages 608–639, 2018.

[68] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Construction of a non-malleable encryption
scheme from any semantically secure one. In CRYPTO, pages 271–289, 2006.

[69] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Relations among notions of non-malleability
for encryption. In ASIACRYPT, pages 519–535, 2007.

[70] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM J. Comput.,
40(6):1803–1844, 2011.

[71] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems (reprint). Commun. ACM, 26(1):96–99, 1983.

[72] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. SIAM J. Comput.,
39(7):3058–3088, 2010.

42

[73] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security.
In FOCS, pages 543–553, 1999.

[74] Ba-Zhong Shen. A Justesen construction of binary concatenated codes that asymptotically meet the
Zyablov bound for low rate. IEEE Transactions on Information Theory, 39(1):239–242, 1993.

[75] Salil P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Massachusetts Institute
of Technology, 1999.

43

	Introduction
	Contributions
	Related Work
	Paper Organization

	Preliminaries
	Notation
	Linear Error-Correcting Secret Sharing
	One-Time Signatures
	Message Authentication Codes
	Miscellaneous

	A General Indistinguishability Paradigm
	Parallel Stateless Self-Destruct Games
	The Self-Destruct Lemma

	Non-Malleability under Self-Destruct Attacks
	The Definition
	Relating Indistinguishability and Non-Malleability

	Non-Malleable Codes
	Stateful and Stateless Codes
	Non-Malleability under Continuous Tampering
	Non-Malleability under Continuous Parallel Tampering
	Impossibility for Codes without State

	Domain Extension
	Combining Single-Bit PKE and Non-Malleable Codes
	Security Analysis
	Variations

	Construction from CPA Security
	The CDMW Construction
	Security Proof of the CDMW Construction
	LECSS for the CDMW Construction

