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Robust Fuzzy Extractors and
Authenticated Key Agreement from Close Secrets

Yevgeniy Dodis, Bhavana Kanukurthi, Jonathan Katz, Leonid Reyzin, and Adam Smith

Abstract—Consider two parties holding samples from corre-
lated distributions W and W ′, respectively, where these samples
are within distance t of each other in some metric space.
The parties wish to agree on a close-to-uniformly distributed
secret key R by sending a single message over an insecure
channel controlled by an all-powerful adversary who may read
and modify anything sent over the channel. We consider both
the keyless case, where the parties share no additional secret
information, and the keyed case, where the parties share a long-
term secret SKExt that they can use to generate a sequence of
session keys{Rj} using multiple pairs {(Wj , W

′

j)}. The former
has applications to, e.g., biometric authentication, while the latter
arises in, e.g., the bounded-storage model with errors.

We show solutions that improve upon previous work in several
respects:

• The best prior solution for the keyless case with no
errors (i.e., t = 0) requires the min-entropy of W to
exceed2n/3, where n is the bit-length of W . Our solution
applies whenever the min-entropy ofW exceeds theminimal
threshold n/2, and yields a longer key.

• Previous solutions for the keyless case in the presence of
errors (i.e., t > 0) required random oracles. We give the first
constructions (for certain metrics) in the standard model.

• Previous solutions for the keyed case were stateful. We give
the first stateless solution.

I. I NTRODUCTION

A number of works have explored the problem ofsecret-
key agreement based on correlated information, by which
two parties holding samplesw,w′ of correlated random vari-
ablesW,W ′ communicate in order to generate a shared, secret,
close-to-uniform keyR. The problem has variously been called
“information reconciliation” (especially when the challenge is
to handle differences between the samples held by the parties),
“privacy amplification” (especially in the case whenW = W ′

and the goal is to transform a nonuniform shared secret to
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a uniform one), or “fuzzy extraction.” Early work [43], [5],
[26], [3] assumed the parties could communicate over apublic
but authenticatedchannel or, equivalently, assumed a passive
adversary. This assumption was relaxed in later work [29],
[30], [42], [27], [33], which considered an active adversary
who could modify all messages sent between the two parties.

The goal of the above works was primarily to explore the
possibility of information-theoreticsecurity, especially in the
context of quantum cryptography; however, this is not the only
motivation. The problem also arises in the context of using
noisy data (such as biometric information, or observations
of some physical phenomenon) for cryptographic purposes,
even if computational security suffices. The same problem also
arises in the context of thebounded-storage model(BSM) [28]
in the presence of errors [14], [17]. We discuss each of these
in turn.

A. Authentication Using Noisy Data

In the case of authentication/key agreement using noisy
data, the random variablesW,W ′ are close (with respect to
some metric) but notidentical. For simplicity, we assume the
noisy data represents biometric information, though the same
techniques apply to more general settings. In this context,two
different scenarios have been considered:

“Secure authentication”: Here, a trusted server stores some
biometric dataw of a user, obtained during an initial enroll-
ment. Later, when the user and the server want to establish a
secure communication session over an insecure channel, the
user locally obtains a fresh biometric scanw′ which is close,
but not identical, tow. The user and the server then usew
andw′ to authenticate each other and agree on a keyR.

“Key recovery”: In this scenario, a user utilizes his biometric
dataw to generate a random keyR along with some public
information P , and then storesP on a (possibly untrusted)
server. The keyR is then used, for example, to encrypt some
data for long-term storage. At a later point in time, the user
obtains a fresh biometric scanw′ along with the valueP from
the server; together, these values enable the user to recover R
(and hence decrypt the encrypted data).

In the second setting the user is, in effect, running a key
agreement protocol withhimself at two points in time, with
the (untrusted) server acting as the “communication channel”
between these two instances of the user. This second sce-
nario inherently requires anoninteractive(i.e., one-message)
solution sincew is no longer available at the later point in
time. Note also that any solution for the second scenario also
provides a solution for the first.
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Several protocols for key agreement using noisy data over
an authenticatedchannel are known [5], [3], [22], [20], [16].
Most of the existing work for anunauthenticatedchannel,
however, solves the problem only for two special cases [29],
[30], [42], [27], [33]: (1) whenW = W ′, or (2) whenW
andW ′ consist of (arbitrarily many) independent realizations
of the same random variable; i.e.,W = (W (1),W (2), . . .)

and W ′ = (W ′(1),W ′(2), . . .). In the case of biometric data,
however,W,W ′ are not likely to be equal and we cannot in
general obtain an unbounded number of samples.

Recently, there has been progress on the general case.
Renner and Wolf [34] were the first to demonstrate that anin-
teractivesolution is possible. Their protocol was not efficient,
but an efficient version was later given [24]. Boyen [8] showed
(in the random oracle model) how to achieveunidirectional
authentication, as well as a weak form of security for the
second scenario (roughly,R remains secret but the user can
be fooled into using an incorrect keyR′). Boyen et al. [9]
showed two solutions to the problem. Their first solution is
noninteractive and thus applies to both scenarios above, but
relies on random oracles. Their second solution is interactive,
and relies on password-based key exchange as a primitive. This
means that it providescomputationalrather thaninformation-
theoretic security; furthermore, given the current state-of-
the-art for password-based key exchange, their solution is
impractical without additional assumptions such as random
oracles or the existence of public parameters.

B. The Bounded-Storage Model and the Keyed Case

Key agreement using correlated information arises also in
the context of thebounded-storage model(BSM) [28] in
the presence of errors [14], [17]. In the BSM, two parties
share a long-term secret keySKBSM. In each time periodj,
a long random stringZj is broadcast to the parties (and the
adversary); the assumption is that the length ofZj is more than
what the adversary can store. The parties useSKBSM andZj to
generate a secret session keyRj in each period. This process
should achieve “everlasting security” [1], meaning that even
if SKBSM is revealed to the adversary in some time periodn,
all session keys{Rj}j<n remain independently and uniformly
distributed from the perspective of the adversary.

A paradigm (formalized by [39]) for achieving the above
is for SKBSM to contain a seedSKSam for a sampler1 and
another seedSKExt for a randomness extractor. The parties
use SKSam to sample some portion ofZj in each period;
in the absence of errors, this results in each party holding
the same valuewj . Since the adversary may have some
partial information aboutwj , however, this shared value is not
uniformly distributed from the point of view of the adversary,
and the parties must therefore use a randomness extractor
with the seedSKExt to generate a uniform keyRj for the
current period. In the presence of transmission errors inZj

the problem is even more difficult, as the parties then hold
correlated (but possibly unequal) stringswj , w

′
j after the initial

1A sampler [2] is a function that mapsSKSam to a set of bit positions. In
fact, SKSam may simply encode a set of randomly chosen bit positions, but
better samplers — using shorter seeds — are available.

sampling. The parallels to biometric authentication should be
clear. Nevertheless, the problems are incomparable: in thecase
of the BSM with errors there is a stronger setup assumption
(namely, that the parties share a long-term keySKBSM) but the
security requirements are more stringent sinceSKBSM needs
to be reusable and everlasting security is required.

C. Our Contributions

We focus on the abstract problem of secret-key agreement
between two parties holding instancesw,w′ of correlated
random variablesW,W ′ that are guaranteed to be close but
not necessarily identical. Specifically, we assume thatw and
w′ are within distancet in some underlying metric space. Our
definitions as well as some of our results hold for arbitrary
metric spaces, while other results assume specific metrics.

We restrict our attention tononinteractiveprotocols de-
fined by procedures(Gen,Rep) that operate as follows. The
first party, holding w, computes(R,P ) ← Gen(w) and
sendsP to the second party; this second party computes
R′ ← Rep(w′, P ). (If the parties share a long-term keySKExt

then Gen,Rep take this key as additional input.) The basic
requirements, informally, are

Correctness:R = R′ if w′ is within distancet of w.
Security: If the min-entropy ofW is high, thenR is

uniformly distributed even givenP .
So far, this gives exactly afuzzy extractoras defined by Dodis
et al. [16] (although we additionally allow the possibilityof a
long-term key). Since we are interested in the case when the
parties communicate over anunauthenticatedchannel, how-
ever, we actually want to constructrobust fuzzy extractors [9]
that additionally protect against malicious modification of P .
Robustness requires that if the adversary sends any modified
value P̃ 6= P , then with high probability the second player
will reject (i.e.,Rep(w′, P̃ ) =⊥). We distinguish between the
notion of pre-application robustnessand the stronger notion
of post-application robustness, where in the latter case the
adversary is givenR before it generates̃P . Post-application
robustness is needed in settings where the first party may begin
using R before the second party computesR′, and is also
needed for the “key recovery” scenario discussed earlier (since
previous usage ofR may leak information about it).

We now summarize our results:

The case of no errors.Although our focus is on the case
whenW,W ′ are unequal, we obtain improvements also in the
case when they are equal (i.e.,t = 0) but nonuniform. Let
m denote the min-entropy ofW and let n ≥ m denote its
bit-length. The best previous noninteractive solution in this
setting is due to Maurer and Wolf [27] who show that when
m > 2n/3 it is possible to achieve pre-application robustness
and generate a shared keyR of lengthm−2n/3. On the other
hand, results of [18], [19] imply that a non-interactive solution
is impossible whenm ≤ n/2. (As shown in [27, Section III-
C], interactive solutions can do better; in fact, it is possible
for the length ofR to be nearlym [33], [19], [11].)

We bridge the gap between known upper- and lower-bounds
and show that wheneverm > n/2 it is possible to achieve pre-
application robustness and generate a shared keyR of length
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2m − n. This improves both the required min-entropy ofW
and the length of the resulting key. Moreover, we give the first
solution satisfyingpost-applicationrobustness. That solution
also works as long asm > n/2, but extracts a key half as
long (that is, of lengthm− n/2).

Handling errors. The only previously known construction
of robust fuzzy extractors [9] relies on the random oracle
model. We (partially) resolve the main open question of [9]
by showing a construction of robust fuzzy extractorsin the
standard modelfor the specific cases of the Hamming and set-
difference metrics.2 (The solution in [9] is generic and applies
to any metric admitting a good error-correcting code.) Our
construction achieves post-application robustness.

The techniques of this paper were subsequently generalized
in [12].

Using a shared long-term key.There are scenarios in which
the two parties trying to deriveR from w and w′ already
share a long-term secret key. Motivated by such settings, we
define and construct akeyedrobust fuzzy extractor for general
metrics. In the process, we introduce a new primitive called
an extractor-MAC: a one-time information-theoretic message
authentication code whose output is independent of the key if
the message has sufficient entropy.

Application to the BSM with errors. Prior work focusing
on the BSM with errors [14], [17] showed a noninteractive
(i.e., single-message) solution to the problem discussed in
Section I-B when the sampleswj , w

′
j of the parties have

constantrelative Hamming distance. The solution of [14] is
stateful: the long-term keySKBSM is updated by both parties
after each time period using information derived fromZj . If
a party misses a time period and is no longer synchronized
with the other party, it is not clear how to recover. The
solution of [17] is stateless; the parties keep the same long-
term keySKBSM and can communicate even if one of them
misses someZj . However, this solution assumes the parties
can communicate over an authenticated channel. Building on
keyed robust fuzzy extractors, we show astatelesssolution
for the BSM with errors (under the Hamming metric) using
an unauthenticatedchannel.

II. D EFINITIONS AND PRELIMINARIES

For stringsa andb, we usea‖b to denote their concatenation
and let |a| denote the length ofa. If S is a set,x ← S
means thatx is chosen uniformly fromS. If X is a probability
distribution, thenx ← X means thatx is chosen according
to X. The notationPrX [x] denotes the probability assigned
by X to the valuex. (We often omit the subscript when
the probability distribution is clear from context.) IfA is a
probabilistic algorithm andx is an input,A(x;ω) denotes the
output of A running with random coinsω, and A(x) is the
random variableA(x;ω) for uniformly sampledω. If X is
a distribution, thenA(X) is the random variable obtained by

2A previous version of this work [15] contained an erroneous claim of a
construction for edit distance, which proceeded by embedding edit distance
into set difference using shingling (see [16]). That construction does not
work, however, because the embedding fails to preserve the requirement
that m > n/2.

samplingx← X and then runningA(x). We letUℓ denote the
uniform distribution over{0, 1}ℓ. All logarithms are base 2.

Let X1,X2 be two probability distributions over some
set S. Their statistical distance is SD (X1,X2)

def
=

1
2

∑
s∈S |PrX1

[s] − PrX2
[s]|. If two distributions have sta-

tistical distance at mostε, we say they areε-close and write
X1 ≈ε X2. Note thatε-close distributions cannot be distin-
guished with advantage better thanε by an adversary who
gets a single sample, even if the adversary is computationally
unbounded.

The min-entropy of a random variableX is defined as
H∞(X) = − log(maxx PrX [x]). Following [16], we define
the (average) conditional min-entropy ofX given Y as

H̃∞(X | Y ) = − log
(
Ey←Y

(
2−H∞(X|Y =y)

))

(where the expectation is overy for which Pr[Y = y] is
nonzero). This definition is suited for cryptographic purposes
because the probability that an adversary can predictX when
given the value ofY is 2−

eH∞(X|Y ).

Lemma 1 ([16, Lemma 2.2]) Let Y have at most2λ ele-
ments in its support. TheñH∞(X | Y ) ≥ H∞(X,Y ) − λ.
(More generally,H̃∞(X | Y,Z) ≥ H̃∞(X,Y | Z)− λ.)

A. Hash Functions and Extractors

We recall the notion of almost-universal hashing [10], [36].

Definition 1 A family of efficient functions H ={
hi : {0, 1}n → {0, 1}ℓ

}
i∈I

is δ-almost universal if for all
x 6= x′ we havePri←I [hi(x) = hi(x

′)] ≤ δ. Families with
δ = 2−ℓ are calleduniversal. ♦

A simple universal family [36, Theorem 5.2] can be con-
structed by identifyingI and {0, 1}n with GF (2n) in the
natural way, and defininghi(x) as the high-orderℓ bits of i·x.

Extractors [31] yield a (close to) uniform string from
a random variable with high min-entropy, using a uniform
seedi. Strong extractors guarantee that the extracted string
is uniform even conditioned on the seed. We consider only
strong extractors in this paper, and thus often omit the qualifier
“strong.”

Definition 2 Let I be a set and the uniform distribution over
that set. A functionExt : {0, 1}n × I → {0, 1}ℓ is a strong
(m, ε)-extractor if for all distributions X over {0, 1}n with
H∞(X) ≥ m we haveSD ((Ext(X; I), I), (Uℓ × I)) ≤ ε. ♦

We refer to the second argument toExt as theseed.
We need to strengthen the above definition to account

for external informationE an adversary knows that may
be correlated withX. To do so, we generalize the min-
entropy constraint onX to average min-entropy, and require
the extracted string to be uniform even givenE. Namely,
we require that for anyX,E such thatH̃∞(X | E) ≥ m
we have SD ((Ext(X; I), I, E), (Uℓ × I × E)) ≤ ε. Such
extractors are calledaverage-case extractors. Note that any
(m − log

(
1
ε

)
, ε′)-extractor is an(m, ε + ε′)-average-case

extractor, becausePre←E [H∞(X | e) ≤ m − log
(

1
ε

)
] ≤ ε

by Markov’s inequality; Vahdan [40] proves the stronger
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statement that any(m, ε)-extractor form ≤ n − 1 is also an
(m, 3ε)-average-case extractor. However, the additional loss is
not always necessary. Indeed, the Leftover Hash Lemma gen-
eralizes without any loss to the average-case setting. (Multiple
versions of this lemma have appeared; we use the formulation
of [37, Theorem 8.1], augmented by [16, Lemma 2.4] for
the average case; see [21] and references therein for earlier
formulations.)

Lemma 2 (Leftover Hash Lemma) Fix ℓ,m, ε > 0. If H =
{hi : {0, 1}n → {0, 1}ℓ}i∈I is a (2−ℓ(1 + 4ε2) − 2−m)-
almost universal family, thenH is a strong(m, ε)-average-
case extractor (where the index of the hash function is the
seed to the extractor). In particular, ifH is universal and
ℓ ≤ m + 2 − 2 log

(
1
ε

)
, thenH is a strong(m, ε)-average-

case extractor.

The above holds even whenH depends onE, i.e., whenH̃ =
{He}e∈E is a collection of almost-universal families, one for
each value of the external informationE.

B. One-Time Message Authentication Codes

An (information-theoretic) one-time message authentica-
tion code (MAC) consists of polynomial-time algorithms
(Mac,Vrfy). The first algorithm takes a keySK and a mes-
sageM ∈ {0, 1}n and outputs a tagt; we write this as
t = MacSK(M). Theverification algorithmVrfy takes as input
a key SK, a messageM ∈ {0, 1}n, and a tagt, and outputs
either 1 or 0, with the former being interpreted as acceptance
and the latter as rejection. Correctness requires that for all SK

and all M ∈ {0, 1}n, we haveVrfySK(M,MacSK(M)) = 1.
Security requires that whenSK is chosen uniformly, an un-
bounded adversary cannot output a valid tag on a new message
even after being given the tag on any message of its choice.
Formally:

Definition 3 Message authentication code(Mac,Vrfy) is a
δ-secure one-time MAC if for any adversaryA and any
messageM , the probability that the following experiment
outputs “success” is at mostδ: Choose uniform keySK; let
t = MacSK(M); let (M ′, t′) ← A(t); output “success” if
M ′ 6= M andVrfySK(M ′, t′) = 1. ♦

We next recall the notion of (almost)strongly universal
hashing [41], [36].

Definition 4 A family of efficient functions H ={
hi : {0, 1}n → {0, 1}ℓ

}
i∈I

is δ-almost strongly universal if
for all x 6= x′, y, y′ it holds that: (a)Pri←I [hi(x) = y] = 2−ℓ

and (b)Pri←I [hi(x) = y ∧ hi(x
′) = y′] ≤ δ2−ℓ. Families

with δ = 2−ℓ are calledstrongly universal or pairwise
independent. ♦

A strongly universal family [36, Theorem 5.2] is obtained by
identifying {0, 1}n with GF2n , letting I = GF (2n)×{0, 1}ℓ,
and definingha,b(x) as the high-orderℓ bits of (a · x)⊕ b.

An almost strongly universal hash family can be used for
information-theoretic authentication of a messageM using a
secret keyi, by letting the tag bet = hi(M). The property of
beingδ-almost strongly universal implies that this is aδ-secure
one-time MAC.

C. Secure Sketches and Fuzzy Extractors

We review the definitions of secure sketches and fuzzy
extractors from [16]. LetM be a metric space with distance
function dis. Informally, a secure sketch enables recovery of
a stringw ∈ M from any “close” stringw′ ∈ M, without
leaking too much information aboutw.

Definition 5 An (m, m̃, t)-secure sketch forM is a pair of
efficient randomized algorithms (SS,SRec) such that:

1) The sketching procedureSS takes an inputw ∈M and
outputs a strings ∈ {0, 1}

∗. The recovery procedure
SRec takes as inputs an elementw′ ∈ M and a string
s ∈ {0, 1}

∗, and returns an element ofM.
2) Correctness:If dis(w,w′) ≤ t then

SRec(w′,SS(w)) = w.

3) Security: For any distribution W over M with
H∞(W ) ≥ m, we haveH̃∞(W | SS(W )) ≥ m̃.

The quantitym− m̃ is called theentropy loss of the secure
sketch. ♦

For the case of the Hamming metric onM = {0, 1}n, we
will make use of the syndrome construction from [16] (this
construction also appeared as a component of earlier work,
e.g., [4]). Here the sketchs = SS(w) consists of thek-bit
syndrome3 of w with respect to some (efficiently decodable)
[n, n − k, 2t + 1]-error-correcting code. We do not need any
details of this construction other than the facts thats is a
(deterministic)linear functionof w and that the entropy loss
is at most|s| = k. We also note that this construction can be
extended to the set-difference metric [16].

As opposed to a secure sketch, whose goal is to recover the
original input, a fuzzy extractor enables generation of a close-
to-uniform stringR from w, and subsequent reproduction of
R from anyw′ close tow.

Definition 6 An (m, ℓ, t, ε)-fuzzy extractor for M is a pair
of efficient randomized algorithms (Gen,Rep) such that:

1) The generation procedureGen takes inputw ∈ M
and outputs an extracted stringR ∈ {0, 1}ℓ and a
helper stringP ∈ {0, 1}

∗. The reproduction procedure
Rep takes as inputs an elementw′ ∈ M and a string
P ∈ {0, 1}

∗, and returns a string in{0, 1}ℓ.
2) Correctness:If dis(w,w′) ≤ t and (R,P ) is output by

Gen(w), thenRep(w′, P ) = R.
3) Security: For any distributionW over M with min-

entropym, the stringR is close to uniform conditioned
on P . I.e., if H∞(W ) ≥ m and (R,P ) ← Gen(W ),
thenSD ((R,P ), (Uℓ × P )) ≤ ε. ♦

Composing an(m, m̃, t)-secure sketch with an average-case
(m̃, ε)-extractorExt : M× I → {0, 1}ℓ yields a (m, ℓ, t, ε)-
fuzzy extractor withP = (SS(w), i) and R = Ext(w; i)
(see [16, Lemma 4.1]).

Just as with ordinary extractors, a more general definition
of fuzzy extractors accounts for external informationE and

3If H is the parity matrix for a linear codeC (i.e., c ∈ C iff cHT = 0),
then the syndrome of a vectorw is wHT .
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requires that for anyW,E with H̃∞(W | E) ≥ m we have
SD ((R,P,E), Uℓ × (P,E)) ≤ ε. A fuzzy extractor satisfying
this definition is called anaverage-case fuzzy extractor, and
all known constructions satisfy this more general definition.

In this work we will also usekeyedfuzzy extractors where
both Gen andRep use the same keySKExt, which is uniform
and independent of the input distributionW . Here we require
the additional security property thatSKExt, R are indepen-
dently uniform conditioned onP . This stronger requirement
stems from the fact thatSKExt needs to be reusable; thus, it
should remain uniform and independent ofP,R in order to be
useful next time. This requirement implies (by a hybrid argu-
ment) that keyed fuzzy extractors can be used multiple times
(with the same keySKExt) to extract independent keys{Rj}
from independent{Wj}. It also implies that any extracted key
Rj remains uniform even to an adversary who learnsSKExt

andPj (but notwj).

Definition 7 An (m, ℓ, t, ε)-keyed fuzzy extractor for M is
a pair of efficient randomized algorithms (Gen, Rep) such that:

1) Algorithm Gen, on input a keySKExt and w ∈ M,
outputsR ∈ {0, 1}ℓ and P ∈ {0, 1}

∗; we denote this
by (R,P ) ← GenSKExt

(w). Algorithm Rep takes as
input a keySKExt, an elementw′ ∈ M, and a string
P ∈ {0, 1}

∗, and returns a string in{0, 1}ℓ; we denote
this by R′ ← RepSKExt

(w′, P ).
2) Correctness:For any keySKExt, if dis(w,w′) ≤ t and

(R,P ) is output by GenSKExt
(w), then it holds that

RepSKExt
(w′, P ) = R.

3) Security:If SKExt is uniform, distributionW overM is
such thatH∞(W ) ≥ m, and (R,P ) ← GenSKExt

(W ),
thenSD

(
SKExt × (R,P ), U|SKExt| × Uℓ × P

)
≤ ε. ♦

For some applications we need to impose the addi-
tional condition that, informally,P not reveal any infor-
mation about the distributionW . Formally, the distribution
P should be the same regardless of the distributionW ,
as long asW has sufficient min-entropy. It is easiest,
though slightly more restrictive than necessary, to simply
require P to be uniform (for anyW with sufficient min-
entropy). That is, we say that(Gen,Rep) hasuniform helper
strings if the security condition is strengthened to require
SD

(
SKExt × (R,P ), U|SKExt| × Uℓ × U|P |

)
≤ ε. This addi-

tional security condition was subsequently explored in the
setting of interactive key agreement [7].

This additional requirement may seem strange: after all,
security of a fuzzy extractor depends not on secrecy of the
distribution W , but only on the fact thatW has high min-
entropy, which ensures that the specific samplew is secret.
However, there are applications that need the distributionW
to be kept secret, and the public output of the fuzzy extractor
can harm them if this requirement is not satisfied. The specific
application considered in this paper is to the bounded-storage
model (introduced in Section I-B and addressed in detail in
Section IV-C). In this application, the input distributionto the
fuzzy extractor depends on the sampling seedSKSam, which
needs to remain secret so that it can be reused.

D. Robust Fuzzy Extractors

Fuzzy extractors protect against apassiveattack in which
an adversary observesP and tries to learn something about the
extracted keyR. However, the definition says nothing about
what happens if an adversary can modifyP as it is sent to
the user holdingw′. That is, there are no guarantees about the
output ofRep(w′, P̃ ) for P̃ 6= P .

Boyen et al. [9] propose the notion ofrobust fuzzy extrac-
tors, which provide strong guarantees against such an attack.
Specifically, Rep can now output either a key or a special
value ⊥ (denoting “fail”). The definition requires that with
high probability any valuẽP 6= P produced by the adversary
(after being givenP ) causesRep(w′, P̃ ) to output⊥. Modified
versions of the public informationP will therefore be detected.

We consider two variants of this idea, depending on whether
Gen andRep additionally share a long-term keySKExt. (Boyen
et al. considered only the keyless version.) Furthermore, we
distinguish between two adversarial attacks, and thus two
notions of robustness, depending on whether the adversary has
access toR when modifyingP . Indeed, ifR is used (e.g., for
encryption) and the adversary can observe some effect of this
use (e.g., the ciphertext) before modifyingP , then the notion
of robustness from Boyen et al. (in which the adversary is
given no information aboutR) is insufficient. Our stronger
notion accounts for this by giving the adversary access toR
in addition to P . This is a conservative choice that results
in a broadly applicable definition: security holds regardless
of how R is used and whether it remains hidden partially,
computationally, or not at all. We call this stronger notionpost-
applicationrobustness, and refer to the original notion (where
R is not given to the adversary) aspre-applicationrobustness.
Pre-application robustness suffices if the adversary’s ability to
modify P ends prior to any observable use ofR.

If W,W ′ are two (correlated) random variables over a
metric spaceM, we say dis(W,W ′) ≤ t if the distance
betweenW andW ′ is at mostt with probability one. We call
(W,W ′) a (t,m)-pair if dis(W,W ′) ≤ t andH∞(W ) ≥ m.

Definition 8 An (m, ℓ, t, ε)-fuzzy extractor has post-
application (resp., pre-application) robustness δ if for all
(t,m)-pairs (W,W ′) and all adversariesA, the probability
that the following experiment outputs “success” is at mostδ:
Sample (w,w′) from (W,W ′); let (R,P ) ← Gen(w); let
P̃ ← A(R,P ) (resp.,P̃ ← A(P )); output “success” ifP̃ 6= P
andRep(w′, P̃ ) 6=⊥. ♦

The definition is illustrated in Figure 1. Note that the
definition is interesting even whenw = w′ (i.e., when
t = 0), because ordinary extractors are not usually robust.
We construct (keyless) robust fuzzy extractors in Section III,
and keyed robust fuzzy extractors in Section IV.

The definition of robust extractors composes with itself in
some situations. For example, a generalization of the above
(used in [9]) allows the adversary to output(P̃1, . . . , P̃j); the
adversary succeeds if there exists ani with Rep(w′, P̃i) 6=⊥.
A simple union bound shows that the success probability of
an adversary in this case increases at most linearly inj.

Similarly, suppose two players (Alice and Bob)
receive a sequence of pairs of random variables
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w′

Gen A Rep

w SKExt

R R or ⊥

(a)

(b)

P P
~

Fig. 1. Robust extractors (cf. Definition 8). Dashed lines indicate variations
in the definition: (a)Keyed extractorstake an additional inputSKExt shared
by Gen andRep. (b) For pre-applicationrobustness, the adversary does not
have access to the extracted keyR.

(W1,W
′
1), (W2,W

′
2), . . . , (Wj ,W

′
j) (with Alice receiving the

{Wi} and Bob receiving the{W ′
i}), such thatdis(Wi,W

′
i ) ≤ t

for all i, and the entropy ofWi conditioned on the information
{(Wk,W ′

k)}k<i from prior time periods is at leastm. Alice
and Bob can agree on random and independent keys
R1, . . . , Rj by having Alice apply Gen from a robust
average-case fuzzy extractor to eachWi and then sendPi to
Bob. The attacker’s advantage in distinguishing the vectorof
unknown keys from random is at mostjε (this follows by
a hybrid argument that replaces extracted keys by random
strings one a time, starting with the most recent one). The
attacker’s probability of forging a valid̃Pi is at mostδ in
any given periodi (this can be shown by simply giving
the attacker(W1,W

′
1), . . . , (Wi−1,W

′
i−1)); thus, the overall

probability of forgery over all time periods is at mostjδ.
For keyedfuzzy extractors, robustness is defined exactly as

in Definition 8 with the only difference being thatGen andRep

both use the same (uniform) keySKExt (which is not given
to the adversary); see Figure 1. At first glance, the addition
of a long-term key may seem to trivialize the problem of
constructing robust fuzzy extractors. For example, one might
attempt to useSKExt as a key for a message authentication
code and, given output(R,P ) from a fuzzy extractor, simply
append toP the tagMacSKExt

(P ). While this may work in the
computational setting, it will not suffice in the information-
theoretic setting if we want to support an unbounded number
of time periods (or if we want to use a keySKExt whose
length does not grow linearly in the number of time periods
supported). Furthermore, such a construction will not satisfy
the security property of Definition 7 becauseSKExt will not
be uniform conditioned onP andMacSKExt

(P ).

III. C ONSTRUCTING(KEYLESS) ROBUST FUZZY

EXTRACTORS

We begin by analyzing the case of no errors (i.e.,t = 0),
and then consider the more general case.

A. The Errorless Case (w = w′)

Consider the case whereM = {0, 1}n and Alice and Bob
hold the same samplew ∈ {0, 1}n of a random variableW .
In the presence of apassiveadversary, Alice and Bob can
agree on a uniform key using a strong extractorExt. Phrased
using the terminology of fuzzy extractors (witht = 0 here),
Alice runs Gen(w) which simply samples a seedP for Ext,

v bitsn – v bits

a b

Xi

R

v bitsn-2v bits

[ia]
1

v

+

Fig. 2. Construction for the errorless case.

and sendsP to Bob; both Alice and Bob then output the key
R = Rep(w,P ) = Ext(w,P ). This solution does not work if
the adversary isactive, which is why robust fuzzy extractors
are interesting even in the errorless case. In particular, if an
adversary forwards̃P 6= P to Bob then there is no longer
any guarantee on Bob’s outputExt(w; P̃ ); in fact, it is easy to
show a construction of a strong extractorExt with the property
that a maliciously generated̃P completely determines Bob’s
key R̃ = Ext(w; P̃ ). One idea to address this is for Alice to
authenticateP using the keyR she extracts, and then send the
authentication tag along withP to Bob. In general this does
not work either: if the adversary forwards̃P 6= P to Bob,
then it may be easy for the adversary to generate a forged
tag with respect to the keỹR that Bob derives. Instead, we
use w itself to authenticateP and show that this approach
works for a particular choice of strong extractor and message
authentication code.

We define algorithmsGen,Rep as follows. To compute
Gen(w), parsew as two stringsa andb of lengthsn−v andv,
respectively, wherev < n/2 is a parameter of the construction.
View a as an element ofGF2n−v and b as an element of
GF2v (the representation of field elements does not matter, as
long as addition in the field corresponds to exclusive-or of bit
strings). Choose randomi ∈ GF2n−v , let [ia]n−v

v+1 denote the
most significantn − 2v bits of ia ∈ GF2n−v , and let [ia]v1
denote the remainingv bits of ia. View [ia]v1 as an element
of GF2v . Then computeσ = [ia]v1 + b, setP = (i, σ), and let
the extracted key beR = [ia]n−v

v+1 . See Figure 2.
Rep(w, P̃ ), whereP̃ = (i′, σ′), proceeds as follows. Parse

w as two stringsa and b as above. Then verify thatσ′ =
[i′a]v1 + b and output⊥ if this is not the case. Otherwise,
compute the extracted keyR′ = [i′a]n−v

v+1 .
The following theorem states the parameters for which

(Gen,Rep) is a robust fuzzy extractor. (Sincet = 0 here,
the metric over{0, 1}n is irrelevant.) Observe that extraction

is possible as long asH∞(W )
def
= m > n/2, and in the case

of pre-application robustness (which is the notion considered
in [27]) we extract a key of length roughly2m − n. This
improves on the result of Maurer and Wolf [27] who require
m > 2n/3 and extract a key of length roughlym− 2n/3.

Theorem 3 Fix v, and let ℓ = n − 2v be the length of the
extracted key. Then:
• For any ε, δ satisfying

ℓ ≤ 2m− n−max
{
2 log

(
1
δ

)
, 4 log

(
1
ε

)}
,
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(Gen,Rep) is an (m, ℓ, 0, ε)-fuzzy extractor with pre-
application robustnessδ.

• For any ε, δ satisfying

ℓ ≤ min

{
2m− n− 2 log

(
1
δ

)

3
, 2m− n− 4 log

(
1
ε

)
}

,

(Gen,Rep) is an (m, ℓ, 0, ε)-fuzzy extractor with post-
application robustnessδ.

Proof: We show thatR ∈ {0, 1}ℓ is close to uniform
conditioned onP , and then argue robustness.

Extraction. We begin by showing thatH = {hi : hi(a, b)
def
=

(σ,R)} is a universal hash family. Indeed, for(a, b) 6= (a′, b′)
we have

Pri [hi(a, b) = hi(a
′, b′)] =

Pri

[
[ia]v1 − [ia′]v1 = b′ − b

∧
[ia]n−v

v+1 = [ia′]n−v
v+1

]
.

This is equivalent toPri

[
i(a− a′) = 0n−2v‖(b′ − b)

]
, where

“‖” denotes concatenation (this is because we insisted that
addition/subtraction in the finite fields corresponds to bitwise
exclusive-or). Ifa = a′ then we must haveb 6= b′ and so the
probability is 0. Ifa 6= a′, then there is a uniquei that satisfies
the equality. Thus, the probability is at most1/|GF2n−v | =
2v−n.

Using the above and the leftover hash lemma
(Lemma 2) we see that(R,P ) = (R, (i, σ)) is
2((ℓ+v)−m−2)/2 ≤ ε/2-close to (Uℓ × Un−v × Uv) or, put
differently, that SD ((R,P ), Uℓ × Un) ≤ ǫ/2. This implies
SD ((R,P ), Uℓ × P ) ≤ ǫ using the triangle inequality.

Pre-application robustness.We prove the stronger result that
robustness holds for worst-case choice ofi. Fix i andA, and
let Succ be the event thatA succeeds. SinceA is unbounded,
we may assume it is deterministic. Upon observingσ, the
adversary outputsA(σ) = (i′, σ′) 6= (i, σ). If i′ = i, thenRep

will reject unlessσ′ = σ; therefore, we need only consider the
casei′ 6= i. By definition,A succeeds only ifσ′ = [i′a]v1 + b.

Call a triple(σ, i′, σ′) a transcript, and say it ispossibleif
A(σ) = (i′, σ′). For any possible transcripttr = (σ, i′, σ′) the
following holds (in the probability expressions below,a‖b are
chosen according to the distributionW conditioned ontr or,
equivalently, conditioned onσ):

Pr[Succ | tr] = Pra‖b [ [ia]v1 + b = σ
∧

[i′a]v1 + b = σ′]

= Pra‖b

[
[ia]v1 − [i′a]v1 = σ − σ′

∧
b = σ − [ia]v1

]

= Pra‖b

[
[(i− i′)a]v1 = σ − σ′

∧
b = σ − [ia]v1

]
,

where the final equality holds because we insisted that addi-
tion/subtraction in our fields corresponds to bitwise exclusive-
or. The term(i−i′) ·a takes on each possible value inGF2n−v

exactly once asa varies; therefore, there are2n−v/2|σ| =
2n−2v values ofa for which [a(i − i′)]v1 = σ − σ′. For each
such value ofa, there is a unique value ofb that satisfies
b = σ− [ia]v1. Each(a, b) pair occurs with probability at most
2−H∞(W |σ). Thus,

Pr[Succ | tr] ≤ 2n−2v · 2−H∞(W |σ).

The overall success probability ofA is given by

Etr [Pr[Succ | tr]] ≤ 2n−2v ·Etr

[
2−H∞(W |σ)

]

= 2n−2v · 2−
eH∞(W |σ).

Since|σ| = v, we haveH̃∞(W | σ) ≥ m−v and we conclude
that Pr[Succ] ≤ 2n−v−m ≤ δ.

Post-application robustness.Because|R| = ℓ, providing R
to the adversary can increase its success probability by a mul-
tiplicative factor of at most2ℓ as compared to pre-application
robustness.4 Thus, if 3ℓ ≤ 2m− n−2 log

(
1
δ

)
the adversary’s

success probability (in the post-application robustness game)
is at most2ℓ · 2n−v−m = 2ℓ · 2(n+ℓ−2m)/2 ≤ δ.

B. Improved Post-Application Robustness for the Errorless
Case

In this section, we present a construction of an extractor
with post-application robustness that extracts a key of length
m − n/2 − log

(
1
δ

)
, an improvement by a factor of3/2 as

compared to the construction given above.
Assumen is even for simplicity. To computeGen(w), let

a and b denote the first and last halves ofw, respectively,
and viewa and b as elements ofGF2n/2 . Choose a random
i ∈ GF2n/2 and computey = ia + b. Let σ be the firstv bits
of y, wherev < n/2 is a parameter of the scheme, and letR

be the remainder ofy; i.e., σ = [y]v1 andR = [y]
n/2
v+1. Output

P = (i, σ).
Rep(w, P̃ ), where P̃ = (i′, σ′), proceeds in the obvious

way: Parsew as two stringsa, b as above. Then verify that
σ′ = [i′a+ b]v1 and output⊥ if this is not the case. Otherwise,
compute the extracted keyR′ = [i′a + b]

n/2
v+1.

Before giving the formal proof, we provide some intuition
as to why this construction has better post-application robust-
ness. Recall that in the previous constructionw is parsed as
two strings a and b of lengths n − v and v, respectively,
and the valuesσ,R are computed asσ = [ia]v1 + b and
R = [ia]n−v

v+1 . Increasingv improves robustness but decreases
the number of extracted bits. For pre-application robustness,
settingv = n−m+log

(
1
δ

)
suffices, and thus the construction

extracts nearly(2m−n) bits. For post-application robustness,
however, a largerv must be used and consequently the number
of extracted bits is decreased.

The post-application robustness game reveals more infor-
mation to the adversaryA aboutw than the pre-application
robustness game. This additional information—namely,R
itself—may make it easier forA to guessσ′. The key to
our improvement is to use the pairwise-independent function
hi(a, b) = ia+b to compute bothσ andR. Because of pairwise
independence, the value(σ,R) of hi(a, b) leaks nothing about
the value(σ′, R′) = hi′(a, b) for any i′ 6= i. (This holds
when (a, b) is uniform; when(a, b) has min-entropym, then
A may have up ton − m bits of information aboutσ′.) In
contrast, in the previous construction onlyσ was computed
using a pairwise-independent hash function. This works better

4One might hope to improve this analysis, but we show in AppendixA
that the analysis here is essentially tight.
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for pre-application robustness (becauseb can be taken shorter),
but worse for post-application robustness.

Theorem 4 Fix v, and let ℓ = n/2 − v be the length of the
extracted key. Then for anyε, δ satisfying

ℓ ≤ m− n/2− log
1

δ

m ≥ n/2 + 2 log
1

ε
,

(Gen,Rep) is an (m, ℓ, 0, ε)-fuzzy extractor with post-
application robustnessδ.

Proof: We first show thatR ∈ {0, 1}ℓ is nearly uniform
given P . The proof proceeds along the lines of the analogous
proof for Theorem 3. As before, we begin by showing that
H = {hi : hi(a, b) = (σ,R)} is universal. Indeed, for(a, b) 6=
(a′, b′) we have

Pri[hi(a, b) = hi(a
′, b′)] = Pri[ia + b = ia′ + b′]

= Pri[i(a− a′) = (b− b′)], .

If a = a′ thenb 6= b′ and soPri[i(a− a′) = (b− b′)] = 0. If
a 6= a′, then there is a uniquei for which i(a−a′) = (b− b′),
and soPri[i(a− a′) = (b− b′)] = 2−n/2.

The above and Lemma 2 imply that(i, R, σ) is
2(n/2−m)/2−1-close to Un/2 × Uℓ × Uv. As in the previ-
ous proof, and recalling thatP = (i, σ), this means that
SD ((R,P ), Uℓ × P ) ≤ 2(n/2−m)/2 ≤ ǫ.

Post-application robustness.As in the previous proof, we
prove that robustness holds for worst-case choice ofi. Fix
i andA, and letSucc be the event thatA succeeds. Since
A is unbounded, we may assume it is deterministic. Thus,
upon observingσ,R the adversary outputs(i′, σ′) 6= (i, σ);
the adversary succeeds if[i′a + b]v1 = σ′. Note that if i′ = i
then Rep will reject unlessσ′ = σ; therefore, we need only
consider the casei′ 6= i.

We now let atranscript be a tupletr = (σ,R, i′, σ′), and
say it is possible if A(σ,R) = (i′, σ′). For any possible
transcript tr = (σ,R, i′, σ′) we have the following (in the
probability expressions below,a‖b are chosen according
to the distribution W conditioned on tr or, equivalently,
conditioned onσ):

Pr[Succ | tr]

= Pra‖b

[(
ia + b = σ‖R

)∧ (
[i′a + b]v1 = σ′

)]

=
∑

R′∈{0,1}ℓ

Pra‖b

[(
ia + b = σ‖R

)∧ (
i′a + b = σ′‖R′

)]
.

For any fixedR′, there is a unique value(a, b) for which
ia + b = σ‖R and i′a + b = σ′‖R′. Each(a, b) pair occurs
with probability at most2−H∞(W |σ,R). We thus see that

Pr[Succ | tr] ≤ 2ℓ · 2−H∞(W |σ,R).

The overall success probability ofA is given by

Etr [Pr[Succ | tr]] ≤ 2ℓ · 2−
eH∞(W |σ,R).

Since |σ| + |R| = n/2, we haveH̃∞(W | σ,R) ≥ m − n/2
and soPr[Succ] ≤ 2ℓ−m+n/2 ≤ δ.

C. Authenticating a Message While Extracting

Each of the constructions given previously uses the parties’
input w to authenticate the extractor seedi. Each construction
can be extended to additionally authenticate a messageM ,
i.e., to be simultaneously a robust fuzzy extractor and an
information-theoretic one-time MAC. In this setting, bothGen

and Rep will take an additional inputM , and it should be
difficult for an adversary to causeRep to accept a differentM .
(We are being informal here since this is merely a stepping
stone to the results of the following section.) This could
be done naively by using (a part of)R as a key for a
MAC, but this would correspondingly reduce the final number
of extracted bits. In contrast, the approach presented here
(almost) does not reduce the length ofR at all.

We show how to extend the original construction given
at the beginning of Section III-A; the construction of Sec-
tion III-B can be extended similarly. We adapt a standard
technique [6], [13], [38] for authenticating messages using
polynomial-based almost-universal hash functions. Let|M | =
L · (n−v), whereL is known to both parties in advance. Split
M into L chunksM0, . . . ,ML−1, eachn − v bits long, and
view these as coefficients of a polynomialM(x) ∈ GF2n−v [x]
of degreeL − 1. To computeGen(w,M), parsew as a‖b,
choose randomi ∈ GF2n−v , computeσ = [a2M(a)+ia]v1 +b,
and setP = (i, σ). As before, the extracted key isR =
[ia]n−v

v+1 .
The procedureRep, givenw, M ′, andP̃ = (i′, σ′), verifies

that|M ′| = L·(n−v) and thatσ′ = [a2·M ′(a)+i′a]v1+b. If so,
it acceptsM ′ as valid and additionally outputsR = [i′a]n−v

v+1 .
Extraction and robustness (which here means that neither

i nor M can be modified without detection) are proved
in a manner very similar to the proof of Theorem 3. Fix
arbitraryM , known to the adversary. To argue thatR is nearly
uniform given P = (i, σ), we will show thatH = {hi :

hi(a, b)
def
= (σ,R)} is universal. Indeed, for(a, b) 6= (a′, b′),

we have

Pri

[
hi(a, b) = hi(a

′, b′)
]

= Pri

[
i · (a− a′) =

(
0n−2v ‖

([
(a′)2 ·M(a′)− a2 ·M(a)

]v

1
+ b′ − b

))]
,

If a = a′ then b 6= b′ and the above equality cannot be
satisfied; ifa 6= a′, there is a uniquei satisfying the equality.
This proves universality. The rest of the proof proceeds as
before.

For (pre-application) robustness, fix arbitraryM and i
(known toA) and proceed as before. The only difference is
that we now need to compute the number of values ofa for
which

[a2M(a) + ia− a2M ′(a)− i′a]v1 = σ − σ′. (1)

The crucial property is that the polynomialx2M(x) + ix −
x2M ′(x) − i′x is nonconstant if(M, i) 6= (M ′, i′). A non-
constant polynomial of degree at mostL + 1 can take on a
given value at mostL + 1 times; hence, there are at most
(L + 1)2n−2v values ofa satisfying Eq. (1). The probability
that the adversary succeeds (in changing eitheri or M without
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being detected) is thus at most(L + 1) · 2n−v−m. Note
that the resulting forgery probability is affected only by a
multiplicative factor of(L+1); since we expect(L+1)≪ 1/δ
in practice, the impact is small.

D. Adding Error-Tolerance (w 6= w′)

We now consider settings when the inputw′ held by the
second party is close, but not identical to, the inputw used by
the first party. An obvious first attempt is to include a secure
sketch s = SS(w) along with (i, σ), and to authenticates
using the message-authentication technique discussed in the
previous section;s would allow recovery ofw from w′, and
then verification could proceed as before. Unfortunately, this
does not quite work: if the adversary modifies the sketchs,
then a different valuew∗ 6= w may be recovered; however, the
results of the previous section apply only when the receiver
uses the samew as the sender. In effect, we have a circularity:
the receiver usesw to verify thats was not modified, but the
receiver computesw (from w′) using a possibly modifieds.

We show how to break this circularity using a modification
of the message-authentication technique from earlier. Thekey
idea is to exploit algebraic structure in the metric space, and
to change the message authentication code so that it remains
secureeven when the adversary can influence the key(this is
sometimes referred to as “security against related-key attacks”;
our approach was generalized in [12]). Specifically, we first
treat the case where the distance betweenw andw′ is small in
the Hamming metric; in Section III-G we extend the approach
to the set-difference metric.

Another problem arises from the fact that the performance
of our previous constructions degrades not only when the min-
entropym of the input decreases, but also when the entropy
gap g = n − m increases (for example, Theorem 3 can
extract roughlym − g bits with pre-application robustness).
Becauses reveals information aboutw, the entropy ofw from
the adversary’s point of view decreases, and the entropy gap
increases. An important idea is to limit this increase by using
the (shorter) part ofw that is independent ofs.

E. Tolerating Binary Hamming Errors

We begin by extending the construction presented at the
beginning of Section III-A to tolerate binary hamming errors;
we then extend the construction from Section III-B.

Our metric space isM = {0, 1}n and the distance between
two strings is Hamming distance—i.e., the number of bit
positions in which they differ. Suppose the inputW is a dis-
tribution of min-entropym overM, and thatw′ is guaranteed
to be within distancet of w. Our starting point is to use a
deterministic, linear, secure sketchs = SS(w) that is k bits
long; letn′ = n−k and note that̃H∞(W | SS(W )) ≥ m−k.
We assume thatSS is a surjective, linear function (this is the
case for the syndrome sketch for the Hamming metric), and so
there exists ak×n matrixS of rankk such thatSS(w) = S ·w.
Let S⊥ be ann′×n matrix such that then×n matrix

(
S

S⊥

)
has

full rank. We letSS⊥(w)
def
= S⊥w. One can viewSS⊥(w) as

the information remaining inw onceSS(w) has been learned
by the adversary.

We defineGen,Rep as follows.Gen, on inputw, begins by
computings = SS(w) and c = SS⊥(w). It then parsesc ∈
{0, 1}n

′

as two stringsa, b with |a| = n′−v and|b| = v, where
v ≤ n′/2 (so |a| ≥ |b|) is a parameter of the construction.
Letting L = 2⌈ k

2(n′−v)⌉, it padss with 0s to lengthL(n′ −

v) and parses the resulting string assL−1‖sL−2‖ · · · ‖s0 with
si ∈ GF2n′−v . It chooses randomi ← GF2n′−v , and defines
fs,i(x) = xL+3+x2 ·(sL−1x

L−1+sL−2x
L−2+ · · ·+s0)+ix.

Finally, it setsσ = [fs,i(a)]v1 + b, and outputsR = [ia]n
′−v

v+1

andP = (s, i, σ).
Rep, on inputsw′ andP̃ = (s′, i′, σ′), first computesw∗ =

SRec(w′, s′) ∈ {0, 1}n. It checks thatdis(w∗, w′) ≤ t and
SS(w∗) = s′; if not, then it outputs⊥. Otherwise, letc′ =
SS⊥(w∗) and parsec′ asa′‖b′ with |a′| = n′−v and|b′| = v.
Check thatσ′ = [fs′,i′(a

′)]v1 + b′: if not, output⊥; otherwise
outputR′ = [i′a′]n

′−v
v+1 .

Before turning to the detailed analysis, we note that the
polynomial fs,i defined above differs from the message-
authentication technique in the previous section only in the
leading termxL+3 (and the forcing ofL to be even). It has
the property that for any pair(s′, i′) 6= (s, i), and for any
fixed offset ∆a, the polynomialfs,i(x) − fs′,i′(x + ∆a) is
a non-constant polynomial of degree at mostL + 2: this is
easy to see for∆a = 0; if ∆a 6= 0, then the leading term is
∆a ·x

L+2 (recall we are working in a field of characteristic 2
andL is even). Our analysis will show thatfs,i(a) amounts to
a message authentication code (where the shared keya is used
to authenticates, i) that is provably secure against a class of
related-key attacks where the adversary can force the receiver
to use a key shifted by an offset known to the adversary.

Theorem 5 LetM denote{0, 1}n under the Hamming met-
ric, let SS be the(m,m−k, t)-secure syndrome sketch forM,
and letB denote the volume of the ball of radiust inM. Fix
v, and letℓ = n− k − 2v be the length of the extracted key.
Then:
• For any ε, δ satisfying

ℓ ≤ 2m−n−k−2max

{
log B+log

(
2

⌈
k

n− k

⌉
+2

)
+log

(
1
δ

)
,

2 log
(

1
ε

) }

≤ 2m− n− k − 2max

{
log B + log

2n

δ
, 2 log

(
1
ε

) }
,

(Gen,Rep) is an (m, ℓ, t, ε)-fuzzy extractor forM with
pre-application robustnessδ.

• For any ε, δ satisfying

ℓ ≤ min

{
1

3

(
2m−n−k−2

(
log B+log

(
2

⌈
k

n− k

⌉
+2

)

+ log
(

1
δ

) ))
,

2m− n− k − 4 log
(

1
ε

) }

≤ min

{
1

3

(
2m− n− k − 2 log B − 2 log

2n

δ

)
,
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2m− n− k − 4 log
(

1
ε

) }
,

(Gen,Rep) is an (m, ℓ, t, ε)-fuzzy extractor forM with
post-application robustnessδ.

Note thatlog B ≤ nH2(t/n) if t ≤ n/2, whereH2(x) is
the binary entropy function [25, Chapter 10,§11, Lemma 8],
and log B ≤ t log(n + 1) + 1 always.5

Before giving the proof, we briefly discuss the parameters
obtained. The bound onℓ differs in two main terms from the
bound in the errorless case of Theorem 3. First, we lose the
lengthk of the sketch. This is not surprising, since the sketch
may reduce the min-entropy ofW by up tok bits. Second, we
lose another additive factor of2 log B. In general this is (to
some extent) inherent, since the min-entropy ofW ′ may be
as low asH∞(W )− log B. Looking at it slightly differently,
in our analysis we start by giving the attacker∆ = w′ − w
“for free”, which can reduce the min-entropy ofW by log B.
We can prove a generalization of the above result where the
term 2m − 2 log B is replaced by2H̃∞(W | ∆). Thus, for
example, if errors are independent ofw then the termlog B
is no longer present.

Proof: That the construction satisfies the functionality of
a robust fuzzy extractor is clear, and we thus turn to proving
security. The argument thatR is nearly uniform givenP is
similar to the errorless case, except that the entropy loss due
to the sketchs has to be taken into account. For everys, the
family H = {hi : hi(c)

def
= (σ,R)} is universal because for

every c 6= c′, there is at most onei such thathi(c) = hi(c
′).

SinceH̃∞(c | SS(W )) = H̃∞(W | SS(W )) ≥ m− k, apply-
ing Lemma 2 and proceeding as in the proof of Theorem 3
givesSD ((R,P ), Uℓ × P ) ≤ 2(v+ℓ−(m−k))/2 ≤ ǫ.

Pre-application robustness.We prove the stronger result that
robustness holds for worst-case choice ofi, and even if the
adversary is given∆ = w′ − w. Fix i and A, and let
Succ be the event thatA succeeds. SinceA is unbounded,
we may assume it is deterministic. Upon observings, σ,∆,
the adversary outputsA(s, σ,∆) = (s′, i′, σ′) 6= (s, i, σ). If
(s′, i′) = (s, i) then Rep will reject unlessσ′ = σ; thus, we
need only consider the case(s′, i′) 6= (s, i).

Call a tuple (s, σ,∆, s′, i′, σ′) a transcript and denote it
by tr. Call a transcriptfeasibleif A(s, σ,∆) = (s′, i′, σ′). For
some fixed feasible transcript, the adversary’s success depends
only on the choice ofw conditioned on the given values of
s, σ,∆, R. (Note w′ is determined byw and∆.)

Recall thatw∗, a′, b′ denote the values reconstructed during
the course of applyingRep to w′ and s′, i′, σ′. We claim
that for any feasible transcript there is at most one value
w∗ for which Rep will not reject. Indeed, say there are two
distinct valuesw∗1 , w∗2 for which Rep does not reject; this
meansdis(w′, w∗1), dis(w′, w∗2) ≤ t andSS(w∗1) = SS(w∗2) =
s′. But then w∗1 = SRec(w′,SS(w∗1)) = SRec(w′, s′) =
SRec(w′,SS(w∗2)) 6= w∗2 , violating correctness of the secure

5Note B = 1 +
Pt

i=1

`

n

i

´

. The second bound is achieved by noting that
every point in the ball centered at 0 can be represented by up to t strings of
length log(n + 1) each, where each string represents the position of a 1 or
indicates “the end” in case the weight of a point is less thant.

sketch. This implies there is also at most one value for each
of a′, b′ for which Rep will not reject.A may be unable to
computew∗, a′, b′ (since it does not knoww′); however, we
claim thatA can compute the differences∆a = a′ − a and
∆b = b′− b. Let Γ

def
= w∗−w′ = w∗−w−∆, and recall the

weight of Γ is at mostt. By linearity of SS, we have

SS(Γ) = SS(w∗)− SS(w)− SS(∆) = s′ − s− SS(∆).

The right-hand side of the above equation is known toA, and
an argument as above shows that there is at most oneΓ with
weight at mostt that satisfies the above equation. Thus,Γ can
be computed byA. Linearity of SS⊥ means thatA can also
compute

∆a‖∆b = SS⊥(w∗)− SS⊥(w) = SS⊥(Γ) + SS⊥(∆).

Next, we prove that for any feasible transcripttr =
(s, σ,∆, s′, i′, σ′), we have

Prw←W [Succ | tr] ≤ (L + 2) · 2n′−2v · 2−H∞(W |s,σ,∆). (2)

To see this, note thatA succeeds only ifσ′ = [fs′,i′(a
′)]v1 +b′,

which is the same as requiring thata be a solution to the
equation[fs,i(a) − fs′,i′(a + ∆a)]v1 = σ − σ′ + ∆b. (Recall
from above that we may assume∆a,∆b are known toA.)
But for any distinct pairs(s, i) 6= (s′, i′) and for any∆a,
the polynomialfs,i(x) − fs′,i′(x + ∆a) is non-constant and
has degree at mostL + 2. (If ∆a = 0 this is immediate;
if ∆a 6= 0, then the leading term is(L + 3) · ∆a · x

L+2,
which is non-zero sinceL is even and we are working in a
field of characteristic 2.) Thus, for anyX ∈ {0, 1}n

′−2v the
number of values ofa for which fs,i(a) − fs′,i′(a + ∆a) =
X‖∆b+σ−σ′ is at mostL+2, and so the number of values of
a that satisfy[fs,i(a)−fs′,i′(a+∆a)]v1 = ∆b+σ−σ′ is at most
(L + 2) · 2n′−2v. Each such value occurs with probability at
most2−H∞(a|s,σ,∆) (where we leta also stand for the random
variable describing the distribution ofa), giving the bound
Prw←W [Succ | tr] ≤ (L + 2) · 2n′−2v · 2−H∞(a|s,σ,∆). Note
that

H∞(a | s, σ,∆) = H∞(a, s, σ | s, σ,∆) = H∞(a, s, b | s, σ,∆),

becauseb = σ − [fs,i(a)]v1; finally,

H∞(a, s, b | s, σ,∆) = H∞(W | s, σ,∆)

since w =
(

S
S⊥

)−1
· (s‖a‖b). This completes the proof of

Eq. (2).
We may now easily prove the theorem. We have

Prw,∆[Succ] = Etr

[
Prw[Succ | tr]

]

≤ Etr

[
(L + 2) · 2n′−2v · 2−H∞(W |s,σ,∆)

]

= (L + 2) · 2n′−2v · 2−
eH∞(W |s,σ,∆) ,

using Eq. (2). Since|s|+ |σ|+ |∆| ≤ k+v +log B, Lemma 1
gives

H̃∞(W | SS(W ), σ,∆) ≥ m− k − v − log B .

Observe thatL = 2⌈k/2(n−k−v)⌉ ≤ 2⌈k/(n−k)⌉ (because
v ≤ (n − k)/2). We conclude that the success probability of
A is at most
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B · (L + 2) · 2n′−2v−m+k+v

= B · (L + 2) · 2n−m−v ≤ B · 2⌈k/(n− k)⌉ · 2n−m−v ≤ δ.

Post-application robustness.Because the extracted keyR is
of lengthn−k−2v, providing it to the adversary can increase
its success probability by at most a factor of2n−k−2v. The
rest of the analysis remains the same.

F. Improved Post-Application Robustness for the Hamming
Metric

In this section we extend the construction from Section III-B
to tolerate binary Hamming errors. The spaceM is still
{0, 1}n with Hamming distance.Gen(w) is similar to the
one in the previous construction except that nowa and b are
obtained by splittingc into two equal parts (we assume for
simplicity that n′ is even) and computingσ = [fs,i(a) + b]v1
andR = [fs,i(a) + b]

n′/2
v+1 .

Theorem 6 LetM denote{0, 1}n under the Hamming met-
ric, let SS be the(m,m−k, t)-secure syndrome sketch forM,
and letB denote the volume of the ball of radiust inM. Fix
v, and let ℓ = (n − k)/2 − v be the length of the extracted
key. Then for anyε, δ satisfying

ℓ ≤ m−
1

2
(n + k)− log B − log(2

⌈
k

n− k

⌉
+ 2)− log

(
1
δ

)

and m ≥
1

2
(n + k) + 2 log

(
1
ε

)
,

(Gen,Rep) is a (m, ℓ, t, ε)-fuzzy extractor forM with post-
application robustnessδ.

Proof: We first show thatR is nearly uniform given
P = (s, i, σ). For everys the family H = {hi : hi(c) =
(σ,R)} is universal. SinceH̃∞(c | SS(W )) = H̃∞(W |
SS(W )) ≥ m − k, applying the Leftover Hash Lemma
(Lemma 2) and proceeding as in the proof of Theorem 3 shows
that SD ((R,P ), Uℓ × P ) ≤ 2(n′/2−m+k)/2 ≤ ǫ.

Post-application robustness.We prove the stronger result that
robustness holds for worst-case choice ofi, and even if the
adversary is given∆ = w′−w. Fix i andA, and letSucc be the
event thatA succeeds. SinceA is unbounded, we may assume
it is deterministic. Upon observings, σ,∆, R, the adversary
outputsA(s, σ,∆, R) = (s′, i′, σ′) 6= (s, i, σ). If (s′, i′) =
(s, i) thenRep will reject unlessσ′ = σ; thus, we need only
consider the case(s′, i′) 6= (s, i).

Call a tuple(s, σ,∆, R, s′, i′, σ′) a transcript and denote it
by tr. Call a transcriptfeasibleif A(s, σ,∆, R) = (s′, i′, σ′).
For some fixed feasible transcript, the adversary’s success
depends only on choice ofw (conditioned on the given values
of s, σ,∆, R).

As in the proof of Theorem 5, for any feasible transcript
there is at most one value for each ofa′, b′ for which Rep will
not reject, and moreover the values∆a = a′ − a and ∆b =
b′− b can be computed byA. Following an argument exactly

as in the proof of that theorem, for any feasible transcript
tr = (s, σ,∆, R, s′, i′, σ′) we have

Prw←W [Succ | tr] ≤ (L + 2) · 2n′/2−v · 2−H∞(W |s,σ,∆,R),

and soPr[Succ] =

Etr [Prw←W [Succ | tr]] ≤ (L + 2) · 2n′/2−v · 2−
eH∞(W |s,σ,∆,R).

SinceH̃∞(W | s, σ,∆, R) ≥ m − (|s| + |σ| + |R| + |∆|) =
m − (k + n′/2 + log B), we obtainPrw←W [Succ | tr] ≤
B · (L + 2) · 2n−v · 2−m ≤ δ.

G. Construction for the Set-Difference Metric

The constructions from the previous two sections rely heav-
ily on the linearity of the secure sketch used in the protocoland
on the structure of the Hamming space. Using the techniques
from [16], however, they can be extended to handle errors
under the set-difference metric.

In the set-differencemetric, elements ofM are sets of at
mostr elements chosen from some fixed universe of sizeN ;
the distance between two setsa, b ∈ M is the size of their
symmetric difference:dis(a, b) = |{x : x ∈ a ∪ b andx /∈
a ∩ b}|. Noting that elements ofM can be represented
by characteristic vectors of lengthN , we see that the set-
difference metric is equivalent to the Hamming metric; thisis
inefficient, however, since elements ofM can be represented
using at mostr log N bits. Algorithms here should, ideally,
run in timepoly(r log N) rather than timepoly(N).

In order to extend the analysis of the previous sections to
handle this different representation of the input, we need apair
of functionsSS,SS⊥ that take sets and output strings of length
k andr log(N +1)−k, respectively. A setw of size at mostr
should be uniquely determined by the pair(SS(w),SS⊥(w)),
and the functions should be linear in the following sense: the
addition/removal of a particular element should correspond to
adding/subtracting a particular bit vector. In other words, SS()
andSS⊥() should be linear in the characteristic vector of their
input set. TheSS() function of the BCH secure sketch of Dodis
et al. [16, Section 6.3] (called “PinSketch”) is, in fact, linear: it
outputst values oflog(N +1) bits each in order to correct up
to t errors, thus producing sketches of lengthk = t log(N+1).
We will see in a moment how to constructSS⊥ corresponding
to this SS. For the PinSketch construction the universe must
be viewed as nonzero elements of a binary fieldGF2α for
someα and thusN = 2α − 1.

The constructions ofGen and Rep are the same as in the
previous sections, but using differentSS, SRec, and SS⊥

functions. In addition,Rep should check that the recovered
value w∗ is a set with elements inGF ∗2α . (Note, however,
that it is not necessary to check thatw∗ has size at mostr;
the constructions work correctly even ifw′ has more thanr
elements, so long asdis(w,w′) ≤ t.)

The analysis is the same as in the previous sections. The
volume B of the ball of radiust remains the same as in the
binary Hamming case; here,N is very large compared tot and
so we uselog B ≤ t log(N+1) = tα in our formulas since this
is now a close approximation. Usingk = t log(N + 1) = tα
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and n = r log(N + 1) = rα, we obtain the following as
corollaries of Theorems 5 and 6, respectively.

Corollary 7 Let M be the set-difference metric on sets of
size at mostr over the universeGF ∗2α . Using(Gen,Rep) from
Section III-E withSS,SS⊥,SRec as described above, fixv and
then letℓ = (r − t)α− 2v be the length of the extracted key.
Then:

• For any ε, δ satisfying

ℓ ≤ 2m− rα− tα− 2max

{
tα + log

2rα

δ
, 2 log

(
1
ε

)}
,

(Gen,Rep) is an (m, ℓ, t, ε)-fuzzy extractor forM with
pre-application robustnessδ.

• For any ε, δ satisfying

ℓ ≤ min

{
1

3

(
2m− rα− 3tα− 2 log

2rα

δ

)
,

2m− (r + t)α− 4 log
(

1
ε

) }
,

(Gen,Rep) is an (m, ℓ, t, ε)-fuzzy extractor forM with
post-application robustnessδ.

Corollary 8 Let M be the set-difference metric on sets of
size at mostr over the universeGF ∗2α . Using(Gen,Rep) from
Section III-F withSS,SS⊥,SRec as described above, fixv and
then letℓ = (r− t)α/2− v be the length of the extracted key.
Then for anyε, δ satisfying

ℓ ≤ m−
1

2
rα−

3

2
tα− log

(
2n

δ

)

m ≥
1

2
(t + r)α + 2 log

(
1
ε

)
,

(Gen,Rep) is a (m, ℓ, t, ε)-fuzzy extractor forM with post-
application robustnessδ.

It remains to describeSS⊥. For self-containment, we
include a description ofSS as well. To computeSS(w)

and SS⊥(w) on input w ⊆ GF ∗2α , let si
def
=

∑
x∈w xi

(computations in GF2α ) and, viewing si values as bit
strings, outputSS(w) = s1‖s3‖s5‖...‖s2t−1 and SS⊥(w) =
s2t+1‖s2t+3‖...‖s2r−1. Given any set ofr points, these two
vectors are easy to compute inO(r2) operations inGF2α .
Moreover, givens1, ..., s2r−1 one can recoverw. (Simply
observe that(SS(w),SS⊥(w)) is the syndrome of the char-
acteristic vector ofw with respect to the binary BCH code of
distance2r+1, and that the weight of this vector is at mostr.
See [16, Lemma 6.2], settingn = 2α − 1, k = n − rα and
δ = 2r + 1.) Algorithms SS,SS⊥ have the desired linearity
property since adding or removing an elementy from w
corresponds to addingyi to each componentsi (and we require
addition in binary fields to correspond to bitwise exclusive-or).

IV. K EYED ROBUST FUZZY EXTRACTORS AND THEIR

APPLICATIONS

In this section we show that the addition of a very short,
long-term, shared secret keySKExt allows us to achieve
considerably better parameters when constructingkeyedrobust
fuzzy extractors. The parameters we obtain are optimal up to
constant factors.

To motivate our construction, recall the naive transforma-
tion from fuzzy extractors to keyed robust fuzzy extractors
discussed in Section II-D. Suppose we start from the generic
construction of a fuzzy extractor from [16, Lemma 4.1]: here
P = (s, i), wheres ← SS(w) for a secure sketchSS, and
the extracted key isR = Ext(w; i). In an attempt to make
this construction robust, we may setσ = MacSKExt

(s, i) and
include σ as part ofP . This is fine for one-time use, but
leaks information aboutSKExt so cannot be used an unbounded
number of times. Formally, this construction does not satisfy
Definition 7 sinceSKExt is not uniform givenP .

We can change the scheme to avoid this. Note thatRep

must recoverw = Rec(w′, s) before computingR. Thus,
we can addw to the authenticated message: that is, set
σ = MacSKExt

(w, s, i). The tag can be verified byRep after
recoveringw. This does not strengthen the robustness property,
which was already satisfied by the original scheme. However,
it does help with the problem of revealingSKExt, since
now the attackerA does not know the entire message being
authenticated, so the entropy of the message can be used
to hide SKExt. Thus, we see that we need to construct an
information-theoretic MAC whose secret key is independent
of the tag as long as the authenticated message has high min-
entropy. Observe that in strong randomness extractors, the
output is independent of the seed. Thus, it suffices to ensure
thatMac is simultaneously a message authentication code and
a strong randomness extractor when the key is viewed as the
seed. (Note that we do not need the guarantee, provided by the
extractor property, that the tag output byMac is itself uniform;
nevertheless, uniform tags are easy enough to achieve.) This
is the problem we turn to in the next section.

A. Extractor-MACs

Definition 9 A family {MacSK : {0, 1}n → {0, 1}v} of func-
tions is astrong (m, ε, δ) (average-case) extractor-MAC if
it is δ-almost strongly universal and an(m, ε) (average-case)
strong extractor. ♦

When constructing MACs, one typically tries to minimize
the tag lengthv (to approach the boundlog

(
1
δ

)
), while

for extractors one tries to maximize the output lengthv (to
approach the bound̃m−2 log

(
1
ε

)
). In our setting, the extractor

constraint is merely a convenient way to argue key reuse, so
we will in fact try to minimizev. Naturally, we also want to
minimize the min-entropy thresholdm.

Our construction of extractor-MACs follows from the obser-
vation that almost strongly-universal hash functions are MACs
and, as universal hash functions, also extractors. (In fact,
this observation was used to get extractors with short seeds
in [35, Section 3].) We exemplify our construction with the
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family constructed in [6, Section 4]. Specifically, we compose
two hash families as follows. Let{pβ} be a (δε2/2)-almost
universal hash family mapping̃n-bit inputs to u-bit outputs
(for someu to be determined later), and let{fα} be a strongly
universal hash family mappingu-bit inputs tov-bit outputs,
where v = log

(
1
δ

)
+ 1 (i.e., 2−v = δ

2 ). Set Macα,β(w) =
fα(pβ(w)). By [36, Theorem 5.5],{MACα,β} is a δ-almost
strongly universal hash family, sinceδε2/2 + 2−v ≤ δ. This
means it can be used for message authentication. Furthermore,
by [36, Theorem 5.4] it is(δε2/2+2−v) = (1+ε2)2−v-almost
universal, since{fα} is 2−v-almost universal. By the Leftover
Hash Lemma (Lemma 2), this means it is an(m, ε)-extractor
with m = log

(
1
δ

)
+ 2 log

(
1
ε

)
.

We will set {fα} to be the family from [36, Theorem 5.2]
(described following Definition 4) with keys of lengthu + v.
It remains to setu so that we can construct a convenient
almost-universal hash family{pβ}. We use the polynomial-
based construction from [6], [13], [38]. The keyβ is a point
in GF2u , and the messagex is split into c = ñ/u pieces
(x0, . . . , xc−1), each of which is viewed as an element of
GF2u . Then pβ(x0 . . . xc) = xc−1β

c−1 + . . . + x1β + x0.
This family is (c− 1)/2u-almost universal with key lengthu
(because two distinct degree-(c− 1) polynomials agree on at
mostc−1 points). We can setu = v+log( ñ

ε2 ) = 1+log
(

1
δ

)
+

2 log
(

1
ε

)
+ log ñ to make(c − 1)/2u < ñ/2u = δε2/2. This

gives key length2u + v, and we obtain:

Theorem 9 For any δ, ε, and m ≥ log
(

1
δ

)
+ 2 log

(
1
ε

)
, there

exists a(m, ε, δ)-extractor-MAC for messages of lengthn, with
key lengthκ = 3+2 log n+3 log

(
1
δ

)
+4 log

(
1
ε

)
and tag length

v = log
(

1
δ

)
+ 1.

This construction has both short keys and short tags. One
can reuse the keySK as long as the min-entropy of the authen-
ticated message is above the thresholdlog

(
1
δ

)
+2 log

(
1
ε

)
. The

tag length is within one bit of optimal, since it is impossible
to obtain δ-almost strong universality with tags shorter than
log

(
1
δ

)
. Known bounds on extractors [32, Theorem 1.9]

(reinterpreted forstrongextractors by viewing the seed as part
of the extractor output), imply that the key length is optimal
up to a constant factor and the entropy threshold is optimal
up to an additive constant.

B. Constructing Keyed Robust Fuzzy Extractors

We now apply extractor-MACs to build keyed robust fuzzy
extractors. We start with a generic construction and set the
parameters below.

Assume (SS,SRec) is an (m, m̃, t)-secure sketch with
sketch lengthk; Ext is an average-case(m̃, ε)-extractor with
n-bit inputs, ℓ-bit outputs, andd-bit seeds; andMac is an
average-case(m̃− ℓ, ε, δ)-extractor-MAC fromñ = n+k +d
bits to v bits having a keySK of lengthκ. We now define a
keyed robust fuzzy extractor with secret keySKExt, which is
simply the extractor-MAC secret keySK:

• GenSK(w): compute sketchs ← SS(w), sample i at
random, set keyR = Ext(w; i), tag σ = MacSK(w, s, i),
P = (s, i, σ) and output(R,P ).

• RepSK(w′, (s′, i′, σ′)): Let w̄ = SRec(w′, s′). If
MacSK(w̄, s′, i′) = σ′, thenR = Ext(w̄; i); elseR = ⊥.

Theorem 10 The above construction is a(m, ℓ, t, 4ε)-keyed
fuzzy extractor with post-application robustnessδ, which uses
a secret keySKExt of lengthκ and outputs public information
P of lengthk + d + v.

Proof: We need to show correctness, security, and un-
forgeability. Correctness follows immediately from the correct-
ness of the secure sketch. To show security (that is, extraction),
we need to argue that for anyW of min-entropym, we have

(SK, R, P ) ≈4ε U|SK| × Uℓ × P ,

or, equivalently,

(SK, R, s, i, σ) ≈4ε U|SK| × Uℓ × (s, i, σ) .

Indeed,
(R, s, i) ≈ε Uℓ × SS(W )× Ud

becauseH̃∞(W | SS(W )) ≥ m̃ and Ext is an average-case
(m̃, ε)-extractor. This trivially implies that

U|SK| × (R, s, i)× Uv ≈ε U|SK| × Uℓ × SS(W )× Ud × Uv .

On the other hand,

(SK, R, s, i, σ) ≈ε U|SK| × (R, s, i)× Uv

becauseH̃∞(W | R, s, i) ≥ H̃∞(W,R, i | s) − ℓ − d ≥
H̃∞(W, i | SS(W ))−ℓ−d ≥ H̃∞(W | SS(W ))+d−ℓ−d =
m̃ − ℓ (the first inequality follows from Lemma 1 and the
last inequality follows by independence ofi), and Mac is a
(m̃− ℓ, ε) average-case extractor.

By the triangle inequality, therefore, we obtain

(SK, R, s, i, σ) ≈2ε U|SK| × Uℓ × SS(W )× Ud × Uv .

Using the triangle inequality again we obtain the desired result.
To show robustness, supposeA outputsP̃ = (s′, i′, σ′) 6=

(s, i, σ). First consider the case when(s, i) = (s′, i′). In
this case,dis(w,w′) ≤ t implies SRec(w′, s′) = w, and
thus MacSK(w∗, s, i) = σ. Therefore, unlessσ′ = σ and
P̃ = P , Rep will output ⊥. Now consider the case when
(s, i) 6= (s′, i′). Then, in order forRep not to reject,A must
correctly guess the tag of a new message with a uniformly
chosen keySK, which cannot be done with probability higher
than δ by the δ-almost strong universality ofMac. Note that
this implies post-application robustness: it does not hurtto
revealR (or evenw itself) toA, because the security ofMac

relies on the secrecy ofSK only.

The price of authentication. We compare the parameters
of Theorem 10 to the original (non-robust, non-keyed) con-
structions of [16]. First, note that the choice of a sketch and
strong extractor can be done in the same manner as for non-
robust fuzzy extractors. Assume we use the construction of
Theorem 9 forMac. Then the secret keySKExt is just the MAC
key, whose length is2 log n + 3 log

(
1
δ

)
+ 4 log

(
1
ε

)
+ O(1)

as long asd = O(n) and k = O(n) (which is the case
with typical extractor and secure sketch constructions), so that
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ñ = O(n). For the extractor-MAC of Theorem 9 to work, we
needm̃ − ℓ ≥ log

(
1
δ

)
+ 2 log

(
1
ε

)
or ℓ ≤ m̃ − 2 log

(
1
ε

)
−

log
(

1
δ

)
. This means that the keyR is only log

(
1
δ

)
+ 2

bits shorter than for non-robust extractors, which can extract
ℓ = m̃−2 log

(
1
ε

)
+2 bits [16, Lemma 4.3]. Finally, the length

of P increases only by the tag lengthv = log
(

1
δ

)
+ 1.

C. Uniform Helper Strings and Application to the Bounded-
Storage Model with Errors

Keyed robust fuzzy extractors allow us to remove the need
for an authenticated channel between the honest parties in
the bounded-storage model (BSM) with errors. As explained
following Definition 7, the first step is to construct such
extractors with uniform helper strings. We then show in more
detail how they apply to the BSM.

Keyed robust extractors with uniform helper strings.
Examining the keyed construction in Theorem 10, we see that
the only place where the valueP = (s, i, σ) depends on (the
distribution of) w is in the sketchs ← SS(w). Indeed, the
seed i is chosen uniformly at random, and the valueσ is
close to uniform (even conditioned oni, s, w, and SKExt)
by the properties of the extractor-MAC. Thus, to solve our
problem we only need to build an(m, m̃, t)-secure sketchSS

such thatSS(W ) is statistically close to uniform wheneverW
has sufficient min-entropy. (Note that such sketches cannot
be deterministic.) Such sketches were studied by Dodis and
Smith [17], where they were used to solve the noisy-BSM
problem even in the authenticated-channel case. In particular,
Dodis and Smith show such sketches for the binary Hamming
metric with parameters that are only a constant factor worse
than those of regular sketches.

Theorem 11 ([17, Theorem 1])For any min-entropym =
Ω(n), there exists an efficient(m, m̃, t)-secure sketch for the
Hamming metric over{0, 1}n that is also an(m, ε)-extractor,
wherem̃, t, and log

(
1
ε

)
are all Ω(n), and the length of the

sketch isk = O(n).

Using such sketches in the construction of Section IV-B
gives us the following theorem.

Theorem 12 Using the sketch of Theorem 11 in the construc-
tion of Section IV-B gives an(m, ℓ, t, 3ε)-keyed fuzzy extractor
with uniform helper strings and post-application robustnessδ.

Proof: Correctness and unforgeability are shown the same
way as in Theorem 10. To show security (that is, extraction)
with uniform helper strings, we need to argue that for anyW
with min-entropym we have

(SK, R, P ) ≈3ε U|SK| × Uℓ × U|P |

or, equivalently,

(SK, R, s, i, σ) ≈3ε U|SK| × Uℓ × Uk × Ud × Uv .

Indeed,
(R, s, i) ≈ε Uℓ × SS(W )× Ud

for the same reason as in Theorem 10. On the other hand,
SS(W ) ≈ε Uk by Theorem 11 and therefore

Uℓ × SS(W )× Ud ≈ε Uℓ × Uk × Ud

which, by the triangle inequality, implies

(R, s, i) ≈2ε Uℓ × Uk × Ud .

The rest of the proof proceeds as in Theorem 10.

Application to the bounded-storage modelTo explain the
application, we first briefly recall the key elements of the
bounded-storage model [28] with errors [14], [17], concen-
trating only on thestateless variantof [17]. Our discussion
will be specific to Hamming distance.

In the bounded-storage model with errors, two parties (say,
Alice and Bob) start by sharing a long-term secret keySKBSM.
At each time periodj, Alice (resp., Bob) has access to a noisy
versionXj (resp.,X ′j) of a random stringZj (of lengthN ).
We assume a bound on the Hamming distance ofXj andX ′j .
Both the honest parties and the attackerA are limited in
storage to considerably fewer thanN bits. More specifically,
we assume thatA can look at the entireZj but store onlyγN
bits of (arbitrary) information aboutZj , for γ < 1. After A
has stored its information aboutZj , it cannot seeZj again;
this means thatZj has average min-entropy(1 − γ)N from
the adversary’s point of view by Lemma 1. The honest parties
are even more limited in their storage, but they can use their
shared secret key to gain an advantage over the adversary
and communicate securely without the need for computational
assumptions (they can even achieveeverlasting security[1]).

Prior work [14], [17] assumed that the communication chan-
nel between Alice and Bob was authenticated or, equivalently,
that the adversary does not modify the messages between Alice
and Bob. This authenticated channel was used to reconcile
the differences between (the relevant portions of)Xj andX ′j
received by the two parties. In this work, we remove the need
for the authenticated channel.

The basic idea underlying prior work is to use fuzzy
extractors to derive a keyRj from Xj andX ′j that is unknown
to A. For example, in “sample-and-extract” protocols [39]
one part ofSKBSM consists of a keySKSam for an oblivious
sampler[2], [39]. This key specifiesn locations in theN -bit
string Xj (resp.,X ′j) which Alice (resp., Bob) will read to
obtain ann-bit substringwj (resp.,w′j). The properties of the
sampler ensure that (a) with high probabilitywj and w′j are
still close (say, within Hamming distancet from each other);
and (b) with high probability,A still has some uncertainty
(min-entropym ≈ (1 − γ)n) about wj and w′j . (Note that
it is crucial thatA does not knowSKSam at the timeZj

is broadcast, soA is unable to store information that is
specifically correlated towj , w

′
j .) Fuzzy extractors can then

be used to deriveRj from wj and w′j , with Alice running
Gen(wj) to obtain(Pj , Rj) and sending the helper stringPj

to Bob over the authenticated channel, and then Bob running
Rep(w′j , P ) to getRj [14], [17].

To remove the need for an authenticated channel, Alice and
Bob can use arobust fuzzy extractor instead. Because they
are already in the shared-key setting, they can use akeyed
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robust fuzzy extractor, storing its secret keySKExt as part
of their long-term secret keySKBSM (in addition toSKSam).
There is, however, a subtle problem which already caused
difficulties even in the case of authenticated channels and
nonrobust extractors [14], [17].

The problem arises due to the reuse ofSKBSM. As discussed
in Sections II-C and II-D,SKExt can be reused safely, but only
if the input to the fuzzy extractor has sufficient min-entropy
(from the adversary’s point of view). In the current setting,
however, a potential problem is thatA may use information
gleaned fromPj in order to reduce the entropy ofwj+1.
Specifically, if Pj is correlated withwj , thenPj may reveal
information about the sampler keySKSam that was used to
samplewj . In other words, by observingPj , A may learn
something aboutthe locationsin the large random stringZj

that were used to obtainwj . While it is too late forA to
observe those locations inZj (because of the bounded-storage
assumption),A may be able to observe the same locations in
the next stringZj+1, thus reducing the min-entropy ofwj+1,
which will be obtained from those locations.

We can solve this problem by making sure thatPj reveals
nothing aboutSKSam. This is precisely what is guaranteed by
keyed robust fuzzy extractorswith uniform helper strings, as
constructed in Theorem 12, sincePj is distributed the same
way (up to a small statistical distance) regardless of what
SKSam is. (To use Theorem 12, we need to ensure that the input
to the extractor has sufficient min-entropy. This holds with
overwhelming probability, even conditioned onSKSam and the
knowledge ofA, becauseA is unlikely to have stored much
useful information about the locations sampled bySKSam.)
Thus, using extractors with uniform helper strings ensuresthat
the public valueP hides the entireSKBSM = (SKSam,SKExt),
and not justSKExt, and therefore allows for the reuse of
SKBSM.

Using such robust fuzzy extractors in place of nonrobust
fuzzy extractors allows us to remove the need for authenticated
channels in [17]; the security argument (omitted here) is
similar to the one there. Now Alice and Bob no longer
need to trust that their message goes unmodified: they will
(with probability 1− δ) detect any modification to the helper
string. The price is that Alice and Bob have to additionally
share a (short) extractor-MAC keySK, compute the tag
σ = MacSK(w, s, i), and send this (short) tag together with the
rest of the information. Thus, we obtain a stateless protocol
in the BSM without assuming authenticated channels, which
tolerates a linear fraction of Hamming errors, requires a long-
term shared secret key of sizeO(log N + log

(
1
ε

)
+ log

(
1
δ

)
),

and requires Alice and Bob to readO(ℓ) bits of the source,
and to send a single message of sizeO(ℓ) per time period
in order to extractℓ bits that areε-close to uniform. These
parameters are optimal up to constant factors.
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APPENDIX

We argue that the construction from Section III-A cannot
extract more than the stated number of bits if post-application
robustness is desired.

For post-application robustness, the concern is thatR can
reveal information to the adversary aboutσ′ for a cleverly
choseni′. Here we show an adversarial strategy that does
exactly this and succeeds in the post-application robustness
game with probabilityδ/2. In our attack we fix a particular
(and somewhat unusual) representation of field elements. (Re-
call that the theorem was claimed to work for any representa-
tion of field elements, so long as addition of field elements
corresponds to the exclusive-or of bit strings.) Typically,
one viewsGF2n−v as GF2[x]/(p(x)) for some irreducible
polynomialp of degreen−v, and represents elements asGF2-
valued vectors in the basis(xn−v−1, xn−v−2, ..., x2, x, 1).
We will do the same, but reorder the basis ele-
ments so as to separate the even and odd powers:
(xn−v−1, xn−v−3, . . . , x, xn−v−2, xn−v−4, . . . , 1) (assuming,

for concreteness, thatn−v is even). Lettingx denote the field
element corresponding to the polynomialx, the property of
this representation we use is that the bits of the left half of
any valuez ∈ F2n−v with last bit 0 are equal to the right half
of the bits ofz/x.

Recallw = a‖b. Suppose the distributionW on w is such
that the topn −m bits of b are 0 (the rest of the bits ofw
are uniform). Givenσ and R, the adversary gets to see the
top ℓ + (n − m) bits of ia. Therefore, the adversary knows
ℓ + (n−m) bits from the bottom half ofia/x as long as the
last bit of ia is 0, which happens with probability1/2. To
use this knowledge, the adversary will simply ensure that the
difference betweenσ′ andσ is [ia/x]v1, by lettingi′ = i+ i/x.

In detail, the adversarial strategy is as follows: leti′ =
i + i/x; let τ consist ofR concatenated with the topn −m
bits of σ and log

(
1
δ

)
= v− ℓ− (n−m) random bits, and let

σ′ = σ + τ . The adversary wins wheneverτ = [ia/x]v1, which
happens with probability2v−ℓ−(n−m)/2 = δ/2, because all
but log

(
1
δ

)
bits of τ are correct as long as the last bit ofia

is 0.


