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Abstract—Consider two parties holding samples from corre- a uniform one), or “fuzzy extraction.” Early work [43], [5],
lated d'ist.ribut'ions W and W', respectivgly, where thesg samples [26], [3] assumed the parties could communicate oveulalic
are within distance ¢ of each other in some metric space. i 5 thenticatecchannel or, equivalently, assumed a passive

The parties wish to agree on a close-to-uniformly distributed . . .
secret key R by sending a single message over an irlseculreadversary. This assumption was relaxed in later work [29],

channel controlled by an all-powerful adversary who may read [30], [42], [27], [33], which considered an active adveysar
and modify anything sent over the channel. We consider both who could modify all messages sent between the two parties.
Fhe keyl@s case, where the parties share no .additional secret  The goal of the above works was primarily to explore the
information, and the keyed case, where the parties share a long- hssipility of information-theoreticsecurity, especially in the
term secret SKe: that they can use to generate a sequence OfCOI"ItG‘Xt of quantum cryptography: however, this is not thig on
session keys{R;} using multiple pairs {(W;, W;)}. The former extorq yptography, AR .
has applications to, e.g., biometric authentication, while the latter Motivation. The problem also arises in the context of using

arises in, e.g., the bounded-storage model with errors. noisy data (such as biometric information, or observations
We show solutions that improve upon previous work in several of some physical phenomenon) for cryptographic purposes,
respects: even if computational security suffices. The same problem al

« The best prior solution for the keyless case with no arises in the context of tHeounded-storage modéBSM) [28]

errors (i.e., t = 0) requires the min-entropy of W to . ;
exceed2n,/3, where n is the bit-length of 1. Our solution in the presence of errors [14], [17]. We discuss each of these

applies whenever the min-entropy oV’ exceeds theminimal N turn.
threshold n/2, and yields a longer key. o ) )
« Previous solutions for the keyless case in the presence ofA. Authentication Using Noisy Data
errors (i.e., ¢ > 0) required random oracles. We give the first -\ 0 450 of authentication/key agreement using noisy
constructions (for certain metrics) in the standard model. h 2Dl , | ith
. Previous solutions for the keyed case were stateful. We give data, the random variabld$’, W" are close (with respect to
the first stateless solution. some metric) but noidentical For simplicity, we assume the
noisy data represents biometric information, though thmesa
techniques apply to more general settings. In this context,

I. INTRODUCTION different scenarios have been considered:

A number of works have explored the problem sefcret- “Secure authentication™. Here, a trusted server stores some
key agreement based on correlated informatitny which biometric dataw of a user, obtained during an initial enroll-
two parties holding samples, w’ of correlated random vari- ment. Later, when the user and the server want to establish a
ablesW, W’ communicate in order to generate a shared, secregcure communication session over an insecure channel, the
close-to-uniform keyz. The problem has variously been callediser locally obtains a fresh biometric scahwhich is close,
“information reconciliation” (especially when the chaitge is but not identical, tow. The user and the server then use
to handle differences between the samples held by the garti@ndw’ to authenticate each other and agree on aRey

“privacy amplification” (especially in the case whé = W’ «key recovery”: In this scenario, a user utilizes his biometric

and the goal is to transform a nonuniform shared secret §gi5 ., to generate a random kel along with some public
This is an expanded and corrected version of [15], [23]. information P, and then stores$® on a (possibly untrusted)
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Several protocols for key agreement using noisy data oweampling. The parallels to biometric authentication stidug
an authenticatedchannel are known [5], [3], [22], [20], [16]. clear. Nevertheless, the problems are incomparable: inabe
Most of the existing work for arunauthenticatedchannel, of the BSM with errors there is a stronger setup assumption
however, solves the problem only for two special cases [2%hamely, that the parties share a long-term &&gsy) but the
[30], [42], [27], [33]: (1) whenWW = W', or (2) whenW  security requirements are more stringent sib&&sy needs
and W’ consist of (arbitrarily many) independent realization® be reusable and everlasting security is required.
of the same random variable; i.dy = (WM W@ )
and W’ = (W'Y W@ ). In the case of biometric data,C. Our Contributions
however,WW, W' are not likely to be equal and we cannot in

general obtain an unbounded number of samples. between two parties holding instancesw’ of correlated

R Recently(,j \t/CeI:‘e SZas beer;] |c:crogres§ on the ger;]eral C33fidom variabledV, W’ that are guaranteed to be close but
enner and Wolf [34] were the first to demonsirate thaian not necessarily identical. Specifically, we assume thand

teractlvego!utlon IS possmle. Thelr' protocol was not efhuentw, are within distance in some underlying metric space. Our
but an efficient version was later given [24]. Boyen [8] shdwe

i th d | de) how t hieusidirectional definitions as well as some of our results hold for arbitrary
(mth et_rant_ om orac e"mo el OVL fo ac '?’B' |re_<i |o;1a thmetric spaces, while other results assume specific metrics.
authentication, as well as a weak form of Secunty for e\ . restrict our attention taooninteractive protocols de-

second scgnario _(roughly_% remains secret but the user Caltined by procedure$Gen, Rep) that operate as follows. The
be fooled into using an incorrect kei’). Boyen et al. [9] first party, holdingw, computes(R,P) — Gen(w) and

ShO\.Nfd tvx;p solut(ljoPhs to thel'protb Iel;n.thThelr f"St SOI;'“&: 'Sends P to the second party; this second party computes
noninteractive an us applies to both scenarios above, — Rep(w, P). (If the parties share a long-term k&g

relges ?n random orac(;es. Th;:(r seconr:j solution is '.m?gm_llﬁen Gen, Rep take this key as additional input.) The basic
and relies on password-based key exchange as a primitiie. quirements, informally, are

means that it providesomputationakather tharinformation- C ¢ ‘B — R if w is within distance’ of

theoretic security; furthermore, given the current state-of- Sorrerict n.eslsf. th_ mirll ur}ltrls Wi ;QV Iis ar:Ch Othwﬁ R

the-art for password-based key exchange, their solution is ecunty- € min-entropy ofiv 1S high, the s
uniformly distributed even giver®.

impractical without additional assumptions such as random o . ]
oracles or the existence of public parameters. So far, this gives exactly fuzzy extractoas defined by Dodis

et al. [16] (although we additionally allow the possibiliby a
long-term key). Since we are interested in the case when the
B. The Bounded-Storage Model and the Keyed Case parties communicate over amauthenticatecchannel, how-
Key agreement using correlated information arises also éger, we actually want to construatbustfuzzy extractors [9]
the context of thebounded-storage modgBSM) [28] in  that additionally protect against malicious modificatidn/
the presence of errors [14], [17]. In the BSM, two partieRobustness requires that if the adversary sends any modified
share a long-term secret k&Kgsum. In each time periodi, value P # P, then with high probability the second player
a long random stringZ; is broadcast to the parties (and thevill reject (i.e., Rep(w’, P) =1). We distinguish between the
adversary); the assumption is that the lengtiZ pfs more than notion of pre-application robustnesand the stronger notion
what the adversary can store. The partiesSigsm andZ; to  of post-application robustnessvhere in the latter case the
generate a secret session Key in each period. This processadversary is giverR before it generate®. Post-application
should achieve “everlasting security” [1], meaning thaérev robustness is needed in settings where the first party may beg
if SKgswm is revealed to the adversary in some time period using R before the second party comput&, and is also
all session key$R; };<,, remain independently and uniformlyneeded for the “key recovery” scenario discussed earliecégs
distributed from the perspective of the adversary. previous usage of? may leak information about it).
A paradigm (formalized by [39]) for achieving the above \We now summarize our results:

is for SKgsy to contain a see@Ksay for a sample and The case of no errors.Although our focus is on the case
another see®Kg,: for a randomr_1ess extractor. The parUe@henW’ W' are unequal, we obtain improvements also in the
use SKsam to sample some portion of; in each period; caqe when they are equal (i.¢.~ 0) but nonuniform. Let

in the absence of errors, this results in each party holding jenote the min-entropy of and letn > m denote its
the same valuew;. Since the adversary may have SOMii jangth. The best previous noninteractive solution his t
partial information aboutv;, however, this shared value is nOketing'is due to Maurer and Wolf [27] who show that when
uniformly distributed from the point of view of the advergar ,,, - 9,3 it is possible to achieve pre-application robustness
and the parties must therefore use a randomness extragioj generate a shared k&yof lengthm —2n/3. On the other
with the Se_edSKEXt to generate a unlform_ k‘_aﬁj for th‘? hand, results of [18], [19] imply that a non-interactiveuimn
current perloq. In the presence of transmission errorg;in g impossible whenn < n/2. (As shown in [27, Section Il-
the problem is even more difficult, as the parties then ol “interactive solutions can do better; in fact, it is pbisi
correlated (but possibly unequal) strings, w; after the initial for the length ofR to be nearlym [33], [19], [11].)

. , _ L We bridge the gap between known upper- and lower-bounds
A sampler [2] is a function that ma&Ks,, to a set of bit positions. In

fact, SK,, may simply encode a set of randomly chosen bit positions, b@"d .ShO.W that whenever > n/2 it is possible to achieve pre-
better samplers — using shorter seeds — are available. application robustness and generate a sharedrkey length

We focus on the abstract problem of secret-key agreement



2m — n. This improves both the required min-entropy¥#f samplingz < X and then runningd(x). We letU, denote the
and the length of the resulting key. Moreover, we give the firaniform distribution over{0, 1}*. All logarithms are base 2.

solution satisfyingpost-applicationrobustness. That solution Let X;, X, be two probability distributions over some
def

also works as long as» > n/2, but extracts a key half asset S. Their statistical distanceis SD (X;,X,) =
long (that is, of lengthm — n/2). > ses | Prx,[s] — Prx,[s]|. If two distributions have sta-
Handling errors. The only previously known constructiontistical distance at most, we say they are-close and write
of robust fuzzy extractors [9] relies on the random oracl¥1 ~. X». Note thate-close distributions cannot be distin-
model. We (partially) resolve the main open question of [@uished with advantage better thanby an adversary who
by showing a construction of robust fuzzy extractiisthe gets a single sample, even if the adversary is computatjonal
standard modelor the specific cases of the Hamming and seunbounded.

difference metricg.(The solution in [9] is generic and applies The min-entropyof a random variableX is defined as

to any metric admitting a good error-correcting code.) Olfloc(X) = —log(max, Prx([z]). Following [16], we define
construction achieves post-application robustness. the (average) conditional min-entropy &f givenY” as
The techniques of this paper were subsequently generalized

in [12]. Hoo(X |Y)=—log (EWY (Q—Hoo<X\Y:y>))

Using a shared long-term key.There are scenarios in which(where the expectation is over for which Pr[Y = y] is

the two parties trying to derive? from w and w’ already nonzero). This definition is suited for cryptographic pwses
share a long-term secret key. Motivated by such settings, Wwecause the probability that an adversary can predigthen
define and constructkeyedrobust fuzzy extractor for generalgiven the value oft” is 2 He (XY,

metrics. In the process, we introduce a new primitive called

an extractor-MAC a one-time information-theoretic messagéemma 1 ([16, Lemma 2.2])Let Y have at most2* ele-
authentication code whose output is independent of thefkeynents in its support. TheR (X | V) > H(X,Y) — A.

the message has sufficient entropy. (More generallyH (X | Y,Z) > Hoo (X, Y | Z) — \)

Application to the BSM with errors. Prior work focusing

on the BSM with errors [14], [17] showed a noninteractivé. Hash Functions and Extractors

(i.e., single-message) solution to the problem discussed i \e recall the notion of almost-universal hashing [10], [36]
Section I-B when the samples;,w; of the parties have o ) o )
constantrelative Hamming distance. The solution of [14] iPefiniton 1 A family of efficient functions H =
stateful: the long-term ke$Kgsw is updated by both parties {5 : {0,1}" — {0,1}*} _, is §-almost universal if for all
after each time period using information derived frafp If @ # 2 we havePr;_;[h;(x) = hi(z')] < 4. Families with

a party misses a time period and is no longer synchronizéd 27¢ are calleduniversal. ¢

solution of [17] is stateless; the parties keep the same-longrycted by identifying/ and {0,1}" with GF(2") in the

term key SKgsm and can communicate even if one of themyatyral way, and defining; (z) as the high-ordef bits of i .
misses someZ;. However, this solution assumes the parties gxractors [31] yield a (close to) uniform string from

keyed robust fuzzy extractors, we showstatelesssolution seed;. Strong extractors guarantee that the extracted string

for the BSM with errors (under the Hamming metric) usings yniform even conditioned on the seed. We consider only

an unauthenticatecchannel. strong extractors in this paper, and thus often omit theifiesal
“strong.”

II. DEFINITIONS AND PRELIMINARIES o . o
Definition 2 Let I be a set and the uniform distribution over

For stringsa andb, we usen||b to denote their concatenationynat set. A functionExt {0,1}" x I — {0,1}* is astrong

and let|a| denote the length ofi. If S is a set,z — S (;; c)-extractor if for all distributions X over {0,1}" with
means t_hai: is chosen uniformly frons. _If Xisa probab|llf[y H..(X) > m we haveSD ((Ext(X;1),I), (U, x I)) <e.
distribution, thenz «— X means that: is chosen according

to X. The notationPrx [x] denotes the probability assignedVe refer to the second argumentEgt as theseed

by X to the valuez. (We often omit the subscript when We need to strengthen the above definition to account
the probability distribution is clear from context) i is a for external informationE an adversary knows that may

probabilistic algorithm and: is an input,A(z;w) denotes the P& correlated withX. To do so, we generalize the min-
random variabled(z;w) for uniformly sampledw. If X is the extracted string to be uniform even givéh Namely,

a distribution, thend(X) is the random variable obtained byWe require that for anyX, E such thatHu (X | E) > m
we have SD ((Ext(X;I),I,E),(U; x I x E)) < e. Such

2A previous version of this work [15] contained an erroneolsne of a ~ extractors are calle@verage-case extractardNote that any

construction for edit distance, which proceeded by embegduit distance (m — log (l) 5’)-extractor is an (m e+ 5’)-average-case
into set difference using shingling (see [16]). That camgion does not e/’ ’ 1

work, however, because the embedding fails to preserve theireenent EXtractor, beC.aUSPrefE[Hoo(X le) <m—log(z)] <e
thatm > n/2. by Markov's inequality; Vahdan [40] proves the stronger



statement that anym, ¢)-extractor form < n — 1 is also an C. Secure Sketches and Fuzzy Extractors

(m, 3¢)-average-case extractor. However, the additional loss iSwWe review the definitions of secure sketches and fuzzy

not always necessary. Indeed, the Leftover Hash Lemma 9@0¢ractors from [16]. LetM be a metric space with distance
eralizes without any loss to the average-case setting.tlf!l nction dis. Informally, a secure sketch enables recovery of

versions of this lemma have appeared; we use the formulat'ggrgtrmgw € M from any “close” stringuw’ € M, without
of [37, Theorem 8.1], augmented by [16, Lemma 2.4] f%aking too much information aboui.

the average case; see [21] and references therein forrearlie

formulations.) Definition 5 An (m, m, t)-secure sketch for M is a pair of
efficient randomized algorithms$$, SRec) such that:

Lemma 2 (Leftover Hash Lemma) Fix £,m,e > 0. If H = 1) The sketching procedu§S takes an inpuiw € M and

{hi + {0,1}" — {0,1}}ier is a (27°(1 + 4¢%) — 27™)- outputs a strings € {0,1}*. The recovery procedure

almost universal family, thef{ is a strong(m, )-average- SRec takes as inputs an elemeat € M and a string

case extractor (where the index of the hash function is the . {0,1}*, and returns an element gt
seed to the extractor). In particular, if{ is universal and ) Correctnessif dis(w,w’) < t then
¢ < m+2-2log (L), thenH is a strong(m, c)-average- B

case extractor. SRec(w’, SS(w)) = w.

The above holds even whéti depends orE, i.e., whenH = 3) Security: For any distribution W over M with

{H.}ecr is a collection of almost-universal families, one for Ho. (W) > m, we haveH (W | SS(W)) > .

each value of the external informatidit The quantitym —  is called theentropy loss of the secure
sketch. &

B. One-Time Message Authentication Codes

: . . : . For the case of the Hamming metric gvf = {0,1}", we
An (information-theoretic) one-time message authentica- . .
. . e . will make use of the syndrome construction from [16] (this
tion code (MAC) consists of polynomial-time algorithms

. . _construction also appeared as a component of earlier work,
(Mac, Vify). The fr|Lrst algorithm takes a keyK and a mes e.g., [4]). Here the sketck = SS(w) consists of thek-bit
sage M € {0,1}" and outputs a tag; we write this as syndromé of w with respect to some (efficiently decodable)
t = Macsk (M). Theverification algorithmVrfy takes as input y v b y

a keySK, a messag@/ e {0,1}", and a tag, and outputs [n,n — k, 2t 4+ 1]-error-correcting code. We do not need any
. ' ; Vo ' details of this construction other than the facts thais a
either 1 or 0, with the former being interpreted as accegan

and the latter as rejection. Correctness requires thatlfGi &jeterministic)linear functionof w and that the entropy loss
and all M ¢ {0,1}", we HaveVrfy (M, Macsk (M) = 1 is at most|s| = k. We also note that this construction can be
9 ) SK 9 SK = .

. . . ; extended to the set-difference metric [16].
Security requires that whesK is chosen uniformly, an un- .
. As opposed to a secure sketch, whose goal is to recover the
bounded adversary cannot output a valid tag on a new message. | :
: . : -ofiginal input, a fuzzy extractor enables generation ofcsel
even after being given the tag on any message of its choice>". . .
Formally: o-uniform string R from w, and subsequent reproduction of

R from anyw’ close tow.
Definition 3 Message authentication cod®lac, Vrfy) is a

s-secure one-time MAC if for any adversaryA and any Definition 6 An (m, ¢, ¢)-fuzzy extractor for M is a pair

messageM, the probability that the following experimentOf €fficient randomized algorithmssén, Rep) such that:

outputs “success” is at most Choose uniform keysK; let 1) The generation procedur@en takes inputw € M

t = Macsk(M); let (M’,t') «— A(t); output “success” if and outputs an extracted string € {0,1}¢ and a

M’ # M andVrfyg, (M',t') = 1. O helper stringP € {0,1}". The reproduction procedure
Rep takes as inputs an element € M and a string
P €{0,1}", and returns a string if0, 1}*.

2) Correctnessif dis(w,w’) < ¢ and (R, P) is output by

We next recall the notion of (almos8gtrongly universal
hashing [41], [36].

Definition 4 A family of efficient functions H = Gen(w), thenRep(w’, P) = R.

{hi: {0,1}" — {0,1}*},_, is d-almost strongly universal if  3) Security: For any distribution’¥ over M with min-
for all z # 2',y,y' it holds that: (a)Pr;_;[h;(z) = y] = 27¢ entropym, the stringR is close to uniform conditioned
and (b)Pr;;[h;(z) = y A hi(2') = y/] < 627¢. Families on P. lLe., if Hoo (W) > m and (R, P) « Gen(W),
with § = 27¢ are calledstrongly universal or pairwise thenSD ((R, P), (U; x P)) <e. &
independent.

Composing an(m, m,t)-secure sketch with an average-case
)(m,s)—extractorExt: M x I — {0,1}¢ yields a(m,¢,t,¢)-
fuzzy extractor withP = (SS(w),i) and R = Ext(w;1i)
é?ee [16, Lemma 4.1]).

Just as with ordinary extractors, a more general definition
of fuzzy extractors accounts for external informatiéhand

A strongly universal family [36, Theorem 5.2] is obtained b
identifying {0, 1} with G Fy, letting I = GF(2") x {0,1}¢,
and definingh, »(x) as the high-ordef bits of (a - z) @ b.

An almost strongly universal hash family can be used f
information-theoretic authentication of a messdgeusing a
secret keyi, by letting the tag be = h;(M). The property of
beingd-almost strongly universal implies that this is@ecure 3t ¢ is the parity matrix for a linear cod€' (ie., c € C iff cHT = 0),
one-time MAC. then the syndrome of a vectar is wH™ .



requires that for any¥, E with Ho,(W | E) > m we have D. Robust Fuzzy Extractors

SD ((R, P, E), Uy x (P, E)) < e. Afuzzy extractor satisfying  Fuzzy extractors protect againstpassiveattack in which
this definition is called araverage-case fuzzy extract@nd an adversary observésand tries to learn something about the
all known constructions satisfy this more general definitio aytracted keyR. However, the definition says nothing about
In this work we will also uséeyedfuzzy extractors where what happens if an adversary can modifyas it is sent to
both Gen andRep use the same ke§Ke,, which is uniform  the user holdingy’. That is, there are no guarantees about the
and independent of the input distributidfi. Here we require output of Rep(w’, P) for P # P.
the additional security property th&Ke,, 2 are indepen-  Boyen et al. [9] propose the notion afbustfuzzy extrac-
dently uniform conditioned orP. This stronger requirementtors, which provide strong guarantees against such arkattac
stems from the fact thaiKg,. needs to be reusable; thus, iSpecifically, Rep can now output either a key or a special
should remain uniform and independentRfR in order to be value L (denoting “fail”). The definition requires that with
useful next time. This requirement implies (by a hybrid argthigh probability any valueP # P produced by the adversary
ment) that keyed fuzzy extractors can be used multiple timgsfter being giverP) causesep(w’, P) to output_L. Modified
(with the same keyKEe,;) to extract independent keysk;} versions of the public informatioR will therefore be detected.
from independen{V;}. It also implies that any extracted key We consider two variants of this idea, depending on whether
R; remains uniform even to an adversary who leaBkS,. Gen andRep additionally share a long-term k&Ke,.. (Boyen
and P; (but notw;). et al. considered only the keyless version.) Furthermoe, w
distinguish between two adversarial attacks, and thus two
Definition 7 An (m, ¢, t,c)-keyed fuzzy extractor for M is notions of robustness, depending on whether the adversary h
a pair of efficient randomized algorithm&en, Rep) such that: access taR when modifyingP. Indeed, ifR is used (e.g., for
1) Algorithm Gen, on input a keySKe. and w € M, encryption) and_ the adversary can obsgrve some effec;s)f thi
outputs R € {0,1}* and P € {0,1}*; we denote this use (e.g., the ciphertext) before m(_)d|fy|ﬂ_g then the notion _
by (R,P) «— Gensk,(w). Algorithm Rep takes as Of robustness fror_n Boyen et _al.l(ln vyhlch the adversary is
input a keySKe,, an elements’ € M, and a string 91Ven no information gbouR)_ is insufficient. Our stronger
P € {0,1}%, and returns a string if0, 1}*; we denote !’IOIIOI’] .a}ccounts for .thI'S by giving the_ advers_ary accesf to
this by R’ «— Repg... (w', P). in addition to P. Thls is a gqnservatlve 'ch0|ce that results
2) CorrectnessiFor any keySKe, if dis(w,w’) < ¢ and in a broad_ly applicable deflnltlon_: secur_lty hplds regas_dle
(R, P) is output by Gensk..(w), then it holds that of how R is used and whether it remains hidden partlally,
Repsy,. (', P) = R. computationally, or not at all. We call this stronger notjost-

3) Security:If SKgy is uniform, distributiont’ over M is applicatioprobustness, and refer to the olrigipal notion (where
such thatH.(W) > m, and (R, P) < Gensky, (W), R is not given to the adversary) pse—lappl|cat|0nr0bu§tne§s.
thenSD (SKExt x (R, P), Upsken| X Ut X P) <z O Pre-gppllcatlon ro_bustness suffices if the adversarylitybd

modify P ends prior to any observable use Bf
L . _If W, W'’ are two (correlated) random variables over a
For some applications we need to impose the adQjetric spaceM, we saydis(W,W’) < t if the distance

tional condition that, informally,P not reveal any infor- pouveeniv andW” is at most with probability one. We call
mation about the distributionV’. Formally, the distribution (W, W') a (t,m)-pair if dis(W,W") <t andH.(W) > m.

P should be the same regardless of the distributidn o

as long asW has sufficient min-entropy. It is easiestDefinition 8 An  (m,(,t,e)-fuzzy extractor has post-
though slightly more restrictive than necessary, to simpfPplication (resp., pre-application) robustness ¢ if for all
require P to be uniform (for anyW with sufficient min- (¢,m)-pairs (W, W) and all adversariesi, the probability
entropy). That is, we say th&Gen, Rep) hasuniform helper that the following experiment outputs “success” is at most
strings if the security condition is strengthened to requir€@mple (w,w’) from (W, W’); let (R, P) — Gen(w); let
SD (SKext X (R, P), Ujskeo X Ue X Ujpj) < e. This addi- £ < A(R, P) (resp.,P — A(P)); output “success” it” # P

tional security condition was subsequently explored in tf'dRep(w’, P) #L. %
setting of interactive key agreement [7]. The definition is illustrated in Figure 1. Note that the
This additional requirement may seem strange: after adlefinition is interesting even whem = w’ (i.e., when

security of a fuzzy extractor depends not on secrecy of the= 0), because ordinary extractors are not usually robust.
distribution W, but only on the fact that’’ has high min- We construct (keyless) robust fuzzy extractors in Sectlgn |
entropy, which ensures that the specific samplés secret. and keyed robust fuzzy extractors in Section IV.

However, there are applications that need the distribution  The definition of robust extractors composes with itself in
to be kept secret, and the public output of the fuzzy extractsome situations. For example, a generalization of the above
can harm them if this requirement is not satisfied. The specifused in [9]) allows the adversary to outp®,, . . ., P;); the
application considered in this paper is to the boundedagtor adversary succeeds if there existsianith Rep(w’, P;) #.L.
model (introduced in Section |-B and addressed in detail & simple union bound shows that the success probability of
Section IV-C). In this application, the input distributibm the an adversary in this case increases at most linearly in

fuzzy extractor depends on the sampling sé&d,,,, which Similarly, suppose two players (Alice and Bob)
needs to remain secret so that it can be reused. receive a sequence of pairs of random variables
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Fig. 1. Robust extractors (cf. Definition 8). Dashed linedicate variations n-2v bits v bits
in the definition: (a)Keyed extractorsake an additional inpubKg,; shared )
by Gen and Rep. (b) For pre-applicationrobustness, the adversary does nofig- 2. Construction for the errorless case.
have access to the extracted kRy

and send<” to Bob; both Alice and Bob then output the key
(W1, W1), (W, W3), ..., (W;, W) (with Alice receiving the R = Rep(w, P) = Ext(w, P). This solution does not work if
{W;} and Bob receiving th¢WW/}), such thatlis(1W;, W/) <t the adversary isctive which is whyrobustfuzzy extractors
for all 7, and the entropy of; conditioned on the information are interesting even in the errorless case. In particulani
{(Wy,, W})}x<; from prior time periods is at least. Alice adversary forwards® # P to Bob then there is no longer
and Bob can agree on random and independent keysy guarantee on Bob's outphikt(w; P); in fact, it is easy to
Ry,...,R; by having Alice apply Gen from a robust show a construction of a strong extrackxt with the property
average-case fuzzy extractor to edéh and then send® to that a maliciously generate completely determines Bob'’s
Bob. The attacker’s advantage in distinguishing the veofor key R = Ext(w; 15). One idea to address this is for Alice to
unknown keys from random is at mogt (this follows by authenticate” using the keyR she extracts, and then send the
a hybrid argument that replaces extracted keys by rand@mthentication tag along wit® to Bob. In general this does
strings one a time, starting with the most recent one). Tiet work either: if the adversary forward® # P to Bob,
attacker’s probability of forging a valid®; is at mostd in  then it may be easy for the adversary to generate a forged
any given periodi (this can be shown by simply givingtag with respect to the keyk that Bob derives. Instead, we
the attacker(Wy, Wy),...,(W;_1,W/_,)); thus, the overall usew itself to authenticate” and show that this approach
probability of forgery over all time periods is at mogt. works for a particular choice of strong extractor and messag

For keyedfuzzy extractors, robustness is defined exactly asithentication code.

in Definition 8 with the only difference being th&en andRep We define algorithmsGen, Rep as follows. To compute
both use the same (uniform) k&Kg,: (which is not given Gen(w), parsew as two strings: andb of lengthsn—v andw,
to the adversary); see Figure 1. At first glance, the additieaspectively, where < n/2 is a parameter of the construction.
of a long-term key may seem to trivialize the problem ofiew « as an element of7F,.—. and b as an element of
constructing robust fuzzy extractors. For example, onehinigG F». (the representation of field elements does not matter, as
attempt to use&SKg,, as a key for a message authenticatiolong as addition in the field corresponds to exclusive-oriof b
code and, given outpyt, P) from a fuzzy extractor, simply strings). Choose randote G Fyn-», let [ia]; | denote the
append taP the tagMacsk,,, (P). While this may work in the most significantn — 2v bits of ia € GFyn-., and let[ia]}
computational setting, it will not suffice in the informatio denote the remaining bits of ia. View [ia]} as an element
theoretic setting if we want to support an unbounded numbefr GF.. Then computer = [ia]{ + b, setP = (i, o), and let
of time periods (or if we want to use a ke3Kg,. whose the extracted key b& = [ia];), . See Figure 2.
length does not grow linearly in the number of time periods Rep(w, P), where P = (i/,0’), proceeds as follows. Parse
supported). Furthermore, such a construction will notsati w as two stringse and b as above. Then verify that’ =
the security property of Definition 7 becauS&g,: will not  [i’a]¥ + b and output L if this is not the case. Otherwise,

be uniform conditioned oP and Macsk.,, (P). compute the extracted kel = [i'a]; .
The following theorem states the parameters for which
[1l. CONSTRUCTING(KEYLESS) ROBUSTFUzzY (Gen,Rep) is a robust fuzzy extractor. (Since = 0 here,
EXTRACTORS the metric over{0,1}" is irrelevant.) Observe that extraction
We begin by analyzing the case of no errors (ites 0), is possible as long aH .. (W) o > n/2, and in the case
and then consider the more general case. of pre-application robustness (which is the notion conside
in [27]) we extract a key of length roughlgm — n. This
A. The Errorless Caseu(= w') improves on the result of Maurer and Wolf [27] who require

Consider the case wheret = {0,1}" and Alice and Bob m > 2n/3 and extract a key of length roughy — 2n/3.

hold the same sample € {0,1}"™ of a random variabléV’.
In the presence of passiveadversary, Alice and Bob can
agree on a uniform key using a strong extradiet. Phrased
using the terminology of fuzzy extractors (with= 0 here),
Alice runs Gen(w) which simply samples a seefd for Ext, (< 2m —n—max{2log(3),4log (1)},

Theorem 3 Fix v, and let/ = n — 2v be the length of the
extracted key. Then:

o For anye,§ satisfying



(Gen,Rep) is an (m,¥,0,¢)-fuzzy extractor with pre- The overall success probability of is given by
application robustness.
o For anye,§ satisfying

—n— 1
6§min{2m n 210g(6), 2m—n—4log(%) ,

Eq [Pr[Succ [tr]] < 2772 . Ey [27H=(Wio)]
271—21) X 2—ﬁw(W|a).

3 Since|o| = v, we haveH (W | ¢) > m—v and we conclude

i . that Pr[S < QnTvmm L,
(Gen,Rep) is an (m,¢,0,¢)-fuzzy extractor with post- r[Succ] < =

application robustness. Post-application robustnessBecause R| = ¢, providing R

to the adversary can increase its success probability byla mu
tiplicative factor of at mosg‘ as compared to pre-application
robustnes$.Thus, if3¢ < 2m — n—2log (3) the adversary’s

Proof: We show thatR € {0,1}* is close to uniform
conditioned onP, and then argue robustness.

Extraction. We begin by showing that{ = {h; : h;(a,b) %< success probability (in the post-application robustnesse)
(0, R)} is a universal hash family. Indeed, for, b) # (a/,/) IS @t most2®. 277w~ = 26 o(nHE=2m)/2 < 5, u
we have
Pr; [hi(a,b) = hi(d’,0)] = B. Improved Post-Application Robustness for the Errorless
Pri [lialy — i)t =¥ — b Alialsy = [ilyy ] €2

In this section, we present a construction of an extractor
ThIS is equivalent tdr; [i(a — a’) = 0"2"[|(b' — b)], where with post- application robustness that extracts a key afitken
“||” denotes concatenation (this is because we insisted that— n/2 — log (%), an improvement by a factor df/2 as
addition/subtraction in the finite fields corresponds tavis€é compared to the construction given above.
exclusive-or). Ifa = o’ then we must havé # " and so the  Assumen is even for simplicity. To comput&en(w), let
probability is 0. Ifa # o', then there is a uniquethat satisfies ¢ and b denote the first and last halves of, respectively,
the equality. Thus, the probability is at most|GFyn—v| = and viewa andb as elements o F,..,.. Choose a random

A i € GF,./2 and computey = ia + b. Let o be the firstv bits
Using the above and the leftover hash lemmgfy, wherev < n/2 is a parameter of the scheme, and fet
(Lemma 2) we see that(R,P) = (R (i,0)) IS be the remainder of; i.e., o = [y]Y and R = [y]""}%. Output

o((t+v)=m=2)/2 < ¢ /2-close to (U x U,_, x U,) Of, put p — (4, 0).
differently, thatSD ((R, P),Us x U,) < €/2. This implies  Rep(w, P), where P = (i’,0"), proceeds in the obvious
SD ((R, P),Ue x P) < e using the triangle inequality. Way' Parsew as two stringsa, b as above. Then verify that
Pre-application robustnessWe prove the stronger result thate’ = [i’a+b]{ and outputL if this is not the case. Otherwise,
robustness holds for worst-case choice.oFix i and.4, and compute the extracted ke’ = [i'a + b]w/ﬂ
let Succ be the event thatl succeeds. Sincd is unbounded,  Before giving the formal proof, we provide some intuition
we may assume it is deterministic. Upon observingthe as to why this construction has better post-applicatiomsth
adversary outputsl(c) = (i/,0’) # (i,0). If i’ = i, thenRep ness. Recall that in the previous constructioris parsed as
will reject unlesss’ = o; therefore, we need only consider théwo stringsa and b of lengthsn — v and v, respectively,
casei’ # i. By definition, A succeeds only it = [i’a]? +b. and the valuesr, R are computed ag = [ia|{ + b and
Call a triple (¢,4’, o) atranscript and say it ispossibleif R = [ia], 1. Increasingv improves robustness but decreases
A(o) = (i, o). For any possible transcript = (0,7, ') the the number of extracted bits. For pre-application robisstne
following holds (in the probability expressions belawjb are settingy = n—m+log (5) suffices, and thus the construction
chosen according to the distributidf conditioned ontr or, ~extracts nearly2m —n) bits. For post-application robustness,
equivalently, conditioned on): however, a larger must be used and consequently the number
of extracted bits is decreased.

_ o) _ -/ v _ /
Pr[Succ | tr] = Prqyp [[ia]i +b =0 Ali'a]f +b=0"] The post-application robustness game reveals more infor-

— Pro, [[. [V~ [i'al =g —o' Nb=0— [m]ﬂ mation to the adversaryl abo_u'tw thr?m the p_re-appllcatlon
robustness game. This additional information—nameiy,
H i H !/

= Prop {[(z i =0 -0 Nb=0— [ia]ﬂ, |tself—may make_ it easier ford to guesso’. The key to _
our improvement is to use the pairwise-independent functio

where the final equality holds because we insisted that addi{a, b) = ia+b to compute botlr andR. Because of pairwise
tion/subtraction in our fields corresponds to bitwise egisie- independence, the valye, R) of h;(a,b) leaks nothing about
or. The term(i —i’)-a takes on each possible valueG¥y.-. the value(o’,R’) = hy(a,b) for any ¢ # 4. (This holds
exactly once as: varies; therefore, there ar&*—v/2l°l = when (a,b) is uniform; when(a,b) has min-entropym, then
2"=2v values ofa for which [a(i — i')]? = o — o’. For each A may have up ton — m bits of information about’.) In
such value ofa, there is a unique value df that satisfies contrast, in the previous construction ontywas computed
b = o — [ia]}. Each(a,b) pair occurs with probability at most using a pairwise-independent hash function. This worktebet

2 H(Wlo) | Thus,
40One might hope to improve this analysis, but we show in Apperdix
Pr[Succ | tr] < 27~ 2v . 2 Hee(Wlo), that the analysis here is essentially tight.



for pre-application robustness (becads@n be taken shorter), C. Authenticating a Message While Extracting

but worse for post-application robustness. Each of the constructions given previously uses the parties
input w to authenticate the extractor seedach construction
can be extended to additionally authenticate a mesddge
i.e., to be simultaneously a robust fuzzy extractor and an
information-theoretic one-time MAC. In this setting, bdibn
and Rep will take an additional inputM, and it should be
m > n/2+2log 1, difficult for an adversary to caudep to accept a differend/.
€ (We are being informal here since this is merely a stepping
(Gen,Rep) is an (m,£,0,¢)-fuzzy extractor with post- stone to the results of the following section.) This could
application robustness. be done naively by using (a part off as a key for a
MAC, but this would correspondingly reduce the final number

Proof: We first show thatk € {0, 1}* is nearly uniform d bits. | h h d h
given P. The proof proceeds along the lines of the analogo £ extracted bits. In contrast, the approach presented here
Imost) does not reduce the length Bfat all.

proof for Theorem 3. As before, we begin by showing th g - . .
H = {hi : hi(a,b) = (o, R)} is universal. Indeed, foa, b) We shov_v h_ow to exte_nd the original constrqctlon given
(', 1) we have e_lt the beginning of Section I_II-A; the construction of Sec-
tion IlI-B can be extended similarly. We adapt a standard
Pr;[hi(a,b) = hi(a',b')] = Prfia+b=ia +V] technique [6], [13], [38] for authenticating messages gisin
= Prfi(a—d) = (b-"b)],. polynomial-based almost-universal hash functions. |Rét =
) L-(n—v), whereL is known to both parties in advance. Split
It a 5 @ thenb # l?l and ?03“[2(“ » a/),: (b B )] = 0',” M into L chunksM,,..., M;_,, eachn — v bits long, and
a#d, then therells a umqulefor WP:SQ ila—a’) = (0=V), yiew these as coefficients of a polynomidl(z) € G Fyn—. [z]
anghs’eopgi)[g(\‘fe_ Zrzd: (Ifje;zw)z]a :22 ol thati. R.o) is of degreeL — 1. To computeGen(w, M), parsew as al|b,
2(n/2-m)/2-1_glose to U 5 x Uy UIZ.yAs i the previ- choose random € GFyn—., computes = [a®M (a)+ial{ +b,

ous proof, and recalling thaP = (i,0), this means that ?n?n_svetp = (5,0). As before, the extracted key i =

< 9(n/2=m)/2 < Lajyt1- ) 5 -
SD (R, P),Ur x P) < 2 =€ The procedurdep, givenw, M’, andP = (i, 0'), verifies

Post-application robustness.As in the previous proof, we that|M’| = L-(n—v) and thats’ = [a?-M’(a)+i'a]V+b. If SO,

prove that robustness holds for worst-case choicé. dfix it accepts)’ as valid and additionally output8 = [i'a] 7.

i and A, and letSucc be the event thajd succeeds. Since Extraction and robustness (which here means that neither

A is unbounded, we may assume it is deterministic. Thus,nor A/ can be modified without detection) are proved

upon observings, @ the adversary output§&’,o’) # (i,0); in a manner very similar to the proof of Theorem 3. Fix

the adversary succeedslifa + b]7 = o’. Note that ifi'’ =i  arbitrary M, known to the adversary. To argue thais nearly

then Rep will reject unlesso’ = o, therefore, we need only uniform given P = (i,0), we will show thatH = {h; :

consider the cas # i. _ hi(a,b) ' (0, R)} is universal. Indeed, fota,b) # (a',V'),
We now let atranscript be a tupletr = (o, R,i’,0’), and \ya have

say it is possibleif A(c,R) = (¢',0’). For any possible

transcripttr = (o, R,4’,0’) we have the following (in the py, [hi(a,b) = hi(a’,b’)} = Pr; {Z (a—d) = (0"2“ [

probability expressions belowg||b are chosen according

Theorem 4 Fix v, and let¢ = n/2 — v be the length of the
extracted key. Then for any 0 satisfying

1
‘< m—n/2—log5

to the distribution W conditioned ontr or, equivalently, o , ) v
conditioned orp): ( [(a )2 -M(a') —a -M(oz)}1 +b - b))],
Pr[Succ | tr] If a = a’. thend # v gnd thg abovg equality cannot be
satisfied; ifa # o/, there is a uniqué satisfying the equality.
= Prgp Kz‘a +b= JHR) A ([i’a +0)y = 0’)} This proves universality. The rest of the proof proceeds as
before.
= Z Pryp Kz'a +b= aHR) N (i’a +b= U’IIR’)] For (pre-application) robustness, fix arbitrafd and i
R'€{0,1}* (known to . A) and proceed as before. The only difference is

For any fixedR’, there is a unique valugu, b) for which thqt we now need to compute the number of values &6r
ia +b = o||R andi'a + b = ¢’||R’. Each(a,b) pair occurs Which
with probability at mos—He(Wlo.R) "We thus see that @M (a) + ia — >M'(a) — i'a]’ = o — o’ (1)

—H, o,
Pr{Succ | ] < 2°-2 (Wi, The crucial property is that the polynomiaf M (x) + iz —
The overall success probability of is given by x?M’(x) — i’z is nonconstant if{ M,i) # (M’,i'). A non-
Ey [Pr[Succ | tr]] < 2°- 9—Foo(WoR) cpnstant polynomial of deg_ree fflt makt+ 1 can take on a
B given value at most. + 1 times; hence, there are at most
Sincel|o| + |R| = n/2, we haveH (W | 0, R) > m —n/2 (L + 1)2"~2¥ values ofa satisfying Eq. (1). The probability
and soPr[Succ] < 2¢-m+n/2 <6, m that the adversary succeeds (in changing eittoerd/ without



being detected) is thus at mo$fL. + 1) - 2"~¥~™. Note We defineGen, Rep as follows.Gen, on inputw, begins by
that the resulting forgery probability is affected only by a@omputings = SS(w) and ¢ = SS*(w). It then parses: €
multiplicative factor of(L+1); since we expedtZL+1) < 1/6 {0,1}" as two strings:, b with |a| = n’—v and|b| = v, where

in practice, the impact is small. v < n'/2 (so|a] > |b]) is a parameter of the construction.
Letting L = 2[557—;], it padss with Os to lengthZ(n’ —
D. Adding Error-Tolerance# # w’) v) and parses the resulting string &s_1||sp—2|| - - - ||so with
We now consider settings when the input held by the i € GI%w—.. It chooses random « G F,—., and defines

second party is close, but not identical to, the inputsed by f.i(¥) = 2"*2+a?-(sp12" ™ s o2t 724+ +50) +ix.
the first party. An obvious first attempt is to include a secufdnally, it setso = [f;i(a)]} + b, and outputsk = [ia]; 5"
sketchs = SS(w) along with (i, o), and to authenticate and P = (s,i,0). _ _
using the message-authentication technique discussetein t Rep, on inputsw’ and P = (s',’,0”), first computesy™ =
previous sections would allow recovery ofw from w/, and SRec(w’,s") € {0,1}". It checks thatdis(w”,w’) < ¢ and
then verification could proceed as before. Unfortunateiis t SS(LUJ*) = &'; i not, then it outputsL. Otherwise, let:’ =
does not quite work: if the adversary modifies the sketch S5~ (w*) and parse’ asa’|[b with [a'| = n’ —v and[b'| = v.
then a different values* # w may be recovered; however, thecheck thats” = [f. i+ (a")]7 + b': if not, output L; otherwise
results of the previous section apply only when the receiveHtput R’ = [i'a’[} 5"
uses the same as the sender. In effect, we have a circularity: Before turning to the detailed analysis, we note that the
the receiver uses to verify thats was not modified, but the Polynomial f;; defined above differs from the message-
receiver computes (from w’) using a possibly modified. ~ authentication technique in the previous section only ia th
We show how to break this circularity using a modificatioteading termz“+3 (and the forcing ofL to be even). It has
of the message-authentication technique from earlier.Kelye the property that for any paifs’, ") # (s,i), and for any
idea is to exploit algebraic structure in the metric space, afixed offsetA,, the polynomialf; ;(z) — fo i (z + A,) is
to change the message authentication code so that it rem&ndon-constant polynomial of degree at mdst- 2: this is
secureeven when the adversary can influence the (keig is €asy to see fon\, = 0; if A, # 0, then the leading term is
sometimes referred to as “security against related-kegkst; .-z *> (recall we are working in a field of characteristic 2
our approach was generalized in [12]). Specifically, we firghdL is even). Our analysis will show thgt ;(a) amounts to
treat the case where the distance betweemndw’ is small in @ message authentication code (where the shared leysed
the Hamming metric; in Section I1I-G we extend the approad® authenticates, ) that is provably secure against a class of
to the set-difference metric. related-key attacks where the adversary can force thevegcei
Another problem arises from the fact that the performanéde use a key shifted by an offset known to the adversary.
of our previous constructions degrades not only when the min _
entropym of the input decreases, but also when the entrogy’€orem 5 Let M denote{0, 1}" under the Hamming met-
gap g = n — m increases (for example, Theorem 3 cafC: let SS be the(m, m —k, t)-secure syndrome sketch fo,
extract roughlym — g bits with pre-application robustness).a”d let B denote the volume of the ball of raditisn M. Fix
Becauses reveals information about, the entropy ofw from  v» and let/ = n — k — 2v be the length of the extracted key.
the adversary’s point of view decreases, and the entropy g-HEP”:
increases. An important idea is to limit this increase byigsi ¢ For anye, § satisfying

the (shorter) part ofv that is independent of. k
¢ < 2m—n—k—2max { log B+log <2 [k—‘ +2> +log (%),
n—

E. Tolerating Binary Hamming Errors

We begin by extending the construction presented at the 2log (1) }
beginning of Section IlI-A to tolerate binary hamming esor
we then extend the construction from Section Il1-B.

Our metric space ig\{ = {0,1}"™ and the distance between
two strings is Hamming distance—i.e., the number of bit
positions in which they differ. Suppose the ingiit is a dis-
tribution of min-entropym over M, and thatw’ is guaranteed
to be within distance of w. Our starting point is to use a

2
<2m—n—k—2max{1ogB+10g§a 210g(i)}:

(Gen, Rep) is an (m, ¢, t,e)-fuzzy extractor forM with
pre-application robustness.
o For anye,§ satisfying

deterministic, linear, secure sketeh= SS(w) that is k bits ¢ < min {1 (2mnk2(log B+log <2 [kw +2>
long; letn’ = n—k and note thaH .. (W | SS(W)) > m —k. B 3 n—k

We assume th&iS is a surjective, linear function (this is the

case for the syndrome sketch for the Hamming metric), and so +log (%) ))’

there exists & xn matrix S of rankk such thaSS(w) = S-w.
Let S+ be ann’ xn matrix such that the xn matrix (<) has 2m —n —k — 4log (1) }

full rank. We letSS* (w) % S1w. One can viewsS™(w) as
the information remaining im onceSS(w) has been learned < mm{

W =

2n
by the adversary. <2m —n—k—2logB —2log 5> ’
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2m —n —k — 4log (1) } ’ sketch. This implies there is also at most one value for each
: of a/,b" for which Rep will not reject. A may be unable to

(Gen, Rep) is an (m, ¢, t,¢)-fuzzy extractor forM with computew™,a’,b’ (since it does not know’); however, we

post-application robustness claim that.A can compute the differenced, = «’ — a and

Ay =b —b. LetD dof o —w = w* —w— A, and recall the

Note thatlog B < nHs(t/n) if t < n/2, where Hy(z) is weight of " is at mostt. By linearity of SS, we have
the binary entropy function [25, Chapter 11,1, Lemma 8],

andlog B < tlog(n + 1) + 1 always® SS(I') = SS(w") — SS(w) — SS(A) = 8" — s — SS(A).
Before giving the proof, we briefly discuss the parametesg,g right-hand side of the above equation is knowndicand

obtained. The bound ofdiffers in two main terms from the 5, argument as above shows that there is at mostonith

bound in the errorless case of Theorem 3. First, we lose t\%ight at most that satisfies the above equation. THigan

length % of the sketch. This is not surprising, since the sketgl, computed byA. Linearity of SS* means thatd can also
may reduce the min-entropy &F by up tok bits. Second, we compute

lose another additive factor &flog B. In general this is (to
some extent) inherent, since the min-entropy/sf may be Agl|Ap =SS (w”) =SS (w) = SSH(I') + SS™(A).

as low asH., (W) — log B. Looking at it slightly differently, Next, we prove that for any feasible transcript —
in our analysis we start by giving the attack&r= w’ — w (s,0,A, 8,7, 0"), we have
“for free”, which can reduce the min-entropy of by log B.

We can prove a generalization of the above result where thgw—w [Succ | tr] < (L +2)

term 2m — 2log B is re_placed by2Hoo (W | A). Thus, for 14 gee this, note that succeeds only i’ = [fy i (a)]Y +1/,
example, if errors are independentwfthen the termog B \yhich is the same as requiring thatbe a solution to the
is no longer present. equation[f, i(a) — fv.ir(a + Ad)]y = 0 — o’ + Ay. (Recall
Proof: That the construction satisfies the functionality offom above that we may assunie,, A, are known to.A.)
a robust fuzzy extractor is clear, and we thus turn to provigpt for any distinct pairs(s,i) # (s',4) and for anyA,,
security. The argument that is nearly uniform givenP is the polynomialfs ;(z) — fs i (z + A,) is non-constant and
similar to the errorless case, except that the entropy lass das degree at most + 2. (If A, = 0 this is immediate;
to the sketchs has to be taken into account. For evenythe if A, # 0, then the leading term i$L + 3) - A, - a**2,
family = {h; : hi(c) def (0, R)} is universal because for Which is non-zero sincd. is even and we are wqulng in a
everyc # ¢, there is at most onesuch thath;(c) = h;(c'). field of characteristic 2.) Thus, for any € {0,1}™ ~2V the
Since Hl. (¢ | SS(W)) = Hao (W | SS(W)) > m — k, apply- number of values ot for which £, ;(a) = furi(a + &) =
ing Lemma 2 and proceeding as in the proof of Theorem-$/l2¢+0—0" is at mostL+2, and so the number of values of
gives SD ((R, P), Uy x P) < 20+(=(m=k)/2 < ¢ a that Satley[fs,i(a)—f5/7i/(a-i—Aa)]lf = Ab—i—a.—a is at mgst
(L +2) - 2™ ~2v. Each such value occurs with probability at
Pre-application robustnessWe prove the stronger result thatmost2—He(als.7.4) (where we let also stand for the random

robustness holds for worst-case choiceioind even if the variable describing the distribution af), giving the bound
adversary is givenA = w’ — w. Fix i and A, and let py _ [Succ | tr] < (L +2) - 27'~2 . 2~ Hee(als,0.4)  Note
Succ be the event thatd succeeds. Sincel is unbounded, that
we may assume it is deterministic. Upon observing, A,
the adversary outputsl(s, o, A) = (s/,i',0") # (s,i,0). If Hoo(a|s,0,4) = Hoo(a,5,0 | 5,0,A) = Ho(a, 5,0 [ 5,0, A),
(s',i") = (s,i) thenRep will reject unlesso’ = o; thus, we pecause — o — [fs.i(a)]?; finally,
need only consider the case,i') # (s,1).

Call a tuple(s,o,A,s',i',¢') a transcript and denote it Heo(a,5,0|5,0,A) =Hoo(W [ 5,0,A)
by tr. Call a transcripteasibleif A(s,o,A) = (s',7',0"). FOr  gincew — (&
some fixed feasible transcript, the adversary’s successndisp Eq. (2). S

only on the choice ofw conditioned on the given values of o may now easily prove the theorem. We have
s,0,A, R. (Notew' is determined byw and A.)

. 271,/—21) . 2—HOC(W|S7(7,A). (2)

)71 - (s|lal|b). This completes the proof of

Recall thatw*,a’, &’ denote the values reconstructed duringPr,, a[Succ] = Ei [Prw [Succ | tr]}
the course of applyindRep to w’ and s’,7',¢’. We claim ,
! . . -2 —Ho (W]s,0,A
that for any feasible transcript there is at most one value < Ey [(L+2) <27 =2 9 Hoe (Wls,0,8)
w* for which Rep will not reject. Indeed, say there are two - (L+2)- on'=2v  9—Ho (Ws,0,A) :

distinct valuesw;y, w3 for which Rep does not reject; this

meansdis(w’, w?), dis(w’, w3) < t andSS(w;) = SS(wj}) = using Eq. (2). Sincgs| +|o|+|A| < k+v+log B, Lemma 1

s’. But thenw} = SRec(w’,SS(wj)) = SRec(w’,s’) = gives
/ * * H H -

SRec(w’,SS(w3)) # w3, violating correctness of the secure B (W | SS(W),0,A) > m — k — v — log B.

SNote B=1+3>¢_, (7). The second bound is achieved by noting thaphpserve thaf, — 2[k/2(n—k—v)] < 2[k/(n—Fk)] (because
every point in the ball centered at 0 can be represented by ustrings of < L Wi lude th _h babili f
lengthlog(n + 1) each, where each string represents the position of a 1 8r= (n — k)/2). We conclude that the success probability o

indicates “the end” in case the weight of a point is less than A is at most
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as in the proof of that theorem, for any feasible transcript
B- (L +2). 2" —2v=—mtk+to tr = (s,0,A,R,s',i',0") we have
- B. (L + 2) . gn—m—v < B- 2"]{/(“ _ k)‘l . gn—m=—v < 5. Pruﬂ_w[Succ ‘ tr} < (L + 2) . 2n//277j . 27Hx(W|s7cr,A,R),
L ., and soPr[Succ] =
Post-application robustnessBecause the extracted keéy is
of lengthn — &k —2v, providing it to the adversary can increasgg,, [Pr,,_yy[Succ | tr] < (L 4 2) - on'/2—v , 9—Hoo (W|s,0,A,R)

its success probability by at most a factor Bf —2. The _ _
rest of the analysis remains the same. m SinceH (W | s,0,A,R) > m — (|s| + |o] + |R| + |A])

m — (k + n'/2 + log B), we obtainPr,,w[Succ | tr] <
A . i B . L 2 . 271,—1) . 2—7” < 5 .
F. Improved Post-Application Robustness for the Hamming (L+2) -
Metric
In this section we extend the construction from SectiorBlll- G- Construction for the Set-Difference Metric
to tolerate binary Hamming errors. The spasd is still The constructions from the previous two sections rely heav-

{0,1}™ with Hamming distanceGen(w) is similar to the ily on the linearity of the secure sketch used in the protacol

one in the previous construction except that nowndb are on the structure of the Hamming space. Using the techniques

obtained by splittinge into two equal parts (we assume forfrom [16], however, they can be extended to handle errors

simplicity thatn’ is even) and computing = [f,;(a) + 4]} under the set-difference metric.

and R = [fsi(a) + b];i/f_ In the set-differencemetric, elements oM are sets of at
mostr elements chosen from some fixed universe of size

Theorem 6 Let M denote{o7 1}" under the Hamming met- the distance between two SetSb € M is the size of their
fic, let SS be the(im, m—k, t)-secure syndrome sketch fon, Symmetric differencedis(a,b) = [{z : = € aUbandz ¢
and let B denote the volume of the ball of radiugn M. Fix @ N b}|. Noting that elements ofM can be represented

v, and let?/ = (n — k)/2 — v be the length of the extractedPy characteristic vectors of length, we see that the set-
key. Then for any, § satisfying difference metric is equivalent to the Hamming metric; tisis
inefficient, however, since elements .4l can be represented
(<m— l(n + k) — log B — log(2 {k-‘ +2) —log (1) using at mostrlog N bits. Algorithms here should, ideally,
2 -k o run in time poly(r log N) rather than timepoly(NV).
1 In order to extend the analysis of the previous sections to
and m > 5(” + k) +2log (1), handle this different representation of the input, we nepdia
. ) of functionsSS, SS+ that take sets and output strings of length
(Gen, Rep) is a (m, £,,¢)-fuzzy extractor fotM with post- 1 and;1og(N + 1) — k, respectively. A set of size at most
application robustness. should be uniquely determined by the pg5(w),SS™(w)),
Proof: We first show thatR is nearly uniform given and_t.he functions should pe linear in the following sense: th
P = (s,i,0). For everys the family H — {h; : hi(c) — add!t|on/removql of a par_'ucular (_element should corresptin
(0, R)} ’is’ universal. SincefLo(c | SS(W)) = Ha (W | addlngisubtractlng apartlcglar bit vector. In o.ther WoRH) .
SS,(W)) > m ok applyin; the Leftover HaSF])O Lemma_andss () should be linear in the characteristic vector of their
(Lemma 2) and proceeding as in the proof of Theorem 3 shotput set. Thé_S() function of tTe.BCH Se?,“fe s_ketch O.f D_(.)dls
thatSD (R, P),U; x P) < 9(n'/2-m+k)/2 < ¢ etal. [16, Section 6.3] (called .PlnSketc.h ) is, in fachéar: it
outputst values oflog(N + 1) bits each in order to correct up
Post-application robustnessWe prove the stronger result thatto ¢ errors, thus producing sketches of lengtk: ¢ log(N+1).
robustness holds for worst-case choiceiofind even if the We will see in a moment how to constru&$* corresponding
adversary is givelh = w’—w. Fix 7 and.A, and letSucc be the to this SS. For the PinSketch construction the universe must
event that4 succeeds. Sincd is unbounded, we may assumée viewed as nonzero elements of a binary fi€ldy. for

it is deterministic. Upon observing, o, A, R, the adversary somea and thusN = 2 — 1.

outputs A(s,o,A,R) = (s',i',0") # (s,4,0). If (¢',i') = The constructions oen and Rep are the same as in the
(s,1) thenRep will reject unlesso’ = o; thus, we need only previous sections, but using differeSS, SRec, and sst
consider the casés’, ') # (s,1). functions. In addition,Rep should check that the recovered

Call a tuple(s,0,A, R, s',i',0’) atranscriptand denote it value w* is a set with elements id7F;.. (Note, however,
by tr. Call a transcripfeasibleif A(s,0,A, R) = (s',i’,0’). that it is not necessary to check that has size at most;
For some fixed feasible transcript, the adversary’s succele constructions work correctly evendf has more tham
depends only on choice af (conditioned on the given valueselements, so long adis(w, w’) < t.)
of s,0,A, R). The analysis is the same as in the previous sections. The
As in the proof of Theorem 5, for any feasible transcriptolume B of the ball of radiust remains the same as in the
there is at most one value for eachddft’ for which Rep will  binary Hamming case; her8y is very large compared toand
not reject, and moreover the valugs, = o’ —a and A, = sowe uséog B < tlog(N+1) = ta in our formulas since this
b — b can be computed byl. Following an argument exactly is now a close approximation. Usirg= tlog(N + 1) = ta
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andn = rlog(N + 1) = ra, we obtain the following as V. KEYED ROBUSTFUzZzY EXTRACTORS AND THEIR
corollaries of Theorems 5 and 6, respectively. APPLICATIONS

In this section we show that the addition of a very short,

Corollary 7 Let M be the set-difference metric on sets dfn9-term. shared secret keyKe, allows us to achieve
size at most over the univers&F;. . Using (Gen, Rep) from considerably better parameters when construdtaygdrobust

Section III-E withSS, S5+, SRec as described above, fixand fuzzy extractors. The parameters we obtain are optimal up to

then let¢ = (r — t)a — 2v be the length of the extracted key.COnStant factors.

Then: To motivate our construction, recall the naive transforma-
o tion from fuzzy extractors to keyed robust fuzzy extractors
« Foranye,J satisfying discussed in Section II-D. Suppose we start from the generic

construction of a fuzzy extractor from [16, Lemma 4.1]: here
(< Qmmtagmax{ta +10g2L0" 2log (i)}7 P = (s,i), wheres «— SS(w) for a secure sketcBS, and
g the extracted key ik = Ext(w;i). In an attempt to make
this construction robust, we may set= Macsk,,(s,?) and
include o as part of P. This is fine for one-time use, but
leaks information aboKEg,; so cannot be used an unbounded
number of times. Formally, this construction does not Batis
1 ey Definition 7 sinceSKg,; is not uniform givenpP.
£ < min { <2m —ra — 3ta — 2log ) , We can change the scheme to avoid this. Note et
3 0 must recoverw = Rec(w’,s) before computingR. Thus,
we can addw to the authenticated message: that is, set
o = Macsk,, (w, s,4). The tag can be verified bRep after
recoveringw. This does not strengthen the robustness property,
which was already satisfied by the original scheme. However,
(Gen, Rep) is an (m, ¢, t,e)-fuzzy extractor forM with it does help with the problem of revealin§Kg,, since
post-application robustness now the attacketd does not know the entire message being
authenticated so the entropy of the message can be used
. . to hide SKgy. Thus, we see that we need to construct an
Corollary 8 Let M be the set-difference metric on sets ofomation-theoretic MAC whose secret key is independent
size at most over the uBlversé?F;a. Using (Gen, Rep) from ¢ 0 1ag as long as the authenticated message has high min-
Section lll-F withSS, SS™, SRec as described above, fixand  o00y “Observe that in strong randomness extractors, the
then let? = (r —t)a/2 —v be the length of the extracted keyoutput is independent of the seed. Thus, it suffices to ensure
Then for anye, § satisfying thatMac is simultaneously a message authentication code and
a strong randomness extractor when the key is viewed as the

(Gen, Rep) is an (m, ¢,t, )-fuzzy extractor forM with
pre-application robustness.
« For anye, ¢ satisfying

2m(r+t)o¢4log(i)},

{ < m-— lroz — §ta — log (2;) seed. (Note that we do not need the guarantee, provided by the
2 2 extractor property, that the tag output blac is itself uniform;
m > l(t +r)a+ 2log (l) nevertheless, uniform tags are easy enough to achieves) Thi
Z 3 =)

is the problem we turn to in the next section.

(Gen,Rep) is a (m, ¢, t,c)-fuzzy extractor forM with post-
application robustness. A. Extractor-MACs

It remains to describeSS*. For self-containment, we II_)efini_tion 9 A family {Macs : {0,1}" — {0,1}"} of fun(_:-
include a description oSS as well. To computeSS(w) _t:qn56|slastr(:n% (m,ls,é) (averalge-%ase) extractor-MAC if
and SSJ'(w) on input w C GFL, let s, def e i it is d-almost strongly universal and dm, ¢) (average-case)

(computations in GF.) and, viewing s; values as bit strong extractor. ¢
strings, outputSS(w) = s ||ss]|ss]|...||s2r—1 and SS*(w) = When constructing MACSs, one typically tries to minimize
sat+1|[S2t43]|--|[s2r—1. Given any set of- points, these two the tag lengthv (to approach the boundog (5)), while
vectors are easy to compute @(r?) operations inGFy.. for extractors one tries to maximize the output lengtlfto
Moreover, givensi,...,s2.—1 One can recover. (Simply approach the bounﬂz—?log(%)). In our setting, the extractor
observe that(SS(w),SS*(w)) is the syndrome of the char-constraint is merely a convenient way to argue key reuse, so
acteristic vector ofw with respect to the binary BCH code ofwe will in fact try to minimizev. Naturally, we also want to
distance2r + 1, and that the weight of this vector is at mest minimize the min-entropy thresholeh.

See [16, Lemma6.2], setting = 2% — 1, kK = n — ra and Our construction of extractor-MACs follows from the obser-
8 = 2r + 1.) Algorithms SS,SS* have the desired linearity vation that aimost strongly-universal hash functions arQd
property since adding or removing an elementfrom w and, as universal hash functions, also extractors. (In, fact
corresponds to adding to each component (and we require this observation was used to get extractors with short seeds
addition in binary fields to correspond to bitwise exclusirg in [35, Section 3].) We exemplify our construction with the
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family constructed in [6, Section 4]. Specifically, we corspo  « Repgy (v, (s',4’
two hash families as follows. Lefps} be a(de?/2)-almost Macsk (w, s, 1)
universal hash family mapping-bit inputs to u-bit outputs
(for someu to be determined later), and 1ef, } be a strongly Theorem 10 The above construction is én, ¢, t, 4c)-keyed
universal hash family mapping-bit inputs tov-bit outputs, fuzzy extractor with post-application robustnéssvhich uses
wherev = log (3) + 1 (i.e., 27¥ = 2). SetMac, s(w) = a secret keysKg, of lengthx and outputs public information
fa(ps(w)). By [36, Theorem 5.5[{M AC, g} is ad-almost P of lengthk + d + v.
strongly universal hash family, singg?/2 + 27% < §. This _
means it can be used for message authentication. Furthermor Proof: We need to show correctness, security, and un-
by [36, Theorem 5.4] it ige2 /2+2") = (1+£2)2~*-almost forgeability. Correctness follows |mmed|a§ely from_ the_rm:t—
universal, since f,,} is 2~"-almost universal. By the Leftover N€SS of the secure sketch. To show security (that is, eiarget
Hash Lemma (Lemma 2), this means it is (an, ¢)-extractor We need to argue that for arly” of min-entropym, we have
with m : log (%) + 210g (%) - (SK,R,P) Rye U|SK\ X Ul X 137

We will set{f,} to be the family from [36, Theorem 5.2]
(described following Definition 4) with keys of length+ ».  or, equivalently,
It remains to setu so that we can construct a convenient (SK, R, 5,4, 0) ~a. Upk| x Us x (5,1, )
almost-universal hash familyps}. We use the polynomial- 0 81 0) e Hisk| % e 2 18,8, 9)
based construction from [6], [13], [38]. The ke&¥is a point Indeed,
in GFy., and the message is split into ¢ = 7/u pieces (R,s,i) ~. Uy x SS(W) x Uy
(zo,...,2.—1), €ach of which is viewed as an element of ~ _
GFye. Thenpg(zo...z0) = ze 18 + ... + 218 + 0. becauseH . (W | Ss(W_))_ > 1 and Ext is an average-case
This family is (c — 1)/2¢-almost universal with key length (772, €)-extractor. This trivially implies that
(because tw_o distinct degr¢e— 1) polynomials agree on at Usk| % (R, 5,i) x Uy ~z Ujsk x Uy x SS(W) x Uy x U, .
mostc— 1 points). We can sat = v+log(Z%) = 1+log (%) +
2log (1) + log7 to make(c — 1)/2* < 7/2" = 6¢2/2. This On the other hand,
gives key lengtl2u + v, and we obtain: (SK, R, s.i,0) ~ Ui x (R, 5,) x U,

,0')): Let w = SRec(w’,s). If
=o', thenR = Ext(w;1); elseR = L.

Theorem 9 For any 6, c, andm > log (1) +2log (1), there becauseH..(W | R,s,i) > Hoo(W,R,i | s) — ¢ —d >
exists a(m, , §)-extractor-MAC for messages of lengthwith ﬁoo(W,i | SS(W))—{—d > ﬁoo(w | SSW))+d—Ff—d =
key lengths = 3+2logn+3log (3)+4log (1) and tag length 7 — ¢ (the first inequality follows from Lemma 1 and the
v =log (%) + 1L last inequality follows by independence §f and Mac is a

. . (m — £, ) average-case extractor.
This construction has both short keys and short tags. OneBy the triangle inequality, therefore, we obtain

can reuse the keyK as long as the min-entropy of the authen-

ticated message is above the threshogd($) +21log (1). The (SK, R, s,1,0) ~a. Ujs) x Up x SS(W) x Ug x U, .
tag length is within one bit of optimal, since it is impossibl = . . . . . . :
to obtain d-almost strong universality with tags shorter that N9 tr:'e tnanbgle inequality again we obtain theldv.a/swe/}mﬁlte
log (). Known bounds on extractors [32, Theorem 1.9 Tos Ol\:/\.’ r(t) ustn%ss, f#pposboutﬁutslf :_(s o ’.‘,T)I#
(reinterpreted fostrongextractors by viewing the seed as pargii’sz’g;;se gs con/3| e<:r . € Cﬁse g}; e(m,z/) N £S 7). r:j
of the extractor output), imply that the key length is optima dis(w,w’) < ¢ implies SRec(uw',s’) = w, an

* A ;
up to a constant factor and the entropy threshold is optimat'> M;CSF*;(M ’.‘TI’ 7’2) o fiﬂ;\féefoéﬁ’nsqdngsﬁ]e Eage anr?en
up to an additive constant. = L7, Rep will output L. Now I wi

(s,1) # (s',4). Then, in order forRep not to reject,.4 must
correctly guess the tag of a new message with a uniformly
B. Constructing Keyed Robust Fuzzy Extractors chosen keysK, which cannot be done with probability higher

We now apply extractor-MACs to build keyed robust fuzz§@nd by the j-almost strong universality dac. Note that
extractors. We start with a generic construction and set tHiS implies post-application robustness: it does not hart
parameters below. reveal R (or evenw itself) to A, because the security dac

Assume (SS,SRec) is an (m, i, t)-secure sketch with relies on the secrecy &K only. u

sketch lengthk; Ext is an average-casien, ¢)-extractor with The price of authentication. We compare the parameters
n-bit inputs, (-bit outputs, andd-bit seeds; andMac is an  of Theorem 10 to the original (non-robust, non-keyed) con-
average-cas@n —(, ¢, §)-extractor-MAC fromi = n+k+d  structions of [16]. First, note that the choice of a sketcH an
bits to v bits having a keys5K of length <. We now define a strong extractor can be done in the same manner as for non-
keyed robust fuzzy extractor with secret k8l{e.., which is  ropust fuzzy extractors. Assume we use the construction of
simply the extractor-MAC secret keyK: Theorem 9 foMac. Then the secret ke§Kg,, is just the MAC
+ Gensk(w): compute sketchs — SS(w), samplei at key, whose length i2logn + 3log (1) + 4log () + O(1)
random, set keyR = Ext(w;1), tago = Macsk(w, s,4), as long asd = O(n) and k = O(n) (which is the case
P = (s,i,0) and output(R, P). with typical extractor and secure sketch constructiors}hat
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n = O(n). For the extractor-MAC of Theorem 9 to work, wefor the same reason as in Theorem 10. On the other hand,
needm — ¢ > log (%) + 2log () or £ < 7 — 2log () — SS(W) ~. Uy by Theorem 11 and therefore
log (%). This means that the keyk is only log (%) + 2
bits shorter than for non-robust extractors, which canaextr U x SS(W) x Ug ~ Ue x Up x Ua
¢ =1 —2log (1)+2 bits [16, Lemma 4.3]. Finally, the length yhich by the triangle inequality, implies
of P increases only by the tag length=log (§) + 1.

(R, 8,1) &g Ug x Up x Uy ..

C. Uniform Helper Strings and Application to the BoundedFhe rest of the proof proceeds as in Theorem 10. [

Storage Model with Errors Application to the bounded-storage modelTo explain the

Keyed robust fuzzy extractors allow us to remove the neegplication, we first briefly recall the key elements of the
for an authenticated channel between the honest partiespgunded-storage model [28] with errors [14], [17], concen-
the bounded-storage model (BSM) with errors. As explaineghting only on thestateless varianbf [17]. Our discussion
following Definition 7, the first step is to construct suchwill be specific to Hamming distance.
extractors with uniform helper strings. We then show in more |n the bounded-storage model with errors, two parties (say,
detail how they apply to the BSM. Alice and Bob) start by sharing a long-term secret &&gs.
Keyed robust extractors with uniform helper strings. Al egch time perloq/, Alice (resp., BOb). has access to a noisy
Examining the keyed construction in Theorem 10, we see th: sion X (reSé).,X]d) of ahrandom _strlnngj (of Ienﬁ?tz N?'
the only place where the value = (s,,0) depends on (the Ber?siumﬁ a bounadon the Sarrr:mmg Ls;ancaf? n j(ﬂ
distribution of) w is in the sketchs — SS(w). Indeed, the DOt the honest parties and the attackérare limited In
seedi is chosen uniformly at random, and the valueis storage to considerably fewer than blts. More specifically,

we assume thatl can look at the entireZ; but store onlyy N

close to uniform (even conditioned oh s, w, and SKg,) . i . .
by the properties of the extractor-MAC. Thus, to solve Olﬁ'lts of (arblyrar_y) mformauon aboqu, for v < 1. After A
as stored its information abouf;, it cannot seeZ; again;

roblem we only need to build amn, m, t)-secure sketc . .
P y am, m, ¢) 55 this means tha¥, has average min-entropyl — )N from

such thatSS(1V) is statistically close to uniform whenevér d ) int of view by L 1 The h ¢ parti
has sufficient min-entropy. (Note that such sketches canﬁ%? adversary's point of view by Lemma L. 1h€ honest parties
I¢ even more limited in their storage, but they can use their

be deterministic.) Such sketches were studied by Dodis a ! red secret kev to gain an advantage over the adversar

Smith [17], where they were used to solve the noisy-BS and comm n'cateysec gr]elI itho tvthe ngeed ;/or com tz:i/t'onay

problem even in the authenticated-channel case. In phatjcu muni urely withou ) nputat
sumptions (they can even achiexerlasting security1]).

Dodis and Smith show such sketches for the binary HammlﬁaPrior work [14], [17] assumed that the communication chan-

metric with parameters that are only a constant factor worse . . .
than those of regular sketches. nel between Alice and Bob was authenticated or, equivalentl

that the adversary does not modify the messages between Alic
and Bob. This authenticated channel was used to reconcile
the differences between (the relevant portions.f)and X
received by the two parties. In this work, we remove the need
for the authenticated channel.

Theorem 11 ([17, Theorem 1])For any min-entropym =
Q(n), there exists an efficierftn, m, t)-secure sketch for the
Hamming metric ovef0, 1}™ that is also an(m, €)-extractor,
~ 1
W;iri”.gkt’_agd log () are all ©(n), and the length of the The basic idea underlying prior work is to use fuzzy
sketch isk = O(n). extractors to derive a keft; from X; and X’ that is unknown
Using such sketches in the construction of Section Iv-F® A- For example, in “sample-and-extract” protocols [39]
gives us the following theorem. one part ofSKgsy consists of a keysKs,, for an oblivious
sampler[2], [39]. This key specifies: locations in theN-bit

. 4 / . . .
Theorem 12 Using the sketch of Theorem 11 in the construc';s—trlng X; (resp., .X;) which Alice (resp., Bob) will read to

tion of Section IV-B gives afm, ¢, t, 3¢)-keyed fuzzy extractor obtain ann-bit substringu; .(resp.,w‘;). The p_ropertles/of the
with uniform helper strings and post-application robusteé sampler ensure that (a) with high probability andw; are
" still close (say, within Hamming distaneefrom each other);

Proof: Correctness and unforgeability are shown the sar@@d (b) with high probability,A still has some uncertainty
way as in Theorem 10. To show security (that is, extractiofjtin-entropym = (1 — v)n) aboutw; and wj. (Note that
with uniform helper strings, we need to argue that for &y It iS crucial that.A does not knowSKs.m at the time Z;

with min-entropymn we have is broadcast, sod is unable to store information that is
specifically correlated tav;, w’.) Fuzzy extractors can then
(SK, R, P) =3. Ujsk| x Ue x U)p| be used to derivek; from w; and v}, with Alice running

Gen(w,) to obtain(P;, R;) and sending the helper strirfg

or, equivalently, to Bob over the authenticated channel, and then Bob running

(SK, R, 8,i,0) 3. Ujsk| X Ug x Uy, x Ug x U, . Rep(wj, P) to getR; [14], [17]. _ _
To remove the need for an authenticated channel, Alice and
Indeed, Bob can use aobust fuzzy extractor instead. Because they

(R,s,1) . Uy x SS(W) x Uy are already in the shared-key setting, they can useyad



robust fuzzy extractor, storing its secret ké¥g,; as part
of their long-term secret ke$Kgsm (in addition toSKsapm).
There is, however, a subtle problem which already caused
difficulties even in the case of authenticated channels and
nonrobust extractors [14], [17]. (2]

The problem arises due to the reus&iisy. As discussed
in Sections II-C and 1I-DSKg,; can be reused safely, but only [3]
if the input to the fuzzy extractor has sufficient min-entrop
(from the adversary’s point of view). In the current setfing 4
however, a potential problem is that may use information
gleaned fromP; in order to reduce the entropy ab;;.
Specifically, if P; is correlated withw;, then P; may reveal g
information about the sampler ke§Ks, that was used to [g]
samplew;. In other words, by observing®;, A may learn
something abouthe locationsin the large random string;
that were used to obtain;. While it is too late forA to
observe those locations #}; (because of the bounded-storage
assumption),4A may be able to observe the same locations iTS]
the next stringZ;,1, thus reducing the min-entropy af; 1,
which will be obtained from those locations.

We can solve this problem by making sure tiigtreveals
nothing abouSKs,,,. This is precisely what is guaranteed by
keyed robust fuzzy extractorsith uniform helper stringsas
constructed in Theorem 12, sindg is distributed the same
way (up to a small statistical distance) regardless of what;
SKsam is. (To use Theorem 12, we need to ensure that the input
to the extractor has sufficient min-entropy. This holds with
overwhelming probability, even conditioned 6Ks,, and the [12]
knowledge ofA, becauseA is unlikely to have stored much
useful information about the locations sampled $sam.)
Thus, using extractors with uniform helper strings ensthas 13]
the public valueP hides the entir&Kgsm = (SKsam, SKext),
and not justSKg., and therefore allows for the reuse ofl4l
SKgswm.

Using such robust fuzzy extractors in place of nonrobugs]
fuzzy extractors allows us to remove the need for autheetica
channels in [17]; the security argument (omitted here) is
similar to the one there. Now Alice and Bob no longefis]
need to trust that their message goes unmodified: they will
(with probability 1 — §) detect any modification to the helper[m
string. The price is that Alice and Bob have to additionally
share a (short) extractor-MAC ke$K, compute the tag
o = Macsk (w, s, 1), and send this (short) tag together with thE®!
rest of the information. Thus, we obtain a stateless prdtoco
in the BSM without assuming authenticated channels, whi&!
tolerates a linear fraction of Hamming errors, requiresrayio
term shared secret key of sigz&(log N + log (1) +1log (%)),
and requires Alice and Bob to redd(¢) bits of the source,
and to send a single message of si2¢/) per time period
in order to extract bits that ares-close to uniform. These
parameters are optimal up to constant factors.

(7]

[

(10]

(20]
(21]
(22]
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APPENDIX

We argue that the construction from Section IlI-A cannot
extract more than the stated number of bits if post-apjiinat
robustness is desired.

For post-application robustness, the concern is fhatan
reveal information to the adversary abatlt for a cleverly
choseni’. Here we show an adversarial strategy that does
exactly this and succeeds in the post-application robastne
game with probabilityd /2. In our attack we fix a particular
(and somewhat unusual) representation of field elemenés. (R
call that the theorem was claimed to work for any representa-
tion of field elements, so long as addition of field elements
corresponds to the exclusive-or of bit strings.) Typically
one views GFyn—» as GFylz]/(p(z)) for some irreducible
polynomialp of degreen—v, and represents elements@ss,-
valued vectors in the basigz” V=1 an=v=2 . 22 x,1).

We will do the same, but reorder the basis ele-
ments so as to separate the even and odd powers:
(pn—v=btgn=v=3 L p gV v 1) (assuming,



