
How to Simulate Random Oracles with Auxiliary Input

Yevgeniy Dodis
New York University
dodis@cs.nyu.edu

Aayush Jain
Carnegie Mellon University

aayushja@andrew.cmu.edu

Huijia Lin Ji Luo
University of Washington

{rachel,luoji}@cs.washington.edu

Daniel Wichs
Northeastern University and NTT Research

wichs@ccs.neu.edu

Abstract—The random oracle model (ROM) allows us to opti-
mistically reason about security properties of cryptographic
hash functions, and has been hugely influential in designing
practical cryptosystems. But it is overly optimistic against non-
uniform adversaries, and often suggests security properties
and security levels unachievable by any real hash function. To
reconcile with this discrepancy, Unruh [CRYPTO ’07] proposed
the auxiliary-input random oracle model (AI-ROM), where a
non-uniform attacker additionally gets a bounded amount of
advice about the random oracle.

Proving security in the AI-ROM is often much more difficult,
but a series of works starting with Unruh provided useful
technical tools to do so. Although these tools lead to good results
in the information-theoretic setting, they are unsatisfactory in
the computational setting, where the random oracle is used
alongside other computational hardness assumptions. At the
most basic level, we did not even know whether it is possible
to efficiently simulate random oracle queries given auxiliary
input, which has remained as an explicit open problem since
the work of Unruh.

In this work, we resolve the above open problem and show
how to efficiently simulate auxiliary-input random oracles.
Moreover, the simulation has low concrete overhead, leading to
small losses in exact security. We use it to prove the security of a
broad class of computational schemes in the AI-ROM, including
the first non-interactive zero-knowledge (NIZK) scheme in the
AI-ROM. As a tool of independent interest, we develop a new
notion of ultra-secure pseudorandom functions with fast RAM
evaluation, which can achieve 2λ security while having sublinear
o(λ) evaluation time.

1. Introduction

Random Oracles. The random oracle model (ROM) [1] is
an idealization of cryptographic hash functions into public
random functions O that can be queried on arbitrary inputs.
This optimistic modeling attempts to capture the intuition
that hash functions can satisfy a wide range of security
properties beyond standard ones such as one-wayness or
collision resistance. The ROM has been hugely successful

and influential in allowing us to easily design and analyze
cryptographic schemes that use hash functions. Essentially
all cryptosystems used in practice, including Fiat–Shamir or
full-domain-hash signatures (e.g., DSA, Schnorr, RSA), CCA
encryption (e.g., RSA-OAEP), and Bitcoin, are only shown
to be secure in the ROM. Unfortunately, we have no formal
proof that security in the ROM implies security in the real
world, when the oracle is replaced with a good hash function,
and there are contrived counterexamples [2,3] showing that
this is not always the case. Nevertheless, security in the
ROM is seen as providing very strong heuristic evidence of
security in the real world. Moreover, the ROM is not only
used to analyze security in the asymptotic sense, but is also
used to analyze the exact security of a scheme, which is
crucial for choosing concrete parameters.

Non-Uniformity. Unfortunately, the ROM does not ade-
quately capture non-uniform adversaries (i.e., families of
circuits or Turing/RAM machines with advice), and security
in the ROM cannot be used as heuristic evidence for real-
world security in the non-uniform setting. For example, it is
easy to construct seedless collision-resistant hash functions
in the ROM, but they are known to be impossible against
non-uniform adversaries in the real world. Indeed, a non-
uniform attacker can simply hardwire a collision into the
(short) advice string.

In a different vein, the ROM gives us incorrect predictions
for the security levels that we can expect against non-uniform
adversaries. For example, the seminal work of Hellman [4]
showed that a non-uniform attacker of size 22λ/3 can invert
a random length-preserving function on λ bits with constant
probability, and Fiat and Naor [5] extended this to any
function with circuits of size 23λ/4. In contrast, in the
ROM, the λ-bit random oracle itself can easily seen to
be Q/2λ hard to invert against attackers making Q random
oracle queries, which gives negligible inversion probability
for Q = 23λ/4. Moreover, this gap is far from theoretical.
The famous rainbow tables [6] were developed based on
these ideas, and are used on a massive scale to crack weak
passwords in the real world. As another example of this kind,
one can construct a simple pseudorandom generator (PRG)

in the ROM with seed length λ, for which no adversary
running in time Q can distinguish the output from uniform
with advantage better than Q/2λ. However, for every real
PRG, the works of (e.g.) [7,8] show that there is a simple non-
uniform adversary running in time O(λ) that has significantly
higher distinguishing advantage 2−λ/2. Similar discrepancies
between the security levels achievable in the ROM versus
the real world in the non-uniform setting exist for many
other primitives (see [9–11]).

To summarize, while the ROM gives good heuristic
predictions for the security properties and levels that crypto-
graphic hash functions can achieve against uniform adver-
saries, it frequently gives wrong, overly optimistic predictions
in the non-uniform setting.

Auxiliary-Input ROM. To bridge the above discrepancy,
Unruh [9] defined the auxiliary-input random oracle model
(AI-ROM) as a way of capturing non-uniform attacks in
the ROM. In the AI-ROM, a random function O is chosen
initially, but the adversary is then given some S bits of
arbitrary auxiliary input z $← ai(O) about the function O.
The mapping ai can be an arbitrary function and may not be
efficient or even computable. The adversary gets the auxiliary
input z and oracle access to O, after which it gets to break
the cryptosystem by making up to Q additional queries to O.
The honest users only get oracle access to O, as in the
standard ROM. We can think of S and Q as an arbitrary
polynomial when discussing polynomial security, or can put
precise bounds when discussing exact security.1

Unlike the ROM, the AI-ROM appears to rule out many
security properties that are “too good to be true” in the non-
uniform setting. For example, one cannot construct seedless
collision-resistant hash functions in the AI-ROM since a
collision (of any compressing function determined by O)
can be provided as part of the auxiliary input z. Moreover,
the generic non-uniform attacks against one-way functions,
pseudorandom generators, and other primitives discussed
above carry over to the AI-ROM, ensuring that for these
primitives in the AI-ROM, one cannot achieve exact security
levels known to be impossible in the plain model.

Proving Security in AI-ROM. While the AI-ROM prevents
us from proving many unrealistic security properties, the flip
side is that it makes it difficult to prove anything. Even simple
properties that are obvious in the ROM become difficult to
prove in the AI-ROM. This is because many useful proof
techniques in the ROM do not seem to extend to AI-ROM,
including “lazy sampling”, (dynamic) programmability of the
oracle, and the “unpredictability-to-randomness” conversion.
For example, lazy sampling allows one to not commit to the
entire truth table of the oracle upfront, and instead answer
every fresh query with a fresh random value. Unfortunately,
this cannot be done naı̈vely in the AI-ROM, where the
auxiliary input z may be correlated with the entire oracle,

1. Moreover, in the circuit model we can often view S = Q as the size
of the adversary’s non-uniform circuit, while in the RAM model it is more
convenient to separate the two.

and choosing a fresh random value will be easily detectable
by the attacker. This leads to the main central question of
this work.

Main Question: Develop techniques for showing
tight security bounds of cryptographic applications
in the AI-ROM.

As we will see below, this question has been relatively well
understood for what we call information-theoretic applica-
tions of the AI-ROM. This means that the only computational
component in the security of such application comes from
the use of cryptographic hash function H . Once H has been
abstracted as AI-ROM O with parameters S,Q, the attacker
can be assumed to be otherwise computationally unbounded.2
Examples of such applications include pseudorandomness,
one-wayness, or (“salted”) collision resistance of the hash
function. While very useful in themselves, in most real-world
applications — Fiat–Shamir signatures, full-domain hash,
Bitcoin, RSA-OAEP among many many others — the hash
function is only part of the larger system, and additional
computational assumptions should be used. We will see that
the existing state-of-the-art techniques give extremely poor
exact security bounds for such computational applications,
despite the fact we believe all these applications are actually
secure. The main result of this work will be a new AI-ROM
simulation technique to give a much tighter answer to our
Main Question for all such computational applications.

Presampling Technique. The most general known answer
to our Main Question comes from the beautiful work of
Unruh [9] (which also defined AI-ROM). The technique is
called presampling and could be thought as a particular AI-
ROM simulation method, which effectively reduces AI-ROM
to a “friendlier” intermediate model termed bit-fixing ROM
(BF-ROM) by [11]. Unlike (S,Q)-AI-ROM, which has two
parameters S (size of auxiliary input) and Q (number of
online queries), the P -BF-ROM has a single parameter P ,
allowing the attacker to fix the oracle O′ arbitrarily at any
set of P points in the domain. After this, the values of
O′ on all the remaining points are chosen randomly and
independently, just as in the ROM. Intuitively, as long as
a given application can avoid using the P “presampled”
points for security, traditional ROM techniques (including
lazy sampling and others) are back in business.

More formally, Unruh showed that any adversary who
gets S-bit auxiliary input z $← ai(O) and makes Q oracle
queries to O (call it an (S,Q)-attacker) cannot distinguish
interacting with O from interacting with an oracle O′ in
the P -BF-ROM, where the P points of presampling and
the oracle outputs are allowed to depend on the function ai
and the value z $← ai(O). In terms of concrete bounds, the
distinguishing advantage ε is upper bounded by

√
SQ/P ,

and this was later improved by [11] to SQ/P . Moreover,
the latter bound ε ≤ SQ/P is known to be tight at this level
of generality [11].

2. In a sense that placing additional computational limitations do not
appear to help proving stronger results for such applications.

The work of [11] also showed that one can take fewer
presampled points P = O(SQ) and still ensure small “multi-
plicative distinguishing advantage” — any event that happens
with probability at most δ when the adversary has oracle
access to O′ can happen with probability at most 2δ when
the adversary has oracle access to O. This is useful for
analyzing unpredictability (e.g., one-wayness) rather than
indistinguishability (e.g., pseudorandomness) applications.
We also note that several other works [8,10,12] explored
other approaches to proving specific security properties in
the AI-ROM, directly without going through presampling.
However, all these techniques suffer even worse limitations
than presampling, which we discuss next.

1.1. Limitations of Presampling

Presampling is a very general and powerful technique. For
a simple information-theoretic example, presampling allows
us to easily prove that a length-doubling random oracle
O : {0, 1}λ → {0, 1}2λ is a good PRG in the AI-ROM. We
first replace O by O′ at security loss ε = SQ/P and then
replace O′(x) for a random seed x $← {0, 1}λ by a uniformly
random output at security loss (P +Q)/2λ, reflecting the
probability that x falls into the set of the P presampled points
or that the adversary queries the oracle on x. Since in this
simple example, PRG is our final goal, we can optimize
the value of P for the best-possible bound. Concretely,
by setting P =

√
2λSQ, the total distinguishing advantage

is O
(√

SQ/2λ +Q/2λ
)
, negligible for polynomial S,Q.

Moreover, for polynomial S,Q, it asymptotically matches
the known linear-time 2−λ/2 attack on all non-uniform PRG.3

Computational Applications? Unfortunately, things start
to go astray once we add computational assumptions to the
picture. In fact, the difficulty already comes up when we try
analyzing schemes that do not make any meaningful use of
the AI-ROM! This question is interesting in it own right,
as it directly compares the power of AI-ROM versus the
standard non-uniform model for standard-model problems,
which make sense in both models. But it is also must be
settled before we even dream to go for the real problem
we care about — applications which use cryptographic hash
functions together with additional computational assumptions,
i.e., virtually all real-world applications.

For example, say we want to argue that the decisional
Diffie–Hellman (DDH) problem is hard in the AI-ROM. At
first, this may appear obvious — the DDH problem does
not involve any oracles, so why would it be any easier in
the AI-ROM than in the plain model?! But if we want to
reduce breaking DDH in the plain model to breaking it in the
AI-ROM, we need to efficiently simulate AI-ROM queries.
In the standard ROM, this is trivial via lazy sampling, but
as we already saw, this technique does not work in the AI-
ROM. Again, on an intuitive level, such queries should be
completely useless in breaking DDH. Formally, though, it

3. Interestingly, the bound is not tight for larger some super-polynomial
ranges of S,Q, but this was subsequently settled by [13].

is unclear how to do such simulation without the attacker
noticing some inconsistency with its advice (and perhaps
refusing to break DDH for this reason). Indeed, without the
ability to simulate the oracle, we cannot formally argue that
the AI-ROM does not give the adversary some unspecified
computational power, which may perhaps even suffice to
break the DDH assumption!

Unruh’s Conjecture. The above issue was already noted
by Unruh, who conjectured — but left it as one of the
main open problems — that “common sense wins”. Namely,
efficient simulation of the AI-ROM should be possible [14;
Conjecture 15]:

Consider an adversary A that gets some S-bit aux-
iliary input z $← ai(O) and makes oracle queries
to O. Is there an efficient non-uniform simulator S
that simulates the view of A such that no efficient
environment can tell apart whether it is interacting
with AO(z) or S? What is the concrete efficiency
of S compared to that of A?

The environment does not have access to the oracle. For
example, we can think of the environment as the challenger
for DDH. In that case, for any attacker AO(z) in the AI-
ROM that breaks DDH, a similarly efficient non-uniform
simulator S in the plain model should break DDH as well.

One could attempt to use presampling to construct
the simulator S. The non-uniform simulator would have
z $← ai(O) as advice along with the table of P presampled
input/output pairs. It would then run A, and answer any
oracle query that falls into the table of presampled inputs with
the corresponding presampled output and use lazy sampling
on all the other inputs. Unfortunately, to achieve negligible
distinguishing advantage ε for adversariesA making Q oracle
queries, the non-uniform advice that the simulator needs
would be of size SQ/ε, which is super-polynomial! In terms
of concrete efficiency, it looks even worse. For example, to
argue that DDH with certain parameters has ε = 2−λ security
against circuits of size 2λ (bounding both S,Q by 2λ) in
the AI-ROM, we would need DDH with those parameters
to have security ε = 2−λ against much larger circuits of
size 24λ in the plain model, by setting P = SQ/ε = 23λ

and noting that the above described simulator S needs to
scan through the table of size P on every oracle query made
by A.4

Perhaps one could hope to get better simulation by
improving the analysis of presampling, to allow for fewer
presampled values P . Unruh conjectured this to be possible
[9; Section 6] with P = poly(S,Q) and a negligible ε.
Unfortunately, the work of [10] showed that this conjecture
is false and that ε = Θ(SQ/P) is optimal. Therefore, to get
better simulation, an entirely new technique is necessary.

We also notice that the situation is also far from sat-
isfactory for unpredictability applications, such as compu-
tational Diffie–Hellman problem (CDH), despite the more
optimized presampling for such applications [11]. Indeed,

4. This last 2λ factor can be removed if we consider non-uniform
simulation in the RAM model instead of the circuit model.

even though the size of the presampled set is reduced to
P = O(SQ), it is still quadratic in S when T = Ω(S).
Therefore, to convert such (S,Ω(S))-attacker in AI-ROM
to the standard non-uniform model, the non-uniform advice
(which includes the presampled set) will have quadratic size
S′ = Ω(P) = Ω(S2). Moreover, the actual simulation (in
the circuit model) might take even cubic time Ω(S3), as
each evaluation inside the presampled set will take time
Ω(S′) = Ω(S2).5 Thus, even though this resolves a variant
of Unruh’s conjecture for unpredictability up to polynomial
factors, it does not match our intuition expecting S′ = O(S)
to hold.

Need for Better Simulation. To summarize, while presam-
pling works in converting AI-ROM attackers to standard
non-uniform ones, the reduction is not efficient in the
asymptotic sense (polynomial/negligible) nor in terms of
concrete security. In particular, it gives too pessimistic
bounds in the non-uniform setting.6 Put differently, for
computational applications of hash functions, the route
through the intermediate BF-ROM appears to be too wasteful,
and a better simulation technique is needed. In this work,
we present such a technique and then use it to prove various
computational security notions in the AI-ROM.

1.2. Our Results in a Nutshell

Key Idea: Use a PRF. The main idea of our new technique is
to use a pseudorandom function (PRF) to simulate AI-ROM
in the standard non-uniform model. The new non-uniform
advice z′ will be the key K for the PRF, together with the
S-bit output of the AI-ROM leakage function ai applied to
the entire truth table V of the PRF. As such, the adversary
A would not be able to find any inconsistencies of the
simulated leakage not matching the evaluation. Of course,
this (necessary) step is still insufficient, as our goal will be
to make the PRF key K as short as possible (say, O(S) bits
long) and the (computationally unbounded) leakage function
ai might be able to tell the truth table V of a PRF from an
exponentially long truly random string. Here we will rely on
a beautiful sequence of works [15,16], which shows that any
“short enough” (in our case, S-bit long) leakage ai(O) could
be replaced by a different leakage function ai′(O), where
ai′ is “computationally efficient”. Once this is done, we will
be able to formally use the PRF security to argue that the
actual (efficient) non-uniform attacker should not be able to
detect the fact that we replaced ai(O) by ai′(V).

Super-Fast PRF. Ignoring some subtle choices of parameter
selection, one issue remains — efficiency of the PRF. Namely,
in AI-ROM, the cost of Q queries is abstracted out as equal
to Q. With our PRF simulation, however, each such call
will require evaluating the PRF on some input, and the

5. In the RAM model, we still get a quadratic slow-down.
6. This is the opposite problem to the one we had when adapting

standard ROM bounds to the non-uniform setting, where the bounds were
unrealistically good.

key K for this PRF will be at least S bits long (otherwise,
we cannot apply the leakage simulation technique of [15,
16]). Hence, if done naı̈vely, we will spend at least time
Ω(SQ) to simulate the Q random oracle queries from the
attacker. This is still interesting and will compare favorably
with presampling, but we will try to do better. Namely, as a
contribution of independent interest, we define and construct
a novel kind of PRF with λ bits of security and key length
(where think of λ ∼ S), where individual PRF evaluations
take time polylogarithmic in λ (and polynomial in the input
length). In particular, each individual PRF evaluation only
reads a small subset of the key bits.

Applications. Taken together, we will achieve a novel kind
of AI-ROM simulation in the standard non-uniform model,
where S′ ∼ S and Q′ ∼ Q for S′ being the size of the
new advice and Q′ being the time to simulate the oracle
queries. This immediately settles Unruh’s conjecture in the
affirmative, with essentially tight simulation, confirming our
intuition that AI-ROM should not help with standard-model
problems.

Unfortunately, our new simulation by itself is not suf-
ficient for answering our main question — security of
computational applications in the AI-ROM. This is because
once we simulate AI-ROM by a PRF, we lose all the nice
(usually information-theoretic) properties of the random
oracle, which are needed to analyze the hash-function part of
the applications. For example, if we analyze hashed ElGamal
encryption, our simulation will allow us to use the DDH
assumption to replace the Diffie–Hellman group element
by a random group element, but now it is unclear how to
argue that applying the hash function effectively acts as a
PRG (from group to strings), as the hash function is already
replaced by a PRF whose key is no longer secret.

We develop a relatively general template to this dilemma,
by combining our new PRF-simulation with presampling.
We describe this in more detail in Section 1.3, here only
highlighting the main insight. In essence, our template allows
us to combine the best features of both simulation methods,
without inheriting any of the disadvantages. Concretely,
we borrow a fresh-independent random oracle part from
presampling, which allows us to use ROM techniques (such
as lazy sampling) to tackle the hash-function part or the
analysis, provided honest parties avoid evaluating the hash
function on the presampled set P . On the other hand, we no
longer store the (quite long) truth table of P as an advice,
and instead use our more efficient PRF simulation for the
behavior of the random oracle inside P (which will likely be
used by the attacker). Some subtleties need to be addressed
to make it work, but we mention the two main applications
where we overcame these subtleties.

• Extending the previous information-theoretic proofs
of [10,11] for information-theoretic applications in
the AI-ROM, we show that salting generically defeats
preprocessing for all (even computational) AI-ROM
applications, with a tighter reduction than before.

• The first known construction of non-interactive zero-
knowledge (NIZK) proofs in the AI-ROM. When

the hash function is instantiated, this gives the first
heuristic NIZK candidate which is secure against
preprocessing attacks.

We now describe these results, including the two applications
above, in more detail.

1.3. Our Results in Detail and Techniques

Consider a random oracle O : {0, 1}∗ → {0, 1}λ map-
ping arbitrary input strings to λ-bit outputs. Sometimes,
we also consider restricted domain {0, 1}n with fixed input
length n, for some polynomial n in λ.

As mentioned above, the goal is to simulate the random
oracle O and advice z $← ai(O), using an efficient simulator
S that receives some (non-uniform) advice w — meaning
that SA(w) acts indistinguishably from AO(z) to a bigger
environment (see Main Theorem below). We want the
computational overhead of the simulation to be as small as
possible, in particular, paying close attention to the time
overhead, namely TSA compared to TA, as well as the
additional amount of advice that S receives, i.e., |w| − |z|.
For some applications, the memory overhead of SA is also
important (e.g., for achieving memory-tight reduction or
optimal time-space trade-off). Our simulation is also memory-
efficient, though we do not go into details on this front in
this work.

Our key lemma presents a simple and generic way of
using PRF to simulate AI-ROM. A PRF consists of a key
distribution k $← Dprf(1

λprf) for different security parameters
λprf, together with an evaluation algorithm F (k, x) = y. We
require the PRF to have (2λprf , ε)-security, meaning that for
all 2λprf -time distinguishers, oracle access to F (k, ⋆) with a
random k is indistinguishable to the random oracle O. We
show that the random oracle with S-bit advice (O(⋆), z $←
ai(O)) can be simulated by the PRF and some advice on
its key (F (k, ⋆), z̃ $← ãi(k)), as long as the PRF is using
sufficiently large security parameter λprf = S +O(λ).

Main Lemma (simulating AI-ROM using PRF). All vari-
ables implicitly depends on the security parameter λ.

Let dom ⊆ {0, 1}∗ and {0, 1}λ be the domain and range
of the random oracle. Fix an arbitrary (2λprf , ε)-secure PRF
(Dprf, F) with the same domain and range, and an arbitrary
(randomized) advice function ai with S-bit outputs for S ≤
2λ, there exists a (randomized)7 advice function ãi with S-bit
outputs and a threshold λprf,0, such that:

• The threshold is upper bounded by λprf,0 ≤ S+O(λ)
and,

• For every 2λ-time adversary A, and every PRF
security parameter λprf > λprf,0,∣∣Pr[AO(⋆)(z) = 1]− Pr[AF (k,⋆)(z̃) = 1]

∣∣ ≤ 2−λ + ε,

7. It is necessary for ãi to sample random PRF key. Otherwise, A could
hardwire the (fixed) PRF key and indistinguishability would fail. Allowing
randomized ai is not technically necessary, yet it makes the lemma more
convenient to use.

where O is a randomly sampled oracle, z $← ai(O)
an oracle-dependent advice, k $← Dprf(1

λprf) a ran-
domly sampled PRF key, and z̃ $← ãi(k) a key-
dependent advice.

The PRF simulation is conceptually simple and its proof
crucially relies on the leakage simulation lemma of [15–17].
The idea is viewing ai(O) as a short leakage of O, which
by prior works can be simulated relatively efficiently h(O)
in time Th = O(2S · S · 22λ · TA), with 2−λ advantage.
Therefore, as long as PRF is ε-secure against this time, we
can switch O to Fk, and view h(Fk) as the new advice
ai′(k) on k. See Section 3 for the formal proof.

Now to simulate AI-ROM for A, the simulator SA should
simply run AF (k,⋆)(z̃). It can do so if receiving w = (k, z̃)
as non-uniform advice. Overhead of the simulation is directly
linked to the efficiency of the PRF, in particular, the PRF
key length |k| corresponds to the additional amount of non-
uniform advice, and the PRF evaluation time determines the
time overhead of simulation. Both of these quantities vary
with the PRF security parameter λprf. More precisely...

Main AI-ROM Simulation Theorem. Let λ, dom, PRF
(Dprf, F), and ai be defined as in the main lemma. There
exist a universal simulator S, and a non-uniform advice
function nu, such that:

• For every 2λ-time adversary A, and 2λ-time machine
B with binary output,

Pr[OutB⟨B ↔ AO(z)⟩ = 1]− Pr[OutB⟨B ↔ SA(w)⟩ = 1]

≤ 2−λ + ε ,

where O is a randomly sampled oracle with advice
z $← ai(O), and w a non-uniform advice from
distribution w $← nu(⊥).

• The overhead of the simulation is related to the
efficiency of the PRF as follows:

advice overhead: |w| − |z| ≤ |k|+O(log(S, |k|)) ,
time overhead: TSA − TA ≤ TA,F ,

where TA is an upper bound on the running time of
A, and |k| the PRF key length when using security
parameter λprf = S +O(λ), and TA,F is an upper
bound on the total time for evaluating the PRF on
all oracles calls made by A.

Clearly, more efficient the PRF is leads to tighter AI-
ROM simulation. By plugging in different PRF in the
above theorem, we obtain different simulation efficiency
as summarized in Table 1, which we explain in detail below.

Subexponential PRF and Resolving Unruh’s Conjecture.
When plugging in a vanilla subexponentially secure PRF,
our theorem resolves Unruh’s conjecture affirmatively. A
subexponentially secure PRF for n-bit inputs is a (2λprf , ε)-

Table 1. COMPARISON OF METHODS FOR DISTINGUISHING.

method domain extra advice time per query

presampling ([11]) {0, 1}n Θ(nλSQ/ε) Θ(nλSQ/ε)
presampling ([11]) {0, 1}∗ Θ(TλSQ/ε) Θ(TλSQ/ε)

generic subexp-PRF (§ 3) {0, 1}n poly(S, n) poly(S, n)
GGM + subexp-OWF {0, 1}∗ poly(S) |x| poly(S)

GGM + exp-PRG {0, 1}∗ O(S) |x| poly(S)
GGM + DE-PRG {0, 1}∗ Õ(S) |x|Õ(S)

Fast PRF (§ 4) {0, 1}n n1+γS1+γ (RAM) n1+γ ×

poly(log(Sn))Õ(λ)

Here, λ is a security parameter, as well as the output length. S denotes
the length of advice adversary gets in AI-ROM, T the adversary runtime,
Q the number of oracle queries. GGM is [18], DE-PRG is doubly
efficient PRG. The 4th to 6th rows refers to the GGM construction
of PRF for unbounded length inputs, using length doubling PRGs
with subexponential (line 4) or exponential security (line 5 and 6), and
evaluation time depending polynomially (line 4, 5) or quasilinearly (line
6) on the key length. In the last row γ ∈ (0, 1) is an arbitrary small
constant. All parameters are for achieve a distinguishing advantage of
ε or ε+ 2−λ between AI-ROM and simulation.

secure PRF with key length |k| = poly(λprf, n).8 PRF
evaluation takes polynomial time poly(|x|, |k|, λ) (recall that
λ is the output length). Therefore, when λprf = O(S), the
advice overhead of our simulation is |k| = poly(S, n), and
the time overhead per oracle query is poly(S, n) (see line
3 in Table 1). This gives simulation with polynomial over-
head, independent of the negligible distinguishing advantage
(ε+ 2−λ). See Section 5 for more details.

Supporting Unrestricted Domain and Linear Dependency
on S. Our simulation technique applies to AI-ROM with
unrestricted domain {0, 1}∗, using PRF with the same
domain. Concretely, one can instantiate such PRF using AES,
or the Goldreich–Goldwasser–Micali (GGM) PRF built from
a length-doubling PRG [18], where the PRF key is simply
a PRG seed k = sd and evaluation grows in time linearly
with the input length |x|. Consider using different PRG...

• A subexponentially secure PRG has seed length
|sd| = poly(λprf) and evaluation time poly(λprf),
which can be based on any subexponentially secure
OWF. Using it yields simulation with advice overhead
poly(S) and time overhead |x|poly(S) for an oracle
query x.

• An exponentially secure PRG has seed length |sd| =
O(λprf) and evaluation time poly(λprf), which for
example can be based on the exponential hardness
of DDH. Plugging it reduces the advice overhead to
linear O(S).

• A “doubly efficient” PRG has both short seeds |sd| =
Õ(λprf) and fast evaluation time Õ(λprf). Such a PRG
can be constructed from, for example, the exponential

8. In the literature, a subexponentially secure PRF often refers to one
that achieves security against 2|λ

′|β -time adversaries when using security
parameter λ′. This is equivalent to our subexponentially secure PRF, by
setting λ′ to be λ

1/β
prf , which causes the key length to grow polynomially

with λprf.

hardness of ring learning with rounding (LWR) with
polynomial modulus. The double efficiency translates
to both small advice overhead Õ(S) and small time
overhead |x| · Õ(S).

We note that the last instantiation yields improvement
over simulation via presampling in all aspects — smaller
dependency on all parameters (observing that λ · S = Ω(S)
when S ≤ 2λ).

Even Tighter Simulation. So far, simulation time overhead
grows with to the advice length S. This means the overall
simulation time TS is at least TA · S. Can we ensure
that TS ∼ TA, while keeping SS ∼ S? Since the PRF
security parameter needs to be large λprf = S +O(λ). It is
impossible to have PRF evaluation time below |k| > λprf
if evaluation reads the entire key. Nevertheless, we show
that in the RAM model, it is possible to construct a PRF
whose evaluation reads only a small portion of the key.
Our construction is based on a variant of Goldreich’s
PRG assumption [19], and crucially using the polynomial
preprocessing technique of [20] that has recently found
application in building doubly efficient PIR [21]. For n-bit
inputs and λ-bit outputs, our fast has key length n1+γλprf

1+γ

and evaluation time n1+γ poly log(λprf · n)Õ(λ), where γ
can be set to an arbitrarily small constant in (0, 1]. Such a
PRF enables AI-ROM simulation where the time overhead
is n1+γ poly log(S · n)Õ(λ) (see last line of Table 1). The
overall simulation achieves TS ∼ TA and SS ∼ SA (modulo
poly(λ) and o(S) factors).

To the best of our knowledge, our construction gives the
first PRF where the evaluation time does not grow with the
security parameter — efficiency does not “pay” for stronger
security. We believe that such a PRF is of independent
interests. See Section 1.4 for an overview of the fast PRF
construction.

Applications. We apply our AI-ROM simulation technique
in two applications: 1) showing that salting generically
defeats preprocessing, with a tighter reduction than prior
works [11], and 2) constructing the first NIZK (with polyno-
mial time simulation and negligible distinguishing advantage)
in the AI-ROM model.

Salting. Salting is a technique that has been widely used
in the practice for defeating preprocessing (going back to
password hashing [22]). It uses a random oracle O′ (or
real-world hash function) to build another random oracle
O′

r, by prepending every oracle call with a public string
r, referred to as the salt, i.e., O′

r(x) = O′(r, x), chosen
randomly after preprocessing. One can generically upgrade a
scheme P that is secure in the ROM to a scheme P ′ secure
in the AI-ROM, by using P with the salted random oracle
O′

r, i.e., P ′O′
= PO′

r . This is shown via a reduction (R, ai)
satisfying that if an adversary A with advice z $← ai′(O′)
can break the security of P ′O′

, the adversary B = RA with
advice w $← ai(⊥) can break PO in ROM. Previously, the

presampling techniques were used to build the reduction [11],
which internally simulates AI-ROM for A.

As argued before, reduction via presampling is wasteful.
So plug-in our PRF-based simulation instead. For instance,
we reduce the computational overhead of B over A from
Θ(nλSQ/ε) (using presampling) to poly(S, n) using subex-
ponentially secure PRF, or nÕ(S) using doubly efficient PRG
(which in turn can be based on ring LWR with polynomial
modulus), or even n1+γ poly log(S, n) using fast PRF (based
on a variant of Goldreich’s PRG). This establishes a reduction
where TB ∼ TA and SB ∼ SA. See more details in
Section 6.1.

NIZK with Preprocessing. To showcase the benefits of
our tight simulation, by building the first NIZK secure
against preprocessing. Here, efficient simulation (of the
cheating verifier’s view) is the end goal. It is known that
NIZK necessarily relies on some trusted set-up, such as
the random oracle, common random/reference string, etc.
Unconditionally secure NIZK in ROM and computationally
secure NIZK in the CRS model from various assumptions are
known. However, it is unknown whether they remain secure
when the adversaries possess some preprocessed information
of the set-up.

Using salting/simulation technique, we show how to
start with a NIZK scheme in the ROM with statistical
soundness against time-unbounded cheating prover and
upgrade its security to the AI-ROM. We generically “salt”
the NIZK scheme, by making the honest prover P generate
the proof using a salted random oracle O(r, ⋆), and send the
tuple (r, π) as the new proof. (Correspondingly, the verifier
verifies π w.r.t. O(r, ⋆).) Since soundness holds against time-
unbounded adversaries, additional advice about O does not
enhance the power of the cheating prover, and statistical
soundness remains intact. For zero-knowledge, the task is
efficiently simulating the view of the cheating verifier V ∗, in
a way that is negligibly indistinguishable. The view includes
the proof (r, π), the oracle O, and advice z $← ai(O). Using
our salting/simulation technique, we can first show that the
interaction between PO(r,⋆) and V ∗O(z) can be simulated
by the interaction between PO′

and V ′O′
in the ROM. The

attacker V ′ internally runs V ∗ by simulating oracle O as
follows. For every call with input (r, x) it returns O′(x), and
for every call (r′, x) with r′ ̸= r, it returns F (k, (r′, x)). V ′

also feeds V ∗ the simulated advice z′ $← ai′(k). Now, the
simulator S guaranteed in the ROM can be used to simulate
the ZK proof π̃ and oracle O′ to V ′. Then, the oracle O that
V ∗ interacts with and the advice can be simulated, combining
our PRF simulation technique.

Thanks to the efficiency of our AI-ROM simulation, the
resulting zero-knowledge simulator has polynomial overhead,
while achieving negligible distinguishing advantage ε. More-
over, more efficient instantiation of the PRF leads to tighter
simulation. See Section 6.2 for more details.

A Four-Step Generic Technique. Both our salting and
NIZK applications uses a new technique that combines
presampling and our PRF simulation (Main Lemma), which

allows us to enjoy the best of both techniques. Consider salt-
ing, where we aim show that if a scheme ΠO is secure against
adversary BO in the ROM, then the salted scheme ΠO(r,⋆) is
secure against adversaries AO(z) in the AI-ROM. Applying
our PRF simulation lemma directly does not work. It proves
that the interaction ΠO(r,⋆) ↔ AO(z) is indistinguishable to
an interaction ΠFk(r,⋆) ↔ AFk(z′(k)) where the AI-ROM
(O, z) is simulated by the PRF (Fk, z

′(k)). But this does not
allow reducing to security in the ROM. What’s worse, once
the oracle is replaced by PRF, we cannot apply the many
useful tricks in ROM, such as lazy sampling, programming,
extraction, etc. Instead, we designed the following 4 step
technique.

• Start from the a real world game ΠO(r,⋆) ↔
AO(r, z(O)) in AI-ROM.

• PresamplingPresampling: Use presampling to go to the bit-fixing
ROM model with table P ,

ΠO[P](r,⋆) ↔ AO[P](r, z′(P)),

where O[P](x) =

{
P [x] if x ∈ P

O(x) o.w.

Note the advice z′ contains only information of P
uncorrelated with O.

• Re-routing relevant queriesRe-routing relevant queries by the fact that the salt
r is random, it is unlikely that P contains any input
starting with r. In such case, we can re-route salted
queries x = (r, x′) to an independent oracle O∗

independent of O and P . This brings us to the game

ΠO′(r,⋆) ↔ AO′
(r, z′(P)),

where O′(x) =

{
O∗(x′) if x = (r, x′)

O[P](x) o.w. x = (r′ ̸= r, x′)

In other words, all salted queries are “freed”.
• Reverse Presampling:Reverse Presampling: apply the presampling tech-

nique reversely to turn the BF-ROM O[P] and advice
z′(P) back to AI-ROM (O, z), while keeping all
salted queries answered by independent oracle O′.

ΠO∗
↔ AO′′

(r, z(O)),

where O′′(x) =

{
O∗(x′) if x = (r, x′)

O(x) o.w. x = (r′ ̸= r, x′)

At this point, all security relevant queries are an-
swered by O∗, while A additionally has some “mean-
ingless” interaction with O and has preprocessed
information z about it.

• PRF simulationPRF simulation by our main lemma, the interaction
with (O, z) can be simulated by PRF (Fk, z

′′(k)),
allowing us to move to the game

ΠO∗
↔ AO′′′

(r, z′′(k)),

where O′′′(x) =

{
O∗(x′) if x = (r, x′)

Fk(x) o.w. x = (r′ ̸= r, x′)

Here the adversary AO′′′
(r, z′′(k)) can be emulated

by an adversary BO∗
given (k, z′′) as non-uniform

advice. We can now rely on ROM security, and enjoy
the fact that by our PRF simulation TB ∼ TA and
SB ∼ SA.

We remark that our 4-step technique is relatively generic:
The key idea is re-routing all security-relevant queries
to an independent oracle O∗ for which no preprocessed
information is available, and then simulate the rest queries
and advice using our PRF simulation. The former is achieved
using presampling, and besides from salting, there might be
other techniques and applications such that security relevant
queries can be re-routed without salting. In this step, all ROM
related tricks can be applied. The latter enjoys the efficiency
of our PRF simulation. We believe that this technique will
find further applications.

1.4. Constructing Fast Pseudorandom Functions

We now come to the question of designing fast pseu-
dorandom functions. Just to be formal, we consider PRF
families F : {0, 1}ℓ × {0, 1}n → {0, 1} with key length
ℓ = ℓ(λ) and input length n = n(λ) where the input length
is thought of as a varying parameter that is a polynomial
in the security parameter λ and the key length is allowed
to grow polynomially in both λ and n. We are interested in
two properties:

• The PRF is secure against adversaries that take 2λ

time adversary,
• The time to evaluate the PRF on any input

x ∈ {0, 1}n is quite fast in the RAM model.
Namely, each query can be evaluated in time
nO(1) poly(log n, log λ). In other words, the eval-
uation time is effectively a function of the input
length and not a function of the level of security. We
achieve evaluation time of n1+γ poly(logn, log λ)
for arbitrarily small constant γ > 0.

We observe that none of the prior constructions of PRF
are known to achieve security independent evaluation times
in the RAM model.

Leveraging Sparsity of Goldreich’s Function. It is clear
that we are looking to build functions that accesses Õ(n)
bits of the key on every query as the evaluation must run in
that time. Therefore, it is imperative that we look for sparsity
related hard problems.

In fact, it was already observed in [23] that Goldreich’s
function [19] when instantiated with super-constant locality
give rise to extremely efficient PRF. We discuss the intuition
in a bit but take a slight detour familiarizing the reader with
Goldreich’s one way function. A familiar reader can skip to
the next highlighted paragraph.

Detour: Goldreich’s One-Way Function/PRG. Goldreich’s
one-way function candidate fG,P : {0, 1}ℓ → {0, 1}m is
indexed with a local Boolean predicate P : {0, 1}L → {0, 1}

and a hypergraph G = (S1, . . . , Sm) with m hyperedges,
where each hyperedge Si ⊂ [ℓ] of size L. Then fG,P (x) =
(y1, . . . , ym) where each yi is computed by applying the
predicate P on the bits given by the set Si (denoted as yi =
P (x|Si)). Smaller the locality, more efficiently computable
the function is. In particular, if P is L local then given Si

each output bit yi can be computed in Õ(L) time. How
small can L be? If one is interested in polynomial stretch,
one can work with L ≥ 5 however the function is trivially
not pseudorandom when m ≥ nL as then the equations
might repeat. This means that with constant locality we
cannot hope for a stretch beyond a polynomial. For PRF one
might need to support super-polynomial or subexponential
stretch. Therefore one has to work with a locality L that is
polynomial in the input length. This regime was used by
[23] to build an efficient PRF.

Based on a long history [19,24–36] of study culminating
in [36], for appropriately chosen hypergraph G satisfying
certain expansion criteria and predicate P properly, it is
widely believed that such functions should be pseudorandom
for m = nΩ(L). If the predicate has large resiliency and
large rational degree (see Section 4.3 for definitions of these
properties) and if the hypergraph is chosen so that is (t, 0.99)
expanding for a large t (this property says that union of any
hyperedges {Si}i∈I for any set I ⊂ [m] of size t, the size
of the union is at least 0.99 · t ·L) then the function fG,P (x)
can be conjectured to be psuedorandom against algorithms
that run in time 2Õ(t). This expansion property is satisfied
by a random hypergraph with high probability however the
conjecture holds for arbitrary graphs with expansion. This
was backed up by provable lower bounds against various
classes of attacks such as sum-of-squares, linear tests and
polynomial calculus [36]. The properties regarding resiliency
and rational degree is trivially satisfied by the predicate
XOR-MAJL′ that takes as input L = 2 · L′ inputs and
computes:

P (x1, . . . xL′ , xL′+1, . . . , xL)

= x1 ⊕ . . . xL′ ⊕Maj(xL′+1, . . . , xL)

This predicate satisfies a resiliency of L/2 and rational
degree L/4. Our assumption therefore can be stated as:

Assumption 1 (Goldreich’s Assumption). Let n ∈ N be the
input length, L = 2L′ ≪ ℓ be the locality (which should
either been seen as some polynomial in seed length ℓ) and
let P be the predicate XOR-MAJL′ . Let G = {Gℓ}ℓ be a
family of L regular hypergraph with m hyperedges such that
the Gℓ is (t(ℓ), 0.99) expanding. Then it holds that for any
p.p.t. adversary running in time 2Õ(t) we have that:

{fG,P (x) : x← {0, 1}ℓ} ≈c {y : y ← {0, 1}m}

Above, the computational indistinguishability holds with
advantage bounded by negligible in n.

Efficient Weak PRF. As shown previously in [23], we now
describe how one could build highly efficient weak PRF

from Goldreich’s PRG (these are PRF where the security
definition only allows queries that are random). The high-
level idea is that the PRF key consists of a random seed
s← {0, 1}ℓ for Goldreich’s PRG. On input a random input
x, it is interpretted as a random L sized set Sx ⊂ [ℓ] of
size L. The evaluation simply outputs a bit yx = P (s|Sx).
Such a PRF can be evaluated in time Õ(L). The security
holds because for various queries Sx1

, . . . , Sxq
are distributed

as random hyperedges and a random graph is going to
satisfy the expansion properties needed for Assumption 1
if the parameters and number of queries satisfy a technical
condition.

We now ask how does one set the parameters and what’s
the best possible L (as the evaluation time is nearly linear
in L) we can set to support large number of queries and
to obtain strong levels of security. Remember, we need to
allow m = 2n queries and obtain security against 2λ time
adversaries where n is a polynomial in λ.

As mentioned previously, we cannot hope for security
once the number of samples exceed ℓL, so this must be set
so that ℓL ≫ 2n. This means that L must be at least n upto
polylog factors. Indeed, we will set L to be a large constant
multiple of n. For security against 2λ time adversaries that
makes m = 2n queries we would need the hypergraph
(Sx1

, . . . , Sxm
) to be (t, 0.99) expanding where t = Ω(λ).

A routine calculation shows that this can be achieved by
setting the key size to be large enough polynomial. In
particular, setting (say) ℓ = nλ2, a random hypergraph with
overwhelming probability be (t, 0.99) expanding. This will
yield a weak PRF that can be computed in time Õ(n) time
in the RAM model with key size O(nλ2) and based on
Assumption 1 is secure against adversaries of 2λ size.

Strong PRF via t-Wise Independence. While fast weak
PRF can be constructed using Goldreich’s PRG readily it
is unclear if strong PRF can be built this easily. Indeed,
in the previous construction if the adversary picks the L
regular hyperedges Sx arbitrarily the induced graph may not
be an expander anymore. Weak PRF get around this issue
by mandating that the edges are chosen at random.

The issue therefore is how can we have adversarially
chosen hyperedges {Sx}x∈[m] form an expander? Indeed,
this will definitely not be the case.

Our first observation, which is folklore, is that to generate
a (t, 0.99) expander with high probability the hyperedges
may not neccesarily have to be chosen at random. In fact,
if the sets {Sx}x∈[m] are chosen so that they form a t wise
independent distribution instead of being randomly chosen
then it can be shown that with high probability even the
hyperedges sampled this way will also form an expander.
Thus, a seemingly significantly weaker property suffices. This
is the approach we will follow. Note that similar approach
was followed by [23], however their construction yielded
PRF that are linear time in the key-length. We show how to
avoid this dependence on the key-length altogether.

How does one generate a mapping that maps an input x ∈
[m] to a hyperedge Sx such that the hypergraph {Sx}x∈[m]

forms a t wise independent distribution? To do this, as a part

of the PRF key we sample a random degree t polynomial of
the form h(z) = a0+a1z+ . . .+atz

t mod p for randomly
chosen coefficients over Zp for an appropriately chosen
prime p barely more than N =

(
ℓ
L

)
(which happens to be

the total possible number of hyperedges of size L). Since the
polynomial is a random degree t polynomial the distribution
formed by {h(x)}x∈[m] is t wise independent. The idea is
that on every input x ∈ [m], we will compute h(x) mod p
first and then map it to a set Sx (it is well known that any
string σ ∈ [1, N] for N =

(
ℓ
L

)
can be mapped injectively to a

set/hyperedge S ⊂ [ℓ] of size L in time Lpoly(logL, log ℓ)).
There are some technical issues such as the number N being
not a prime and therefore an evaluation h(x) may not be in
the set [1, N] and so the string h(x) might not be map to one
of the N =

(
ℓ
L

)
sets Sx. We solve this issue by sampling a

prime p this very close to N so that the chance of this odd
event happening is very small. For the rest of exposition,
assume that p is exactly equal to N .

Fast Evaluation via Polynomial Preprocessing. We now
analyze the running time of the PRF above. Since the PRG
is L local, once the set Sx is derived the PRG can be
computed in Õ(L) time in the RAM model which is our
desired complexity. To compute the set Sx for an x ∈ [2n] we
compute the polynomial h(x). Computing a random degree
t polynomial it takes at least t · log p time which is already
prohibitive as we need to set t > λ so that the PRF is
secure against 2λ sized adversaries. How can we remove the
dependence on λ and replace it with a dependence on n?

We come up with a simple yet powerful idea to address
this issue. Namely, we rely on a powerful tool developed in
the beautiful work by Kedalaya and Umans [20]. Informally
the result says that one could preprocess in polynomial time
from the description of a degree t univariate polynomial over
Zp a data structure of polynomial size such that from there
on, in the RAM model the evaluation of the polynomial at
any point x ∈ Zp can be computed in time O(log1+γ p ·
poly(log t)) for arbitrarily small constant γ > 0. We state
the theorem below:

Theorem 7 (reinterpreted from Theorem 5.1 in [20]). Let
Zp be a field of prime order p. Let f(x) be a polynomial
of degree t in Zp[x]. Let γ > 0 be arbitrary constant. For
large enough t, one can compute in time O(t1+γ log1+γ p)
a data structure with the property that given any α ∈ Zp,
f(α) can be computed in time O(log1+γ p · poly(log t)) in
the RAM model.

The fast computation time of sets therefore follow
directly from preprocessing our polynomial using this result.
Since our degree t ≈ λ and p ≈

(
ℓ
L

)
we have that

the online evaluation of the polynomial will take time
L1+γ poly(log λ, log n). Since L = O(n) our evaluation
time is n1+γ poly(log λ, log n) where one can choose γ > 0
to be arbitrarily small constant. This concludes finally the
claim that our PRF can be evaluated in time Õ(n1+γ) for
arbitrarily small constant γ > 0. Recently, such techniques
played important role in constructing doubly efficient PIR
schemes from ring LWE [21].

Table 2. SELECT SYMBOLS USED IN THIS WORK.

symbol(s) meaning

λ security parameter
C,CX absolute constant, X-dependent constant
nu, w,M standard-model non-uniformity, string, length
ai, z, S oracle-dependent auxiliary input, string, length
M,T (concrete) size, (concrete or asymptotic) time
A,E, ε algorithm, experiment, advantage
n,m input/output lengths of random oracle
Q number of queries

L,N seed length, output length (N = 2n)
d, P locality, predicate
t, q degree of independence, modulus
k, k preprocessed key, length bound

Relation with [23]. A reader might recall that [23] also
constructed fast PRF, however their PRF does not yield
efficiency in the sense we want. The goal of that work was to
construct PRF with key sizes n, output length n (as opposed
to one bit in our case) but those that take Õ(n) time to
evaluate. They start by constructing a weak PRF, and convert
it to a standard PRF similarly to us by instantiating a graph
sampler using a independence generator that uses ring-based
computation by Miles and Viola [37] (this offers efficiency
advantages due to FFT over rings). However, their efficiency
is only achieved in an amortized sense, that is, when the
output length of the PRG is long enough. The output length
itself is linear in the key length and so each PRF output block
could take time proportional to the key/output length. Since
the size of the key is polynomial in the security parameter, the
running time is strongly dependent on the security parameter.
Our PRF truly achieves security independent evaluation time
in the RAM model.

2. Preliminaries

The security parameter is λ. For N ∈ N, we write [N]
for {1, . . . , N}. For n ∈ N, the set {0, 1}≤n consists of
all bit-strings of length at most n, and {0, 1}∗ is the set
of all bit-strings. Given p ∈ N≥2, we denote by Zp the
integers modulo p. Logarithms without a base are natural by
default. A natural number n ∈ N has an easy-to-parse prefix-
free encoding 1⌈log2(n+1)⌉0b⌈log2(n+1)⌉−1 · · · b1b0, where
b⌈log2(n+1)⌉−1 · · · b1b0 is the binary form of n without a
leading zero. The encoding length is (2⌈log2(n+ 1)⌉+ 1).

Let X be quantified objects. Every appearance of CX is
a new non-negative number (constant) that depends on X
(but not any other object) and makes a proposition or a proof
correct. For example, Cram depends on the exact model
of RAM programs, Cckt,prf depends on the exact model of
circuits (e.g., AND/OR/NOT or just NAND) and the PRF
being used, and C without any subscript is an absolute
constant.

Symbols. Table 2 explains select symbols used throughout
the paper.

2.1. Auxiliary-Input Random Oracle Model

We consider concrete and asymptotic security against
random-access machines (RAM) and circuits, randomized
and possibly connected to oracles. Throughout the paper,
we fix a universal oracle-aided RAM, which interprets all
RAM programs. For randomness, at each step, one random
bit is provided, which can be saved and retrieved later using
random access. Only oracles are put as superscripts and the
notation A(x) does not necessitate scanning x in full. We
also assume that any input can be hardwired into programs
with small overhead. Precisely speaking, there exists a
(uniform) linear-time deterministic Turing machine that given
a two-input program A and an input z, outputs a single-
input program for Az(x) = A(z, x) that is no more than
(|A|+ |z|+ Cram · log(|A|+ |z|+ 2)) bits long and runs in
the time of A.9 We also fix a model of circuits and use RAM
programs for generation of circuits.

Definition 1 (advice, algorithm, adversary, experiment,
indistinguishability). Denote by X some object about which
adversaries get advice. A concrete X-advice is a randomized
procedure that outputs a bit-string of fixed length given X .
An asymptotic X-advice is a sequence of concrete X-advices,
or equivalently, a randomized procedure that outputs a bit-
string of length determined by λ given (λ,X). An asymptotic
⊥-advice captures standard-model non-uniformity and is
denoted by nu. An O-advice, with O being the random
oracle (Definition 3), captures the so-called “auxiliary input”
and is denoted by ai. The outputs of nu, ai are w, z. The
length of (asymptotic) w is M(λ), and that of z is S or S(λ).

A concrete algorithm A is a distribution10 over either
RAM programs or circuits with uniformly bounded size M 11

and time T . An asymptotic algorithm A is either a RAM pro-
gram whose time is bounded for each λ or an always-halting
Turing machine that generates circuits.12 For asymptotic
circuit algorithms, its time T (λ) is the maximum time to

9. Suppose programs are written in a real-world-like instruction set and
A receives each input as a pair of registers (location and length), then Az

can be storing the location and the length of z in the two registers that A
regards as z (i.e., initializing z), followed by the code of A, followed by z
itself. If we include the time to initialize each input (e.g., x) in the total
time, then the (internal) initialization of z in Az replaces the (external)
initialization of z in A, and the total time does not change.

10. A concrete algorithm has two phases of randomness: first, a random
RAM program or circuit is sampled from this distribution; then, the
RAM program or circuit runs with random bits. The first stage essentially
permits randomized standard-model non-uniformity, necessary to formulate
simulators reliant on randomness that is not efficiently sampleable. The
second stage is preserved primarily for RAM, so that randomness (whose
length could be as large as the time) does not “creep into” non-uniformity
(its size could be much smaller than time) for accurate accounting.

11. There is no notion of “amount” of standard-model non-uniformity
(w) for a concrete algorithm, which only works for a specific value of λ.
We regard it as being entirely non-uniform, hence the overloading of M .

12. The machine generating circuits takes as input 1λ and potentially
some advice string. Instead of simply letting the circuits be given, by
separating the advice and the efficient circuit generation procedure, our
formulation enables accurate accounting of the amount of advice for an
asymptotic circuit algorithm, which might be much smaller than its circuit
size.

generate a circuit on λ; for asymptotic RAM algorithms, its
time follows the usual definition.

The term adversary loosely means algorithms with or
without either of nu, ai, and experiment, algorithms that
interact with adversaries in black box. For advantage bound ε
and adversary class A, indistinguishability is denoted by
“
ε
≈A”. In concrete indistinguishability, ε ∈ [0,+∞) and the

inequality must hold for all (concrete) adversaries in A.
In asymptotic indistinguishability, ε : N→ [0,+∞) and for
each (asymptotic) adversary in A, the inequality must hold
for all but finitely many λ’s.

We talk about M (length of nu) of an asymptotic adversary,
but never its size. Once upper bounds are put on M,T , there
are only finitely many derandomized concrete algorithms
— this is important when we invoke the leakage simulation
lemma.

A security property often involves multiple parameters.
It is convenient to unify them into a single one and talk
about “bits of security”.

Definition 2 (strong bit level of security). Let λ′ ∈ N. The
indistinguishability of two concrete experiments is strongly
λ′-bit if the advantage is bounded by 2−λ′

for all adversary
whose complexities are bounded by 2λ

′
.

Let λ′ : N→ N be a function. Two asymptotic exper-
iments has strongly λ′-bit indistinguishability if for all
adversary whose complexities are bounded by 2λ

′(λ) for all
but finitely many λ’s, the advantage is bounded by 2−λ′(λ)

for all but finitely many λ’s.

The notion of adversary’s complexities is contextual. They
can be size, time, number of queries, among others. We
intentionally say “strong” in Definition 2 to differentiate
it from the folklore version and that in [38]. A popu-
lar definition of λ-bit security says that the adversary’s
complexities must be close to 2λ for the advantage to be
Ω(1). It only tells us when security fails, not when security
holds as informed by Definition 2. The version in [38]
is more delicate yet too complex for the purpose of this
paper. As an example of Definition 2, recall that the one-
wayness advantage of a Q-query adversary against a random
oracle {0, 1}2λ+2 → {0, 1}2λ+2 (without auxiliary input)
is bounded by (Q+ 2)/22λ+2, so it has λ strong bits of
security.

Definition 3 (AI-ROM). Let dom be a function mapping λ to
subsets of {0, 1}∗ (subject to Definition 4) and m : N→ N+

a polynomially bounded function. In the auxiliary-input
random oracle model of type dom→ {0, 1}m, on λ, every
algorithm is given oracle access to a random function
O : dom(λ)→ {0, 1}m(λ) and adversaries get z $← ai(λ,O)
as input (Definition 1). One can also consider AI-ROM for
a fixed λ with concrete adversaries and z $← ai(O).

Definition 4 (possible domains of AI-ROM). An AI-ROM
must use one of the following kinds of domains:

• fixed-length domain, dom(λ) = {0, 1}n(λ) for a poly-
nomially bounded n : N→ N;

• (bounded-)variable-length domain, dom(λ) =

{0, 1}≤n(λ) for some n : N → N such that
log(n+ 1) is polynomially bounded;

• full domain, dom(λ) = {0, 1}∗.
A random oracle of type {0, 1}n → {0, 1}m can be imple-
mented by (m calls to) one of type {0, 1}n+⌈log2 m⌉ →
{0, 1}.

2.2. Leakage Simulation

We rely on the leakage simulation lemma of [16].

Lemma 1 (generalized from [16; Theorem 2]; ¶). There
exists a RAM program h subject to the following conditions.
Given

• a non-empty set X , advice length S ∈ N, desired
error 0 < ε ≤ 1,

• a set F of measurable functions X × {0, 1}S →
{0, 1} (distinguishers), and

• a distribution D over X × {0, 1}S ,

there exist

• a list L of no more than C · Sε−2 functions from F
and

• a string z′ of no more than C · (Sε−2 + (S +
log ε−1)2ε−1) bits

such that

• (X,Z)
ε
≈F (X, Z̃), where (X,Z) $← D and Z̃ $←

hX,L(z′) and
• hx,L(z′) is computed by calling f(x, z) for each f ∈
L in its advice and each z ∈ {0, 1}S plus some other
processing in no more than Cram · 2S(S + 1)ε−2

RAM time.

Alternatively, hx,L(z′) can be computed by Lx-aided circuits,
which make exactly 2S |L| oracle calls and can be generated
in time Cckt · 2S(S2 + 1)ε−2.13

In our version, X can be a set of arbitrary cardinality and
X is explicitly allowed to be provided as an oracle. It
enables us to easily handle “monolithic” random oracles,
e.g., {0, 1}∗ → {0, 1}, whose truth tables reside in a set of
continuum cardinality. For completeness, we reprove it in
the full version [39].

We remark that considering infinite X is a matter of
presentation, not substance. For example, for monolithic
random oracles, a time-bounded adversary cannot query
them on an input longer than the time bound, hence we can
truncate their truth tables to a suitable finite size and apply
the version in [16]. Nevertheless, our exposition removes the
doubt whether the simulator’s efficiency could degrade with
the encoding length of elements in X — it cannot, inferred
from the fact that X could be infinite!

13. The oracle-aided circuit can be generated by a fixed RAM program
taking z′ as input. The squaring of S does not make our version worse
than [16]. In the circuit model, functions in F are often also represented
by circuits, so each is necessarily of size at least S since it has to read the
entire z. Once we replace the oracle gates by their circuits, the oracle calls
become the real bottleneck and the overall efficiency is the same as in [16].

2.3. Exponentially Secure Pseudorandom Functions

Exponentially secure PRF is a central tool used in this
work.

Definition 5 (PRF). Let InOut be a set whose elements
are of the form (λ, dom,m), where λ ∈ N, the domain dom
is a subset of {0, 1}∗, and m ∈ N+ is the output length. A
pseudorandom function for InOut consists of two ingredients.

• The key distribution D = {Dλ,dom,m}(λ,dom,m)∈InOut

is a family (indexed by InOut) of distributions over
{0, 1}∗.

• The evaluation algorithm Eval(k, x) is deterministic
and efficient. It takes as input k drawn from Dλ,dom,m

and x ∈ dom, and outputs y ∈ {0, 1}m.

The key length must be polynomially bounded. There exists
a polynomial k such that for all (λ, dom,m) ∈ InOut, it
holds that

Pr
[
k $← Dλ,dom,m : |k| ≤ k(λ, |desc(dom)|,m)

]
= 1,

where |desc(dom)| is the encoding length of dom in Defini-
tion 6.

The key distribution need not be efficiently sampleable. Our
PRF with fast evaluation (Eval running in time sublinear in λ)
relies on this relaxation to pick an expander for exponential
security.

Definition 6 (possible domains of PRF). A PRF must use
one of the possible domains of AI-ROM (Definition 4) and
they are encoded as follows:

• fixed-length domain, dom = {0, 1}n, encoded as
desc({0, 1}n) = 1n;

• (bounded-)variable-length domain, dom = {0, 1}≤n,
encoded as desc(dom) = n in binary with exactly
one leading zero;

• full domain, dom = {0, 1}∗, encoded as a distin-
guished, fixed bit-string (e.g., desc({0, 1}∗) = 10 to
be different from the other kinds).

In our applications, we will tune the λ of PRF while keeping
dom,m fixed, which are determined by the type of AI-
ROM. The following definition captures this by allowing the
adversary to choose dom,m, possibly independently of λ.

Definition 7 (exponential security of PRF). Let ε : N →
[0,+∞) be negligible. A PRF is (2λ, ε)-secure (in a par-
ticular model, circuits or RAM) if for all λ,14 it holds

that Eprf,λ
ε(λ)
≈ Aλ

E$,λ, where Aλ is the set of concrete
adversaries of size and time at most 2λ, and Eprf,λ and
E$,λ with A ∈ Aλ work as follows.

• Setup. Launch A()15 and receive from it (dom, 1m)
such that (λ, dom,m) ∈ InOut with dom encoded

14. This is not an asymptotic indistinguishability, as the inequality must
hold even for small λ’s.

15. This is a slight abuse of notation. Here, A represents a sample from
the distribution of circuits or RAM programs (also called A).

as specified in Definition 6. In Eprf,λ, sample
k $← Dλ,dom,m. In E$,λ, sample a random function
O : dom→ {0, 1}m.

• Challenge. Let A continue to run as either AEval(k,·)

or AO.
• Guess. A outputs a single bit, which is the output

of the experiment.

We remark that our definition includes the usual version of
subexponential security, e.g., security against 2λ-size/time
adversary with λ2-bit key. In our formulation, λ is the
desired security level (in terms of size and time, but not
necessarily advantage) and the key length is chosen according
to complexity leveraging.

On the other hand, as security is required against 2λ-
size/time adversaries, it can be shown that |k| must be
at least roughly λ. Suppose for simplicity that |k| is not
randomized, |desc(dom)|,m ≤ λ, |dom| > |k|, ε < 1

2 . Con-
sider the simple attack of enumerating all strings of |k|
bits as the candidate PRF keys, evaluating the PRF with
each key on (|k|+ 1) fixed points, and comparing them
with the oracle responses to see whether the oracle is
possibly the PRF. Both size and time of the attack are
bounded by 2|k|(|k|+ 1) poly(λ), and it has advantage at
least 1

2 , Therefore, 2|k|(|k|+ 1) poly(λ) ≥ 2λ, which implies
|k| ≥ λ− Cmodel,prf · log(λ+ 2). Similarly, any circuit of
Eval that handles at least (λ+ 1) inputs has to be of size
Ω(λ/ log λ).

3. Simulating AI-ROM Using PRF

We present our theorem of simulating AI-ROM using
any exponentially secure PRF.

Theorem 2 (concrete simulation; ¶). For each model (either
RAM or circuits), there exists a function

λprf,0(dom,m, S,M, T, εleak)

≤ S + Cmodel · log
|desc(dom)|+m+ S +M + T + 1

εleak

such that for all PRF (D,Eval) with (2λ, εprf)-security,
AI-ROM of type dom→ {0, 1}m, O-advice ai of
length S, upper bounds M,T of adversary size and
time, leakage simulation error 0 < εleak ≤ 1, complexity-
leveraged λprf ≥ λprf,0(dom,m, S,M, T, εleak) such that
(λprf, dom,m) ∈ InOut, there exists a k-advice ãi of
length S so that Eairom

ε
≈M,T Eprf (concrete RAM or

circuits) with ε = εleak + εprf(λprf), where the experiments
work as follows with A that outputs a single bit.

• In Eairom, sample a random function O : dom →
{0, 1}m then z $← ai(O). Run and output AO(z).

• In Eprf, sample k $← Dλprf,dom,m then z $← ãi(k).
Run and output AEval(k,·)(z).

In the RAM model, with A regarded as an oracle, Eprf is a
concrete algorithm with16

ME ≤ Mram,Eval + S + |k|+ Cram · log(Mram,Eval + S + |k|+ 2),

TE ≤ QA · Tram,Eval + Cram · log(Mram,Eval + S + |k|+ 2),

where QA is the maximum number of queries made by A.
In the two models (RAM and circuits), Eprf(A) is a concrete
adversary with

(RAM) M ′ ≤ MA +Mram,Eval + S + |k|
+ Cram · log(MA +Mram,Eval + S + |k|+ 2),

T ′ ≤ TA +QA · Tram,Eval

+ Cram · log(MA +Mram,Eval + S + |k|+ 2),

(circuits) M ′ = T ′ = MA +QA ·Mckt,Eval.

Theorem 3 (asymptotic simulation; ¶). The asymptotic
version Eairom

ε
≈M,T Eprf of Theorem 2 holds for some

λprf,0(S, λ) ≤ S(λ) + Cmodel · (log(S(λ) + 1) + λ+ 1), any
M,T such that M(λ), T (λ) ≤ 2λ for sufficiently large λ,
and εleak(λ) = 2−λ, where M(λ) is now the length of
w $← nu(λ) and the experiments also feed 1λ and w $← nu(λ)
into A. In particular, Eairom ≈ Eprf. In the RAM model, with
A(1λ, w, ·) regarded as an oracle, Eprf is an asymptotic
algorithm with

ME = S + |k|+ 2⌈log2(S + 1)⌉+ 1,

TE ≤ QA · Tram,Eval + Cram · log(S + |k|+ 2).

In both models (RAM and circuits), the sampling of (w, z, k)
in Eprf can be combined into ñu(λ), and Eprf(A) is an
asymptotic adversary with

(both) M ′ = MA + S + |k|
+ 2⌈log2(MA + 1)⌉+ 2⌈log2(S + 1)⌉+ 2,

(RAM) T ′ ≤ TA +QA · Tram,Eval + Cram · log(MA + S + |k|+ 2),

(circuits) T ′ ≤ Cckt · (MA + S + |k|+ TA +QA · Tckt,Eval + 1).

3.1. Comparison with Presampling

Before proceeding to the proofs, we compare our AI-
ROM simulation theorems with presampling [9,11,40]. Let’s
first recall the presampling theorem.

Lemma 4 (presampling with additive error [11; Lemma
1]). For all AI-ROM type dom → {0, 1}m such that
dom ̸= {0, 1}∗, O-advice ai of length S, upper bound Q
of number of queries, number P ∈ N+ of fixed coordi-
nates, decomposition error 0 < εdecomp ≤ 1, there exists
a z-advice aipresamp whose output shall be interpreted as
a set T of no more than P pairs of (x, y) ∈ dom ×
{0, 1}m with distinct x’s such that Eairom

ε
≈A Epresamp for

ε = (S + log2(1/εdecomp)) ·Q/P + εdecomp, where A is the
set of concrete adversaries making at most Q queries to the
oracle and having single-bit output. The experiments are as
follows.

16. Here, |k| depends on the specific PRF being used and is polynomial
in λprf, |desc(dom)|,m (hence polynomial in |desc(dom)|,m, S and
polylogarithmic in M,T, εleak). The time of E only includes its initialization
and responses to A’s queries.

Table 3. COMPARISON BETWEEN OUR THEOREMS AND PRESAMPLING.

aspect our theorems presampling

oracle PRF instance random except at P points
assumption exponentially secure PRF ✓ none
adversary computational query-bounded
error ✓ could be exponential inverse polynomial

extra advice ✓ poly(S, λ, n,m) Θ((n+m)SQ/ε)
per-query size (circuit) ✓ poly(S, λ, n,m) Θ((n+m)SQ/ε)
per-query time (RAM) poly(S, λ, n,m) ✓ Θ(n logn+m)

• Eairom is the same as in Theorem 2.
• In Epresamp, sample two independent random func-

tions O,Opresamp : dom→ {0, 1}m, then z $←
ai(Opresamp) and T $← aipresamp(z). Define O[T](x)
to be y if (x, y) ∈ T for some y and O(x) otherwise.
Run and output AO[T](z).

AI-ROM is not efficiently implementable by standard-model
algorithms. Both our theorem and presampling provide a
way to simulate AI-ROM efficiently. Their major differences
are in Table 3. We make the following remarks.

One major advantage of our method is that it achieves
the standard definition of simulation (negligible error against
polynomial-time distinguishers) in polynomial time, which
resolves Unruh’s conjecture (Corollary 10) that AI-ROM
does not create computational advantage. With presampling,
the simulation efficiency grows inverse-polynomially with
the error — this growth relation is tight [10,11] — so it will
never achieve negligible error in polynomial time.

Although our theorems only work with computationally
bounded adversaries, the time bound is exponential, covering
the practically relevant case. Our simulation efficiency does
not depend on the number of queries, hence it could enjoy
significant savings in some parameter regimes compared to
presampling.

The table shows efficiency from a generic exponentially
secure PRF. By using a PRF with very fast evaluation
(Section 4) in the RAM model, the per-query time of our
simulator is mn1+γ poly(logS, log λ, log n), where γ > 0
is an arbitrary positive constant. Despite still worse than
presampling, its significant savings on extra advice come out
on top. We depict practical attacks as having S much smaller
than Q, so the independence of Q is meaningful. Concretely,
our simulator only needs extra advice S1+γ poly(λ), hence
is better as long as Q is not too small.

Unlike presampling, where the correlation is controlled
by T , we have little knowledge about the correlation between
the PRF used as the oracle and the auxiliary input. This
leads to great difficulty in proving security reliant on the
random oracle, excluding the techniques of programming
and extraction. Nevertheless, our simulation could be used
to reduce assumptions unrelated to the random oracle more
tightly to their standard-model versions. The two methods
are not mutually exclusive. In applications, for each pair of
neighboring hybrids, we can utilize the suitable method.

3.2. Proofs

We derive our concrete AI-ROM simulation in two steps.
For simplicity, let’s assume |desc(dom)|,m, S,M, T ≤ 2λ

and εleak ≥ 2−λ (the setting useful for asymptotics). The
O-advice ai we are given with could be arbitrarily complex
— difficult to handle — so we first rely on the leakage
simulation lemma to bring it down to 2S+O(λ), while keeping
(O, z) indistinguishable to size-M time-T adversaries. We
then regard the leakage simulator together with the under-
lying adversary as an adversary against the PRF, whose
overall complexity is dominated by that of the leakage
simulator. Because the PRF is secure against exponential-
time adversaries, we can adjust the security parameter to
some λprf = S +O(λ). Replacing the random oracle by PRF
completes the proof.

Note that in the intermediate step where we invoke PRF
security, its adversary runs in excessive time as it includes
the leakage simulator — a merely polynomial hardness
assumption would not survive it (even with complexity
leveraging, the adjusted security parameter could become
super-polynomial). However, once we arrive at the final
stage, the PRF key k and the leakage z can be regarded as
(standard-model) advice, the leakage simulator is no longer
part of the adversary, and the adversary, with oracle queries
answered by PRF, is again efficient, only suffering a blow-up
polynomial in S, λ.

We now present the formal proof.

Proof (Theorem 2). Consider the RAM version. Define

P =

{
A

∣∣∣∣A is a RAM program with single-bit output,
MA ≤ M, TA ≤ T

}
,

A =
{
A

∣∣A is a distribution over P
}
,

F =
{
fA,r : (O, z) 7→ AO(z; r)

∣∣A ∈ P, randomness r ∈ {0, 1}T
}
.

Let h be the RAM program in Lemma 1, then there
exist a list L of functions in F and a bit-string z′, of
promised lengths, such that (O, ai(O))

εleak≈ F (O, hO,L(z′)),
which implies (O, ai(O))

εleak≈ A (O, hO,L(z′)).
Encode L into a bit-string z′′ by writing down first a

prefix-free encoding of |L|, next a prefix-free encoding of T ,
then for each fA,r ∈ L, a prefix-free encoding of MA, next A
itself, then r itself. By Lemma 1 and the definition of F , the
length of z′′ is bounded by C · (S + 1)ε−2

leak · (M + T + 1).
For each A ∈ A, let AO

prf(z
′, z′′) first choose dom,m (from

the random oracle model it targets) as the PRF challenge
lengths, next parse z′′ into L, then run z $← hO,L(z′), and
lastly run and output AO(z). We have

MAprf ≤

including parsing︷︸︸︷
Cram ·

(dom,m︷ ︸︸ ︷
|desc(dom)|+m+

gluing, h, A︷ ︸︸ ︷
1 +MA

+ Sε−2
leak + (S + log ε−1

leak)
2ε−1

leak︸ ︷︷ ︸
z′

+ |z′′|
)
,

TAprf ≤ Cram ·
(parsing, gluing︷ ︸︸ ︷
(|desc(dom)|+m+ |z′′|)Cram

+ 2S · Sε−2
leak · T︸ ︷︷ ︸

LO in h

+ 2S(S + 1)ε−2
leak︸ ︷︷ ︸

other in h

+ TA

)
.

Both are bounded by 2λprf,0 for some

λprf,0 ≤ S + Cram log((|desc(dom)|+m+ S +M + T + 1)/εleak).

For λprf ≥ λprf,0, it follows from PRF security that O (ran-
dom) and Eval(k, ·) (with k $← Dλprf,dom,m) are εprf(λprf)-
indistinguishable to Aprf’s. By definition, this is exactly

(O, hO,L(z′))
εprf(λprf)
≈ A (Eval(k, ·), hEval(k,·),L(z′)).

Defining ãi(k) as hEval(k,·),L(z′), we obtain Eairom
ε
≈A

Eprf by hybrid argument, where ε = εleak + εprf(λprf) and
subscript “A” means the same as “M,T (for RAM)”. To
construct the concrete algorithm Eprf, recall (Definition 1)
that it is a distribution over RAM programs. We let the
distribution sample k $← Dλprf,dom,m and z $← ãi(k), then
output a RAM program with z, k hardwired that calls
AEval(k,·)(z). The bounds of ME , TE follow easily, where
the model-dependent terms are due to hardwiring the input
and combining Eval with gluing code. The derivation of
Eprf(A) (for RAM and circuits) is similar. We only note that
for circuits, MA and Mckt,Eval already subsume S and |k|,
so the latter two terms do not appear in M ′.

Proof (Theorem 3). Let (nu, A) be an asymptotic RAM
adversary such that for sufficiently large λ it holds
that MA(λ), TA(λ) ≤ 2λ. For each λ, let w $← nu(λ) and
A′

λ(·) = A(1λ, w, ·), then A′
λ is a concrete RAM adversary

with

M ′
λ ≤ |A|+ λ+MA(λ) + Cram · log(|A|+ λ+MA(λ) + 2),

T ′
λ = TA(λ).

Now, |desc(dom(λ))| ≤ 2λ, m(λ) ≤ 2λ, M ′
λ ≤ 2λ+1, and

T ′
λ ≤ 2λ, all of which hold for sufficiently large λ, for which

we apply Theorem 2 with dom(λ),m(λ), S(λ),M ′
λ, T

′
λ and

εleak = 2−λ and conclude

λprf,0 ≤ S(λ) + Cram · log
2λ + 2λ + S(λ) + 2λ+1 + 2λ + 1

2−λ

≤ S(λ) + Cram · (log(S(λ) + 1) + λ+ 1).

The circuit version is similar. For polynomial indistin-
guishability, we further rely on S(λ) ≤ poly(λ) ≤ 2λ for
sufficiently large λ.

For the second part. Encode (z, k) by writing down a
prefix-free encoding of S = |z| then z, k themselves. This
gives the bound of ME . The algorithm E

A(w,·)
prf (z, k) parses

its input then calls AEval(k,·)(w, z), giving the bound of TE .
The derivation of Eprf(A) is similar.

4. PRF with Fast RAM Evaluation

We start by formally defining the requirements from a
pseudorandom function with fast RAM evaluation.

Definition 8 (Syntax of the PRF). A PRF function family
PRF = (PRF.Setup,PRF.Eval) consists of two probabilistic
polynomial time algorithms satisfying the following desider-
ata.

• PRF.Setup(1λ, 1n) : takes as input a security param-
eter λ and an input length n (which is a polynomial
in λ) and it outputs a key K ∈ Kλ,n.

• PRF.Eval(K ∈ Kλ,n, x) is a deterministic polyno-
mial time algorithm that takes as input the key K
and an input x ∈ {0, 1}n. It outputs a bit.

Definition 9 (Security of the PRF). A PRF function family
PRF = (PRF.Setup,PRF.Eval) is said to be (T, ε) secure if
for every λ ∈ N, every polynomial input length n(λ), every
T time (non-uniform) adversary A we have that:

|Pr[AO(1λ) = 1]− Pr[APRF.Eval(K,⋆)(1λ) = 1]| ≤ ε

Here, O : {0, 1}n → {0, 1} is a random oracle and K ←
PRF.Setup(1λ, 1n).

In this work, we care about security against T = 2λ time
algorithms with advantage ε that are negligible in λ.

Definition 10 (Fast RAM Computation Time). A PRF
function family PRF = (PRF.Setup,PRF.Eval) is said to
have fast Ram computation time if: for any arbitrarily small
constant γ > 0, the size of key is Õ(n1+γλ1+γ) and in
the RAM model each query can be responded to in time
n1+γ poly(log(λ · n)).

In this section, we study and design a pseudorandom
function family

4.1. Construction from Goldreich’s Function

Our construction of a pseudorandom function with fast
RAM evaluation is based on Goldreich’s expander-based
one-way function [19] that has received years of study [19,
24–35].

Definition 11 (Goldreich’s One-Way Function Candidate).
Goldreich’s one-way function candidate is of the form fG,P :
{0, 1}ℓ → {0, 1}, indexed with a local Boolean predicate P :
{0, 1}L → {0, 1} for a locality L = L(ℓ) and a hypergraph
G = (S1, . . . , Sm) where each hyperedge Si ⊂ [ℓ] of size L.
The computation is described as follows: fG,P (x) on input
x ∈ {0, 1}ℓ outputs y = (y1, . . . , ym) where yi = P (x|Si

).
Here x|Si

are the bits corresponding to the set Si in the
same order as given by Si.

The expander graph and the predicate has to be chosen
carefully based on insights developed in a long sequence of
works [19,24–36]. We discuss these aspects at a high level
below. Detailed discussions can be found in Section 4.3.

How to Choose the Predicate P The predicate is typically
chosen to be a local function with locality L some constant
and the number of outputs are typically some polynomial
m = ℓO(L). Since we are interested in building a pseudoran-
dom function, number of outputs must be super-polynomial

and therefore we will work with a super-constant locality
L = ℓδ for some constant δ < 1. Such parameters have also
been considered in the past [23] in the context of constructing
pseudorandom functions.

Based on the extensive cryptanalysis, culminating in
[36] a good choice of predictes are one that simultaneously
optimizes resiliency and rational degree (refer to Section
4.3 for a discussion). The gold-standard for the choice of
predicate is the predicate XOR-MAJL′ that takes as input
L = 2 · L′ inputs and computes:

P (x1, . . . xL′ , xL′+1, . . . , xL)

= x1 ⊕ . . . xL′ ⊕Maj(xL′+1, . . . , xL)

Namely the predicate first computes an exclusive or of first
L′ bits and then exclusive ors with majority function applied
on the next L′ bits.

How to Choose the Graph Roughly speaking, for a randomly
chosen graph (S1, . . . , Sm), with probability ℓ−O(L) two sets
(say) Si and Sj might turn out to be the same in which case
the function fG,P will triviably be distinguishable. More
generally, one could find “cycles”/“even-covers”. These are
sets Si1 , . . . , Sit such that every variable contained in these
sets appear an even number of times in the multi-set union of
Si1 , . . . , Sit . If t is really small, this might cause the outputs
yi1 , . . . , yit to be biased leading to a 2Õ(t) time attack. Thus,
we must choose the graph so that t is not very small. Such
t sized cycles can be ruled out if the graph is sufficiently
expanding.

Definition 12 (Expansion of a Hypergraph). We say that
a L regular hypergraph G = (S1, . . . , Sm) over ℓ nodes is
(t, α) expanding if for every non-empty set T ⊆ [m] of size
r less than or equal to t, we have that the number of nodes
in | ∪i∈T Si| > α · L · r.

It is easy to observe that if Si1 , . . . , Sit forms a cycle
then the graph is not (t, 1

2) expanding as every variable
in the union of hyperedges/sets appear an even number of
times. As we discuss in Section 4.3, lower-bounds against
certain classes of algorithms that form the best known attack
against Goldreich functions (polynomial calculus, light linear
tests, sum-of-squares etc.) can be proven provided α is large
enough. We work with a conservative α = 0.99 for the
following assumption. Similar assumptions were used in
[23] for design of efficient pseudorandom functions.

Assumption 1 (Goldreich’s Assumption). Let δ ∈ (0, 1) be
a constant, ℓ ∈ N be the input length, L = 2L′ = Θ(ℓδ)
be the locality and P be the predicate XOR-MAJL′ . Let
G = {Gℓ}ℓ be a family of L regular hypergraph with m
hyperedges such that the Gℓ is (t, 0.99) expanding. Then it
holds that for any p.p.t. adversary running in time 2Õ(t) we
have that:

{fG,P (x) : x← {0, 1}ℓ} ≈c {y : y ← {0, 1}m}

Above, the computational indistinguishability holds with
advantage bounded by negligible in ℓ.

We note that based on our current understanding we can
strengthen the above assumption to work with an advantage
2−Õ(t). Moreover, [23] showed that the above assumption
follows from the hardness of search with slightly worse
parameters.

We are now ready to describe our construction.

Construction Our construction of a PRF is exactly identical
to Golreich’s PRG with the xor-majority predicate P of
super-constant locality L and seed length ℓ that we will set
appropriately (depending on the security parameter λ and
input length n of the PRF). The number of outputs for the
Goldreich’s function will be set to m = 2n.

Ingredient: We will need an efficient (randomized) algo-
rithms (GraphSetup,GraphEdge) with the following desider-
ata:

• GraphSetup takes as input the graph parameters,
number of variables/nodes 1ℓ, number of hyperedges
m = 2n, locality 1L, expansion bound 1t and it
outputs a string pp.

• Algorithm GraphEdge(pp, i) is a deterministic algo-
rithm that takes as input pp and an index i ∈ [m]
and outputs a set Si ⊂ [ℓ] of size L corresponding to
the hypergraph G = (S1, . . . , Sm). The running time
of this algorithm is L1+γ poly(log ℓ) in the RAM
model for arbitrarily small constant γ > 0.

• With all but negligible probability in ℓ, the graph pro-
duced by these algorithms satisfy (t, 0.99) expansion
for some t that we will set later.

We show how to construct such an algorithm in Section 4.2.

Parameters We set various parameters below (all our param-
eters have a lot of room and may not represent an optimal
setting):

• The seed length ℓ = n · λ1+γ .
• Locality L = 100n.
• Expansion bound t = λ1+γ/2

The constant γ > 0 can be chosen to be arbitrarily small.
As we show in Section 4.2 in Theorem8, for the

parameters above the running time of GraphSetup is
polynomial and the size of preprocessing is bounded
by t1+γn1+γ log1+γ(λ) = O(λ1+2γn1+γ log1+γ(λ)). Fur-
ther, the GraphEdge calls can be answered in time
n1+γ poly(log(n · λ)) for arbitrarily small constant γ > 0.
Further, the hypergraph output by the graph sampler al-
gorithms satiesfies expansion with all but exp(−n log λ)
probability.

Construction 1. We now describe our construction.

• PRF.Setup(1λ, 1n) : The algorithm runs pp ←
GraphSetup(1ℓ,m, 1L, 1t) and s← {0, 1}ℓ. The key
consists of K = (pp, s).

• PRF.Eval(K,x ∈ {0, 1}n) : Run Sx ←
GraphEdge(pp, x) and then compute and output
y = P (s|Sx

).

One can show that a random hypergraph where each
Si is randomly sampled satisfies (t, 0.99) expansion for
t = λ1+γ/2 with all but exp(−Ω(n log λ)) probability. Our
graph sampler does not sample it randomly, but samples it
using a k wise independent distribution for k = t. We show
in Section 4.2 how to implement it with the efficiency related
desiderata. It can be shown with an identical analysis that
t wise independent distribution will also produce (t, 0.99)
expander with similar probability.

Theorem 5. If (GraphSetup,GraphEdge) satisfies the
desiderata described above and for the parameters set above,
the construction 1 satisfies fast runtime in the RAM model.
Namely, the key can be sampled in polynomial time and is
of the size O(n1+γλ1+2γ log1+γ(λ ·n)) and each query can
be computed in time n1+γ poly(log(n ·λ)) for an arbitrarily
small constant γ > 0.

Proof. We analyze this based on Theorem 8. Note that
PRF.Setup simply samples a seed s that can be done
in time ℓ = n · λ1+γ . It also runs GraphSetup that
takes time O(n8 poly(log(n · λ)) + n1+γλ1+2γ poly(log(n ·
λ))) time and produces a preprocessing of size at most
O(n1+γλ1+2γ poly(log(n · λ))).

We now analyze the running time in the RAM model for
the evaluation algorithm PRF.Eval. The per query time of
GraphEdge is O(n1+γ poly(log(λ · n))) in the RAM model
to compute the set Sx. Then computing the predicate P (s|Sx)
takes Õ(L) time for the predicate XOR-Maj as this can be
done after looking up s on locations corresponding to the
set Sx. As L = 100n, the PRF can be evaluated in time
Õ(n) given Sx. Overall, query can be computed in time
n1+γ poly(log(n · λ)).
Theorem 6. Assume that (GraphSetup,GraphEdge) satisfies
the desiderata described above and let construction 1 use
the parameters set above. If Assumption 1 holds then the
construction 1 is secure against 2λ sized adversaries.

Proof. We have that with overwhelming probability (all
but exp(−Ω(n log λ)) probability) the hypergraph induced
by (GraphSetup,GraphEdge) forms a (t, 0.99) expander for
t = λ1+γ/2. Further assuming the hypergraph is expanding,
Assumption 1 posits that the distribution fG,P (x) is indistin-
guishable from y ← {0, 1}m against 2Õ(t) time adversaries.
Note that fG,P consists of all the 2n outputs of the PRF.
This proves the claim due to a straightforward reduction to
Assumption 1.

4.2. Graph Sampler

In this section we describe our graph sampler. Our high
level idea is that that each hyperedge will be computed
through a t wise independent hash function.

We will make use of the following powerful lemma from
[20].

Theorem 7 (reinterpreted from Theorem 5.1 in [20]). Let
Zp be a field of prime order p. Let f(x) be a polynomial
of degree d in Zp[x]. Let γ > 0 be arbitrary constant. For

large enough d, one can compute in time O(d1+γ log1+γ p)
a data structure with the property that given any α ∈ Zp,
f(α) can be computed in time O(log1+γ p · poly(log d)) in
the RAM model.

We will use the Theorem 7 to efficiently generate
hyperedges. The main punchline of the theorem is that any
degree d polynomial over Zp can be computed on any input
in time that is much faster to compute the polynomial in the
first place (provided a polynomial time pre-processing phase
computing a datastructure).

Recall that the hyperedges (S1, . . . , Sm) must form a
(t, 0.9) expander for Assumption 1 to hold. We will show that
a t wise distribution with overwhelming probability yield a
(t, 0.99) expander. We will generate such a distribution using
random degree t polynomial over an appropriately chosen
prime modulus p. Fast implementation follows naturally from
Theorem 7.

We describe the construction now.

Ingredients and Parameters: We work with the following
choice of parameters:

• The seed length ℓ = n · λ1+γ .
• Locality L = 100n.
• Expansion bound t = λ1+γ/2.
• m = 2n.

where λ is the security parameter and n is an arbitrary
polynomial in λ. γ > 0 is an arbitrarily small constant
greater than 0.

Recall that there are N =
(
ℓ
L

)
is the total number

of hyperedges. While N is not a prime, using Cramer’s
conjecture [41] in number theory one could find a prime
p = N + K for K = O(log2 N) in polynomial time by
simply trying out O(log2 N) values for K and testing those
numbers for primality. We work with this prime modulus.
Note that Cramer’s conjecture is not essential and we will
remark later on how one could remove the reliance on
Cramer’s conjecture . It is well known that there exists
an Õ(logN) time computable injective algorithm Set that
takes as input a number in [1, N] and outputs one of N sets,
S ⊂ [ℓ] of size L.

Construction 2. We are ready to descibe our construction
of the graph sampler.

• GraphSetup(1ℓ,m, 1L, 1t) : Find a prime p greater
than N that is also very close to N , where N =

(
ℓ
L

)
.

By Cramer’s conjecture, p = N + O(log2 N) and
therefore such a prime p can be found out in poly-
nomial time. Sample a random degree t polynomial
h(z) = a0+a1z+a2z

2
2+ . . .+atz

t where each ai is
randomly chosen from Zp. Preprocess the polynomial
according to form a data structure σ relying on
Theorem 7. Output pp = σ

• GraphEdge(pp, x ∈ [ℓ]) : Interpret x as an element
in Zp and compute h(x) = r by using the fast RAM
evaluation process given by Theorem 7. Note that
r ∈ Zp. With probability 1−O(log

2 N
N), r ∈ [1, N]. If

this happens, compute and output the set Sx = Set(r)
otherwise output ⊥.

We analyze the properties of the graph sampler below.

Theorem 8. If Cramer’s conjecture holds, for the pa-
rameters described above, the algorithm GraphSetup
takes O(n8 poly(log(n · λ)) + n1+γλ1+2γ poly(log(n ·
λ))) time and produces a preprocessing of size at most
O(n1+γλ1+2γ poly(log(n · λ))). Moreover, per query time
of GraphEdge is O(n1+γ poly(log(λ·n))) in the RAM model.
Above γ > 0 is an arbitrary constant.

Proof. Note that assuming Cramer’s conjecture [41] the
prime p can be found in polynomial time. Note that N =
exp(O(n log(n · λ))). Thus to find p, we have to compute
primality testing of O(n2 log(n · λ))) numbers of bit-length
O(n log(n · λ)). Primality testing can be done by the AKS
algorithm [42] in time O(n6 poly(log(n · λ))).

Observe that GraphSetup also computes the datastructure
to evaluate a degree t = λ1+γ/2 degree polynomial over Zp.
This can be done in time t1+δ · log1+γ p based on Theorem 7.
The preprocessing consists of the datastructure. This proves
the claim about GraphSetup.

Further, GraphEdge simply computes the polynomial.
Based on the Theorem 7 in time n1+γ poly(log(λ · n)).

Theorem 9. If Cramer’s conjecture is true, for the param-
eters above, with all but exp(−Ω(n · λ)) probability, the
construction gives a (t, 0.99) expander.

Proof. We first find an upper bound on the probability that
the algorithm GraphEdge outputs ⊥ for one of the x ∈ [m].
Let Vx be an indicator variable that takes a value 1 if
the algorithm outputs ⊥ on x (or equivalenly h(x) > N)
and 0 otherwise. Note that E[Vx] = p−N

p = O(log
2 N
N).

Thus, ΣxE[Vx] = O(m log2 N
N). By Markov’s inequality,

this establishes that the algorithm outputs ⊥ is at most
O(m log2 N

N). For the parameters set in the theorem N =(
ℓ
L

)
= exp(Ω(n log λ)) and m = 2n. Therefore we have

that the required probability is exp(−Ω(n log λ)). Let E be
the event that the algorithm does not output ⊥ at any input
x ∈ [m].

We consider the probability that given sets Si1 , . . . , SiT
for 1 ≤ T ≤ t for distinct inputs i1, . . . , iT to violate the
expansion condition |Si1 ∪ . . . ∪ SiT | < 0.99 · T · L. We
call this event Qi1,...,iT and compute an upper-bound on
the probability for the event Qi1,...,iT given the event E.
Notice that if E holds, the sets Si1 , . . . , SiT are, uniformly
distributed due to the t wise independence property of h,
from the space of all sets of size L in [ℓ]. Letting α = 0.99,
this probability can therefore be upper bounded as:

(
ℓ

α · T · L

)
·
(
α · T · L

L

)T

/

(
ℓ

L

)T

The expression is basically counting the number of ways
that T hyperedges depend on some α · T · L nodes.

We can already apply union bound at this point
and compute an upper bound on the probability of⋃

T∈[1,T](∪i1,...,iTQi1,...,iT) given E:

∑
T∈[t]

(
m

T

)(
ℓ

α · T · L

)
·
(
α · T · L

L

)T

/

(
ℓ

L

)T

We analyze each term for T ∈ [t] and bound them
separately.

(
m

T

)(
ℓ

α · T · L

)
·
(
α · T · L

L

)T

/

(
ℓ

L

)T

We use the naive bounds for Binomial coefficients(
a
b

)b ≤ (
a
b

)
≤ eb

(
a
b

)b
. Each term is upper bounded as:

eT+α·T ·L+T ·L
(m
T

)T

·
(

ℓ

α · T · L

)α·T ·L

·
(
α · T · L

ℓ

)T ·L

eT+α·T ·L+T ·L
(m
T

)T

·
(
α · T · L

ℓ

)(1−α)·T ·L

We now plug various parameters α = 0.99, L = 100n,
m = 2n, ℓ = nλ1+γ and deduce the upper bound as:

exp(O(T · n)) ·
(m
T

)T

·
(
α · T · L

ℓ

)(1−α)·T ·L

Note that:

(m
T

)T

= exp(O(T · n))

Finally,

(
α · T · L

ℓ

)(1−α)·T ·L

=

(
99 · T · n
n · λ1+γ

)n·T

≤ exp(−Ω(n · T · log λ)).

The last inequality uses the fact that T ≤ t = λ1+γ/2.
Combining the above observations we have the required

probability as:

exp(−Ω(n · T · log λ))

This concludes that the required probability of upper
bound on the probability of

⋃
T∈[1,T](∪i1,...,iTQi1,...,iT)

given E as:

∑
T∈[t]

exp(−Ω(n · T · log λ)) = exp(−Ω(n · T · log λ)).

Based on the probability of event E and the probability
of violating expansion property, we can therefore finally

conclude that with all but exp(−n log λ) probability the
graph sampler outputs a (t, 0.99) expanding hypergraph.

Remark 1 (On the Necessity of Cramer’s Conjecture).
Cramer’s conjecture is not necessary. We use it only for
simplifying our presentation. Indeed, another way could be
to work with an extension field of Z2, and produce a t
wise independent bit sequence, and use these random bits
to map strings to sets. In doing so, we will have to use a
sufficiently big finite field so that the order of the field is
sufficiently bigger than N . The analysis will only be slightly
more involved.

4.3. Discussion on the Assumption

We now discuss cryptanalysis of the assumption. This
cryptanlaysis is a highly simplified survey of a long line
of works [19,24–35] and in particular the state-of-the-art
work of [36]. The two main kinds of attacks on Goldreich’s
one-way function considered in the work are of the form:

• Linear Attacks: Given a hypergraph G =
(S1, . . . , Sm) and the output of the function fG,P =
(y1, . . . , ym), this attack considers linear attacks of
the form ⊕i∈[T]yi for all sets T . We say that the
fG,P fails to be an ε biased generator if there exists
a non-empty set T so that

∣∣Ex[⊕i∈T yi]− 1
2

∣∣ > ε. As
shown in prior works, one typically shows security
by analyzing two different cases. In the first case,
one considers light tests. These tests consider tests
T for which the size of T is less than or equal to
t where the hypergraph is (t, 0.99) expanding. For
such tests for the predicates P that satisfies resiliency
of L

2 (the property is described later), it can be shown
as in [36]

∣∣Ex[⊕i∈T yi]− 1
2

∣∣ = 0. For heavier tests,
showing this property holds for a small ε for all tests
T > t requires some work. It was proven in [36] if
the predicate has large rational degree (we provide
the description later) Ω(L), and if the hypergraph
satisfies (t, 0.99) expansion for a large enough t,
then, ε biased property holds for subexponentially
small bias ε. if L is constant [36] prove ε biased
property for the XOR-MajL predicate as long as
the hypergraph is expanding. A random graph satis-
fies such expansion with high probability provided
m = ℓΩ(L). Unfortunately, the bias calculations break
down for heavy linear tests when L is super-constant
or polynomial in the seed length ℓ. Nevertheless,
security can still be conjectured against heavy tests.
Such a conjecture was implicit in [23] who relied on
super-constant locality to realize a PRF.

• Polynomial Calculus: Another really important class
of attacks are algebraic attacks. These include
Gröbner basis style attacks and other models which
manipulate equations algebraically and refute/solve
equations algebraically. [36] modelled these equa-
tions in Polynomial Calculus [43] proof system
and showed lower-bounds in those models. If the
predicate P has a rational degree L

4 (satisfied by

XOR-Maj) and if the hypergraph is (t, 0.99) ex-
panding then such Goldreich PRG system cannot
be refuted by polynomial calculus proof system of
degree D = t ·L ·(1

16−
1

100) = Ω(t ·L). This roughly
corresponds to 2Õ(D) time algebraic attacks.

All in all, our current understanding is that to design good
PRGs, aside from the graph satisfying (t, 0.99) expansion
for large t the predicate with locality L must have large:

• Resiliency: We say that a predicate P (x1, . . . , xL)
has a resiliency k if the xor of the predicate with
any k variables in x1, . . . , xL is unbiased. For
XOR-MajL, it has a resiliency of L/2.

• Rational Degree: We say that P (x1, . . . , xL) has
a rational degree e if that’s the minimum degree
for which there exists two non-zero polynomials
Q,R of degree less than equal to e so that PQ =
R. The computation is done over Z2[x1, . . . , xL].
For XOR-MajL, it has a resiliency of L/4. In fact,
majority function has the highest rational degree
amongst all functions for a given locality.

There are other attacks too such as sum-of-squares/convex
optimization based methods. One can prove lower-bounds
for those (against versions of attacks that take 2Õ(t)) time
algorithms as in [35,44,45] based on resiliency and expansion
condition alone. We refer to [36] for a survey of other attacks.

5. Direct Applications

5.1. Resolving Unruh’s Conjecture

Assuming the existence of any exponentially secure PRF,
Theorem 3 resolves Unruh’s conjecture that oracle-dependent
auxiliary input does not give computational power. We state
it in our notation.

Corollary 10 (Conjecture 15 of [14]). Let the AI-ROM be
of type dom→ {0, 1}m. For all efficient adversary A and
O-advice ai of polynomial length, there exist an efficient
simulator S and a ⊥-advice nu of polynomial length such
that for all efficient algorithm B, it holds that Eairom ≈ Esim.
The experiments work as follows.

• In Eairom, sample a random O : dom→ {0, 1}m then
z $← ai(λ,O). Let AO(1λ, z) interact with B(1λ)
and output whatever B outputs.

• In Esim, sample w $← nu(λ). Let S(1λ, w) interact
with B(1λ) and output whatever B outputs.

We note that Theorem 3 is stronger as the simulator has
more structure than required by Unruh’s conjecture. Namely,
nu only depends on ai, and S is black-box in A.

5.2. Tighter Reductions from Standard-Model As-
sumptions

Consider a standard-model computational assumption
such as factoring and DDH. Does the assumption also hold

in AI-ROM? Auxiliary input provides at least the power of
standard-model non-uniformity. Formally, it could provide
more leverage since the adversary is given oracle access to
the random function, correlated with the auxiliary input. Yet
it is hard to conceive how such correlation can help with a
task unrelated to the random function.

Presampling answers the above question in the positive
for polynomial hardness, but its reduction loss is unsatis-
factory. Notably, an auxiliary input of S bits could only be
simulated by an advice of Ω(SQ) bits (the bit-fixing truth
table), and consequently, in the circuit model, each query
suffers a blow-up of Ω(SQ) in size.

Our methods provide tighter reductions, albeit under
computational assumptions. We state them and compare
them with presampling, first by computation model, then
by type of task (searching or distinguishing). Note that for
presampling, lazy sampling outside the bit-fixing table also
incurs cost per query. We give it the benefit of discounting
such cost — our method is still advantageous or comparable!

Assumptions as Indistinguishability. Let E be an experi-
ment that is black-box and straight-line in the adversary.
We require that the size/time of E itself be bounded
by 2Cmodel,E(λ+1). A search assumption can be stated as
E ≈ 0, and a decision assumption, E ≈ 1

2 , where 0, 1
2

represent experiments simply outputting 1 with probability
0, 1

2 . Let M ′, T ′, ε′ be the parameters of indistinguishability.
We can lift E into Eairom that works with AI-ROM

adversaries. Let the AI-ROM be of type dom→ {0, 1}m.
The experiment Eairom samples w $← nu(), a random
O : dom→ {0, 1}m, then z $← ai(O), and runs and out-
puts E(AO(w, z)). Let the level of indistinguishability
(Eairom ≈ 0 or Eairom ≈ 1

2) be S,M, T,Q, ε.
We are interested in the relation between S,M, T,Q, ε

and M ′, T ′, ε′. Throughout this subsection we assume
M ′, T ′, S,M, T,Q ≤ 2λ and ε′, ε ≥ 2−λ. We also assume
a (2λ, 2−λ)-secure PRF (D,Eval), i.e., εprf(λ) ≤ 2−λ.

Circuits. The bottleneck of reduction efficiency is Eval. Its
circuit size is lower-bounded by roughly λprf = S +Ω(λ)
set in Theorem 3, which is the smallest reduction overhead
we can hope for. The following notion is more relaxed, yet
it is the most efficient one for which we know a candidate.

Definition 13 (quasilinear efficiency of PRF). A
PRF (Definition 5) is quasilinearly efficient if
|k| ≤ (λ+m) logCckt,prf(λ+m+ 2) and

• (for RAM) the RAM time of Eval,
• (for concrete circuits) the circuit size of Eval with k

hardwired, or
• (for asymptotic circuits) the time to generate the

circuit of Eval given k

is bounded by (λ+m)(|x|+ 1) logCckt,prf(λ+m+ |x|+ 2),
where |x| is (for RAM) the input length or (for circuits) the
maximum length of input that the (generated) circuit must
handle.

A candidate of quasilinearly efficient and exponentially
secure PRF is GGM tree PRF based on an exponentially
secure PRG from ring-LWE.
Corollary 11 (from standard-model to AI-ROM, circuit
model). Assuming the existence of quasilinearly efficient

and (2λ, 2−λ)-secure PRF, suppose E
ε′

≈M ′,T ′ 0 holds in the
standard model, then Eairom

ε
≈S,M,T,Q 0 holds in AI-ROM

of type dom→ {0, 1}m if ε ≥ ε′ + 2−λ and

(concrete) M ′ ≥ M +Q · (S + λ+m)(min{M,n}+ 1)×
(λ+ 2)Cckt,E,airom,prf ,

(asymptotic) M ′ ≥ M + (S + λ+m)(λ+ 2)Cckt,E,airom,prf ,

T ′ ≥ Cckt,E,airom,prf · (M + T),

+ (Q+ 1) · (S + λ+m)(min{M,n}+ 1)×
(λ+ 2)Cckt,E,airom,prf .

where n is consistent with dom = {0, 1}n or dom =
{0, 1}≤n or n = +∞ if dom = {0, 1}∗, and M = T and
M ′ = T ′ for the concrete case. Suppose E ≈ 0 has λ′ strong
bits of security (Definition 2) and λ′ ≤ λ, then Eairom ≈ 0
has

• (λ′/3− Cckt,E,airom,prf · log(λ+ 2)) strong bits of se-
curity regardless of n, and

• (λ′/2− Cckt,E,airom,prf · log(λ+ 2)) strong bits of se-
curity if n ≤ poly(λ).

The same applies to lifting E ≈ 1
2 to Eairom ≈ 1

2 .

Corollary 11 follows from Theorems 2 and 3. Bounds
S,M, T, |x| ≤ 2λ and m ≤ poly(λ) are applied to simplify
some terms in M ′, T ′.

Comparison with Presampling. We provide a back-of-
envelope calculation of concrete reductions using presam-
pling.17 Refer to Theorems 1 (Lemma 4) and 2 in [11].
The number of presampled points is P . Each presampled
point takes roughly (min{M,n}+m) bits to describe the
input/output values.

For search assumption (E ≈ 0), we set P = (S + λ)Q
for

ε = 2ε′ + 2−λ,

M ′ ∼M +Q · (S + λ)Q(min{M,n}+m).

Suppose E ≈ 0 has λ′ strong bits of security, then presam-
pling proves Eairom ≈ 0 for

• roughly λ′/4 strong bits of security regardless of n,
and

• roughly λ′/3 strong bits of security if n ≤ poly(λ).

For decision assumption (E ≈ 1
2), we set P = (S + λ)Q/ε′′

for

ε′ = ε+ 2−λ + ε′′,

M ′ ∼M +Q · (S + λ)Q(min{M,n}+m)/ε′′.

17. We do not claim that presampling works with infinite-domain oracles.
Instead, we avoid this issue by truncating the oracle to the relevant portion
(input length at most M).

Suppose E ≈ 1
2 has λ′ strong bits of security, then presam-

pling proves Eairom ≈ 1
2 for

• roughly λ′/5 strong bits of security regardless of n,
and

• roughly λ′/4 strong bits of security if n ≤ poly(λ).

In summary, regardless of the nature of assumption or the
domain of AI-ROM, our method saves a constant factor in
the loss of bit level of security.

RAM. We rely on PRF with fast evaluation. It currently only
works for small domain (input length is a priori polynomially
bounded).

Corollary 12 (from standard-model to AI-ROM, RAM
model). Assuming the existence of (2λ, 2−λ)-secure PRF
with fast evaluation and fixing a positive constant

γ > 0, suppose E
ε′

≈M ′,T ′ 0 holds in the standard model,
then Eairom

ε
≈S,M,T,Q 0 holds in AI-ROM of type either

{0, 1}n → {0, 1}m or {0, 1}≤n → {0, 1}m for n ≤ poly(λ),
if ε ≥ ε′ + 2−λ and18

M ′ ≥M + Cram,E,airom,prf,γ · (n+ 1 + logm)1+γ ×
(S + λ+ 1)1+γ ,

T ′ ≥ T + (Q+ 1) ·m(n+ 1 + logm)1+γ ×
(λ+ 2)Cram,E,airom,prf,γ .

Suppose E ≈ 0 has λ′ strong bits of security
(Definition 2) and λ′ ≤ λ, then Eairom ≈ 0 has
(λ/(1 + γ)− Cram,E,airom,prf,γ · log(λ+ 2)) strong bits
of security. The same applies to lifting E ≈ 1

2 to Eairom ≈ 1
2 .

Comparison with Presampling. We provide a back-of-
envelope calculation of concrete reductions using presam-
pling. Refer to Theorems 1 (Lemma 4) and 2 in [11]. The
number of presampled points is P .

In the RAM model, the query time can be reduced by
storing a perfect hash table of the presampled points in the
advice. The perfect hash table takes C(P + 1)(n+m) bits,
and hashing an input takes (n+ 2)Cram time.

For search assumption (E ≈ 0), we set P = (S + λ)Q
for

ε = 2ε′ + 2−λ,

M ′ ∼M + (S + λ)Q(n+m),

T ′ ∼ T +Q · (n+ 2)Cram .

Suppose E ≈ 0 has λ′ strong bits of security, then pre-
sampling proves Eairom ≈ 0 for roughly λ′/2 strong bits of
security.

For decision assumption (E ≈ 1
2), we set P =

(S + λ)Q/ε′′ for

ε′ = ε+ 2−λ + ε′′,

M ′ ∼M + (S + λ)Q(n+m)/ε′′,

T ′ ∼ T +Q · (n+ 2)Cram .

18. The bounds simplify to the same form in both concrete and asymptotic
scenarios — constants depend on the scenario.

Suppose E ≈ 1
2 has λ′ strong bits of security, then pre-

sampling proves Eairom ≈ 1
2 for roughly λ′/3 strong bits of

security.
In summary, for small-domain AI-ROM, regardless of

the nature of assumption, our method can be made arbitrarily
tight, while presampling always loses at least half of the bit
level.

Degenerate Cases and Other Remarks. Under our formu-
lation of bit level of security, when the truth table of AI-
ROM is below roughly 2λ

′/2 bits (e.g., {0, 1}λ
′/2 → {0, 1}),

neither simulation by PRF nor presampling should be used
for circuits. For RAM, the threshold size of truth table can
be arbitrarily close to 2λ

′
bits. In those cases, the brute-

force reduction of hardwiring the entire truth table and the
auxiliary information is better.

However, an oracle with such a small truth table of-
ten leads to even less bit level of security for primitives
constructed from the oracle. In a cryptosystem built from
multiple primitives, a mismatch among their security levels
often indicates wasteful choices of security parameters. The
situation is further complicated if those components suffer
different security losses in reductions.

The restriction λ′ ≤ λ is only there because we have set
the statistical error to 2−λ. It can be adjusted for λ′ > λ.

6. Combining Presampling and Our Simulation

As discussed in Section 3.1, it is difficult to use our
simulation to analyze security reliant on the AI-ROM, since
the whole oracle is replaced by a PRF, which has little
entropy. We present a simple trick for combining the powers
of presampling and our simulation. Oftentimes, the security
only depends on the behavior of the random oracle at points
unpredictable to the adversary but known to the security
experiment. We can use presampling to argue that the portion
of the oracle relevant to security is essentially independent
of the auxiliary input. Let E be the security experiment,
A the adversary, O,Opresamp,Oro : dom→ {0, 1}m three
independent random functions, ai the auxiliary input, and
(D,Eval) the PRF. The hybrids typically go as follows.

1) E interacts with A(z), where z $← ai(O) and E,A
have access to O.

2) E interacts with A(z), where z $← ai(Opresamp)
and E,A have access to O[T]. Here, T $←
aipresamp(Opresamp) is the presampled bit-fixing table
per Lemma 4 with an appropriate choice of size P .

3) E interacts with A(z), z $← ai(Opresamp) and E,A
have access to

O′(x) =

{
Oro(x), if x is “relevant”;
O[T](x), otherwise.

Again, T $← aipresamp(Opresamp) is the presampling.
The notion of “relevant” is specific to the application.
In addition, whether a point is relevant must be

decided by the first time it is queried without consult-
ing T . This transition holds as long as the relevant
points hit T with only negligible probability.

4) E interacts with A(z), where z $← ai(O) and E,A
have access to

O′(x) =

{
Oro(x), if x is “relevant”;
O(x), otherwise.

This is just undoing presampling.
5) E interacts with A(z), where z $← ãi(k) for

k $← Ddom,m and E,A have access to

O′(x) =

{
Oro(x), if x is “relevant”;
Eval(k, x), otherwise.

This is our AI-ROM simulation (Theorems 2 and 3).

In the rest of this section, we show how to encapsulate the
presampling–rerouting–undoing trick into a notion of salting
scheme and demonstrate its applications.

6.1. Salting Defeats Auxiliary Information

In [11], it is shown using presampling that salting
generically defeats auxiliary information. However, their
reduction is loose due to presampling with large table size P .
The reduction can be decomposed into two phases — first
an argument that the “salted portion” is independent of
the auxiliary information, then a reduction to security in
the ROM. The second phase is computational and suffers
the tightness issue in simulating the “non-salted portion”.
Another downside is that due to salting, the oracle domain
shrinks.

We encapsulate the first phase into a notion of salting
scheme, whose security is roughly indifferentiability, possibly
with domain extension. It sets a clear boundary between
the information-theoretic technique of presampling and our
computational simulation with PRF. We remark that defining
indifferentiability for auxiliary-input models is challenging
by itself [46]. Thanks to the presence of salting, our def-
inition circumvents the difficulty and has provably secure
instantiations.

Definition 14 (salting scheme). Let dom(λ)→ {0, 1}m(λ)

and domro(λ)→ {0, 1}mro(λ) be the types of AI-ROM and
ROM. A salting scheme consists of two efficient algorithms.

• HashGen(1λ) outputs a hash key hk.
• HashO(hk, xro) is deterministic and given oracle

access to the AI-ROM. It takes as input hk and
xro ∈ domro(λ), and outputs yro ∈ {0, 1}mro(λ).

Definition 15 (security of salting scheme). A salting scheme
is secure if there exists an efficient stateful simulator S such
that Ereal ≈ Esim, where the experiments with (nu, ai, A)
work as follows.

• In both, sample w $← nu(λ), random O : dom(λ)→
{0, 1}m(λ), and z $← ai(λ,O).

• In Ereal, sample hk $← HashGen(1λ). Run and output
AO,Hash(hk,·)(1λ, w, z, hk).

• In Esim, sample random Oro : domro(λ) →
{0, 1}mro(λ) and hk $← S(1λ). Run and output
ASO,Oro ,Oro(1λ, w, z, hk).

Security Properties as Indistinguishability. An experiment
that is black-box and straight-line in the adversary corre-
sponds to “application” in [11; Definition 3], which captures
either unpredictability or indistinguishability (together, a
security property) of some primitive implicit in the descrip-
tion of the experiment — for example, an experiment in the
ROM might play the IND-CPA security game of RSA-OAEP
with the adversary, hence captures the IND-CPA security of
RSA-OAEP. Recall that in Section 5.2, we explained how to
formulate search/decision assumptions as indistinguishability.
The same applies here — unpredictability is modeled as
E ≈ 0 and indistinguishability is modeled as E ≈ 1

2 . We
show that security properties in the ROM can be lifted to
AI-ROM with the help of a salting scheme.

Consider ROM of type domro → {0, 1}mro and let EOro

be an experiment that is black-box and straight-line in the
adversary, which is given the same oracle given to E. Let
M ′

A, T
′
A, Q

′
A, ε

′ be the parameters of E ≈ 0 or E ≈ 1
2 , and

T ′
E , Q

′
E the complexities of E itself (the experiment is

assumed to be uniform).
Let dom→ {0, 1}m be the type of AI-ROM and

(HashGen,Hash) a secure salting scheme. Define EO
airom

working with (nu, ai, AO) as follows.

• Sample w $← nu() and z $← ai(O). Run hk $←
HashGen().

• Run and output EHash(hk,·)(AO(w, z, hk)).

Let the parameters of Eairom ≈ 0 or Eairom ≈ 1
2 be

S,M, T,Q, ε.
Denote by S the simulator of the salting scheme and

Ssalt,Msalt, Tsalt, Qsalt, εsalt the parameters of its security. Let
(D,Eval) be a (2λ, εprf)-secure PRF with key length |k|.
Let TS be the per-query time of SEval(k,·),Oro . As usual, all
integer-valued parameters are assumed to be bounded by 2λ.

Theorem 13 (¶). In the RAM model, the asymptotic
versions of Eairom ≈ 0 or Eairom ≈ 1

2 can be derived if
ε ≥ εsalt + 2−λ + εprf(λprf) + ε′, and (for salting),

Ssalt ≥ S, Msalt ≥M, Tsalt ≥ T + T ′
E , Qsalt ≥ Q+Q′

E ,

and (for simulation using PRF) λprf ≥ S + Cram(λ+ 1), and
(for reduction to E),

M ′
A ≥M + S + |k|+ C(λ+ 1),

T ′
A ≥ T +Q · TS + Cram(λ+ 1),

Q′
A ≥ Q.

Compared with [11], we incur less loss in reduction to the
(computational) security in ROM, thanks to the efficient
simulation of AI-ROM.

Proof (Theorem 13). Always sample uniformly random
O : dom→ {0, 1}m and Oro : domro → {0, 1}mro . We go
through the following hybrids.

• H0 is Eairom, i.e., run and output

EHash(hk,·)(AO(w, z, hk))

with w $← nu(), z $← ai(O), hk $← HashGen().

• In H1, we replace Hash(hk, ·) by Oro. Run and output

EOro(ASO,Oro
(w, z, hk))

with w $← nu(), z $← ai(O), hk $← S().

H0 ≈ H1 follows from the conditions for salting and
incurs advantage error εsalt.

• In H2, we simulate (O, z) using PRF. Sample
k $← Dλprf,dom,m and run and output

EOro(ASEval(k,·),Oro
(w, z, hk))

with w $← nu(), z $← ãi(k), hk $← S().

H1 ≈ H2 follows from Theorem 3 and incurs advan-
tage error (2−λ + εprf(λprf)).

By our choice of parameters, the advantage of H2 ≈ 0 or
H2 ≈ 1

2 is bounded by ε′. The proof completes by hybrid
argument.

Example Instantiations. The simplest instantiation of a
salting scheme in AI-ROM of type {0, 1}2λ → {0, 1}λ that
creates a random oracle of type {0, 1}λ → {0, 1}λ is as
follows.

• HashGen() samples and outputs hk $← {0, 1}λ.
• HashO(hk, x) outputs O(hk∥x).

Its security proof follows the presampling–rerouting–undoing
blueprint explained at the beginning of this section. The
simulator simply chooses to direct query to O or Oro
depending on whether the prefix matches hk. Therefore,
there is essentially no simulator overhead during reduction
to ROM security, implying an arbitrarily tight reduction using
PRF with fast evaluation.

Any salting scheme can be composed with an indiffer-
entiable domain extension scheme as needed.

6.2. Non-Interactive Zero-Knowledge in AI-ROM

We show how to construct NIZK in AI-ROM starting
from NIZK in ROM with statistical soundness and computa-
tional zero-knowledge against polynomial-time adversaries.

Definition 16 (NIZK in ROM or AI-ROM). Let L ⊆ {0, 1}∗
and O be either AI-ROM or ROM. A non-interactive zero-
knowledge (NIZK) proof for L consists of two algorithms:

• PO(1λ, x) takes x ∈ L as input and outputs a
proof π ∈ {0, 1}∗. The algorithm P does not have
to be efficient, but π must be polynomially long
in |x|, λ.

• V O(1λ, x, π) takes x, π as input and outputs a single
bit. It is efficient.

The scheme must be complete, i.e., for all λ ∈ N and x ∈ L,
it holds that Pr[V O(1λ, x, PO(1λ, x))] = 1.

The NIZK is statistically sound if for all λ ∈ N
and x /∈ L and inefficient algorithm P̃O, it holds that
Pr[V O(1λ, x, P̃O(x)) = 1] ≤ 2−λ.

Definition 17 (zero-knowledge in ROM). A NIZK for L in
ROM is zero-knowledge if there exists an efficient stateful
simulator S such that Ereal ≈ Esim, where the experiments
with adversary A work as follows.

• Sample w $← nu(λ).
• In Ereal, launch AOro(w) and receive from it x ∈ L.

Run π $← POro(1λ, x) and send π to A.
• In Esim, launch AS(w) and receive from it x ∈ L.

Run π $← S(x) and send π to A.
• A continues with its oracle and outputs some string,

which is the output of the experiment.

Ereal ≈ Esim is a standard-model indistinguishability, which
means the distinguisher taking the output of one of the
experiments has no oracle access.

NIZK in ROM can be obtained by taking any NIZK in the
common random string model, such as [47] and [48], and
use the output of the random oracle at a few fixed points as
the CRS.

Definition 18 (zero-knowledge in AI-ROM). A NIZK for L
in AI-ROM is zero-knowledge if for all (nu, ai, A), there
exists an efficient simulator (ñu,S) such that Ereal ≈ Esim,
where the experiments work as follows.

• In Ereal, sample w $← nu(λ), random O,
z $← ai(λ,O). Launch AO(1λ, w, z) and receive
from it x ∈ L. Run π $← PO(1λ, x) and send π
to A. The adversary A continues to run with oracle
access to O, and eventually outputs some string,
which is the output of the experiment.

• In Esim, sample w̃ $← ñu(λ). Run and output
S(1λ, w̃).

Ereal ≈ Esim is a standard-model indistinguishability, which
means the distinguisher taking the output of one of the
experiments has no oracle nor oracle-dependent auxiliary
input.

We remark that Definition 18 insists that the simulator be
standard-model efficient, without the help of AI-ROM.

NIZK in AI-ROM from NIZK in ROM. Let (Pro, Vro) a
NIZK for L in ROM {0, 1}λ → {0, 1}λ. The following is a
NIZK for L in AI-ROM {0, 1}3λ → {0, 1}2λ.

• PO(1λ, x) samples hk $← {0, 1}λ, runs πro
$←

P
O(hk∥·)(12λ,x)
ro , and outputs (hk, πro).

• V O(1λ, x, hk, πro) runs V O(hk∥·)(12λ, x, πro).

Soundness follows by a union bound. The simulator works
as follows.

• Let ñu be the standard-model advice promised by
Theorem 3.

• On input w̃ = (w, z, k), sample hk $← {0, 1}λ,
launch Sro, and run AO(w, z) with

O(hk′∥y′) =

{
Sro(y

′), hk = hk′;

Eval(k, hk′∥y′), otherwise.

• When A chooses x, send it to Sro and receive πro.
Return (hk, πro) to A.

• Continue A with its oracle and output whatever A
outputs.

Acknowledgments. Yevgeniy Dodis was supported by NSF
CNS-2055578 and gifts from JP Morgan, Protocol Labs,
Stellar, and Algorand Foundation. Aayush Jain was supported
by gifts from CyLab of CMU and Google. Huijia Lin and Ji
Luo were supported by NSF CNS-1936825 (CAREER), NSF
CNS-2026774, a JP Morgan AI Research Award, a Cisco
Research Award, and a Simons Collaboration on the Theory
of Algorithmic Fairness. Daniel Wichs was supported by
NSF CNS-1750795, NSF CNS-2055510, and the JP Morgan
Faculty Research Award. The authors thank the anonymous
reviewers of FOCS 2024 for their constructive feedback.

References

[1] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in ACM CCS 93, D. E. Denning,
R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, Eds. ACM Press,
Nov. 1993, pp. 62–73.

[2] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle method-
ology, revisited (preliminary version),” in 30th ACM STOC. ACM
Press, May 1998, pp. 209–218.

[3] S. Goldwasser and Y. T. Kalai, “On the (in)security of the Fiat-Shamir
paradigm,” in 44th FOCS. IEEE Computer Society Press, Oct. 2003,
pp. 102–115.

[4] M. Hellman, “A cryptanalytic time-memory trade-off,” IEEE
Transactions on Information Theory, vol. 26, no. 4, pp. 401–406,
1980. [Online]. Available: https://doi.org/10.1109/TIT.1980.1056220

[5] A. Fiat and M. Naor, “Rigorous time/space tradeoffs for inverting
functions,” in 23rd ACM STOC. ACM Press, May 1991, pp. 534–541.

[6] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,”
in CRYPTO 2003, ser. LNCS, D. Boneh, Ed., vol. 2729. Springer,
Heidelberg, Aug. 2003, pp. 617–630.

[7] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, “Simple constructions
of almost k-wise independent random variables,” in 31st FOCS. IEEE
Computer Society Press, Oct. 1990, pp. 544–553.

[8] A. De, L. Trevisan, and M. Tulsiani, “Time space tradeoffs for attacks
against one-way functions and PRGs,” in CRYPTO 2010, ser. LNCS,
T. Rabin, Ed., vol. 6223. Springer, Heidelberg, Aug. 2010, pp.
649–665.

[9] D. Unruh, “Random oracles and auxiliary input,” in CRYPTO 2007,
ser. LNCS, A. Menezes, Ed., vol. 4622. Springer, Heidelberg, Aug.
2007, pp. 205–223.

[10] Y. Dodis, S. Guo, and J. Katz, “Fixing cracks in the concrete: Random
oracles with auxiliary input, revisited,” in EUROCRYPT 2017, Part II,
ser. LNCS, J.-S. Coron and J. B. Nielsen, Eds., vol. 10211. Springer,
Heidelberg, Apr. / May 2017, pp. 473–495.

https://doi.org/10.1109/TIT.1980.1056220

[11] S. Coretti, Y. Dodis, S. Guo, and J. P. Steinberger, “Random oracles
and non-uniformity,” in EUROCRYPT 2018, Part I, ser. LNCS, J. B.
Nielsen and V. Rijmen, Eds., vol. 10820. Springer, Heidelberg,
Apr. / May 2018, pp. 227–258.

[12] R. Gennaro and L. Trevisan, “Lower bounds on the efficiency of
generic cryptographic constructions,” in 41st FOCS. IEEE Computer
Society Press, Nov. 2000, pp. 305–313.

[13] N. Gravin, S. Guo, T. C. Kwok, and P. Lu, “Concentration bounds
for almost k-wise independence with applications to non-uniform
security,” in 32nd SODA, D. Marx, Ed. ACM-SIAM, Jan. 2021, pp.
2404–2423.

[14] D. Unruh, “Random oracles and auxiliary input,” Cryptology ePrint
Archive, Report 2007/168, 2007, https://eprint.iacr.org/2007/168.

[15] D. Jetchev and K. Pietrzak, “How to fake auxiliary input,” in TCC 2014,
ser. LNCS, Y. Lindell, Ed., vol. 8349. Springer, Heidelberg, Feb.
2014, pp. 566–590.

[16] Y.-H. Chen, K.-M. Chung, and J.-J. Liao, “On the complexity of
simulating auxiliary input,” in EUROCRYPT 2018, Part III, ser. LNCS,
J. B. Nielsen and V. Rijmen, Eds., vol. 10822. Springer, Heidelberg,
Apr. / May 2018, pp. 371–390.

[17] C. Gentry and D. Wichs, “Separating succinct non-interactive ar-
guments from all falsifiable assumptions,” in 43rd ACM STOC,
L. Fortnow and S. P. Vadhan, Eds. ACM Press, Jun. 2011, pp.
99–108.

[18] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” Journal of the ACM, vol. 33, no. 4, pp. 792–807, Oct.
1986.

[19] O. Goldreich, “Candidate one-way functions based on expander
graphs,” 2000.

[20] K. S. Kedlaya and C. Umans, “Fast polynomial factorization and
modular composition,” SIAM Journal on Computing, vol. 40, no. 6,
pp. 1767–1802, 2011. [Online]. Available: https://doi.org/10.1137/
08073408X

[21] W.-K. Lin, E. Mook, and D. Wichs, “Doubly efficient private infor-
mation retrieval and fully homomorphic RAM computation from ring
LWE,” in STOC 2023, 2023, pp. 595–608.

[22] R. Morris and K. Thompson, “Password security: A case history,”
Communications of the ACM, vol. 22, no. 11, pp. 594–597, 1979.
[Online]. Available: https://doi.org/10.1145/359168.359172

[23] B. Applebaum and P. Raykov, “Fast pseudorandom functions based
on expander graphs,” in TCC 2016-B, Part I, ser. LNCS, M. Hirt and
A. D. Smith, Eds., vol. 9985. Springer, Heidelberg, Oct. / Nov. 2016,
pp. 27–56.

[24] M. Cryan and P. B. Miltersen, “On pseudorandom generators in NC0,”
in MFCS 2001, ser. Lecture Notes in Computer Science, J. Sgall,
A. Pultr, and P. Kolman, Eds., vol. 2136. Springer, 2001, pp. 272–284.

[25] U. Feige, “Relations between average case complexity and approxi-
mation complexity,” in 34th ACM STOC. ACM Press, May 2002,
pp. 534–543.

[26] E. Mossel, A. Shpilka, and L. Trevisan, “On e-biased generators in
NC0,” in 44th FOCS. IEEE Computer Society Press, Oct. 2003, pp.
136–145.

[27] U. Feige, J. H. Kim, and E. Ofek, “Witnesses for non-satisfiability
of dense random 3CNF formulas,” in 47th FOCS. IEEE Computer
Society Press, Oct. 2006, pp. 497–508.

[28] J. Cook, O. Etesami, R. Miller, and L. Trevisan, “Goldreich’s one-way
function candidate and myopic backtracking algorithms,” in TCC 2009,
ser. LNCS, O. Reingold, Ed., vol. 5444. Springer, Heidelberg, Mar.
2009, pp. 521–538.

[29] A. Bogdanov and Y. Qiao, “On the security of Goldreich’s one-way
function,” in APPROX/RANDOM 2009, ser. Lecture Notes in
Computer Science, I. Dinur, K. Jansen, J. Naor, and J. D. P. Rolim,
Eds., vol. 5687. Springer, 2009, pp. 392–405. [Online]. Available:
https://doi.org/10.1007/978-3-642-03685-9 30

[30] B. Applebaum, B. Barak, and A. Wigderson, “Public-key cryptography
from different assumptions,” in 42nd ACM STOC, L. J. Schulman,
Ed. ACM Press, Jun. 2010, pp. 171–180.

[31] B. Applebaum, A. Bogdanov, and A. Rosen, “A dichotomy for local
small-bias generators,” in TCC 2012, ser. LNCS, R. Cramer, Ed., vol.
7194. Springer, Heidelberg, Mar. 2012, pp. 600–617.

[32] A. Bogdanov and Y. Qiao, “On the security of Goldreich’s one-way
function,” Computational Complexity, vol. 21, no. 1, pp. 83–127, 2012.

[33] B. Applebaum, “Pseudorandom generators with long stretch and low
locality from random local one-way functions,” in 44th ACM STOC,
H. J. Karloff and T. Pitassi, Eds. ACM Press, May 2012, pp. 805–816.

[34] ——, “Pseudorandom generators with long stretch and low
locality from random local one-way functions,” SIAM Journal on
Computing, vol. 42, no. 5, pp. 2008–2037, 2013. [Online]. Available:
https://doi.org/10.1137/120884857

[35] R. O’Donnell and D. Witmer, “Goldreich’s PRG: Evidence
for near-optimal polynomial stretch,” in CCC 2014. IEEE
Computer Society, 2014, pp. 1–12. [Online]. Available: https:
//doi.org/10.1109/CCC.2014.9

[36] B. Applebaum and S. Lovett, “Algebraic attacks against random local
functions and their countermeasures,” in 48th ACM STOC, D. Wichs
and Y. Mansour, Eds. ACM Press, Jun. 2016, pp. 1087–1100.

[37] E. Miles and E. Viola, “Substitution-permutation networks,
pseudorandom functions, and natural proofs,” Journal of the
ACM, vol. 62, no. 6, pp. 46:1–46:29, 2015. [Online]. Available:
https://doi.org/10.1145/2792978

[38] D. Micciancio and M. Walter, “On the bit security of cryptographic
primitives,” in EUROCRYPT 2018, Part I, ser. LNCS, J. B. Nielsen
and V. Rijmen, Eds., vol. 10820. Springer, Heidelberg, Apr. / May
2018, pp. 3–28.

[39] Y. Dodis, A. Jain, H. Lin, J. Luo, and D. Wichs, “How to simulate
random oracles with auxiliary input,” 2024, to appear in Cryptology
ePrint Archive.

[40] S. Guo, Q. Li, Q. Liu, and J. Zhang, “Unifying presampling via
concentration bounds,” in TCC 2021, Part I, ser. LNCS, K. Nissim
and B. Waters, Eds., vol. 13042. Springer, Heidelberg, Nov. 2021,
pp. 177–208.

[41] H. Cramér, “On the order of magnitude of the difference between
consecutive prime numbers,” Acta Arithmetica, vol. 2, no. 1, pp. 23–46,
0 1936.

[42] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Annals of
Mathematics, vol. 160, no. 2, pp. 781–793, 2004. [Online]. Available:
https://doi.org/10.4007/annals.2004.160.781

[43] M. Clegg, J. Edmonds, and R. Impagliazzo, “Using the Groebner
basis algorithm to find proofs of unsatisfiability,” in 28th ACM STOC.
ACM Press, May 1996, pp. 174–183.

[44] P. K. Kothari, R. Mori, R. O’Donnell, and D. Witmer, “Sum of squares
lower bounds for refuting any CSP,” in 49th ACM STOC, H. Hatami,
P. McKenzie, and V. King, Eds. ACM Press, Jun. 2017, pp. 132–145.

[45] S. R. Allen, R. O’Donnell, and D. Witmer, “How to refute a random
CSP,” in 56th FOCS, V. Guruswami, Ed. IEEE Computer Society
Press, Oct. 2015, pp. 689–708.

[46] Y. Dodis, P. Farshim, S. Mazaheri, and S. Tessaro, “Towards defeating
backdoored random oracles: Indifferentiability with bounded adaptiv-
ity,” in TCC 2020, Part III, ser. LNCS, R. Pass and K. Pietrzak, Eds.,
vol. 12552. Springer, Heidelberg, Nov. 2020, pp. 241–273.

[47] U. Feige, D. Lapidot, and A. Shamir, “Multiple non-interactive zero
knowledge proofs based on a single random string (extended abstract),”
in 31st FOCS. IEEE Computer Society Press, Oct. 1990, pp. 308–317.

[48] J. Groth, R. Ostrovsky, and A. Sahai, “Non-interactive zaps and new
techniques for NIZK,” in CRYPTO 2006, ser. LNCS, C. Dwork, Ed.,
vol. 4117. Springer, Heidelberg, Aug. 2006, pp. 97–111.

https://eprint.iacr.org/2007/168
https://doi.org/10.1137/08073408X
https://doi.org/10.1137/08073408X
https://doi.org/10.1145/359168.359172
https://doi.org/10.1007/978-3-642-03685-9_30
https://doi.org/10.1137/120884857
https://doi.org/10.1109/CCC.2014.9
https://doi.org/10.1109/CCC.2014.9
https://doi.org/10.1145/2792978
https://doi.org/10.4007/annals.2004.160.781

	Introduction
	Random Oracles.
	Non-Uniformity.
	Auxiliary-Input ROM.1000
	Proving Security in AI-ROM.1000
	Presampling Technique.

	Limitations of Presampling
	Computational Applications?
	Unruh's Conjecture.
	Need for Better Simulation.

	Our Results in a Nutshell
	Key Idea: Use a PRF.1000
	Super-Fast PRF.1000
	Applications.

	Our Results in Detail and Techniques
	Applications.
	A Four-Step Generic Technique.

	Constructing Fast Pseudorandom Functions
	Leveraging Sparsity of Goldreich's Function.
	Detour: Goldreich's One-Way Function/PRG.
	Efficient Weak PRF.
	Strong PRF via t-Wise Independence.
	Fast Evaluation via Polynomial Preprocessing.
	Relation with TCC:AppRay16b.

	Preliminaries
	Symbols.
	Auxiliary-Input Random Oracle Model
	Leakage Simulation
	Exponentially Secure Pseudorandom Functions

	Simulating AI-ROM Using PRF
	Comparison with Presampling
	Proofs

	PRF with Fast RAM Evaluation
	Construction from Goldreich's Function
	Construction

	Graph Sampler
	Discussion on the Assumption

	Direct Applications
	Resolving Unruh's Conjecture
	Tighter Reductions from Standard-Model Assumptions
	Assumptions as Indistinguishability.
	Circuits.
	RAM.
	Degenerate Cases and Other Remarks.

	Combining Presampling and Our Simulation
	Salting Defeats Auxiliary Information
	Security Properties as Indistinguishability.
	Example Instantiations.

	Non-Interactive Zero-Knowledge in AI-ROM
	NIZK in AI-ROM from NIZK in ROM.
	Acknowledgments.

	References

