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AknowledgmentsA lot of people have ontributed to this thesis, and made my entire stay at MIT asenjoyable and ful�lling as it has been. Most of all, I would like to thank my parentsfor their great love and support in all stages of my life. I would also like to thank myo-authors Ran Canetti, Shai Halevi, Eyal Kushilevitz, Amit Sahai and Adam Smithfor their ollaboration on various stages of my researh that has led to this thesis. Inpartiular, most of this thesis is based on the papers [17, 24℄.Next, I would like to thank my advisor Madhu Sudan for having his door alwaysopen and for helping me to diret my researh and to stay foused. Then, I would liketo express great gratitude to Silvio Miali, who literally started me as a ryptographer\over lunh" whih turned into my �rst ryptographi paper. Silvio also helped mewith a great piee advie in many-many situations, and ollaborating with him wasa true pleasure. Many thanks to Ron Rivest and Sha� Goldwasser, who are thefounding members of the ryptography group at MIT, and from whom I learned alot. In addition, Sha� has taught my �rst ourse in Cryptography, and Ron was theone who invented All-Or-Nothing Transforms [51℄. I would also like to thank VitorBoyko, who was �rst to put the notion of the All-or-Nothing Transform to the formallevel [16℄, and whose great work was the true starting point of this thesis. I hadseveral very helpful disussions with Vitor, who was also kind enough to let me usesome of his �gures in this thesis.I also had a lot of truly illuminating and fun disussions with some of the fellowstudents at MIT. Mainly, I would like to thank Salil Vadhan, who always had timefor my \simple questions", some of whih turned into several hour disussions. Inaddition, Salil together with Lua Trevisan were the ones who introdued me to theonept of extrators, whih beame ruial building bloks in several onstrutionsin this thesis. In partiular, Salil suggested to me to slightly generalize his paper withLua [62℄ and to formally de�ne Æ-sure extrators, whih has led to the onstrution ofadaptively seure Exposure-Resilient Funtions. I also had a lot of great onversationswith Venkatesan Guruswami, who also helped me on some of the oding theory stu�.5



It was also a lot of fun working with Amit Sahai. Somehow, Amit's mere presene hasstimulated a lot of ideas to ome out of my head, some of whih beame importantpiees of this thesis. Amit also possesses some great managerial skills and a goodsense of humor, ontrary to some adversarial beliefs. Speial thanks to Eri Lehman,who shares the same love to \stupid puzzles" as I do. As a result, we wasted a lotof time solving suh puzzles, but had great fun doing so. I would also like to thanksome other great students I met at MIT: Anna Lysyanskaya for many fun times, SofyaRaskhodnikova for being a great friend, Mathias Ruhl for ollaborating on �nding asimple proof that semanti seurity is equivalent to indistinguishability, Adam Smithfor his enthusiasm whih arried over to me, and Leo Reyzin and Stanislaw Jareki formany fun onversations. Finally, let me thank Dan Spielman who helped to greatlysimplify the presentation of the lower bound on perfet All-Or-Nothing Transforms.Another person who was extremely useful in starting my researh areer wasSanjeev Khanna. Sanjeev put a lot of time into me, gave me a lot of great advie,and has taught me many things, espeially in algorithms and optimization. Twosummers at Bell Labs under his supervision will always be a fond memory. I wouldalso like to thank the IBM T.J. Watson Researh Center, and in partiular Tal Rabinand her entire wonderful ryptography group. The summer spent in this group wastruly fantasti, and the researh eventually leading to this thesis was started there(from a asual omment by Eyal Kushilevitz). Finally, thank you, MIT, for the greattime I had here!1

1I am sure there are a lot of people whom I forgot to mention. Please, forgive me, but thanks!!!you were great!!! 6



Contents
1 Introdution and Our Results 112 Preliminaries 252.1 Basi Notation and Terminology . . . . . . . . . . . . . . . . . . . . . 262.2 Distributions and Indistinguishability . . . . . . . . . . . . . . . . . . 272.3 Semanti Seurity vs. Indistinguishability . . . . . . . . . . . . . . . . 312.4 Cryptographi Basis: OWF, PRG and PRF . . . . . . . . . . . . . . . 362.5 Symmetri-Key Enryption . . . . . . . . . . . . . . . . . . . . . . . 382.6 Linear Error-Correting Codes . . . . . . . . . . . . . . . . . . . . . . 402.7 Strong Extrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422.8 Deterministi Extrators and t-wise Independent Funtions . . . . . . 442.8.1 Deterministi and Æ-sure Extrators . . . . . . . . . . . . . . . 452.8.2 t-wise Independent Funtion Families . . . . . . . . . . . . . . 472.8.3 t-wise Independent Funtions as Extrators . . . . . . . . . . 482.9 Quadrati Forms and Fourier Analysis . . . . . . . . . . . . . . . . . 513 De�nitions and Disussion 543.1 Exposure-Resilient Funtions . . . . . . . . . . . . . . . . . . . . . . . 543.2 Appliations of ERF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573.3 All-Or-Nothing Transforms . . . . . . . . . . . . . . . . . . . . . . . . 613.4 Appliations of AONT . . . . . . . . . . . . . . . . . . . . . . . . . . 684 Exposure-Resilient Funtions (ERF) 777



4.1 Perfet ERF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784.1.1 Constrution . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.1.2 Strong Impossibility Result . . . . . . . . . . . . . . . . . . . 804.2 Statistial ERF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814.2.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824.2.2 Constrution using Strong Extrators . . . . . . . . . . . . . . 834.3 Computational ERF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874.4 Adaptively Seure ERF . . . . . . . . . . . . . . . . . . . . . . . . . . 894.4.1 Statistial Adaptive ERF . . . . . . . . . . . . . . . . . . . . . 894.4.2 Constrution using t-wise Independent Funtions . . . . . . . 935 All-Or-Nothing Transforms (AONT) 975.1 Perfet AONT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.1.1 Perfet (seret-only) AONT vs. perfet ERF . . . . . . . . . . 995.1.2 Impossibility Result . . . . . . . . . . . . . . . . . . . . . . . . 1035.1.3 Balaned Colorings of the Hyperube . . . . . . . . . . . . . . 1045.1.4 Proof of the Lower Bound (Theorem 15) . . . . . . . . . . . . 1075.2 Simple \Universal" Constrution using ERF . . . . . . . . . . . . . . 1135.3 Towards seret-only AONT . . . . . . . . . . . . . . . . . . . . . . . . 1175.4 Computational AONT implies OWFs . . . . . . . . . . . . . . . . . . 1205.5 Worst-ase/Average-ase Equivalene of AONT . . . . . . . . . . . . . 1226 Conlusions 128

8



List of Figures
1-1 All-Or-Nothing Transform. . . . . . . . . . . . . . . . . . . . . . . . . 161-2 Exposure-Resilient Funtion. . . . . . . . . . . . . . . . . . . . . . . . 172-1 Extrators and Strong Extrators. . . . . . . . . . . . . . . . . . . . . 433-1 Gradual exposure of random keys, or how to maintain a random seret. 593-2 All-Or-Nothing Transform (with seret and publi outputs). . . . . . 633-3 Optimal Asymmetri Enryption Padding. . . . . . . . . . . . . . . . 653-4 AONT's to enhane seurity of blok iphers. . . . . . . . . . . . . . . 713-5 AONT's to enhane eÆieny of blok iphers. . . . . . . . . . . . . . 723-6 AONT's to perform remotely keyed enryption. . . . . . . . . . . . . . 744-1 Statistial ERF from a Strong Extrator. . . . . . . . . . . . . . . . . 844-2 Statitial ERF + PRG ) Computational ERF. . . . . . . . . . . . . . 875-1 OAEP with H being the identity funtion and G being an ERF f . . . 119

9



List of Tables
3.1 Comparison of AONT's and ERF's. . . . . . . . . . . . . . . . . . . . 68

10



Chapter 1
Introdution and Our Results
Seret Keys. In very general terms, ryptography an be de�ned as a branh ofomputer siene aimed to protet the dislosure of seret information to unautho-rized parties. The exat meaning of \dislosure", \seret information", \unauthorizedparties" and many other related terms varies dramatially from appliation to appli-ation, and ruially depends on the exat ryptographi model we use to abstratthe reality. However, most ryptographi models an be desribed in terms of thefollowing piees (only the �rst of whih will be relevant to the subsequent disussion):1. A bunh of seret entities (usually alled keys) known only to \legitimate users".We notie that we do not restrit our attention to so alled \ryptographi" keys,like seret keys for enryption, signatures, identi�ation, et. For example, a\seret key" an be a on�dential doument, a seret tehnology, a patent, apiee of proprietary software, a opyrighted audio/video reording, a databaseof employee salaries, reords of �nanial transations, et. For the lak of abetter term, all of the above seret entities will be alled \seret keys". Forsimpliity, we will also assume that there is only a single key that needs to bekept seret.2. The desired funtionality of the system (by legitimate users).3. The (often somehow limited) apabilities of the \illegitimate users" (typially11



assumed to be oordinated by a single entity, alled the adversary).4. Finally, the seurity laim we an make about our system.In the above generi desription, the thing onerning us the most will be the impliit,but nevertheless fundamental assumption that the seret key has to be kept ompletelyhidden from the adversary.1 This assumption is so basi and so \obviously needed"for any reasonable notion of seurity, that one may wonder why to even bring it up.But what happens if this most basi assumption breaks down?The Problem of Key Exposure. Namely, what happens if the serey of our keybeomes (partially) ompromised? After a brief initial surprise of being asked suhan obvious question, the equally obvious answers (stated in the order of informationontent) would be:� \I don't know".� \Well... make sure it does not".� \This is outside the model of onventional ryptography".� \Good luk..." (meaning \you are doomed", as the adversary knows the sameinformation as the legitimate user).While these (reasonable) answers might suggest that this is a strange question toask, it has been noted that key exposure is one of the greatest threats to seurity inpratie (see [7℄). For a onrete reent example, at the Rump session of CRYPTO '98van Someren [58℄ illustrated a breathtakingly simple attak by whih keys stored inthe memory of a omputer ould be identi�ed and extrated, by looking for regions ofmemory with high entropy. Within weeks of the appearane of the followup paper [55℄,a new generation of omputer viruses emerged that tried to use these ideas to stealseret keys [25℄. More abstratly, one an imagine very sophistiated attaks to break1Aside from the information that the adversary an get from his \legal interation" with thesystem. But this is taken into aount when de�ning the seurity of the system.12



the seurity of a given system, but getting the seret key, if possible, would be themost trivial way to ompletely demolish any seurity laim!2Previous Solutions. The most widely onsidered solutions to the problem of keyexposure are distribution of keys aross multiple servers via seret sharing [54, 38, 13℄and protetion using speialized hardware. Instantiations of the key distributionparadigm inlude threshold ryptosystems [22℄ and proative ryptosystems [35℄. Dis-tribution aross many systems, however, is quite ostly. Suh an option may be avail-able to large organizations, but is not realisti for the average user. Similarly, the useof speially proteted hardware (suh as smartards) an also be ostly, inonvenient,or inappliable in many ontexts.Another approah to the problem of key exposure is that of forward-seurity (or,protetion from the exposure of \past" keys) onsidered by DiÆe et al. [23℄ in theontext of key exhange, and by Anderson [3℄, Bellare and Miner [7℄ and Abdalla andReyzin [2℄ in the ontext of signature shemes. In these works the seret key is beingdynamially updated (without a�eting the publi information). The objetive is toprevent an adversary that gains urrent seret keys from being able to derypt pastmessages or forge signatures on messages \dated" in the past. Inevitably, however, thesystem an no longer be used in the future one the urrent keys have been exposed.Partial Key Exposure. As we pointed out, serey of keys is a fundamentalassumption of onventional ryptography. While partial solutions exist, not muhan be done sine the adversary has the same information as the legitimate userafter the seret has been exposed. Instead, we will look at a slight relaxation of thisquestion, whih looks onsiderably more hopeful. Namely, we assume that out seretis not ompletely exposed. Rather, the adversary learns most, but not all of the seret.For example, imagine using a smartard to protet our key. While it is quitereasonable to assume that the smartard is tamper-resistant enough not to leak theentire key, it might be a bit too dangerous to be on�dent that not even a small2As a famous Russian philosopher Koz'ma Prutkov said: \Zri v koren' " (\look into the root").Two ommon interpretations of this amazingly deep phrase are \seek the obvious" and \get to thebottom of things". See [47℄ for more information about Koz'ma Prutkov.13



part of the key an be extrated. Or imagine sending a sensitive information oversome ommuniation hannel, whih is believed to be seure (so that no enryptionis performed, or the parties did not have a hane to exhange keys yet). However,the adversary manages to partially break into the hannel and overhear some portionof the ommuniation. Alternatively, the hannel is known to be reliable for theauthorized parties, and is known to be somewhat noisy to the adversary. Whileenryption would be a good solution, it ould be an overkill sine we an exploit thenoise introdued to the adversary. Another situation would be when the adversary istrying to opy a large on�dential doument, but the intrusion detetion system utthe transmission in the middle. Yet another example would be a large �le opied toseveral oppy disks (it is too large to �t onto one disk), and one of these disks beinglost, stolen or opied.In the same vein, we may purposely (e.g., for seurity reasons) split the keyinto physial shares (rather than using spae-ineÆient onventional seret sharingshemes), and to store these shares in di�erent parts of memory (or even on di�erentmahines). But then we annot in general argue the seurity sine leaking even onephysial share may make the underlying appliation inseure. It would be nie to�nd a way to make this simple approah work. Alternatively, a natural idea wouldbe to use a onventional seret sharing sheme to split the key into shares, and thenattempt to provide protetion by storing these shares instead of storing the seretkey diretly. However, seret sharing shemes only guarantee seurity if the adver-sary misses at least one share in its entirety. Unfortunately, eah share must be fairlylarge (about as long as the seurity parameter). Hene, even if an adversary onlylearns a small fration of all the bits, it ould be that it learns a few bits from eahof the shares, and hene the safety of the seret an no longer be guaranteed.3Exposure-Resilient Cryptography. In fat, standard ryptographi de�nitionsand onstrutions do not guarantee seurity even if a tiny fration of the seret key is3Indeed, our tehniques provide, for ertain parameters, highly eÆient \gap" seret sharingshemes, where the size of seret shares an be as small as one bit! Inevitably, however, there is agap between the number of people who an reonstrut the seret and the number of people who\get no information" about the seret. 14



exposed. Indeed, many onstrutions beome provably inseure (the simplest examplewould be the \one-time pad" enryption), while the seurity of others beomes unlear(and a omplete mess to verify!). In other words, onventional ryptographi systemsare not (and should not be!) designed so as to tolerate partial key exposure. In thisthesis we develop the notion of Exposure-Resilient Cryptography, one of whose maingoal is to identify and to build general ryptographi primitives whih are obliviousto the ryptographi system we are using, but an make any suh system provablyseure against almost total key exposure. More generally than this, the objetive ofExposure-Resilient Cryptography will be to build information strutures suh that al-most omplete (intentional or unintentional) exposure of suh a struture still protetsertain seret information embedded in this struture. In partiular, one we de�nemore preisely the ryptographi primitives we develop, these primitives will provevery useful in many appliations beyond the problem of partial key exposure. Theseappliations inlude seret sharing, seure ommuniation, seret-key exhange, moreseure and eÆient blok iphers, remotely keyed enryption, oin-ipping, fair in-formation exhange and others (see Setion 3). In other words, the tehniques forsolving the problem of partial key exposure will prove useful in may other areas,making Exposure-Resilient Cryptography a general useful tool.Without further delay, we are now ready to introdue the main primitives forExposure-Resilient Cryptography: All-Or-Nothing Transforms and Exposure-ResilientFuntions.All-Or-Nothing Transforms. Reently Rivest [51℄, motivated by di�erent se-urity onerns arising in the ontext of blok iphers, introdued an intriguing prim-itive alled the All-Or-Nothing Transform (AONT). Rivest's work was re�ned andextended by Boyko [16℄, whose de�nition we informally present below. An AONT isan eÆiently omputable randomized transformation T on strings suh that:� For any string x, given (all the bits of) T (x), one an eÆiently reover x.� There exists some threshold ` suh that any polynomial-time adversary that(adaptively) learns all but ` bits of T (x) obtains \no information" about x.15
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Figure 1-1: All-Or-Nothing Transform.This is informally illustrated in Figure 1-1.We observe that the AONT solves the problem of partial key exposure: rather thanstoring a seret key diretly, we store the AONT applied to the seret key. If we anbuild an AONT where the threshold value ` is very small ompared to the size of theoutput of the AONT, we obtain seurity against almost total exposure. Notie thatthis methodology applies to seret keys with arbitrary struture, and thus protetsall kinds of ryptographi systems. We also onsider more general AONT's that havea two-part output: a publi output that doesn't need to be proteted (but is used forinversion), and a seret output that has the exposure-resiliene property stated above.Suh a notion would also provide the kind of protetion we seek to ahieve, suÆes forall known appliations of AONT, and allows us muh more exibility. Thus, we refer tothe traditional notion of AONT as seret-only. As mentioned above, AONT has manyother appliations, suh as enhaning the seurity of blok-iphers [51, 21, 16℄, hashfuntions [57℄, seure ommuniation [10℄, making �xed-bloksize enryption shemesmore eÆient [37, 41, 4℄, gap seret sharing shemes [51, 17℄ and others [52, 16℄. Wewill survey these and other appliations later.16
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Figure 1-2: Exposure-Resilient Funtion.Exposure-Resilient Funtions. The key to our approah and our main on-eptual ontribution is the new notion of an Exposure-Resilient Funtion (ERF) | adeterministi funtion whose output appears random even if almost all the bits of theinput are revealed. This is informally illustrated in Figure 1-2.We demonstrate that the notion of ERF is very useful and interesting in its ownright. Consider for example an ERF with an output that is longer than its input |this an be seen a partiularly strong kind of pseudorandom generator, where thegenerator's output remains pseudorandom even if most of the seed is known. ERF'sprovide an alternative solution to AONT for the partial key exposure problem, sine(at least, in priniple) we an assume that our seret key is a truly random string R(say, the randomness used to generate the atual seret key). In suh a ase, we hooseand store a random value r and use ERF(r) in plae of R. In many settings (suhas in private-key ryptography) this alternative is muh more eÆient than AONT.Another appliation of ERF's is for proteting against gradual key exposure, where nobound on the amount of information the adversary obtains is assumed; instead, weassume only a bound on the rate at whih that the adversary gains information. Wewill later show other appliations of exposure-resilient funtions.Our Results. We give natural and simple de�nitions for ERF's and AONT's in theperfet, statistial and omputational settings (i.e., ahieving ideal, unonditionalwith a negligible error and omputational seurity, respetively). We then derive17



essentially optimal results onerning ERF's and AONT's in eah of these settings.These results an be briey summarized as follows.� Limitations of Perfet ERF's and AONT's. We show that perfet ERF'simply perfet AONT's with the \same parameters". Unfortunately, we provethat perfet AONT's (and thus ERF's) have very strong ombinatorial limita-tions. In essene, even if we allow exponential size output of the AONT, theenemy must miss at least half of the output in order to not learn anything aboutthe input! The result is interesting in its own right and shows the impossibilityof ertain \balaned" olorings of the hyperube. It also generalizes the lowerbound of Friedman [28℄ and further settles the onjetures of Chor et al. [20℄.� Constrution of Perfet ERF's and AONT's. On a positive side, we analmost math our lower bound (for both ERF's and AONT's) with a generalonstrution of [20, 10℄ that uses linear binary error-orreting odes.� Optimal Statistial ERF. We build an unonditionally seure ERF whoseoutput of size k is statistially lose to uniform provided one misses only ` =k + o(k) bits of the input (whose size an be arbitrarily large ompared to `).This is optimal up to the lower order term, sine we show that no unondition-ally seure ERF's exist when k < `. Thus, statistial ERF's an ahieve muhbetter exposure-resiliene than perfet ERF's, and their only limitation is thelimited output size (at most `). This statistial onstrution is one of our maintehnial ontribution, and it uses very powerful ombinatorial objets alledstrong randomness extrators.� Computational ERF's ) one-way funtions. Furthermore, we show thatany omputationally seure ERF with k < ` implies the existene of one-wayfuntions, whih is nearly the best we an hope to show due to the unonditionalonstrution above.� Computational ERF's from one-way funtions. We show how to on-strut, from any one-way funtion, for any " > 0, an ERF mapping an input of18



n bits to an output of any size polynomial in n, suh that as long as any n� bitsof the input remain unknown, the output will be pseudorandom. This an beviewed as an extremely strong pseudorandom generator, and shows that we anahieve essentially any oneivable setting of parameters in the omputationalsetting.� AONT's from ERF's. We give a simple \universal" onstrution of an AONTbased on any ERF, whih works in any setting (in partiular, statistial andomputational). Moreover, when used with the best ERF's in the orrespondingsetting, we get nearly optimal AONT's, as we explain below.� Optimal Statistial AONT's. In the statistial setting, we get an AONTwith resiliene ` = k + o(k) (where k is the size of the input, and the seretpart an be arbitrarily large ompared to `), whih is optimal up to the lowerorder term sine we show that ` � k for any statistial AONT. In fat, wean even get a seret-only AONT with ` = O(k) still. Again, these resultsdramatially beat our impossibility result for perfet AONT's, and show a largegap in exposure-resiliene between the perfet and the statistial settings.� Computational AONT's ) one-way funtions. Furthermore, the exis-tene of omputational AONT with ` < k, where k is the size of the input,implies the existene of one-way funtions. This is nearly the best we an hopeto show due to the statistial onstrution above.� Computational AONT's from any one-way funtion. If k is the lengthof the input, we get a publi output of length k, a seret output of essentiallyarbitrary size s, and ahieve resiliene ` = s� (for any � > 0). For example,setting s = k we an ahieve nearly optimal total output size 2k, seret andpubli parts of size k and very good resiliene ` = k�.� Towards seret-only AONT. We give another onstrution of a seret-onlyAONT based on any length-preserving funtion f suh that both [x 7! f(x)℄and [x 7! f(x) � x℄ are ERF's. This onstrution is similar to the OAEP19



onstrution of Bellare and Rogaway [8℄ (whih was shown to be an AONT in therandom orale model4 by Boyko [16℄), and so our analysis makes a step towardsabstrating the properties of the random orale needed to make the OAEP workas an AONT. It also has the advantage of being seret-only (without separatepubli and seret outputs) while retaining a relatively short output length.� Worst-ase/Average-ase AONT's. We also show a strutural result thata seemingly weaker \average-ase" de�nition of AONT is almost equivalent tothe standard \worst-ase" de�nition of AONT, by giving an eÆient transfor-mation that ahieves this goal.� Adaptively Seure ERF's and AONT's. Finally, we onsider the notion ofadaptively seure ERF's and AONT's. Contrary to the \non-adaptive" notionswe disussed above, where the adversary deides in advane whih bits of thestored seret he is going to observe (as long as he misses ` bits), here we allowthe adversary to aess the seret adaptively \one-bit-at-a-time", i.e. to base itsdeision of whih bits to read depending on the information that he gathered sofar. We all the ERF's and AONT's resilient against suh adversaries adaptivelyseure. It turns out that it is signi�antly more hallenging to build adaptivelyseure ERF's and AONT's. In partiular, some of our \non-adaptive" onstru-tions above do not work against adaptive adversaries. Based on the ideas ofTrevisan and Vadhan [62℄, we overome these diÆulties and give eÆient prob-abilisti onstrutions of adaptively seure ERF's and AONT's with essentiallythe same (and even slightly better) parameters than in the regular non-adaptivesetting.To reiterate our results, we show that perfet AONT's and ERF's, while oneptu-ally attrative, annot ahieve the exposure-resiliene we ultimately desire. On theother hand, statistial ERF's and AONT's an ahieve exellent exposure-resiliene.However, they are limited in terms of requiring that the adversary misses at least as4In this idealized model all the partiipants have publi aess to a erti�ed truly random funtion.20



many bits as the amount of information or randomness we are trying to hide. Fi-nally, we show that in the omputational setting we an overome even this limitationand ahieve essentially any desirable setting of parameters | all based only on theexistene of one-way funtions. In fat, for \interesting" settings of parameters, om-putational ERF's, AONT's and one-way funtions are \equivalent". Finally, we showthat all the above results and impliations an be extended to the adaptive setting,exept our main onstrutions beome probabilisti.In addition to the above results, we examine many additional properties andappliations of what we hope will beome important ryptographi primitives |Exposure-Resilient Funtions and All-Or-Nothing Transforms.Previous Work. Until this work, the only known analysis of an AONT andidatewas arried out by Boyko [16℄,5 who showed that Bellare and Rogaway's OptimalAsymmetri Enryption Padding (OAEP) [8℄ yields an AONT in the Random Oralemodel. Boyko's work was the �rst formal treatment of the AONT, stimulated alot of subsequent researh and ahieved essentially the best possible AONT's in theRandom Orale model. However, analysis in the Random Orale model provides onlya limited seurity guarantee for real-life shemes where the random orale is replaedwith an atual hash funtion [18℄. Subsequent to our work, Desai [21℄ gave anotherprovable onstrution of an AONT (based on the original informal onstrution ofRivest [51℄) and analyzed it in the so alled \ideal ipher model".6 This onstrutionalso ahieves a somewhat weaker seurity notion than the one we onsider here, eventhough this notion is strong enough for several important appliations of the AONT.Thus, our work gives the �rst provable onstrutions for AONT's with essentiallyoptimal resiliene in the standard model, based either on no assumptions, or only onthe minimal omputational assumption that one-way funtions exist.Vazirani [63℄ de�ned a notion later alled a t-resilient funtion, whih turns out to5Though for a muh weaker de�nition of seurity than the one we study here, Stinson [60℄ hasgiven an elegant onstrution for AONT with seurity analysis in the standard setting. As observedby [16℄, however, this onstrution does not ahieve the kind of seurity onsidered here.6I.e., all the partiipants have aess to a keyed family of independent random permutations.21



be equivalent to our notion of perfet ERF's.7 A t-resilient funtion is a funtion whoseoutput is truly random even if the adversary an �x any t of the inputs to the funtion.Chor et al. [20℄ and, independently, Bennett et al. [10℄ onsidered this notion in amuh greater detail. In partiular, a very nie onstrution for t-resilient funtionswas given by [20, 10℄ based on error-orreting odes. We use this onstrution whentalking about perfet ERF's, and then extend it to onstruting perfet AONT's,as was also impliitly done by [10℄. Chor et al. [20℄ gave some initial impossibilityresults for t-resilient funtions (whih, as we said, are equivalent to perfet ERF's) andonjetured that muh more general impossibility results hold. In partiular (viewedin terms of ERF's), the adversary must essentially miss at least half of the inputbits in order for the output to be random (whih was the fundamental limitation oftheir oding theory onstrution that we mentioned). This onjeture stood for sometime and was �nally aÆrmatively resolved by Friedman [28℄ (another proof was latergiven by [11℄). Our impossibility result for perfet AONT's non-trivially extends thisonjeture (sine we show that perfet ERF's imply perfet AONT's) and subsumesthe results of [28, 11℄, whose tehniques do not apply to our more general setting.Kurosawa et al. [39℄ onsidered a slightly relaxed notion of almost t-resilient fun-tions. An almost t-resilient funtion is a funtion whose output is \very lose" touniform even if the adversary an �x any t of the inputs to the funtion. As we willsee, this notion stands somewhere \in between" the notions of perfet and statistialERF's, and turns out to be essentially equivalent to our notion of adaptively seurestatistial ERF.8 Kurosawa et al. somewhat improved the parameters ahieved by [20℄in onstruting (regular) t-resilient funtions, but their onstrution still requires theadversary to �x at most half of the input bits. While the onsiderable omplexity ofthis onstrution, oupled with the pessimisti parameters it ahieves, might suggestthat almost t-resilient funtions share the same strong limitations as regular t-resilientfuntions (i.e., perfet ERF's), we will show that this is not the ase. More spei�-7If n is the size of the input and ` = n� t, then t-resilient funtion is the same as `-ERF.8Almost t-resilient funtions are slightly striter, but our onstrution of adaptively seure sta-tistial ERF's will atually ahieve it. 22



ally, using our onstrution of adaptively seure statistial ERF's we will allow theadversary to �x t � (n � k) input bits, where n is the size of the input and k isthe size of the output, whih is easily seen to be the best possible. Even though ouronstrution is probabilisti (ontrary to that of [39℄), it sueeds with overwhelmingprobability and shows that almost t-resilient funtions are muh more powerful thanregular t-resilient funtions.Finally, we already mentioned the works of [23, 3, 7, 2, 1℄ on forward-seurity.These works prevent an adversary that gains urrent seret keys from being ableto derypt past messages or forge signatures on messages \dated" in the past. Inontrast, our work deals with providing seurity for both the future as well as thepast, but assuming that not all of the seret key is ompromised.Organization of the Thesis. In Chapter 2 we de�ne some preliminaries and somegeneral results that we will use. In partiular, we will examine the notions of semantiseurity and indistinguishability, de�ne some important ryptographi basis, likeone-way funtions and pseudorandom generators, talk about error-orreting odes,introdue randomness extrators and t-wise independent funtions, and state somebasi fats from linear algebra and Fourier analysis. Some of the results are new andof independent interest. For example, we give a simple generi proof that semantiseurity is equivalent to indistinguishability, substantially simplifying (albeit for aslightly weaker but equally natural de�nition of semanti seurity) the original proofof Goldwasser and Miali [33℄.In Chapter 3 we formally de�ne our main gadgets: Exposure-Resilient Funtionsand All-Or-Nothing Transforms. We give simple de�nitions in the perfet, statistialand omputational settings, and also distinguish between non-adaptive and adaptiveERF's and AONT's. We then ompare ERF's and AONT's with eah other and withsome other fundamental notions like pseudorandom generators and error-orretingodes. We also talk in detail about many appliations of ERF's and AONT's, some ofwhih are new.Chapter 4 talks in detail about onstrutions and limitations of Exposure-Resilient23



Funtions. We start with the perfet setting, where we use the onstrution of [20, 10℄via error-orreting odes, and the lower bound of Friedman [28℄ to show that ouronstrution is tight. Then we move to the statistial setting, and show how to userandomness extrators to obtain an eÆient and nearly optimal onstrution of ERF's,whih is one of our main ontributions. Next we move to the omputational settingand show how to ombine pseudorandom generators with our statistial onstrutionto get optimal omputational ERF's. Finally, we move to the adaptive setting andobserve that our statistial onstrution of regular ERF's is not adaptively seure.However, we give a probabilisti onstrution of adaptively seure ERF's ahievingthe same optimal parameters as our non-adaptive onstrution.In Chapter 5 we onstrut and examine the properties of All-Or-Nothing Trans-forms. A large part of this hapter will be devoted to perfet AONT's. In partiular, toomparing them with perfet ERF's and proving the lower bound on perfet AONT's(whih extends the lower bound of Friedman [28℄ on perfet ERF's). We will thengive a simple onstrution of AONT's using ERF's, whih will yield essentially optimalAONT's. Next we will suggest a seret-only AONT onstrution whih is a speialase of the OAEP onstrution of [8℄, whih may serve as the �rst step in abstratingthe properties of the random orales that make OAEP an AONT. After that we give asurprisingly non-trivial proof that AONT's with \interesting" parameters imply one-way funtions, whih, ombined with the previous results, shows that \interesting"omputational ERF's, AONT's and one-way funtions are all equivalent. The hapteronludes with a strutural result showing the \worst-ase/average-ase" equivaleneof AONT's.Finally, Chapter 6 has some onluding thoughts.
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Chapter 2
Preliminaries
How to read this hapter. This hapter tuned out to be somewhat longer andmore detailed than was originally planned. In fat, some of the general results wepresent in this hapter will be used only one in the later hapters. In addition, someof the results are presented with a higher level of generality than is atually neededin subsequent appliations. So why did not we de�ne suh preliminaries \in-plae"or without this extra generality? The answer to this question is that suh resultsare of independent interest to be treated separately. For example, this applies to ourtreatment of semanti seurity/indistinguishability and deterministi extrators. Inaddition, treating suh results \in-plae" would be atually more onfusing, makingsome of the later results either \ome out from the sky" (i.e., without a lear reasonof what atually happened), or to look unneessarily tehnial and ompliated.As a result, however, the reader might get a little bit overwhelmed with theamount of diverse information presented here, and even distrated from the maintopis studied in subsequent hapters. As a ompromise, we suggest that the readerfollows the following general guidelines.� Setion 2.1 (basi notation), Setion 2.2 (distributions), Setion 2.4 (basi ryp-tography) and Setion 2.5 (private-key enryption) are quite basi and usedextensively. Therefore, they should be at least skimmed right away.� Setion 2.6 (error-orreting odes) is used only in Setion 4.1 when onstruting25



perfet ERF's (and slightly in Setion 5.1.1). It ould be better to skip it �rst.� Setion 2.7 (strong extrators) is used only in Setion 4.2 when onstrutingstatistial ERF's. It ould be better to skip it �rst.� Setion 2.8 (deterministi extrators) is used only in Setion 4.4.1 when on-struting adaptively seure statistial ERF's. It ould be better to skip it �rst.� Setion 2.9 (Fourier analysis) is used only in Setion 5.1.4 when proving thelower bound on perfet AONT's. It ould be better to skip it �rst.� Finally, Setion 2.3 (semanti seurity vs. indistinguishability) is mainly usedin Setion 3.3 to justify that the simple de�nition of an AONT that we use isatually muh stronger than it seems at �rst. As suh, this setion is not reallyneeded in order to follow our presentation. It is up to the reader whether toread it right away, in Setion 3.3, or to skip it altogether. We reommend toread (or skim) this setion right away (possibly skipping the proofs) sine it isquite simple.As a short summary, Setions 2.6{2.9 an be easily skipped upon the �rst reading.2.1 Basi Notation and TerminologyFor a randomized algorithm F and an input x, we denote by F (x) the output dis-tribution of F on x, and by F (x; r) we denote the output string when using therandomness r. We write m = poly(k) to indiate that m is polynomially boundedin k. Reall that a funtion �(k) is alled negligible if for any polynomial p(k) thereexists k0 suh that for all k > k0 we have �(k) < 1=p(k). We often write negl(k) toindiate some negligible funtion of k, without giving it an expliit name. We denoteby x 2R D a proess of seleting x from the domain D uniformly at random. Wedenote by PPT a probabilisti polynomial time algorithm, and given suh an A, wedenote by y  A(x) sampling an output y when running A on input x. We let 1kdenote the string of 1's of length k. When a PPT algorithm is given 1k as the input,26



this suggests that A is allowed to work in time polynomial in k. We will often omit1k, however, when the seurity parameter k is lear. Unless otherwise spei�ed, wewill onsider seurity against nonuniform adversaries.Let fǹg denote the set of size-` subsets of [n℄ = f1 : : : ng. For L 2 fǹg, y 2 f0; 1gn,let [y℄�L denote y restrited to its (n� `) bits not in L. We denote by � the bit-wiseexlusive OR operator, and by ha1; : : : ; aki the k-tuple of a1; : : : ; ak. Given vetorsx; y 2 f0; 1gn, we will denote their inner produt modulo 2 as x � y. We also denoteby GF (q) a �nite �eld on q elements, where q is a prime power.2.2 Distributions and IndistinguishabilityWe denote by Uk the uniform distribution on f0; 1gk. The distribution indued by afuntion f : f0; 1gn ! f0; 1gk is its output distribution over f0; 1gk when the inputwas hosen uniformly at random in f0; 1gn. A family of distributions p = fpkg isalled eÆiently samplable if there exists a PPT algorithm that on input 1k outputsa random sample from pk. Often, when the seurity parameter k is lear or impliit,we simply say that the distribution p is eÆiently samplable.We reall that the statistial di�erene (also alled statistial distane) betweentwo random variables X and Y on a �nite set D, denoted kX � Y k, is de�ned to bemaxS�D ���Pr [X 2 S℄� Pr [Y 2 S℄ ��� = 12 �X� ���Pr [X = �℄� Pr [Y = �℄ ��� (2.1)De�nition 1 Let k be the seurity parameter and A = fAkg, B = fBkg be twoensembles of probability distributions. We say that A and B are� perfetly indistinguishable, denoted A � B, if distributions Ak and Bk areidential for all k.� statistially indistinguishable, denoted A �=� B, if the statistial distane kAk�Bkk is a negligible funtion of k.� omputationally indistinguishable, denoted A �= B, if for any PPT algorithm27



D (alled the distinguisher) we have thatjPr(D(Ak) = 1)� Pr(D(Bk) = 1)j = negl(k)where the probability is taken over the oin tosses of D and the random hoiesof Ak and Bk. The absolute value above is alled the advantage of D in distin-guishing A from B, denoted AdvD(A;B).Sometimes when the seurity parameter is impliit, we will sometimes slightlyabuse the terminology and identify the ensembles A and B with the orrespondingprobability distributions Ak and Bk. And when the statement an hold for any of theabove hoies (or the hoie is lear from the ontext), we simply write A � B.We notie that the notions of statistial and perfet indistinguishability an beast into the same framework as that of omputational indistinguishability. Namely,if we relax the requirement that D is polynomial time bounded, we exatly get thede�nition of statistial indistinguishability, while if in addition we require that theadvantage of D is always 0, we get perfet indistinguishability. This suggests thefollowing methodology for proving statements of the form A � B ) A0 � B0, when itan hold for any hoie of �. Namely, we assume that there exists a distinguisher D0having advantage "0 in distinguishing A0 from B0. We onstrut then a distinguisherD, whose omplexity is polynomial in that of D0, and that distinguishes A from Bwith advantage ". Then if " �  � ("0)t for some positive onstants  and t, we haveproven our impliation. In partiular, if D0 is polynomially bounded, then so is D, if"0 > 0, then so is ", and if "0 > 1=p(k) for some polynomial p and for in�nitely manyk, then so is " (for a di�erent polynomial q).We start from the following useful fat.Lemma 1 Let �, � be two (possibly dependent) random variables taking values inf0; 1g. Let D be the following experiment: observe � and �. If � = �, then ip aoin, else output � (= 1� �). Let  be the output of D. ThenPr( = 1) = 12 + 12 � [Pr(� = 1)� Pr(� = 1)℄28



Proof: We use the fat that for any X and Y , Pr(X ^ Y ) + Pr(X ^ Y ) = Pr(X).Pr( = 1) = Pr(� = 1 ^ � = 0) + 12 � [Pr(� = 1 ^ � = 1) + Pr(� = 0 ^ � = 0)℄= 12 � [Pr(� = 1 ^ � = 0) + Pr(� = 1 ^ � = 1)℄ +12 � [Pr(� = 1 ^ � = 0) + Pr(� = 0 ^ � = 0)℄= 12 � [Pr(� = 1) + Pr(� = 0)℄= 12 + 12 � [Pr(� = 1)� Pr(� = 1)℄
Lemma 2 Let A and B be any two (ensembles of) probability distributions. Let Rbe hosen uniformly at random and let C be hosen aording to a distribution p, bothindependently from A and B. Then the following are equivalent:(1) hA;Bi � hA;Ri.(2) hA;B;Ci � hA;B � C;Ci, for any eÆiently samplable p.(3) hA;B;Ci � hA;B � C;Ci, for uniform p.Proof:(1)) (2). Assume (2) is false for some eÆiently samplable p, so there is an adversaryF distinguishing hA;B;Ci from hA;B � C;Ci with advantage ". We onstrut adistinguisher D that distinguishes hA;Bi from hA;Ri. D gets as input hA;Xi. Itgenerates C aording to p, sets � = F (A;X;C), � = F (A;X � C;C). Then Dproeeds as in Lemma 1. Thus,Pr( = 1) = 12 + 12 � [Pr(� = 1)� Pr(� = 1)℄= 12 + 12 � [Pr(F (A;X;C) = 1)� Pr(F (A;X � C;C) = 1)℄When X = B, the di�erene above is at least ", by the assumption on F . Thus,Pr( = 1) � 12 + "2 . 29



When X = R, both R and R � C are uniform and independent of C. Thus,Pr(F (A;X;C) = 1) = Pr(F (A;X � C;C) = 1), and so Pr( = 1) = 12 . Hene, D isa good distinguisher indeed.(2)) (3) is trivial.(3) ) (1). Let R = B � C. If C is uniform and independent from A and B, thenso is R. If there is an adversary that an distinguish hA;Bi from hA;Ri, then thereis an adversary distinguishing hA;B;Ci from hA;B � C;Ci = hA;R;Ci, that simplyignores the extra information C and runs the original adversary on the �rst twoomponents.Typially, we will only use the following simple orollary of the above.Corollary 1 Let A and B be any two (ensembles of) probability distributions. Let Rbe hosen uniformly at random, and let x0 and x1 be any two �xed strings (independentof the random variables above). ThenhA;Bi � hA;Ri ) hx0; x1; A; B � x0i � hx0; x1; A; B � x1iProof: Call C = x0 � x1. Sine x0 and x1 are �xed, we gethA;Bi � hA;Ri ) hx0; x1; A; Bi � hx0; x1; A; Ri) hx0; x1; A; B � x0i � hx0; x1; A; Ri) hx0; x1; A; B � x0; Ci � hx0; x1; A; B � x0 � (x0 � x1); Ci) hx0; x1; A; B � x0i � hx0; x1; A; B � x1iThe only non-trivial impliation is the seond to last one that uses Lemma 2 withC = x0 � x1.Indistinguishability Relative to an Orale. In some appliations we wouldlike to say that A and B are indistinguishable, even if some side information is leakedto the distinguisher D. Typially, we plae some restritions on the type of sideinformation, but allow the distinguisher to hoose whih partiular side information30



of this types he wants to see. Typially, this is modeled by letting D have \oraleaess" to some funtion or some proess (that depends on A and B or the wayA and B were generated). For example, when talking about seurity of enryptionshemes, we might allow D to have orale aess to the deryption orale, allowing Dto derypt any messages of his hoie under minimal restrition thatD annot deryptthe \target iphertext". It is easy to see that the notion of indistinguishability andall the simple results we talked about relativize to this setting.2.3 Semanti Seurity vs. IndistinguishabilityHere we de�ne and prove the equivalene of the notions of semanti seurity and in-distinguishability, originally introdued by Goldwasser and Miali [33℄ in a partiularontext of enryption. We de�ne these notions in a muh more general ontext ofany \experiment". As a result, we show that these notions and their equivalene havenothing to do with enryption shemes, omputational assumptions or anything else.Rather, this is just a basi fat about equivalene of two probabilisti experiments.Beause we abstrat away all the unneessary ompliations, the proof of equivalenewe present is very simple (despite its generality), and seems to be muh simpler andunderstandable than most similar proofs that appeared in the literature.Our general setup is the following. Assume we have some PPT experiment1 Ethat takes a k-bit string x and transforms it into some y. We want to say that \ygives no information about x".De�nition 2 We say that PPT experiment E is semantially seure in the om-putational sense if for any eÆiently samplable D on f0; 1gk, any polynomial timeomputable binary relation R and any PPT adversary A, there exists a PPT B suhthat if X  D, Y  E(X), a A(Y; 1k), b B(1k), we get thatPr(R(X; a) = 1) � Pr(R(X; b) = 1) + negl(k) (2.2)1It is easy to see that the results we present do not hold in the omputational setting if E is notpolynomial time omputable. 31



As usual, for the statistial setting we relax A, B, D, R from being polynomial time,and in the perfet setting we also require the advantage of A to be 0.In other words, the odds of A (when given Y ) produing a suh that R(X; a) issatis�ed are only negligibly more than the odds of B (when given nothing!) produingb satisfying R(X; b). Thus, whatever \useful information" about X one an get fromY , one an get without Y as well.De�nition 3 We say experiment E is indistinguishable for any two inputs if for anyx0; x1 2 f0; 1gk, we have hx0; x1;E(x0)i � hx0; x1;E(x1)i (2.3)Indistinguishability simply says that the adversary annot distinguish the experimentperformed on any �xed x0 and x1. We notie that the above ondition is equivalentto saying that if i is hosen at random from f0; 1g, y  E(xi), then no adversary anguess i given y signi�antly better than with probability 12 . Indeed,Pr(A(x0; x1; y) = i) = 12 [Pr(A(x0; x1;E(x0)) = 0) + Pr(A(x0; x1;E(x1)) = 1)℄= 12 + 12 [Pr(A(x0; x1;E(x1)) = 1)� Pr(A(x0; x1;E(x0)) = 1)℄We will use this observation below.Theorem 1 The notions of semanti seurity and indistinguishability are equivalent.Proof: For simpliity, let us onentrate on the more interesting omputationalase. First, assume E is semantially seure. Take any x0; x1 (wlog, assume thatx0 6= x1, sine otherwise E(x0) = E(x1)). Let D be the uniform distribution onfx0; x1g, and R(x; i) = 1 if and only if x = xi. Notie, D and R are desribable justby x0 and x1. Assume x fx0; x1g, i.e. x = xi for a random i 2 f0; 1g. Notie thatfor any B, sine B is not given any information about i and sueeds only when heoutputs b = i (sine x0 6= x1), we get that Pr(B(x0; x1) = i) = 12 . Hene, semanti32



seurity here implies that for any PPT A we get that if y  E(xi), thenPr(A(x0; x1; y) = i) � 12 + negl(k)As we argued, this is equivalent to the de�nition of indistinguishability on x0 and x1.Let us show the onverse. Assume that E is not semantially seure for some poly-nomial time D, R and A having advantage " over any PPT B. Let good be theprobability that A sueeds, i.e. that when X  D, Y  E(X), a  A(Y ), we getR(X; a) = 1. And let bad denote the probability that when in addition we pik abrand new X 0  D, we get R(X 0; a) = 1. First, we laim thatgood� bad � " (2.4)Indeed, we only need to onstrut a PPT B that ahieves suess probability bad.For that we onsider B who himself samples X  D, makes Y  E(X), and outputsa A(Y ) (here we use that D and E are polynomial time). Clearly, when we samplebrand new X 0  D, the suess probability of B is exatly bad.Reall that we need to �nd x0; x1 and adversary F who an distinguish E(x0)from E(x1). We start from F (here we use that R is polynomial time).F (x0; x1; y):1. Let a A(y), � = R(x1; a), � = R(x0; a).2. If � = �, then output a random oin ip.3. Otherwise (� = 1� �), output �.In other words, F uses A to produe a \witness" a. Sine A is supposedly good inproduing \relevant" witnesses, a should be \more likely" to satisfy R(xi; a) thanR(x1�i; a). And this is exatly what F heks. He omputes both R(x0; a) andR(x1; a). If the results are the same, F did not learn anything, so he ips a oin.Otherwise, he outputs that single i that \produed" R(xi; a) = 1. Let us turn thisintuition into a formal argument. 33



We analyze the behavior of F when X0 and X1 are sampled independently fromD and Y = Y1  E(X1). We notie that in this setting we exatly have Pr(� = 1) =good and Pr(� = 1) = bad. Thus, by Lemma 1 and Equation (2.4) we getPr(F (X0; X1; Y1) = 1) = 12 + 12(Pr(� = 1)� Pr(� = 1))= 12 + 12(good� bad)� 12 + "2In partiular, sine the above holds on average over X0 and X1, there exist somepartiular x0 and x1 suh that we getPr(F (x0; x1;E(x1)) = 1) � 12 + "2Sine the algorithm F is symmetri in x0 and x1, this means thatPr(F (x0; x1;E(x0)) = 1) � 12 � "2Overall, Pr(F (x1; x0;E(x1)) = 1)� Pr(F (x1; x0;E(x0)) = 1) � ".Examples. The notion of publi-key enryption is a speial ase, where the ex-periment E samples a pair (pk; sk) of a random publi and seret keys, omputesenryption z of x, and returns y = (pk; z). The same holds for private-key enryp-tion, exept there is no publi key above (see Setion 2.5). We will also have anotherde�nition of All-Or-Nothing Transforms in Setion 3.3 that would fall into this ate-gory, justifying the usefulness of this general view.Usefulness. The usefulness of the above equivalene is in the following. Semantiseurity is somewhat messy to de�ne and to verify. However, it aptures very wellour intuition that E(x) does not onvey any information about x. On the otherhand, indistinguishability of any two inputs is a muh simpler ondition to verify andto work with. However, it is not immediately lear if it really says that E(x) doesnot onvey any information about x. So the equivalene asserts that intuitive and34



onvenient de�nitions atually oinide. As the result, it is muh more ustomary towork with indistinguishability.Variations. There are several variations of the notion of semanti seurity, all ofwhih turn out to be equivalent beause of the equivalene above. For example,we ould relax the de�nition by replaing a relation R with only a funtion f andtarget the adversary to produe a suh that f(X) = a. Sine indistinguishabilityorresponds to having a relation whih is atually a funtion (i.e., f(xi) = i), theequivalene follows. Also, rather than requiring that for any A there is some B, weould run A twie: �rst time on the orret Y , and seond time on a brand newY 0  E(X 0), where X 0  D. The de�nition then says that A did not learn anythingbeause for any D and R he ould not even see the di�erene when the orret X wasreplaed by a brand new X 0. This aptures our intuition of semanti seurity slightlyless and starts to remind the indistinguishability de�nition. But the equivalene islear sine the B we onstruted in the proof really simulates the run of A on a brandnew Y 0, whih is exatly what we are doing. A slight advantage of that de�nition,though, is that we do not need to restrit D and E to polynomial time, whih is notthat important.Another traditional de�nition (originated all the way in [33℄) is to say that thebest B ould do anyway without the knowledge of X, is to produe a �xed bmaxmaximizing the probability of satisfyingR(X; bmax) whenX is hosen fromD. Callingthis maximum probability p(R; D), we say that the probability of A's suess is atmost p(R; D) + negl(k). In some sense, this ould be slightly unfair sine PPT Bmay not be able to produe the required bmax (in polynomial time). But, �rst of all,sine we hose to have non-uniform adversaries and the adversaries depend on R,we ould hardwire this bmax. Alternatively, the notions are again equivalent sine inthe indistinguishability based de�nition we had p(R; D) � 12 whih B an ahieveby outputting a random oin. Again, this modi�ation has a slight advantage of notrequiring D and E to be polynomial time. To summarize, there are several smallvariations of the de�nitions, all of whih turn out to be equivalent, justifying the35



\universality" of our notion.Experiments with a setup. Sometimes the de�nition of the experiment E an besplit up into two natural phases: the setup phase, and the atual experiment phase.A lassial example is publi-key enryption, where the setup an hose a randompubli/private key pair, and the atual experiment just enrypts the given message(see [42℄ for more details on de�nitions of publi-key enryption). In this ase wemight want to let the adversary observe the \publi part" of the setup, and based onthat try to ome up with: a) some x0 and x1 that he laims to distinguish for the aseof indistinguishability, or b) distribution D and relation R (whih are automatiallypolynomial time in the omputational setting) that he an \defeat" for the ase ofsemanti seurity. Clearly (at least for non-uniform adversaries), if the experimentwith the setup is seure, ombining the setup and the experiment into a single \super-experiment" is also seure, but the onverse is false in general (as it is easy to see).The reason is that the \publi information" from the setup may help the adversaryto selet x0 and x1 (or D and R), that he annot selet at the very beginning.However, the equivalene between semanti seurity and indistinguishability still holdsfor experiments with the setup.We already remarked that setup has a natural meaning for publi-key enryption(and results in a stronger de�nition). For private-key enryption the setup an bede�ned as the proess of hoosing a seret key, but there is no publi output, sothere is no reason to do the setup separately. For the de�nition of an All-Or-NothingTransform that we give later, there is no natural meaning for the setup (exept foran \empty" setup).2.4 Cryptographi Basis: OWF, PRG and PRFWe now de�ne some basi ryptographi notions. We refer the reader to [29℄ for amore detailed exposition, referenes and proofs of some of the basi fats presentedhere. 36



De�nition 4 A polynomial time omputable funtion g : f0; 1g� ! f0; 1g� is alled aone-way funtion (OWF) if for any PPT adversary A, if x is hosen at random fromf0; 1gk, we have Pr(A(g(x); 1k) 2 g�1(g(x))) = negl(k) (2.5)In other words, g is easy to ompute but hard to invert on a random input x. A relax-ation of the notion of a OWF is a notion of a weak OWF, where for some polynomialp(k) the ondition 2.5 is replaed byPr(A(g(x); 1k) 2 g�1(g(x))) < 1� 1p(k) (2.6)In other words, no adversary sueeds with probability negligibly lose to 1, so g is\slightly" hard to invert. A folklore result that we will use later is that existene ofweak OWF's imply the existene of regular OWF's.De�nition 5 A deterministi polynomial time omputable funtion2 G : f0; 1gk !f0; 1gm(k) is alled a pseudorandom generator (PRG) strething from k to m(k) bits(where m(k) > k) if the following are omputationally indistinguishable:hG(r) j r 2R f0; 1gki �= hR j R 2R f0; 1gm(k)iIn other words, G(r) for a random r 2 f0; 1gk (this r is alled a seed of G) is indis-tinguishable to a PPT algorithm from a truly random R 2 f0; 1gm(k). The followingimportant result (the hard part of whih was proved by [34℄) shows that \OWF's()PRG's".Theorem 2 OWF's exist() PRG's strething to k+1 bits exist() PRG's streth-ing to m(k) bits exist for any polynomial m(k) > k.One of the onsequenes is that we an talk about PRG's \in general" withoutworrying about the partiular streth fator. Finally, we introdue another lassial2Tehnially speaking, ensemble of funtions: one for eah k.37



notion of pseudorandom funtion (PRF) families. For that we need to de�ne thenotion of an algorithm A having an orale aess to some funtion f . By that wemean that at any point during its exeution, A an learn in a single step the valuef(x) for any x of A's hoie in the domain of f . We denote suh an A by Af .De�nition 6 A funtion family3 F = fFs : f0; 1gk ! f0; 1gk j s 2 f0; 1gkg, isalled a pseudorandom funtion family (PRF family), if eah Fs is polynomial timeomputable, and for any PPT A, we havejPr(AFs(1k) = 1)� Pr(AF (1k) = 1)j = negl(k)The �rst probability is taken over a random hoie of the seed s 2 f0; 1gk and randomoins of A, while the seond | over oins of A and the hoie of a totally randomfuntion F from f0; 1gk to f0; 1gk.In other words, no PPT A an distinguish between having an orale aess to apseudorandom funtion Fs (where only the seed s is hosen at random), form havingaess to a truly random funtion F (where eah F (x) is random for eah x 2 f0; 1gk).Thus, a singly exponential funtion family F is indistinguishable from a doubly ex-ponential family of all funtions. The following generalization of Theorem 2 is one ofthe fundamental results in ryptography unifying the notions of OWF's, PRG's andPRF's and suggesting that a lot of ryptography an be built on a single assumption:existene of one-way funtions.Theorem 3 OWF's exist () PRG's exist () PRF families exist.2.5 Symmetri-Key EnryptionWe briey review the notion of private-key ryptography, in partiular, symmetri-keyenryption. Here two parties share a seret key and wish to perform seure enryption.3Again, tehnially speaking we have an ensemble of suh families: one for eah k. Also, thehoie of domain and range to be f0; 1gk is arbitrary, any domain and range with desription of apoint polynomial in k will work as well. 38



First, let us give the simplest possible de�nition of private-key enryption.De�nition 7 A symmetri-key (or private-key) enryption sheme C is given by threePPT algorithms (Gen;En;De). Gen, on input 1k, generates a seret key sk. Givenx 2 f0; 1gk, the enryption algorithm Ensk(x) generates a (random) enryption y ofx. The deryption algorithm De is deterministi, and for any y 2 Ensk(x), we haveDesk(y) = x. Enryption sheme C is alled indistinguishable for two inputs if forany x0; x1 2 f0; 1gk, we havehx0; x1;Ensk(x0)i � hx0; x1;Ensk(x1)i (2.7)We see that the de�nition follows the general paradigm of Setion 2.3. In parti-ular, one an de�ne an equivalent semanti seurity de�nition. We now give a fewlassial examples.One-time pad. This is the �rst \ryptographi sheme" ever proposed by Shan-non [56℄. Here the seret key is a random string R of length k, and the enryptionof x 2 f0; 1gk is just x � R. This sheme is learly perfetly seure. However, thelength of the seret key is the same as the length of the message. It is easy to showthat this is unavoidable if we wish to ahieve perfet serey [56℄.Pseudorandom one-time pad. This is one of the �rst appliations of pseudoran-dom generators. Assume we have a PRG G strething from n to k bits. The key is arandom r 2 f0; 1gn we enrypt x 2 f0; 1gk by a pseudorandom \one-time pad" G(r),i.e. En(x; r) = x � G(r). Here the length of the key, n, ould be muh smallerthan the length of the message, k. Also, the seurity is neessarily omputational andfollows immediately from Corollary 1 and the de�nition of a PRG.We notie that the de�nition of indistinguishability gurantees seurity of enryptinga single message, but nothing really is guaranteed about enrypting more messages.In fat, the one-time pad enryptions above are learly bad if one is to use them twie(that is why they are alled \one-time") on x and x0: the XOR of the enryptionsreveals x � x0. A more interesting de�nition arises if we allow the adversary (who39



has to distinguish enryptions of x0 and x1) to have orale aess to the enryptionorale. That is, he an obtain enryptions of any messages of his hoie. The followinggeneralization of the \one-time pad" shemes above is well known to ahieve suhseurity.\Standard" symmetri-key enryption. F = fFs : f0; 1gk ! f0; 1gk j s 2f0; 1gkg be a PRF family. We selet a random shared seret key s 2 f0; 1gk andenrypt x by a pair hx� Fs(R); Ri, where R is hosen at random from f0; 1gk.Beside their simpliity, we notie the following important feature of the above ex-amples: the seret key is a uniform random value, i.e. does not have any speialstruture like representing a k-bit prime, et. We remark that there are many othersuh examples in private-key ryptography where a seret is just a random value:pseudorandom permutations, blok iphers, messages authentiation odes, variouskeyed hash funtions. In fat, even in the publi-key ryptography we frequently havesimple systems where the seret is just a random value. For example, various shemesbased on the Disrete Logarithm or the DiÆe-Hellman Assumptions (e.g., [26, 53℄)pik a random x and publish its exponent. When de�ning exposure-resilient fun-tions in Setion 3.1, we will see how to make all these systems \exposure-resilient"(see Setion 3.2).2.6 Linear Error-Correting CodesAn error-orreting ode is a deterministi mapping from k-bit strings to n-bit strings(the latter alled odewords) suh that any two odewords are very di�erent fromeah other, i.e. very \far apart" in terms of the Hamming distane.4 Thus, even ifone misses or has orrupted a relatively few bits of some odeword, it is possible toreover these bits.4The Hamming distane between x; y 2 f0; 1gn is the number of oordinates they di�er in. TheHamming weight of x 2 f0; 1gn is the number of non-zero oordinates of x, i.e. its Hammingdisntane from 0. 40



We will onsider binary linear [n; k; d℄ error-orreting odes. Suh a ode an beseen as a linear transformation from f0; 1gk to f0; 1gn (where these are viewed asvetor spaes over GF (2)). Thus, suh a ode an be desribed by a k� n generatormatrixM over GF (2). For any vetor v 2 f0; 1gk (whih is viewed as a olumn vetor,i.e. a k�1 matrix, and v> denotes the orresponding 1�k row vetor), the odewordorresponding to v is v>M . A ode is said to have minimum distane d if for everytwo distint vetors u; v 2 f0; 1gk, u>M and v>M di�er on at least d oordinates.Note that by linearity, this is equivalent to requiring that every non-zero odewordhas at least d non-zero omponents.A ode is said to be asymptotially good if n = O(k) and d = 
(n) (i.e., the threeparameters n, k, and d di�er by multipliative onstants). The ratio k=n is alledthe rate of the ode, while d=n is alled the relative distane. A standard result inoding theory shows that a random linear ode (orresponding to a random M) isasymptotially good with high probability (provided the rate and relative distaneare not very large onstants). Many expliit onstrutions for asymptotially goododes (e.g., the Justesen ode) exist.We remark on two well-known bounds on error-orreting odes. First, it is alwaysthe ase that k � n � d + 1 (Singleton bound). Seond, d � n=2 for k > logn. Inother words, the distane annot be more than n=2. On the positive side, we anmake d arbitrarily lose to n=2 (i.e., (12 � ")n for any " > 0) at the expense of makingn large ompared to blok-length k.5Finally, we mention the famous \parity" linear ode, alled the Hadamard ode,6strething k bits to n = 2k�1 bits. Here a k-bit message u = u1 : : : uk is enoded into(2k�1)-long bit message  by taking all (2k�1) non-empty XOR's of the ui's. Namely,for eah non-empty J � [k℄, the bit J of the enoding is �i2Jui. Viewed another way,5For example, n = poly(k) if we use the so alled Reed-Solomon ode onatenated with theHadamard ode desribed below, n = O(k="3) if we use the so alled algebrai-geometri odeonatenated with the Hadamard ode, and n = k="2 if we use a random ode. Also, the Hadamardode by itself has n = 2k � 1 and d = (n+ 1)=2.6In oding theory lingo, this is also known as the \dual" of another famous ode | the hammingode | whih is a perfet ode of distane 3. Thus, the orresponding generator matrix M is simplythe \parity hek" matrix of the hamming ode.41



for every non-zero a 2 f0; 1gk, the a-th oordinate of  is the inner produt modulo 2of u and a: (a) = u � a. We omit a = 0k (i.e., J = ;) sine it always produes 0 as aparity, so it is not useful for deoding purposes. The Hadamard ode is learly linearand its generator matrix M is obtained by writing olumn-by-olumn all (2k � 1)non-zero k-bit strings. It has distane 2k�1 = (n + 1)=2 sine if u 6= u0, exatly 2k�1subsets J have J 6= 0J (equivalently, exatly 2k�1 vetors a have (u� u0) � a = 1).For the proofs of these results and further information on error-orreting odes,see [40℄.2.7 Strong ExtratorsExtrators were �rst formally introdued in a seminal paper by Nisan and Zuker-man [46℄. An extrator is a family of hash funtions H suh that when a funtionhi is hosen at random from H (by hoosing a random i), and is applied to a ran-dom variable X that has \enough randomness" in it, the resulting random variableY = hi(X) is statistially lose to the uniform distribution. A strong extrator has anextra property that Y is lose to the uniform distribution even when the random in-dex i (used in speifying hi) is revealed! (Perhaps the best known example of a strongextrator is given in the Leftover Hash Lemma of [36℄, where standard 2-universalhash families are shown to be strong extrators.) This is illustrated in Figure 2-1.We now de�ne the notion of extrator more preisely. We say that random variableX distributed over f0; 1gn has min-entropym if for all x 2 f0; 1gn, Pr(X = x) � 2�m.High min-entropy will turn out to be a good formal indiator for X having \a lot ofrandomness".De�nition 8 ([46℄) A family of eÆiently omputable hash funtions H = fhi :f0; 1gn ! f0; 1gk j i 2 f0; 1gdg is alled a strong (m; ")-extrator, if for any randomvariable X over f0; 1gn that has min-entropy m, if i is hosen uniformly at randomfrom f0; 1gd and R is hosen uniformly at random from f0; 1gk, the following two
42
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Figure 2-1: Extrators and Strong Extrators.distributions are within statistial distane " from eah other:hi; hi(X)i �=� hi; Ri (2.8)Throughout, we will only talk about eÆient extrator families H. That is, given anyi 2 f0; 1gd and x 2 f0; 1gn, one an eÆiently (i.e., in time poly(n)) ompute hi(x).Thus, investing enough true randomness, namely the amount needed to seleta random member of H, one an \extrat" something statistially lose to a trulyrandom string from the randomness in a given distribution X. Muh work has beendone in developing this area (e.g. [46, 32, 59, 64, 45, 61, 50, 49℄). In partiular, itturns out that one an extrat almost all the randomness in X by investing very fewtruly random bits (i.e. having small H).We will use the following eÆiently onstrutible families of strong extratorsdeveloped by [59, 49℄.Theorem 4 ([59, 49℄) For any n, m and " suh that n > m > 2 log(1="), there existeÆient strong (m; ")-extrator families H = fhi : f0; 1gn ! f0; 1gk j i 2 f0; 1gdgsatisfying: 43



1. k = m� 2 log(1=")�O(1) and d = 4(m� log(1=")) +O(logn). [59℄2. k = (1� Æ)m�O(log(1=")) and d = O(log2 n+ log(1=")) (8 onst. Æ > 0). [49℄3. k = m� 2 log(1=")�O(1) and d = O((log2 n+ log(1=")) logm). [49℄(provided " > exp(�n=(log� n)O(log� n)), whih will hold in our appliations).Notie that if a soure has min-entropy m, we annot hope to extrat more than m(even statistially lose to) random bits, i.e. we must have k � m. In fat, [48℄ showthat k � m�2 log(1=")+O(1). The remarkable fat about the above extrator familiesis that they really almost ahieve this seemingly impossible bound for any X havingmin-entropy m. However, in the �rst extrator the amount of extra-randomness d isroughly 4m, so we invest more truly random bits than the amount of random bitsthat we extrat! Of ourse, the ath is that we do not \lose" the extra-randomness,so the extrator is still very useful. On the other hand, the last two extrators aremuh more randomness eÆient (provided m is large enough).For more information on these topis, see the exellent survey artiles [44, 45℄.2.8 Deterministi Extrators and t-wise Indepen-dent FuntionsIn the previous setion we saw that we an extrat almost all the randomness fromany distribution of min-entropy m by investing very few extra truly random bits. Onthe other hand, it would be very desirable not to invest any additional randomnessat all, i.e. to have just a single deterministi funtion f : f0; 1gn ! f0; 1gk thatwould extrat all the randomness from our soure X. However, it is very easy to seethat this task is too ambitious.7 In other words, we annot hope that one funtionf will be good for all soures with min-entropy m, and therefore have to invest some7For example, onentrate all the mass of X uniformly on the preimages of 2m+k�n \most fre-quent" points in the range of f . There are at least 2m suh preimages, so X has min-entropy atleast m. On the other hand, f(X) an indue a distribution statistially lose to uniform on f0; 1gkonly if m+ k � n > k � 1, i.e. m > n� 1, so X was almost uniform to begin with.44



extra randomness. However, in many appliations we have some set X of \allowed"soures of min-entropy m, and we only need f to extrat randomness from souresX 2 X (and do not \are" about other soures; we will see an example of this laterin Setion 4.4). In this setion we disuss how to onstrut suh f ulminating inTheorem 6 and Corollary 3. While written with the urrent emphasis for the �rst time,all the ideas of this setion were largely suggested to us by Trevisan and Vadhan [62℄,who were the �rst to onsider \general-purpose" deterministi extrators.2.8.1 Deterministi and Æ-sure ExtratorsTowards Deterministi Extrators. As we observed, it is oneivable to havethis single deterministi f \tuned up" to work just for the soures in X . Suh f isalled a deterministi extrator for X . Unfortunately, the expliit onstrutions ofsuh f for a given X often turn out to be diÆult. Therefore, we settle for the nextbest option. We will design an eÆiently samplable family of hash funtion F suhthat when f is hosen at random from this family, f will be a good (deterministi)extrator for every X 2 X with high probability. Moreover, we will not use anythingabout X exept for its ardinality jX j and the fat that every X 2 X has min-entropym. In other words, for any X of min-entropy m, with high probability (muh betterthan 1=jX j) a random f in F will be a good extrator funtion for X. Then we willsimply take the union bound over all X 2 X . This justi�es the following de�nitionand its immediate orollary.De�nition 9 (impliit in [62℄) A family of eÆiently omputable hash funtionsF = ffi : f0; 1gn ! f0; 1gk j i 2 f0; 1gdg is alled a Æ-sure (m; �)-extrator, if forany random variable X over f0; 1gn that has min-entropy m, with probability at least(1�Æ) over the hoie of random f = fi from F , we have that the distribution induedby f(X) is �-lose to the uniform distribution over f0; 1gk.Corollary 2 For any olletion X of distributions of min-entropy m over f0; 1gn, ifF = ffi : f0; 1gn ! f0; 1gkg is a Æ-sure (m; �)-extrator, then with probability at least45



(1 � jX jÆ) a random f = fi hosen from F will be a deterministi extrator (withstatistial deviation �) for all X 2 X .Thus, we are interested in onstruting Æ-sure extrators, where Æ will be really small(typially, muh smaller than �), so that we an take a large union bound over allsoures in X .Comparing with regular extrators. It is interesting to ompare this de�ni-tion of F with the de�nition of a strong (m; ")-extrator H from Setion 2.7. It iseasy to hek that if F is a Æ-sure (m; �)-extrator, then it is also a strong (m; �+ Æ)-extrator. In some sense, we \�ne-tuned" " into � and Æ. On the other hand, for any� and Æ satisfying " = �Æ, a strong (m; ")-extrator H is also a Æ-sure (m; �)-extrator.However, the usage of F is typially very di�erent from that of H. H is designed towork for all X, but for eah partiular X we have to invest extra randomness andsample a brand new hash funtion h 2 H. F is designed to work for arbitrary but�xed olletion X of soures of min-entropy m. We sample a funtion f 2 F onlyone and with overwhelming probability this partiular f will be a good deterministiextrator for all X 2 X . In other words, one we have hosen f we do not invest anymore randomness later, no matter how many times and whih soures X 2 X aregiven to us (however, there is a negligible hane that our f is \bad").As we said, the above is ahieved by making Æ very small (muh smaller than1=jX j) and implies that we annot make the size of F very small. In the very least,we must have jFj � jX j, sine we have to take the union bound over all X 2 X .Sine jX j is often exponential in n, we need at least poly(n) random bits to samplef from F , whih is muh more than the polylogarithmi number of bits that weresuÆient for regular extrators. Thus, even though it would be nie to minimize thenumber of bits to desribe f 2 F , a more immediate onern will be to make surethat the number of bits is polynomial in n, so that f is eÆiently desribable andomputable.To summarize, a strong (m; ")-extratorH is designed to work for any distributionX (with min-entropy m) and the emphasis is to use very few extra random bits, sine46



we have to use new random bits for every suhX. A Æ-sure (m; �)-extrator is designedto work for a partiular (albeit arbitrary) olletion of soures X (of min-entropy meah), and the emphasis is to be able to eÆiently sample a single f from F that willbe a good deterministi extrator for all X 2 X .2.8.2 t-wise Independent Funtion FamiliesWe will give a simple eÆient onstrution of Æ-sure (m; �)-extrator families basedon the onstrution and the analysis of [62℄, but �rst we need to reall the notion oft-wise independene.De�nition 10 A olletion of random variables Y1; : : : ; YN over some spae S issaid to be t-wise independent if for any t distint indies i1; : : : ; it we have that thevariables Yi1; : : : ; Yit are independent8 from eah other. A family F of funtions fromf0; 1gn to f0; 1gk is said to be t-wise independent if when a funtion f is hosenfrom F at random, the values of f are t-wise independent, i.e. the random variablesff(x) j x 2 f0; 1gng are t-wise independent over f0; 1gk.When talking about t-wise independent families of funtion we will always ad-ditionally assume that for any x 2 f0; 1gn, the distribution of f(x) is uniform overf0; 1gk. In other words, any t values of f are independent and uniform. There existeÆient t-wise independent funtion families from n to k � n bits, where it takesO(tn) random bits to desribe a funtion in F (see [19℄). The simplest suh family isa family of polynomials of degree t over GF (2n) \trunated" to k bits. In other words,given a polynomial p of degree t over GF (2n) and a point x 2 GF (2n), we evaluatep(x) over GF (2n) and output the �rst k bits of the anonial n-bit representationof the answer. The t-wise independene follows from the fat that any t values of arandom polynomial of degree t are independent and random.We will need the following \tail inequality" for the sum of t-wise independent ran-dom variables proven by Bellare and Rompel [9℄. There they estimate Pr[jY � E[Y ℄j >8I.e., Pr(Yi1 = y1 ^ : : : ^ Yit = yt) = Pr(Yi1 = y1) � : : : � Pr(Yit = yt), for any y1; : : : ; yt.47



A℄, where Y is the sum of t-wise independent variables. We will only be interestingin A = � � E[Y ℄, where � � 1. In this ase it is easy to trae the proof of Lemma 2.3(and Lemma A.5 that is used to prove it) of [9℄ and get the following result.Theorem 5 ([9℄) Let t be an even integer, and assume Y1; : : : ; YN are t-wise inde-pendent random variables in the interval [0; 1℄. Let Y = Y1 + : : :+ YN , � = E[Y ℄ and� < 1. Then Pr(jY � �j � ��) � Ct � � t�2��t=2 (2.9)where the onstant Ct < 3 and in fat Ct < 1 for t � 8.2.8.3 t-wise Independent Funtions as ExtratorsWe now argue that any family of t-wise independent funtions is a very good Æ-sure(m; ")-extrator family. For that we need the following ruial lemma.Lemma 3 Let F be a family of t-wise independent funtions (for even t � 8) from nto k bits, let X be a distribution over f0; 1gn of min-entropy m, and let y 2 f0; 1gk.Assume for some � > 0 k � m� �2 log 1� + log t + 2�� (2.10)Let f be hosen at random from F and x be hosen aording to X. ThenPrf2F �����Prx (f(x) = y)� 12k ���� � � � 12k� � 2��t (2.11)In other words, for any y 2 f0; 1gk, if f is hosen from F then with overwhelmingprobability we have that the probability that f(X) = y is 12k (1� �).Proof: Let px denotes the probability that X = x and let q denote the randomvariable (only over the hoie of f) whih equals to the probability (over the hoieof x given f) that f(x) = y, i.e.q = Xx2f0;1gn px � Iff(x)=yg48



where Iff(x)=yg is an indiator variable whih is 1 if f(x) = y and 0 otherwise. Sinefor any x the value of f(x) is uniform over f0; 1gk, we get that Ef [Iff(x)=yg℄ = 2�k,and thus Ef [q℄ = 2�k. Notie also that the variables Iff(x)=yg are t-wise independent,sine f is hosen at random from a family of t-wise independent funtions. And �nallynotie that sine X has min-entropy m, we have that all px � 2�m.Thus, if we let Qx = 2m � px � Iff(x)=yg, and Q = Px2f0;1gn Qx = 2mq, we getthat the variables Qx are t-wise independent, all reside in the interval [0; 1℄, andE[Q℄ = 2mE[q℄ = 2m�k. Now we an apply the tail inequality given in Theorem 5and obtain:
Prf �����q � 12k ���� � � � 12k� = Prf ���Q� 2m�k�� � � � 2m�k�� � t�2 � 2m�k� t2 = � 12m�k�2 log 1��log t� t2� 2��twhere the last inequality follows from Equation (2.10).The above lemma almost immediately suggests that a family of t-wise independentfuntions is a good Æ-sure extrator. Indeed, if we take a union bound over ally 2 f0; 1gk, we get that with probability at least (1� 2k��t) all y have Prx(f(X) =y) = 12k (1� �), whih easily implies that f(X) is �-lose to uniform on f0; 1gk. Thus,to make F Æ-sure, we need 2k��t � Æ. Sine we will have k < m anyway, it suÆesto have �t � m + log 1Æ . We set � = 1 for simpliity9 and get t = m + log 1Æ , while kould be set to m� (2 log 1� + log t+O(1)) � m� (2 log 1� + loglog 1Æ + logm+O(1)).Thus, we provedTheorem 6 Fix any n, m, � and Æ. Sett = m+ log 1Æ ; k = m� �2 log 1� + loglog 1Æ + logm +O(1)�9In fat, the \optimal" hoie of � is log(m+ log 1Æ ), but this will not make muh di�erene.49



Then any family F of t-wise independent funtions from n bits to k bits is a Æ-sure(m; �)-extrator.We see two ruial features of this result that make it extremely useful. First, tis logarithmi in 1=Æ, whih means that we an a�ord to have exponentially small Æand still have eÆient F . On the other hand, the \entropy loss" for k (the expressionsubtrated from m) is logarithmi in 1=� and doubly logarithmi in 1=Æ. Thus, Æ anbe exponentially smaller than �. This means that we an set � to a desirable level(say, only slightly negligible in n) and again an easily a�ord to make Æ exponentiallysmall. In partiular, if we take any olletion X ofM distributions of min-entropy m,we an apply Corollary 2 with Æ = 1=M2 (we also replae � in the proof of Theorem 6from 1 to 2 to get rid of the fator of 2 in log(1=Æ) = 2 logM), and easily handleexponentially large M :Corollary 3 Fix any n, m, �,M and any olletion X ofM distributions over f0; 1gnof min-entropy m eah. De�net = m + logM ; k = m� �2 log 1� + logm+ loglogM +O(1)�and let F be any family of t-wise independent funtions from n bits to k bits. Thenwith probability at least (1� 1M ) a random funtion f 2 F will be a good deterministiextrator for X , i.e. f(X) will be �-lose to uniform over f0; 1gk for any X 2 X . Inpartiular, suh deterministi f exists.Interestingly enough, one an hek that we would get almost the same boundon k if we were to hoose the funtion f ompletely at random (using exponentiallymany random bits, and making it infeasible to use). Thus, eÆiently samplable andomputable family of t-wise independent funtions (where we an make t reasonablysmall) does essentially as well as a family of all funtions.
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2.9 Quadrati Forms and Fourier AnalysisIn this setion we give some bakground from linear algebra. Further explanationan be found in many textbooks, e.g. M. Artin's Algebra. In this setion most of thearithmeti will be over the reals, and we will try to use boldfae when talking aboutvetors in Rm , to separate them from vetors over f0; 1gm whih we talked aboutearlier. Let u = fu1; : : : ; umg, v = fv1; : : : ; vmg be two vetors in Rm . We will usethe notation hu;vi = u>v =Pi uivi to denote the inner produt of u and v, and letkuk2 = hu;ui =Pi u2i denote the square of the Eulidean norm of u.Reall that a set of vetors fv1; : : : ;vmg forms an orthonormal basis of Rm , ifhvi;vji is 0 for i 6= j and is 1 for i = j (this automatially implies that these vetorsare linearly independent and span Rm).Finally, reall that a non-zero vetor v is an eigenvetor of a square m�m matrixA orresponding to an eigenvalue �, if Av = �v.Quadrati forms. A quadrati form (over R) in m variables is a multivariatepolynomial where eah term has degree exatly 2. One an always write it as amap from real-valued vetors to real numbers suh that a vetor w 2 Rm maps tow>Qw =Pmi;j=1wiwjQi;j, where Q is a symmetri m �m matrix (i.e., Qi;j = Qj;i).For example, when Q is the identity matrix, we get w>Qw =Piw2i = kwk2.Now a symmetri matrix will always have m real eigenvalues (ounted with multi-pliity) and, moreover, it will always be diagonalizable over R (see Artin for a proof).Expliitly, this means that we an �nd an orthonormal basis fv1; : : : ;vmg of Rm anda set of eigenvalues �i 2 R suh that Qvi = �ivi for all i. In addition,Fat 1 For any vetor u, the orthonormality of the vi's impliesu>Qu = mXi=1 �ihu;vii2 and kuk2 = hu;ui =Xi hu;vii2Assume now that hu;vii = 0 for all i orresponding to the large eigenvalues of Q.Then the Fourier deomposition above allows us to obtain the following upper boundon u>Qu. 51



Corollary 4 Let �1 � �2 � : : : � �m be the eigenvalues of Q. And assume thathu;v1i = : : : = hu;vji = 0 for some j � 0. Thenu>Qu � �j+1 � kuk2 (2.12)In partiular, for any u we have u>Qu � �1 � kuk2.Proof: By Fat 1,u>Qu =Xi �ihu;vii2 =Xi>j �ihu;vii2 � �j+1Xi>j hu;vii2 = �j+1kuk2
We notie that the Corollary above follows from a more general Courant-Fishertheorem, whih states that in fat �j+1 = maxu2Uj u>Qukuk2 , where Uj is the spae of allvetors orthogonal to the �rst j eigenvetors v1; : : : ;vj.Fourier Deomposition of the Hyperube. We will be using a partiularmatrix A | the adjaeny matrix of an n-dimensional hyperube H = f0; 1gn. Thatis, A is a 2n � 2n dimensional 0-1 matrix, with entriesAx;y = 8<: 1 if x and y di�er in exatly one position0 otherwiseWe onsider A as an operator on the 2n-dimensional vetor spae V onsistingof vetors with positions indexed by the strings in H. Typially, we will use u(y) torefer to position y 2 H in the vetor u.For two strings in y; z in f0; 1gn, let y � z denote their inner produt modulo 2,i.e. the parity of the number of positions on whih they are both 1. We denote byweight(z) the number of positions of z whih are equal to 1. We need the followingfat expliitly telling us the eigenvetors and the eigenvalues of A.Fat 2 A has an orthonormal basis of eigenvetors fvz : z 2 f0; 1gng, where the52



eigenvalue of vz is �z = n� 2 � weight(z), and the value of vz at position y isvz(y) = 1p2n � (�1)z�y (2.13)The basis fvzg is often alled the Fourier basis related to the matrix A. The oeÆ-ients hu;vzi are then alled the Fourier oeÆients of u. From the above fat andfrom Corollary 4, we get the following useful lemma.Lemma 4 Assume fvz : z 2 f0; 1gng are the eigenvetors of A as above, and let ube a vetor orthogonal to all the vz's orresponding to z with weight(z) < t. Thenu>Au � (n� 2t) � kuk2In partiular, for any u we have u>Au � n � kuk2.
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Chapter 3
De�nitions and Disussion
In this setion, we de�ne and disuss the entral onepts in our study: Exposure-Resilient Funtions (ERF's) and All-Or-Nothing Transforms (AONT's). Our de�ni-tions are extremely natural and simple. We also show that ERF's and AONT't havenumerous appliations in many di�erent areas, making them indeed fundamentalryptographi primitives.3.1 Exposure-Resilient FuntionsAn ERF is a funtion suh that if its input is hosen at random, and an adversarylearns all but ` bits of the input, for some threshold value `, then the output of thefuntion will still appear (pseudo) random to the adversary (see Figure 1-2). Formally,De�nition 11 A polynomial time omputable funtion f : f0; 1gn ! f0; 1gk is `-ERF(exposure-resilient funtion) if for any L 2 fǹg and for a randomly hosen r 2 f0; 1gn,R 2 f0; 1gk, the following distributions are indistinguishable:h[r℄�L; f(r)i � h[r℄�L; Ri (3.1)Here � an refer to perfet, statistial or omputational indistinguishability.The de�nition states that an ERF transforms n random bits into k (pseudo) ran-dom bits, suh that even learning all but ` bits of the input, leaves the output in-54



distinguishable from a random value. There are three parameters of interest here: `,n, and k. All of them are very important. First of all, the smaller ` is, the harderis to satisfy the ondition above, sine fewer bits are left unknown to the adversary.Thus, we wish to make ` as small as possible for a given n. Seondly, k is the numberof pseudorandom bits that we get out when the adversary does not see ` bits of theinput, whih we would like to make as large as possible. Thus, there are two measuresof interest: the fration of ` with respet to n, whih we would like to be as smallas possible (this shows the \exposure-resiliene"); and the size of k with respet to `,whih we want to be as large as possible (this shows the \randomness eÆieny").Adaptively Seure ERF. In the de�nition of ERF above, the adversary has to\deide in advane" whih (n � `) bits he is going to observe. This is apturedby requiring the seurity for all �xed sets L of ardinality `. However, in manysituations (e.g., the problem of gradual key exposure explained in the next setion),the adversary has more power. Namely, he an deide whih (n� `) bits of the seretto learn adaptively based on the information that he has learned so far. In the mostextreme ase, the adversary would deide whih bits to observe \one-bit-at-a-time".As we will see, this adversary is indeed muh more powerful than the stati adversarywho deides on the subset L of bits to \miss" in advane. But now we just de�neformally the orresponding notion of adaptively seure `-ERF that would protet evenagainst suh adaptive adversaries.First, an adversary A having orale aess to a string r is said to be `-bounded ifhe is allowed to adaptively read all but some ` bits of r one-bit-at-a-time, dependingon his input and the bits of r that he read so far. We denote suh an adversary byAr(�).De�nition 12 A polynomial time omputable funtion f : f0; 1gn ! f0; 1gk is a(perfet, statistial or omputational) adaptive `-ERF (adaptive exposure-resilientfuntion) if for any `-bounded adversary A, when r is hosen at random from f0; 1gn
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and R is hosen at random from f0; 1gk,jPr(Ar(f(r)) = 1)� Pr(Ar(R) = 1)j � "where� In the perfet setting " = 0.� In the statistial setting " = negl(n).� In the omputational setting " = negl(n) for any PPT A.Thus, in the above de�nition A would try to adaptively examine (n� `) bits of rto determine at least something about f(r). And if f is an `-ERF, no `-bounded Awould sueed in distinguishing f(r) from a random string.We observe that in the perfet setting this de�nition is equivalent to that of anordinary perfet `-ERF. Indeed, no matter how, why and whih (n� `) bits of r wereexamined by A, one the remaining ` bits of r are hosen at random, the de�nitionof perfet `-ERF says that f(r) is truly random over f0; 1gk (even onditioned on theobserved (n � `) bits). Thus, adaptivity does not help the adversary in the perfetsetting (beause the de�nition of a perfet ERF is by itself very strong!). As we willsee, in the statistial setting there is a very big di�erene between the adaptive andthe non-adaptive notions: if not that muh with the parameters ahieved, but withthe diÆulty of onstruting adaptive ERF's as ompared to ordinary ERF's. Andone we have good statistial ERF's, omputational ERF's will be easy to onstrutboth in the stati and in the adaptive settings.Computational ERF vs. PRG. Assume we have a (omputational) `-ERF f :f0; 1gn ! f0; 1gk, where k > n. This an be viewed as a partiularly strong form of apseudorandom generator (PRG, see Setion 2.4). In other words, not only f strethesn random bits into k pseudorandom bits, but the k output bits remain pseusorandomeven when any (n� `) bits of the seed are revealed. Thus, suh ERF an be alled an\exposure-resilient PRG". Not surprisingly, we will use regular PRG's as one of thebuilding bloks in onstruting suh omputational ERF's.56



3.2 Appliations of ERFProteting random serets. As an immediate general appliation to the partialkey-exposure problem, `-ERF f : f0; 1gn ! f0; 1gk allows one to represent a randomseret R 2 f0; 1gk in an \exposure-resilient" way. Namely, instead of storing andusing R as the seret, we pik and store a random r 2 f0; 1gn, but use f(r) as ourseret. Sine f(r) and R are indistinguishable, our underlying appliation is not going\to know the di�erene". In fat, even if the adversary learns all but ` bits of r, theseret f(r) is still indistinguishable from a random value.On a theoretial level, we an almost always assume that our seret is a trulyrandom string (for example, the random oins of the key generation algorithm). Thus,in priniple `-ERF's an solve the general partial key exposure problem. In pratie,however, this is going to be eÆient only if a \natural representation" of the seretis a truly random string. As we saw in Setion 2.5, this indeed often happens in thesetting of private-key ryptography (and sometimes even in publi-key ryptography),and gives rise to many more spei� appliations, some of whih we desribe next.Exposure-Resilient PRG's and one-time pad. As another immediate applia-tion whih we already observed at the end of last setion, ERF's allow us to obtain amuh stronger form of pseudorandom generator (espeially when k > n), whih notonly strethes n bits to k bits, but remains pseudorandom even when any (n� `) bitsof the seed are revealed. As a natural extension of the above appliation, we an applyit to the one-time private-key enryption. Reall that one-time pad enryption overf0; 1gk hooses a random shared seret key r 2 f0; 1gn and enrypts x 2 f0; 1gk by apseudorandom \one-time pad" G(r) (where G is a PRG), i.e. En(x; r) = x �G(r).We an make it resilient to the partial key exposure by replaing a PRG G with aERF f .Exposure-Resilient PRF's and symmetri enryption. For the next severalappliation, we assume for onveniene that ERF f : f0; 1gk ! f0; 1gk is length-preserving (we will show in Setion 4.3 how to build them based on any one-way57



funtion). Using suh f , we show how to obtain exposure-resilient form of a pseudo-random funtion family. Let F = fFs j s 2 f0; 1gkg be a regular PRF family. De�n-ing ~Fs = Ff(s), we get a new pseudorandom funtion family ~F = f ~Fs j s 2 f0; 1gkg,whih remains pseudorandom even when all but ` bits of the seed s are known. Weapply this again to private-key ryptography. Reall that a lassial private-key en-ryption sheme selets a random shared key s 2 f0; 1gk and enrypts x by a pairhx� Fs(R); Ri, where R is hosen at random. Again, replaing F by an exposure-resilient PRF, we obtain resiliene against partial key exposure. Here our new seretkey is s 2 f0; 1gk, but f(s) is used as an index to a regular PRF.Other examples of random keys. As we pointed in Setion 2.5, there are manyother natural examples where the seret key is just a random string: message authen-tiation odes, pseudorandom permutations and blok iphers, keyed hash funtions,many disrete-log based ryptosystems.Gradual exposure of random keys. In fat, we an ahieve seurity evenagainst what we all the gradual key exposure problem in the setting with sharedrandom keys. Namely, assume several parties (say, two) want to share a seret keywhih is just a k-bit random value. And onsider a situation where the adversaryis able to learn more and more bits of the seret key over time. We do not plaeany upper bound on the amount of information the adversary learns, but insteadassume only that the rate at whih the adversary an gain information is bounded.For example, suppose that every week the adversary somehow learns at most b bitsof our seret R. As before, let us let us strore a random r 2 f0; 1gk and use f(r) inplae of R. We know that as long as the adversary misses ` bits of r, the system isseure.1 However, pretty soon (in about (k � `)=b weeks) there is a danger that theadversary may know more than (k � `) bits of r, whih would make f(r) no longer\ompletely seret". To irumvent thsi problem and to avoid ever hanging theseret key, it seems suÆient that both parties periodially (say, with period slightlyless than (k� `)=b weeks) update their stored key by setting rnew = f(rold). Sine at1Here it makes more sense to talk about adaptively seure ERF's.58
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1Figure 3-1: Gradual exposure of random keys, or how to maintain a random seret.the time of eah update the adversary did not know at least ` bits of our urrent keyr, the value f(r) is still pseudorandom, and thus seure. This idea \almost works".The problem is that after we hanged our \stored" key from r to f(r), and onethe adversary starts learning the bits of f(r), he gets the bits of the \atual" key f(r)we used several weeks ago. For some appliations, where old transations are quiklyerased or beome irrelevant, this might be good, but in general we de�nitionely donot want the adversary to learn information about our old keys. In some sense, theonly thing we ahieved is shifting the immediate problem of key exposure by (k�`)=bweeks. Lukily, there is a simple �x that makes this idea work as we initially intended.Namely, assume we have a length-doubling `-ERF ~f : f0; 1gk ! f0; 1g2k (again, wewill show in Setion 4.3 how to build them). Call f the length-preserving funtionreturning the �rst k bits of ~f , and by g | the one returning the last k bits of ~f . Nowwe store a random r and use f(r) as our atual seret. However, at the time we needto synhronously update our key (say, in (k� `)=b weeks), we replae r by g(r). Nowat the time of eah update the adversary misses at least ` bits of our urrent seret, sohe has no information about both f(r) and g(r). Moreover, even when he later learnssome information about our new seret g(r) (even all of it), he still gets no informationabout f(r), i.e. the atual seret used in all the urrent transations. Hene, partiesagree on a random seret key only one, even if the adversary ontinuously learnsmore and more of the (urrent) seret! This mehanism is illustarted in Figure 4-2,where the timeline shows what is being urrently stored, and what is used as a urrent\atual" seret. 59



Maintaining a (pseudo)random seret. The solution above has another appli-ation. Namely, it allows one party to maintain a (pseudo)random seret that keepshanging (while staying pseudorandom to the adversary), despite the adversary ableto ontinuously learn more and more bits of whatever we store (but at a boundedrate). As before, we store r, use f(r) as our maintained pseudorandom seret, andbefore the adversary learns too many bits of r, we let rnew = g(rold). We will see oneappliation of this is Setion 3.4.Agreeing on a seret key. This is one of the appliations of t-resilient funtions(e.g., perfet ERF's) suggested by [10℄, whih extends to any ERF. Assume that twoparties Alie and Bob want to agree on a random string of length k. Ordinarily,Alie an hoose a random string R and send it to Bob. Unfortunately, there is aneavesdropper Eve who an listens to the ommuniation hannel and may learn someof the bits transmitted by Alie. Alie and Bob do not know whih bits were observedby Eve, but they know that with high probability Eve did not learn more than a Æfration of the transmitted bits. Assume we have an `-ERF f : f0; 1gn ! f0; 1gk with`=n � 1 � Æ. Then Alie an pik a random r 2 f0; 1gn and send it to Bob. Theatual shared random string will f(r), about whih Eve will have \no information"sine he misses at least (1� Æ)n � ` bits of r.Coin-Flipping in Synhronous Networks with Broadast. This is one ofthe original motivations of Chor et al. [20℄ . Unfortunately, if only applies to perfet`-ERF's. Consider a synhronous network where n players wish to olletively ip arandom k-bit string, and only a broadast hannel2 is available for ommuniation.Assume also that up to (n� `) of the players an be faulty, and our protool shouldbe resilient against that. The simplest possible solution would be for eah player i toip a random bit ri and to broadast it to all the other players. The resulting k-bitoutput will be f(r1; : : : ; rn) for some �xed f : f0; 1gn! f0; 1gk. It is easy to see thatthe protool is resilient to any ` faulty players if and only if f is a perfet `-ERF (i.e.,2This means that a player an send a message to all other players, and all the players are assuredof getting the same message. 60



(n� `)-resilient funtion of [20℄).We also remark that while this appliation does not apply to statistial and om-putational ERF's, it does apply to their stronger ounter-parts. Namely, we an usealmost (n � `)-resilient funtions of [39℄ (the output will then be statistially loseto uniform) that we onstrut in Setion 4.4.1. Alternatively, if we use what we allomputational (n� `)-resilient funtions (that we de�ne and onstrut in Remark 1),the resulting output will be omputationally lose to uniform. Overall, we an saythat this appliation applies to (perfet, statistial or omputational) (n� `)-resilientfuntions, that is: a) the adversary an �x any (n � `) bits of r to any string hedesires, b) the remaining ` bits of r are set at random, and ) the resulting outputf(r) is still \lose" to a random k-bit string (where the meaning of \lose" dependson the notion of (n� `)-resilient funtion we use).All-Or-Nothing-Transforms. Finally, in Setion 5 we show how to onstrutAONT's using ERF's.3.3 All-Or-Nothing TransformsDe�nition 13 A randomized polynomial time omputable funtion T : f0; 1gk !f0; 1gs � f0; 1gp is `-AONT (all-or-nothing transform) if1. T is eÆiently invertible, i.e. there is a polynomial time mahine I suh thatfor any x 2 f0; 1gk and any y = (y1; y2) 2 T (x), we have I(y) = x.2. For any L 2 fs̀g, any x0; x1 2 f0; 1gk we havehx0; x1; [T (x0)℄�Li � hx0; x1; [T (x1)℄�Li (3.2)In other words, the random variables in f[T (x)℄�L j x 2 f0; 1gkg are all indistin-guishable from eah other. Here � an refer to perfet, statistial or omputa-tional indistinguishability. 61



If T (x) = (y1; y2), we all y1 the seret output and y2 the publi output of T . If p = 0(there is no publi output), we all T a seret-only `-AONT.The above de�nition is \indistinguishability" based and follows the general method-ology from Setion 2.3. Indeed, for eah �xed L the experiment on x onsists simplyof outputting [T (x)℄�L. In partiular, one an make the equivalent \semanti seurity"based de�nition, where the adversary, given z = [T (x)℄�L (where x is piked aordingto some distribution D), annot ompute � satisfying some relation R(x; �) \signif-iantly better" than without z at all. Thus, all-or-nothing transforms allow one to\enode" any x in suh a form that the enoding is easily invertible, and yet, anadversary learning all but ` bits of the (seret part of the) enoding \annot extratany useful information" about x. We also remark that Boyko [16℄ gave two sepa-rate de�nitions of semanti seurity and indistinguishability for AONT (with randomorales), and proved essentially idential theorems for both of his de�nitions. Thegeneral equivalene of the de�nitions (together with the eÆieny of both redutionsin Setion 2.3) shows that one of these proofs was not neessary, and further justi�esthe usefulness of Theorem 1.Comparison with earlier definitions. The de�nition given above generalizesand simpli�es (beause there are no random orales) the formal de�nition for seret-only AONT given by Boyko [16℄ (re�ning an earlier de�nition of Rivest [51℄) in asetting with a random orale. In partiular, while previous de�nitions were restritedto seret-only AONT, our de�nition allows one to split the output y into two setions:a seret part y1 and a publi part y2. The publi part y2 requires no protetion |that is, it is used only for inversion and an be revealed to the adversary in full.The seurity guarantee states that as long as ` bits of the seret output y1 remainhidden (while all the bits of y2 an be revealed), the adversary should have \noinformation" about the input. We also observe that if y = (y1; y2) and L 2 fs̀g, wehave notationally that [y℄�L = ([y1℄�L; y2). This is informally illustrated in Figure 3-2and should be ompared with the speial ase of seret-only AONT from Figure 1-1.We note that our generalized notion of AONT solves the problem of partial key62
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Figure 3-2: All-Or-Nothing Transform (with seret and publi outputs).exposure and also remains equally appliable to all the other known uses of the seret-only AONT. In addition, we will argue that it gives us more exibility and also allowsus to haraterize the seurity of our onstrutions more preisely. More spei�ally,the motivations for potentially having a publi part is the following. In the earlierde�nitions of AONT (whih were seret-only), it is impliitly assumed that all parts ofthe transform are \equally important" and should have the same protetion againstthe attaker. In reality, di�erent parts of the transform serve di�erent purposes forthe deoding proess. Some of them ould be used just for the deoding proess (sothat the mapping is invertible), but are not important to keep seret against theattaker, while others are really the ones that do all the ryptographi work, andthus, should be kept seret.For example, we ould have a transform of output length 2k, where, as long asthe adversary does not learn pk bits from the �rst half of the transform, we areompletely seure, but beome totally inseure if the adversary learns the entire �rsthalf. This seems like a very reasonable solution to the key leakage problem; we willsimply protet as hard as we an the �rst half of the transform, while the seond half63



we might as well publish. However, in the standard setting we must set ` = k +pkto ensure that the adversary misses at least pk bits of the �rst half. This seems tobe an arti�ial setting for `, indiating that more than half of the transform shouldbe kept hidden. Common sense tells us that the real answer is ` = pk, beause �rstand seond half serve di�erent purposes, and we are seure as long as pk bits of the�rst half remain hidden. To summarize, in our de�nition publi part is only used todeode x bak (in onjuntion with the seret part), but we really do not are aboutproteting it. It is only the seret part that is important to protet.We now argue that this generalized notion allow us more exibility than before.First of all, it allows reasonable AONT onstrutions, as in the example above, tohave small `, as they should. Seondly, while without the publi part, the size of theseret part had to be at least the size of the message, now it an be muh smaller(at the expense of the publi part). Thus, the publi part may be stored on someinseure devie with fast aess time (like publi ahe), while seret part may bestored further away in some well proteted memory (like a smartard), and still giveus a guarantee that small aidental leakage will not ompromise the seurity. Inaddition, we will see that more general AONT's (with the publi part) seem to bemore eÆient and muh easier to onstrut than the orresponding AONT's with onlya seret part. We also point again that our generalized notion of AONT naturallysuÆes for all the appliations of AONT that we are aware of.We also remark that the speial ase of perfet AONT's was impliitly mentionedby Bennett et al. [10℄. See Setion 5.1.Previous onstrutions. Boyko [16℄ showed that, in the random orale model, thefollowing so alled \optimal asymmetri enryption padding" (OAEP) onstrutionof [8℄ is a (seret-only) `-AONT (where ` an be hosen to be super-logarithmi in theseurity parameter). Let G : f0; 1gn ! f0; 1gk and H : f0; 1gk ! f0; 1gn be randomorales (where n is any number greater than `). The randomness of T is r  f0; 1gn.De�ne T (x; r) = hu; ti, where u = G(r)� x (3.3)64
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try to �rst steal the �rst ouple of pages that have the table of ontents. Based onthat, the adversary will know whih parts of the doument are really important, andthen target his attention to stealing the few \important" pages, whose identity theadversary would not know if he ould only steal several pages \in one shot". Taken tothe most extreme, we an allow this adaptive adversary to read the bits of the seret\one-bit-at-a-time", as long as he misses at least ` bits.As before when talking about ERF's, we will apture this by having an `-boundedadversary A, who will have orale aess to a string y = (ys; yp) (whih ould begenerated by some probabilisti experiment). A an read entire \publi" part yp andis allowed to adaptively read all but some ` bits of the \seret" part ys one-bit-at-a-time (possible based on his regular input). As before, we denote suh an adversaryby Ay(�).De�nition 14 A randomized polynomial time omputable funtion T : f0; 1gk !f0; 1gs�f0; 1gp is a (perfet, statistial or omputational) adaptive `-AONT (adaptiveall-or-nothing transform) if1. T is eÆiently invertible, i.e. there is a polynomial time mahine I suh thatfor any x 2 f0; 1gk and any y = (y1; y2) 2 T (x), we have I(y) = x.2. For any x0; x1 2 f0; 1gk and any `-bounded adversary A,��Pr(AT (x0)(x0; x1) = 1)� Pr(AT (x1)(x0; x1) = 1)�� � "where� In the perfet setting " = 0.� In the statistial setting " = negl(s+ p).� In the omputational setting " = negl(s+ p) for any PPT A.Equivalently, in the above de�nition we an have A adaptively examine some bitsof T (xi) to determine at least something about a randomly hosen i. And if T is66



an `-AONT, no `-bounded A would sueed in prediting i orretly with probabilitysigni�antly more than 1=2.Again, we observe that in the perfet setting this de�nition is equivalent to thatof an ordinary perfet `-AONT. Thus, adaptivity does not help the adversary in theperfet setting (beause the de�nition of a perfet AONT is by itself very strong!). Aswith ERF's, however, in the statistial and omputational settings there is a very bigdi�erene between the adaptive and the non-adaptive notions.AONT's vs. ERF's. The notions of ERF and AONT are losely related with thefollowing ruial di�erene. In ERF, the \seret" is a (pseudo) random value f(r).ERF allows one to represent this random seret in an \exposure-resilient" way bystoring r instead. Thus, the seurity is \average-ase", whih allows us to have adeterministi f . In AONT, the seret is an arbitrary x, whih an be represented inan \exposure-resilient" way by storing T (x) instead. Thus, the seurity is \worst-ase", and, as a result, AONT must be randomized. To summarize, ERF allows oneto represent a random seret in an exposure-resilient way, while AONT allows this forany seret. We remark that ERF's an be muh more eÆient that AONT's for thease of (pseudo) random serets; for example, we will show that in the omputationalsetting we an store the value r that is shorter than the length of the atual seretf(r), whih is impossible to ahieve with AONT's due to their invertibility. Theseissues are summarized one again in Table 3.1 (see also Figures 1-1 and 1-2).We also remark that perfet AONT's and ERF's are related even more losely, withAONT being more general. See Setion 5.1 for more on this relation.AONT's vs. Error-Correting Codes. It is also interesting to ompare the no-tion of an AONT with a somewhat opposite notion of an error-orreting ode (ECC).Reall, an error-orreting ode of minimal distane 2d deterministially strethes kinput bits to n output bits (alled the enoding of the input), suh that erasing anyd bits of the output still allows one to reover the k-bit input. In partiular, ob-serving any (n � d) bits of the output allows one to reover the input. Thus, thelarger the distane 2d is (and one always tries to maximize the distane when on-67



Issue AONT's ERF'sSeret Any x (pseudo)Random ERF(r)Store AONT(x) Random rFuntion (must be) Randomized DeterministiSeurity \Worst-Case" \Average-Case"Length jAONT(x)j � jxj Can have jrj < jERF(r)jCommon Store seret in an \exposure-resilient" wayTable 3.1: Comparison of AONT's and ERF's.struting ECC's), the less \exposure-resilient" the ECC is. And this is what we wantfrom ECC's, sine their main use is to tolerate a lot of errors in the enoding. Inontrast, the objetive of an AONT is to give no information about the input whenone misses just few bits of the output. Namely, missing any few bits of the (seretpart of the) output gives no information about the input. Thus, a good AONT wouldbe terrible for error-orretion purposes and vie versa. Curiously enough, though,in Setion 5.1.1 we will onstrut perfet AONT's using some good ECC's.3.4 Appliations of AONTIn the appliations below, let x be the \seret entity" (lear from eah appliation),T be an `-AONT and y = (y1; y2) T (x).Partial Key Exposure. This is our original motivation. Given a seret x, our anstore y instead. This way, the adversary who an learn all but ` bits of (the seretpart of) y has no information about the \atual" seret x. This works for serets ofarbitrary struture and applies as a blak-box to any ryptographi appliation. Theprie we pay is a slight storage blow-up (whih is inevitable sine we should be ableto reover x from y), and the omputation of x from y that we have to perform when68



we use x. If the underlying AONT is eÆient and not very long, while the appliationis very \intensive", this extra-work will not be signi�ant, but the system beomes\exposure-resilient".Gradual key exposure of any keys. This is a similar senario to the gradualkey exposure of random key, that was onsidered in Setion 3.2. There two partieswanted to maintain a ommon random key despite the adversary learning more andmore bits of whatever we store (but doing so at a limited rate). We presented asolution to that problem where the parties synhronously update their urrent keyusing a good ERF. Now assume that one party (this learly extends to more parties)has a partiular seret x, and the adversary, as before, an learn more and more bitsof the seret, but at a bounded rate. We do not want to ever hange x despite thisapability of the adversary. As in the regular key-exposure setting above, we simplystore the AONT y of x. However, after there is a danger that the adversary knows allbut ` bit of (the seret part of) y, we erase y and store a brand new AONT y0 of x,and so on. In other words, we store a brand new AONT of x for the period of timewhen it is safe, and then simply redo it from srath. Again, we hoose our seret xonly one and maintain it for an arbitrarily long period of time!Notie the di�erenes with the solution for the shared random keys. There we kepthanging our urrent key, while maintaining it pseudorandom. Sine the key hangesover time, this makes sense only for two or more parties, and the diÆulty was forthe parties to synhronously do \the same thing", so that they still share the same(pseudorandom) seret. Here the philosophy is not to ever hange a spei� seret xdespite the gradual key exposure. Thus, it makes sense even for one party and doesnot require any synhronization: the parties an apply the AONT to x independentlywith di�erent loal randomness and at di�erent times. In partiular, we an solve thegradual key exposure for random serets using the same methodology and withoutever (synhronously) hanging the (random) seret.On the other hand, the solution for shared seret keys an also be easily modi�edto solve gradual key exposure of any seret x (even for one player). Namely, we69



notied in Setion 3.2 that the solution allowed us to maintain a random seret r thatkeeps hanging (while staying pseudorandom), but the adversary has no informationabout the \urrent" r. Well, in addition to \storing" this r, we also store x�r (whihallows us to reonstrut x from r and x�r). Moreover, x�r an even be made publi.Now, eah time we hange r we also hange x� r aordingly. Despite oneptuallybeing slightly more diÆult than the solution using AONT's, it has the advantage ofbeing randomness eÆient. In other words, after we selet the initial random bits tostore r, we do not need any more random bits (e.g., to ompute a brand new AONT)in order to \maintain" x.Enhaning the seurity of blok iphers. This was the original motivation ofRivest [51℄. Rivest observed that typial enryption shemes (e.g., most blok iphers)have a �xed \blok length" ` that they operate on. In other words, a (potentially long)message x is split into bloks of size ` and eah blok is enrypted (independently, orin some kind of \hain" mode). Unfortunately, in most suh shemes it is possibleto reover a blok of the original message by orretly derypting a single blokof the iphertext. As a result, the most typial attak on suh blok iphers is abrute-fore attak. The adversary goes through all the keys and tries to deodethe enryption blok orresponding to a blok of the priginal message. If he getssomething \meaningful",3 he knows that the key is orret and breaks the wholeipher (in partiular, derypts the whole message by only looking at a single blok).Informally speaking, AONT's seem to allow us to slow down this brute-fore attakby a fator equal to the number of bloks b. In partiular, it fores the adversaryto look at all the bloks. Namely, we �rst transform x by applying an AONT intoy = (y1; y2). We then send the publi part y2 \in the lear", and apply the standardblok-by-blok enryption to the seret part y1. The reipient simply derypts allthe bloks and reovers x by inverting the AONT. Now, unless the adversary triesto derypt all the bloks, no information about x is revealed. Hene, the brute-fore3In pratie, it typially very easy to see if the deryption makes sense. Alternatively, theadversary often an make the system enrypt some message that adversary knows. Then he knowsthe deryption and simply tries all possible keys until a math is found.70
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Figure 3-5: AONT's to enhane eÆieny of blok iphers.side, Desai proves that if one uses slightly stronger notion of an AONT (roughly, theoutput of the AONT in inistinguishable from a random string), the resulting blokipher indeed enjoys non-separability of keys.We remark on extra exibility of not restriting ourselves to using a seret-onlyAONT. Indeed, now the length of y1 ould be muh smaller than the length of x(whih is impossible for a seret-only AONT), but muh larger than `. This waywe need to perform fewer enryptions/deryptions, while the seurity is muh higherthan earlier. For more eÆieny onsiderations, see the next appliation.Enhaning the effiieny of blok iphers. This is a \dual" appliation tothe above proposed by Matyas, Peyravian and Roginsky [41℄. As before, instead ofsplitting x into bloks, we ompute the AONT y = (y1; y2) of x and send the publipart y2 in the lear. Now, however, we enrypt only one (arbitrary) `-blok of y1 andsend all the other bits of y1 in the lear. The reepient derypts the single enryptionand reovers x as before. This paradigm is illustrated in Figure 3-5.72



If the enryption is really seure, the adversary gets no information about x un-less he derypts the single enrypted blok. As the result, we seurely enrypted along message by performing an atual entypion of only a single short message (oflength `). This is partiularly useful in several situations. The obvious suh situa-tion is when the \base" blok enryption is slow or expensive to perform. Anothersuh situation is when the base enryption greatly expands the output (in partiular,signi�antly more in proportion to the AONT) [52℄. This way the overall output ofour enryption will be onsiderably less than before. Yet another situation is that ofremotely keyed enrypion, when the part of the system that ontains the seret key isseparate (for example, it resides on a smartard), and bandwidth onsiderations makeit prohibitive to send the entire long message to be enrypted blok by blok [14, 37℄.Now, irrespetive of the length of x, the system needs to enrypt a single short blokwhih dramatially redues the ommuniation. This is illustrated in Figure 3-6.5Comparing the latter two appliations, there is a lear eÆieny/seurity tradeo�that we an exploit if we use AONT in the manner suggested above. The morebloks of y1 we enrypt, the more seure the system is (where in any event it is atleast as seure as the original \naive" blok ipher), but the less eÆient the systempotentially beomes (where in any event it is almost as eÆient as it used to be).However, essentially any setting of parameter (provided we use a good AONT) willimporve both the eÆieny and the seurity.We also remark that these appliations require omputational AONT's. Indeed,they only make sense when ` is smaller than the length of the original message x, andwe will show that this is possible only in the omputational setting.\Chaffing and Winnowing". Another interesting way to enrypt the data usingan AONT and a speial kind of message authentiaion ode (MAC) way suggestedby Rivest [52℄. Namely, assume that the sender and the reipient share a very shortauthentiation key, whih is used by the sender to authentiate the messages sent to5We remark that Bellare and Boldyreva [4℄ made a formal \sanity hek" and showed that ifwe use a semantially seure enryption sheme to enrypt a blok of the AONT(x), the resultingsheme remains semantially seure. 73
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Figure 3-6: AONT's to perform remotely keyed enryption.the reeiver. In other words, the sender applies some hash funtion (MAC) to themessage and the short seret key to get a \tag" for the message. It then sends inthe lear the message and the tag. The reipient an then verify that the tag reallyorresponds to the message. On the other hand, we require that the eavesdropperan neither generate a tag for a given message, nor (whih is more important here)verify if a given tag orresponds to a given message. Very eÆient MAC's satisfyingthese properties exist (e.g., [5, 12, 6, 27℄), and, in fat, any pseudorandom funtion(PRF) will work as well.As before, we apply an AONT to our message x, send the publi part in the lear,and split the seret part into b bloks of length `. Call these blok v1; : : : ; vb, andlet ti = tag(vi). The sender piks b random bloks v01; : : : ; v0b and makes \bogus"tags t01; : : : ; t0b whih the adversary annot tell apart from the orret tags, but thereipient an. Now, for eah i the sender sends (in random order) both hi; vi; tii andhi; v0i; t0ii. The reipient an \throw away" all the random bloks (sine their tagsdo not hek) and reover the message by inverting the AONT. The adversary, on74



the other hand, has 2b hoies of whih subset of bloks is \relevant". It soundsplausible that unless the adversary tries the unique orret ombination, he obtainsno information about the message. This suggested enryption is interesting in a senseof not performing a \onventional" enryption, and sending all the information \inthe lear" (the problem for the eavedropper is to tell whih information is \relevant").While an interesting suggestion that might be useful in pratie, it was observedby Bellare and Boldyreva [4℄ that the seurity of this enryption does not seem tofollow from the mere de�nition of an AONT. On the other hand, they showed that ifRivest's suggestion is applied on the bit-wise rather than the blok-wise level (whihwas also one of the suggestions of Rivest), this will indeed produe a good enryp-tion. More spei�ally, we send in the lear all the bloks v2; : : : ; vb exept for the�rst blok v1. We then split v1 into individual bits and for eah suh bit  sendh; tag()i; h1� ; \garbage"i in random order. Viewed from a di�erent angle, thisis yet another appliation of the paradigm of Matyas [41℄ to apply an AONT to themessage and to enrypt only the �rst blok (see Figure 3-5). In this ase the enryp-tion of the �rst blok is performed by using Rivest's \haÆng and winnowing" (whihwas shown to be a semantially seure enryption by Bellare and Boldyreva [4℄).Gap seret sharing. This onnetion was notied by Rivest [51℄, even though fora muh weaker de�nition of an AONT. Consider an `-AONT with publi output ofsize p and seret output of size s. We an interpret this as being a kind of \gap" seretsharing sheme. For some seret x, we apply the AONT to obtain a seret output y1and a publi output y2. Here, we think of y2 as being a ommon publi share that isbeing unproteted. We interpret the bits of y2 as being tiny shares that are only 1 bitlong, with one share given to eah of the s parties. We are guaranteed that if all theplayers ooperate, by the invertability of the AONT they an reover the seret x. Onthe other hand, if (s� `) or fewer of the players ollude, they gain \no information"about the seret. We all this a \gap" seret sharing sheme beause there is a gapbetween the number of players needed to reonstrut the seret and the number ofplayers that annot gain any information. Note that suh a gap is unavoidable when75



the shares are smaller than the seurity parameter. Notie also that by splitting(in an arbitrary way) our s 1-bit shares into n = s=` groups of size ` eah, we geta traditional (n � 1; n)-seret sharing sheme, where all n partiipants an reoverthe seret, but no information is leaked even if one `-bit share is missing. While it isquite easy to onstrut suh \threshold" shemes (espeially, (n�1; n)-seret sharing;e.g., [54, 38℄), our setting is onsiderably more diÆult sine the shares are only 1-bitlong, and we should be seure against any oalition of (s� `) players.Seure ommuniation. This appliation is similar to the appliation of the ERF'sfor establishing a shared random key in Setion 3.2. As in that ase, Eve learns someof the bits that Alie sends to Bob, Alie knows that he learns at most a fration Æ ofthe bits, but does not know whih. To send a k-bit message x, Alie simply appliesan AONT to x and sends the result y to Bob. Bob reovers x by inverting the AONT.Eve, on the other had, gets no information about x provided `=s � 1� Æ (where s isthe length of the seret part of the AONT).Simultaneous and fair message exhange. This informal appliation was sug-gested by Boyko [16℄. Assume Alie and Bob want to simultaneously exhange seretsxa and xb of the same length over an asynhronous ommuniation hannel. However,none of them wants to send his or her seret �rst. Here we assume that the players arehonest exept they an stop the protool at any point of their hoie. Alternatively,one an think that there is a danger that the ommuniation hannel is not reliableand may fail at an arbitrary point during the protool. Thus, Alie and Bob do notwant to have a point in the protool where one of them reveals signi�antly moreabout his or her seret than the other. Here is a nie solution using AONT's. Alieand Bob ompute AONT's of their serets: ya = T (xa), yb = T (xb). They exhangethe publi parts �rst in any order. Then they start exhanging the seret parts ofya and yb bit by bit. Assuming informally that the only attak on the AONT is theexhaustive searh over the bits not yet reeived, at any point the searh spae of Alieand Bob di�er by at most a fator of 2. 76



Chapter 4
Exposure-Resilient Funtions (ERF)
In this setion we give onstrutions of exposure-resilient funtions (ERF's). First,we desribe perfet ERF's and their limitations. In partiular, ` must be at leastn=2 for k > logn. Then, on our way to building omputational ERF's with verystrong parameters, we build statistial ERF's, ahieving essentially the best possibleparameters (i.e. ` � k for any k) and surpassing the impossibility results for perfetERF's. This onstrution is perhaps our main tehnial ontribution and uses strongrandomness extrators de�ned is Setion 2.7. The onstrution also demonstrates anexponential separation between perfet and statistial ERF's. Indeed, in the perfetsetting we are limited to have ` > n=2, while here we an ahieve ` � k, whih an bejust slightly super-logarithmi! Finally, we show how to ombine our statistial on-strution with standard pseudorandom generators to onstrut omputational ERF's(from n to k bits) based on any one-way funtion that ahieve any ` = 
(n�) andany k = poly(n) (in fat, we show that suh ERF's are equivalent to the existene ofone-way funtions). Our main results about ERF's are summarized in the followingtheorem:Theorem 7 Assume ` � n� (for some arbitrary � > 0). Then1. There is no perfet `-ERF f : f0; 1gn ! f0; 1gk with ` � n=2 and k > logn.2. There exist statistial `-ERF's f : f0; 1gn ! f0; 1gk with k = ` � o(`), and nostatistial `-ERF's with k > `. 77



3. If ` < k � poly(n), omputational `-ERF's f : f0; 1gn ! f0; 1gk exist i� one-way funtions exist.We will also onsider a more hallenging question of onstruting adaptive ERF's.We mentioned that in the perfet setting they are equivalent to ordinary ERF's. Itwill also be lear that we an onstrut omputationally seure adaptive ERF's fromstatistially seure adaptive ERF's in the same way as for ordinary ERF's (usingpseudorandom generators). Therefore, the main diÆulty in onstruting adaptivelyseure ERF's will be in the statistial setting. Unfortunately, our statistial onstru-ion of ordinary ERF's will not work in the adaptive setting. However, we show avery eÆient probabilisti onstrution of statistial adaptive ERF's. Namely, we willonstrut an eÆiently samplable and omputable family of funtions, suh that arandom funtion in this family will be a good statistial adaptive ERF with over-whelming probability. One this funtion is hosen, it never has to be hanged againand an be published. Similar to the non-adaptive setting, we will be able to ahieveessentially optimal ` � k even in the adaptive statistial setting. Overall, we show theexistene as well as an eÆient probabilisti onstrution of optimal adaptive ERF's(with essentially the same parameters and impliations as in the non-adaptive asesummarized in the theorem above).4.1 Perfet ERFHere we require that h[r℄�L; f(r)i � h[r℄�L; Ri. Sine the distributions are idential,this is equivalent to saying that no matter how one sets any (n � `) bits of r (i.e.sets [r℄�L), as long as the remaining ` bits of r are set at random, the output f(r)is still perfetly uniform over f0; 1gk. This turns out to be exatly the notion of theso alled (n � `)-resilient funtions onsidered in [20, 10℄. As an example, if k = 1,the exlusive OR of all n input bits is a trivial perfet 1-ERF (or an (n� 1)-resilientfuntion). As we will see, for larger values of k it is muh harder to onstrut perfetERF's. 78



4.1.1 ConstrutionUsing binary linear error orreting odes (see Setion 2.6), one an onstrut thefollowing perfet `-ERF.Theorem 8 ([20, 10℄) Let M be a k � n matrix. De�ne f(r) = Mr, where r 2f0; 1gn. Then f is a perfet `-ERF if and only if M is the generator matrix for abinary error-orreting ode of distane d � n� `+ 1.Proof: Every odeword is a linear ombination of some rows of M (i.e., odewordsare of the form u>M for u 2 f0; 1gk). The distane properties of the ode imply thatthe rows ofM are linearly independent, and furthermore that every non-trivial linearombination of the rows reates a odeword of Hamming weight at least d (i.e., havingat least d non-zero oordinates). Hene, even after removing any (d� 1) olumns ofM , the resulting k \puntured" rows of M are still linearly independent (as theyannot produe the zero vetor). Therefore, the remaining n� (d� 1) olumns haverank k and, as suh, span the entire f0; 1gk. In other words, the ode generated by Mhas distane d if and only if any (n� d+ 1) olumns of M span f0; 1gk.Now assume that the adversary reads some (n � `) bits of a randomly hosenr 2 f0; 1gn. This means that Mr is equal to some partiular vetor y0 (known to theadversary) plus the \puntured" matrixM 0 (obtained by removing (n�`) olumns ofM) multiplied by a random `-bit vetor r0 (formed by ` random bits of r not observedby the adversary). Then f is an `-ERF if and only if (y0+M 0r0) is random in f0; 1gk,whih happens if and only if M 0 has full rank k. Thus, f is an `-ERF if and only ifany ` olumns of M span f0; 1gk. The lemma follows by omparing the above twoequivalenes.Applying this result to any asymptotially good (reall, this means n = O(k) andd = 
(n)) linear ode (e.g., the Justesen ode), we an get ` = (1 � ")n, k = Æn,where " and Æ are (very small) onstants.Reall also that by the Singleton bound, we have (for any ode) k � n � d + 1.Thus, we get k � n� (n� `+1)+1 = `, as expeted. Also, it is known that d � n=2for k > logn. This implies that we are limited to have ` � n=2. On the other hand,79



we mentioned in Setion 2.6 that at the expense of making n large ompared to k,we an ahieve ` = n � d + 1 to be arbitrarily lose to n=2, but an never ross it.We show now that this is not a limitation of our partiular onstrution, but ratheran inherent limitation of perfet ERF's.4.1.2 Strong Impossibility ResultWe observe that perfet `-ERF an potentially exist only for ` � k. Optimistially, wemight expet to indeed ahieve ` = O(k). However, already for k = 2 Chor et al. [20℄show that we must have ` � n=3, i.e. at least third of the input should remain seretin order to get just 2 random bits! Friedman [28℄ and later Bierbrauer et al. [11℄generalized this result to any k showing thatTheorem 9 ([28℄) If f : f0; 1gn ! f0; 1gk is a perfet `-ERF, then` � 1 + n � 2k�1 � 12k � 1 = n2 + �1� n2(2k � 1)� (4.1)In partiular, for k > logn we get ` > n2 , so at least half of the input has to remainseret!We remark that this result of Friedman was a big breakthrough, aÆrmativelyresolving a famous onjeture posed by [20℄. In Setion 5.1 we will non-triviallyextend this impossibility result to a muh more general setting of perfet AONT's.But now we illustrate its tightness. Notie, the bound in Equation (4.1) hangesnon-trivially only for k � logn. For k > logn the bound stays around ` > n=2. Thisis not surprising, sine we an indeed essentially ahieve it by using Theorem 8 witha binary ode of distane arbitrarily lose to n=2, say d = n(12 � Æ). Suh odes exitsand an ahieve k as large as nÆ2. And in any event, for k > logn we have ` > n=2whih is quite a strong lower bound. Therefore, it suÆes to show the tightness fork � logn, and we start from k � logn; namely, n = 2k � 1. In this ase we show thetightness by applying Theorem 8 to the Hadamard ode introdued in Setion 2.6.The Hadamard ode indeed strethes from k bits to n = 2k � 1 bits and has distane80



2k�1. By Theorem 8, we get` = n� d+ 1 = 2k � 1� 2k�1 + 1 = 2k�1 = 1 + n � 2k�1 � 12k � 1mathing the bound in Equation (4.1). We remark on the expliit form of this funtionf : f0; 1g2k�1 ! f0; 1gk. For i = 1 : : : k, let Bi be the subset of all j 2 [n℄ whosei-th digit in their binary expansion is equal to 1. Then the i-th bit of f(r1; : : : ; rn) issimply �j2Birj.For smaller k, i.e. k < logn, split the n input bits into n=(2k � 1) bloks of size(2k� 1).1 We apply the above (2k�1)-ERF to eah of the bloks, and output the XORof the results. Now, if the adversary misses 1 + n2k�1 � (2k�1� 1) input bits, he misses2k�1 bits from at least one of n=(2k � 1) bloks. Therefore, the entire k-bit output ofthis blok is random, and thus, the overall XOR. Hene,Lemma 5 ([20℄) For k � logn, there exist (optimal) perfet `-ERF's f : f0; 1gn !f0; 1gk, where ` = 1 + n � 2k�1 � 12k � 1 = n2 + �1� n2(2k � 1)�4.2 Statistial ERFWe saw that perfet ERF annot ahieve ` < n=2. Breaking this barrier will be ruialin ahieving the level of seurity we ultimately desire from (omputational) ERF's. Inthis setion, we show that by relaxing the requirement only slightly to allow negligiblestatistial deviation, we are able to obtain ERF's for essentially any value of ` (withrespet to n) suh that we obtain an output size k = 
(`) (in fat, even ` � o(`)).Note that is is the best we an hope to ahieve (up to the lower order term) in thestatistial setting due to the following simple lemma:Lemma 6 Assume f : f0; 1gn ! f0; 1gk is a statistial `-ERF with statistial devia-tion " < 12 . Then ` � k.1Here we assume for simpliity that (2k � 1) divides n. If not, we have to take \oors".81



Proof: Assume ` < k. Take any L, say L = [`℄. We desribe a simple (ompu-tationally unbounded) distinguisher D whih distinguishes h[r℄�L; f(r)i from h[r℄�L; Riwith probability at least 12 > ", a ontradition. Given h[r℄�L; Bi, D tries all possible2` ompletions r0 for r, and for eah of them heks if f(r0) = B. If the equalityholds at least one, D aepts. Clearly, D always aepts when B = f(r), as hewill eventually try r0 = r. If B = R, a random string of length k, D sueeds withprobability at most 2`�k � 12 , sine there are at most 2` possible values f(r0) that hetries. The laim follows.We notie that our result (ahieving k = 
(`) or even ` � o(`)) is indeed quitesurprising. It says that if r 2 f0; 1gn is hosen at random, no matter whih (n � `)input bits of r are observed, the value of f(r) (whih is k = 
(`) bits long) isstatistially lose to the uniform distribution over f0; 1gk. For example, no non-trivial funtion of the output bits an depend on only (n� `) input bits. We see thatwe need some very speial mahinery to solve this problem. It turns out that we needstrong extrators, as de�ned in Setion 2.7.4.2.1 IntuitionThe intuition behind our onstrution is as follows. Notie that after the adversaryobserves (n � `) bits of the input (no matter how it hose those bits), the inputan still be any of the 2` ompletions of the input with equal probability. In otherwords, onditioned on any observation made by the adversary, the probability of anypartiular string being the input is at most 2�`. Thus, if we apply a suÆiently goodextrator to the input, we have a hane to extrat almost ` bits statistially lose touniform | exatly what we need. The problem is that we need some small amountof true randomness to selet the hash funtion in the extrator family. However, ifthis amount of randomness is small enough (say, suÆiently smaller than `, all it d),we an take it from the input itself ! Hene, we view the �rst d bits of r (whih wewill all i) as the randomness used to selet the hash funtion hi, and the rest of rwe all x. The output of our funtion will be hi(x). Then observing (n� `) bits of r82



leaves at least 2`�d equally likely possible values of x (sine jij = d). Now, providedour extrator is good enough, we indeed obtain k � (`� d) bits statistially lose touniform (in partiular, if d = o(`), we will get k = `� o(`)!).A few important remarks are in plae before we give preise parameters. First, theadversary may hoose to learn the entire i (i.e. it knows hi). This is not a problemsine we are using a strong extrator, i.e. the output is random even if one knowsthe true randomness used. Seondly, unlike the perfet ERF setting, where it wasequivalent to let the adversary set (n � `) input bits in any manner it wants, herethe entire input (inluding i) must be hosen uniformly at random (and then possiblyobserved by the adversary). For example, Kurosawa et al. [39℄ onsider almost (n�`)-resilient funtions, whih are \in between" perfet and statistial `-ERF's. And thedistintion was exatly this: they required that for every setting of the (n � `) bitsof r, the value f(r) is statistially lose (in fat, even slightly stronger that this) torandom when the remaining ` bits are hosen at random. In our ase, this has tohappen only \on average" over the setting of (n � `) bits known to the adversary.Partially beause of that, the onstrution of [39℄, while somewhat better than theonstrution of perfet ERF's given in Theorem 8, still requires ` > n=2.2 We, on theother hand, are able to ahieve essentially optimal ` = k + o(k).4.2.2 Constrution using Strong ExtratorsTheorem 10 Assume H = fhi : f0; 1gn ! f0; 1gk j i 2 f0; 1gdg is a strong (m; ")-extrator, and assume m+ d � ` (4.2)Then there exist eÆiently omputable statistial `-ERF's f : f0; 1gn ! f0; 1gk withstatistial deviation ".Proof: De�ne f : f0; 1gn ! f0; 1gk as follows. Given r 2 f0; 1gn, let i 2 f0; 1gdbe the �rst d bits of r, and let x 2 f0; 1gn be equal to r exept the �rst d bits of x2Nevertheless, we later show in Setion 4.4 that one an have almost (n � `)-resilient funtionswith ` � k, substantially improving the results of [39℄ (but our onstrution is probabilisti).83
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Figure 4-1: Statistial ERF from a Strong Extrator.are �xed to 0 (we all the last (n� d) bits of x the valid bits of x). Let f(r) def= hi(x).This simple onstrution and the sketh of its analysis are illustrated in Figure 4-1.We now argue that f is an `-ERF with statistial deviation ". Pik any L 2 fǹg.Let r be hosen at random from f0; 1gn, and de�ne i and x as above. Notie thati and x are independent sine we set the �rst d bits of x to 0. Assume we give theadversary A the value [r℄�L. Let w be the valid bits of x in L (i.e., unknown to A),and z be the remaining valid bits of v (i.e., deduible from [r℄�L). Notationally we willwrite x = w Æ z. First, sine there are (n � d) valid bits of x and at most (n � `) ofthem ould be given in [r℄�L, we get that jwj � (n�d)� (n� `) = `�d � m. In otherwords, A misses at least m valid bits of x. Also notie that z and i subsume [r℄�L, soit suÆes to show (realling that f(r) = hi(x)) that for a random R 2 f0; 1gk,hi; z; hi(x)i �=� hi; z; RiWe will show a slightly stronger statement that this holds for any �xed z = z0 (butnot i). To summarize, i, w and R are hosen at random, x is set to w Æ z0, and we84



want to show that hi; hi(x)i �=� hi; RiWe are almost done now. Sine jwj � m and w was hosen at random, we havex = w Æ z0 has min-entropy at least m. The above result now follows from thefats that H is a strong (m; ")-extrator family, i is independent from x, and x hasmin-entropy at least m.The above Theorem gives a very simple onnetion between extrators and exposure-resilient funtions. Sine good extrators allow us to almost ahieve k � m, in orderto have k � ` Equation (4.2) requires d to be very small. Thus, the most importantrequirement on H is that the hash funtion inH should be desribable by a very shortrandom string. Lukily, strong extrators given in Theorem 4 have this property andyield the following result.Theorem 11 There exist statistial `-ERF f : f0; 1gn! f0; 1gk satisfying:1. k = `=6, for any !(logn) � ` � n.2. k = (1� Æ)`, for any !(log2 n) � ` � n (and any onstant Æ > 0).3. k = `� o(`), for any !(log2 n � loglogn) � ` � n.Proof: We simply apply Theorem 10 to eah of the three extrators from Theorem 4.1. Take any !(logn) � ` � n, set m = `=5 and pik any negligible error " suhthat !(logn) � log(1=") � o(`). Notie thatd+m = 4(m� log(1=")) +O(logn) +m � 5m = `so we an apply Theorem 10. We getk = m� 2 log 1="� O(1) � `=6
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2. Take any !(log2 n) � ` � n, pik any Æ > 0, set " = n�O(log n) (i.e., log(1=") =O(log2 n)), and m = (1� Æ)`. Notie thatd+m = O(log2 n + log(1=")) +m = O(log2 n) + (1� Æ)` < `so we an apply Theorem 10. We getk = (1� Æ)m� O(log(1=")) = (1� Æ)2`� O(log2 n) � (1� 2Æ)`(now replae Æ by Æ=2.)3. Take any !(log2 n � loglogn) � ` � n, set " = n�O(log n), and m = ` �O(log2 n log `). Notie that sine logm < log `, we getd+m = O((log2 n+ log(1=")) logm) +m � O(log2 n log `) +m = `so we an apply Theorem 10. We getk = m� 2 log(1=")� O(1) = `� O(log2 n log `) = `� o(`)(the latter follows sine ` = !(log2 n � loglogn).)Note that, in partiular, in the �rst onstrution we an hoose ` to be anythingsuper-logarithmi is n, whih is learly the best we an hope for (if we want to ahievea negligible error). Indeed, otherwise we ould do exhausive searh in polynomial time,so the statistial distane ould not be negligible. Seen another way, we an hoose nto be essentially any size larger than `, providing exellent seurity against partial keyexposure. We also remark that we get an exponential separation between perfet andstatistial ERF's. Indeed, by Theorem 9 in the perfet setting we were limited to have` > n=2, while here we an ahieve ` � k, whih an be slightly super-logarithmi!Finally notie that our statistial onstrutions (espeially the last one) have es-sentially the best possible k, sine any statistial `-ERF must have k � ` by Lemma 6.86
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Figure 4-2: Statitial ERF + PRG ) Computational ERF.4.3 Computational ERFThe only limiting fator of our statistial onstrution is that the output size is(inevitably) limitted to k � `. By �nally relaxing our requirement to omputationalseurity, we are able to ahieve an arbitrary output size (in addition to essentiallyarbitrary exposure-resiliene), by using a pseudorandom generator (PRG) as the �naloutermost layer of our onstrution. We also show that any ERF with k > ` impliesthe existene of PRG's (and thus, one-way funtions), losing the loop.We start from the following almost immediate \omposition" lemma. In essense,statistial ERF provide us with good exposire-resiliene but limited output size, whilepseudorandom generators streth short (statistially) random input into a long om-putationally random output. By ombining the two, we get optimal omputationalERF's, whih is also illustrated in Figure 4-2.Lemma 7 Let m;n = poly(k), f : f0; 1gn ! f0; 1gk be a statistial `-ERF andG : f0; 1gk ! f0; 1gm be a PRG. Then g : f0; 1gn ! f0; 1gm mapping r 7! G(f(r)) is87



a omputational `-ERF.Proof: Let L 2 fǹg. Suppose there was a distinguisher D distinguishing betweenA = h[r℄�L; G(f(r))i and B = h[r℄�L; Ri with non-negligible advantage Æ, where R isthe uniform distribution on f0; 1gm. By the properties of f as a statistial `-ERF, andthe fat that statistial di�erene an only derease by applying a funtion (G in ourase), we have that A = h[r℄�L; G(f(r))i and C = h[r℄�L; G(K)i are within statistialdistane " of one another, where K is the uniform distribution on f0; 1gk and " isnegligible. Thus, D distinguishes C from B with non-negligible advantage (Æ� "), aswell. Note that in both B and C the seond omponent is independent of the �rst.Thus, we an use D to distinguish G(K) from R (with advantage Æ � "), by simplypiking a random r 2 f0; 1gn, and providing D with [r℄�L as the �rst omponent. Thisontradits the seurity of the pseudorandom generator G, ompleting the proof.Theorem 12 Assume one-way funtions exist. Then for any `, any n = poly(`) andk = poly(n), there exists a omputational `-ERF g : f0; 1gn ! f0; 1gk.Proof: Sine k = poly(`), one-way funtions imply (by Theorem 2) the existeneof a PRG G : f0; 1g`=6 ! f0; 1gk. Theorem 11 implies the existene of a statistial`-ERF f from f0; 1gn to f0; 1g`=6 with negligible statistial deviation. By Lemma 7,g(r) = G(f(r)) is the desired omputational `-ERF.The above result learly provides the strongest possible omputational onstru-tion we an hope to ahieve: we deterministially streth our input by an arbitraryamount, and yet the output is psedorandom even when the adversary misses just atiniest fration of input bits of his hoie!Finally, we show the \onverse", i.e. that omputational ERF's with k > ` implythe existene of pseudorandom generators (and hene one-way funtions).Lemma 8 If there exists an `-ERF f : f0; 1gn ! f0; 1gk, for k > ` (for in�nitelymany di�erent values of `; n; k), then one-way funtions exist.Proof: Take any L, let r 2 f0; 1gn and R 2 f0; 1gk be hosen uniformly at random,and let A = h[r℄�L; f(r)i, B = h[r℄�L; Ri. From the proof of Lemma 6, the statistial88



distane between A and B is at least 1=2 (intuitively, A has at most n \bits ofrandomness", while B has n� `+ k � n+ 1 \bits of randomness"). By the result ofGoldreih [30℄, the existene of a pair of eÆiently samplable distributions that areomputationally indistinguishable but statistially far apart, implies the existene ofpseudorandom generators, and hene one-way funtions.Theorem 7 now follows by ombining Theorem 9, Theorem 11, Lemma 6, Theorem 12and Lemma 8.4.4 Adaptively Seure ERFWe now address the question of onstruting adaptively seure ERF's, where the ad-versary an adaptively deide whih (n � `) bits of the input to examine. As wehave pointed out, in the perfet setting adaptively and non-adaptively seure ERF'sare the same thing. In partiular, all the limitations of perfet ERF's still hold. Onthe other hand, it is very easy to see that Lemma 7 holds in the adaptive setting aswell. Namely, if we have a statistial adaptive `-ERF f from n bits to k bits, anda pseudorandom generator G from k bits to m bits, then the omposition G(f(�))is a omputational adaptive `-ERF from n bits to m bits (the proof is idential tothat of Lemma 7). Sine in the statistial setting we will be able to ahieve ` � k(at least existentially), we would get omputational adaptive `-ERF's with the sameparameters as in the regular non-adaptive setting (e.g., the anolog of Theorem 12will hold). Thus, the main interesting setup we have to onsider is that of statistialadaptive ERF's.4.4.1 Statistial Adaptive ERFWe will present an eÆient probabilisti onstrution of statistial adaptive ERF'swith ` � k.3 In other words, we will ahieve the same (essentially optimal) bound3As an indiret onsequene of our onstrution, we will onstrut the so alled almost (n � `)-resilient funtions that dramatially beat the parameters ahieved for these funtions by Kurosawaet al. [39℄. However, our onstrution will be probabilisti.89



as we had with ordinary ERF's. In partiular, suh adaptively seure ERF's exist andare very eÆient to evaluate (ones we have found one). This should be ontrastedwith hoosing a truly random funtion. One an show that a truly random funtionis indeed a great adaptive ERF (whih is already interesting), but it would require anexponential number of bits to store and exponential time to evaluate. In ontrast,the representation of the funtions we onstrut will be very short, and they anbe evaluated in almost linear time in n. The only drawbak, however, is that weannot give an expliit funton that is guaranteed to work. Rather, we give a familyof funtions most of whih are guaranteed to be great adaptive `-ERF, but we annotprove this about any spei� �ntion in this family. In pratie, however, one anpik suh a funtion at random one and for all, and be sure almost ertainly that itworks.Various notions of adaptive ERF's. Having said this, let us turn bak to statis-tial adaptive ERF's. One an think about at least the following four senarios for anadaptive adversary A, stated in terms of requiring more and more from our funtionf : f0; 1gn ! f0; 1gk. (We stress again that the adversary A below is omputationallyunbounded.)S1. r 2 f0; 1gn is hosen at random. A an adaptively learn one-bit-at-a-time any(n� `) bits of r, all them w. A is then given a hallenge Z whih is either f(r)or a totally random R 2 f0; 1gk. A has to distinguish between these two aseswith non-negligible advantage.S2. r 2 f0; 1gn is hosen at random. A is then given a hallenge Z whih is eitherf(r) or a totally random R 2 f0; 1gk. Based on Z, A an adaptively learnone-bit-at-a-time any (n � `) bits of r, all them w. A has to distinguish ifZ = f(r) or Z = R with non-negligible advantage.S3. A hooses any set L 2 fǹg and any w 2 f0; 1gn�`. A requests that [r℄�L is setto w. The remaining ` bits of r in L are set ar random. A is then given ahallenge Z whih is either f(r) or a totally random R 2 f0; 1gk. A has to90



distinguish these two ases with non-negligible advantage. Put another way, Aloses if for any L 2 fǹg and any w 2 f0; 1gn�`, the distribution indued by f(r)when [r℄�L = w and the other ` bits of r hosen at random, is statistially loseto the uniform on f0; 1gk.S4. A hooses any set L 2 fǹg and any w 2 f0; 1gn�`. A requests that [r℄�L is set tow. The remaining ` bits of r in L are set ar random and Y = f(r) is evaluated.A wins if there exists y 2 f0; 1gk suh that Pr(Y = y) in this experiment doesnot lie within 2�k(1 � �), where � is negligible. Put another way, A loses iffor any L 2 fǹg, any w 2 f0; 1gn�` and any y 2 f0; 1gk, the probability thatf(r) = y when [r℄�L = w and the other ` bits of r hosen at random, is within2�k(1� �) (for negligible �).Our \oÆial" De�nition 12 of adaptive ERF is that satisfying senario S2. Let usbriey summarize the above four variants. Variant S1 allows the adversary to adap-tively hoose whih (n� `) bits to learn before he sees anything else. In appliationswhere adaptive seurity is important, however, A will typially have some partialinformation about f(r) through the use of the system where f(r) is the seret key.Therefore, our de�nition settled for version S2, where the adversary hooses whihbits to see after he obseves the hallenge (either f(r) or R). Versions S3 and S4 havea di�erent avor. Here not the entire r is hosen at random. Rather the adversary�xes any (n � `) bits of r to some string w. The remaining bits are set at random,and we still want f(r) to be \really random": in variant S3 to be statistially lose touniform and in variant S4 to hit every single y 2 f0; 1gk with probability roughly 2�k.We an view the setups S3 and S4 as requiring that on any `-dimensional subube(i.e., the set of r satisfying [r℄�L = w for a �xed L and w) of f0; 1gn the distributionindued by f(r) is lose to uniform in the L1 and L1 norms respetively.While it is lear that version S2 is stronger than S1 and version S4 is strongerthan S3, let us show the only non-trivial impliation that version S3 is stronger thanS2. Assume f does not satisfy S2. This means that if i 2 f0; 1g, r, R are hosen atrandom, Z is set to f(r) if i = 0 and to R if i = 1, and A is given Z, A an predit91



i well. In partiular, this holds on average over all the random hoies above. Byonditioning over the value w 2 f0; 1gn�` of the ` positions L that A observes, thereexist some partiular L 2 fǹg and w 2 f0; 1gn�`, suh that onditioned on [r℄�L = wand the fat that A would hoose to examine [r℄�L, A would distinguish f(r) fromR. Therefore, in the experiment where [r℄�L is set to w, the remainder of r is set atrandom, R is set at random, and A behaves at random as before, provided that Ahose to examine [r℄�L and saw [r℄�L = w, we would have that A distinguishes f(r)from R (i.e., guesses i well). But then this L, w and \A onditioned on L and w"ontradit de�nition S3. In other words, when [r℄�L = w, the remaining bits of r are setat random and Z is set to f(r) or R, our new adversary A0 will run A as many timesas he needs to until A �nally hoses to examine positions in L (and thus, neessarilyobserves [r℄�L = w). When this happens, he outputs whatever A does for its guess,ompleting the proof. To summarize this in a di�erent way, the de�nition S3 requiresf to be good for every possible L and [r℄�L, and therefore subsumes anything that Aould possibly see in the senario S2.Comparing with non-adaptive ERF. We show that senario S4 is still muhweaker than the notion of a perfet ERF (whih requires � = 0, i.e. to indue per-fetly uniform distribution on every subube given by L and w), while senario S1is still muh stronger than our non-adaptive notion of statistial ERF (whih worksfor any �xed L). Thus, we really have a hierarhy of re�nements between perfet andstatistial ERF's. The �rst laim (about perfet ERF and those satisfying senarioS4) is shown later in this setion by being able to ahieve ` � k even in the se-nario S4 (whih is impossible with perfet ERF's by Theorem 9). This also shows anexponential gap between (adaptive) perfet and adaptive statistial ERF's.The seond separation between non-adaptive statistial ERF and those satisfyingsnario S1 we argue now. We do it by notiing that, unfortunately, our onstrutionof statistial ERF's in Setion 4.2 (using strong extrators) does not satisfy even theweakest adaptive notion S1. Indeed, the de�nition of a strong extrator requires thatthe hash funtion is hosen ompletely independently of the random soure. In our92



onstrution the randomness used to generate the hash funtion is part of the input.For any �xed L, sine the input r is hosen at random, the hash funtion h is indeedindependent from our soure X (the remaining (n � d) input bits, where d is thelength of the seed to the extrator). When the adversary is adaptive, however, hemay hoose to �rst learn the �rst d bits that de�ne the hash funtion h. Only thenwill he hoose whih other bits of r to read. Therefore, the soure X (of min-entropym � `� d) that the adversary reates is dependent on the hoie of the hash funtionh, so we annot say that h will extrat almost m random bits. And, indeed, in allthe strong extrator families that we used, the output bits produed need not berandom if the adversary an hoose the random variable X after the hoie of thehash funtion is made. Therefore, a new idea is needed to deal with adaptive ERF's.This idea will be to use Æ-sure (m; �)-extrators de�ned in Setion 2.8 for a very smallÆ, so that with high probability out hash funtion works for all possible hoies of theadversary.4.4.2 Constrution using t-wise Independent FuntionsAs we said, we will satisfy the strongest adaptive de�nition S4 above. So not onlywe will ahieve adaptive seurity as stated in the senario S2 (and our De�nition 12of adaptive ERF), but our f will atually indue an almost \perfet uniform dis-tribution": for eah subube given by L 2 fǹg and w 2 f0; 1gn�`, the number ofpreimages of every single y 2 f0; 1gk will be within 2`�k(1 � �) for a negligible �.More importantly, we will aheive the output size k = `� o(`).We notie that the variant S4 was exatly the notion of ERF onsidered by Kuro-sawa et al. [39℄, who alled suh funtions �-almost (n� `)-resilient funtions. Theygive a ompliated expliit onstrution whih is slightly better than what is possiblewith perfet ERF's, but still required the adversary to miss at least half of the input:` > n=2. While it might seem from that result that maybe one really annot hopeto ahieve very good parameters under suh a strong de�nition, we show that this isnot the ase; that we an ahieve ` � k. However, our onstrution is probabilisti(but eÆient). 93



Fix any L 2 fǹg and w 2 f0; 1gn�`. Pik a random r suh that [r℄�L = w. Fornotational onveniene, denote this r by X = X(L;w). Even though when we knowL and w, it is trivial to extrat ` bits out of X, we pretend that we do not knowthem and only know that X has min-entropy `. Then, if we apply a good enoughextrator to X, we should be able to extrat almost ` random bits out of it. Asbefore, the problem with this is that we need some extra randomness to pik a hashfuntion from the extrator family. However, there are \only" M = �ǹ�2n�` hoiesof L and w. So if a random funtion in our extrator family an be good (with highprobability) for all these M hoies, we will be done. But this is exatly the notionof Æ-sure (`; �)-extrators onsidered in Setion 2.8!In partiular, we showed in Setion 2.8 that for any family of t-wise independentfuntions (for a high enough t), a random funtion from this family will sueedto extrat almost all the randomness from a lot of soures of min-entropy `. Morespei�ally, we an apply Corollary 3 to our situation. The number of random souresis M = �ǹ�2n�` < 22n, all of them have min-entropy `, so we an ahieve t =`+logM = O(n) and k = `�(2 log 1�+loglogM+log `+O(1)) = `�2 log 1��O(logn).Notie, however, that a-priori this only satis�es the notion S3, sine it just ahievesstatistial deviation from uniform equal �. But a loser look at the proof of Corollary 3(from Lemma 3) shows that we simply take a union bound over all y 2 f0; 1gk, so wein fat ahieve the strongest notion S4.In fat, it will be more onvenient to go diretly through Lemma 3 to ahieveslightly stronger parameters, even though the above parameters are already good.Let us set t = n= logn to be our independene index, m = ` to be our min-entropy,� = 3 logn, and k = `� 2 log 1� � log t� 2� � `� 2 log 1� � 7 lognThen we get that for any w 2 f0; 1gn�` and and L 2 fǹg, if we set [r℄�L = w and
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hoose the remaining bits of r at random,Prf2F �����Prr (f(r) = y)� 12k ���� � � � 12k� � 2��t = 2�3nNow we take a union bound over 2k possible y, and M = �ǹ�2n�` possible settings ofsome (n� `) bits of r, and get the probability of error at most �ǹ�2n�`2k2�3n � 2�n.Hene, we have shownTheorem 13 Fix any n, ` and �. Let F be a family of t-wise independent funtionsfrom n bits to k bits, where t = n= logn andk = `� 2 log�1��� O(logn)Then with probability at least (1� 2�n) a random funtion f sampled from F will bea statistial adaptive `-ERF with error � satisfying the strongest adaptive notion S4.Namely, for every L 2 fǹg, w 2 f0; 1gn�` and y 2 f0; 1gk, the number of r satisfying[r℄�L = w and f(r) = y is within the interval 2`�k(1� �).Corollary 5 For any ` = !(logn), there exists eÆient statistial adaptive `-ERFf : f0; 1gn ! f0; 1gk with k = `� o(`).Notie that the parameters we ahieve are even marginally better than what wehad in the statistial onstrution in Theorem 11. The ath is, of ourse, thatthe latter is an expliit onstrution, while the former is a probabilisti (albeit veryeÆient) onstrution. This raises the following interesting question.Question 1 Can we expliitly onstrut an adaptively seure statistial ERF ahiev-ing ` � k (or even having just ` < n=2)?Notie that from an existential point of view, the result of Corollary 5 says thatsuh adaptive ERF's exist (and an be easily sampled).Remark 1 We already notied that by applying a pseudorandom generator to theoutput of an adaptively seure statistial `-ERF, we get a omputationally seure95



adaptive `-ERF (with a muh larger output size), obtaining a probabilisti analog ofTheorem 12. In fat, sine our statistial adaptive ERF's satisfy the strong notion S4(atually, even notion S3 suÆes for this omment), we an say the following strongerstatement about the resulting omputational ERF: for any L and w 2 f0; 1gn�`, ifthe adversary �xes [r℄�L = w, then by setting the remaining ` bits of r at random,the resulting k-bit output will be omputationally indistinguishable from uniform.Following the terminology of [20, 39℄, we an all suh funtions omputationally(n� `)-resilient.
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Chapter 5
All-Or-Nothing Transforms (AONT)
As we pointed out, no AONT onstrutions with analysis outside the random oralemodel were known. We give several suh onstrutions. We start by onsideringperfet AONT's. We show that they are muh more general than perfet ERF's. Yet,we non-trivially extend the the lower bound of Theorem 9 for perfet ERF's andshow a more general impossibility result for perfet AONT's. Namely, the adversarymust miss at least half of the (seret) output of the AONT. We show that the ques-tion of onstruting perfet AONT's is equivalent to a question of �nding \balaned"weighted olorings of the n-dimensional hyperube, and then show that no \very bal-aned" suh olorings exist by taking a surprising reourse into quadrati forms andFourier analysis. Thus, similar to ERF's, perfet AONT's have strong ombinatoriallimitations.We then give a very simple \universal" onstrution of AONT's using ERF's (whihworks in any setting and even in the adaptive ase!). This yields the �rst onstru-tion of AONT's outside the random orale model, and, moreover, the statistial andomputational AONT's that we onstrut have essentially the best possible parame-ters, dramatially beating the impossibility result for perfet AONT's. In partiular,the statistial onstrution ahieves an `-AONT with ` � k (and even a seret-only`-AONT with ` = O(k)), showing an exponential separation between the perfet andthe statistial settings. The omputational onstrution (from any one-way funtion)also implies that for the interesting settings of parameters (essentially, ` < k), the97



existene of `-AONT's, `-ERF's and one-way funtions are all equivalent. The otheronstrution we give an be viewed as the speial ase of the OAEP onstrutionof Bellare and Rogaway [8℄ whih was shown to yield an AONT in the Random Or-ale model [16℄. Thus, this onstrution an be viewed as the �rst step towardsabstrating the properties of the random orale that suÆe for this onstrution tobe an AONT. Finally, we give a \worst-ase/average-ase" redution for AONT's thatshows it suÆes to design AONT's that are seure only for random x0; x1.5.1 Perfet AONTWe �rst onsider perfet `-AONT's and show that they have strong ombinatoriallimitations. Sine our main result will be an impossibility result, in this setion wewill ignore the restritions whih involve eÆieny of the omputations, even thoughall our onstrutions will be eÆient. Thus, our lower bounds holds in a purelyombinatorial setting and under no omputational restritions, whih makes themonly stronger.First, we observe that it suÆes to restrit our attention to seret-only `-AONT's,sine the publi part an be ignored. Indeed, the de�nition of a perfet `-AONTT : f0; 1gk ! f0; 1gs � f0; 1gp implies that all the distributions hx; [y1℄�L; y2i areidentially distributed for any x 2 f0; 1gk and L 2 fs̀g. In partiular, for any �xed~y2 2 f0; 1gp (that is possible as a valid publi part) we get that all the onditionaldistibutions hx; [y1℄�L j y2 = ~y2i are the same. Let us �x any suh possible ~y2. Then,T 0 : f0; 1gk ! f0; 1gs that simply outputs a random y1 suh that (y1; ~y2) 2 T (x) is aseret-only `-AONT (it might not be eÆiently omputable, but we said that we donot worry about the eÆieny this setion). Therefore, we restrit our attention toseret-only `-AONT's T : f0; 1gk ! f0; 1gn (we swith from s to n for onveniene),and will typially omit the phrase \seret-only" in this setion.
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5.1.1 Perfet (seret-only) AONT vs. perfet ERFWe start by showing that perfet AONT's seem to be suÆiently more general thanperfet ERF's. Namely, a perfet `-ERF immediately implies a perfet `-AONT, butthe onverse does nor appear to hold. We will also derive an alternative de�nition ofa perfet AONT that will losely resemble the de�nition of a perfet ERF and simplifythe subsequent disussion.Lemma 9 Assume f : f0; 1gn ! f0; 1gk is `-ERF. Then there exists a (seret-only)`-AONT T : f0; 1gk ! f0; 1gn (whih might not be eÆiently omputable).Proof: Given x 2 f0; 1gk, de�ne T (x) to be a random r 2 f0; 1gn suh thatf(r) = x. In other words, T (x) is a random inverse r 2 f�1(x). First of all, suh anr always exists sine f must be surjetive (otherwise, f(r) annot indue a uniformdistribution on f0; 1gk for a random r). Take any L 2 fǹg. The fat that f is aperfet ERF means that when r is hosen at random, the onditional distribution off(r) given [r℄�L is uniform. In partiular, for any x 2 f0; 1gk and any w 2 f0; 1gn�`we get that the number of r suh that [r℄�L = w and f(r) = x is the same (namely,2`�k). Therefore, the value r for T (x) an be hosen by �rst hoosing a randomw 2 f0; 1gn�` (whih is done independently of x) and then hoosing a random r suhthat [r℄�L = w and f(r) = x. But sine the adversary only observes w whih washosen independently of x, he indeed gets no information about x from w = [r℄�L,ompleting the proof.Construtions of AONT from ERF. In partiular, we an apply Theorem 8 toobtain perfet (seret-only) AONT's. Namely, let M be the k � n generator matrixof a linear error-orreting ode of distane d. Then the following randomized trans-formation T : f0; 1gk ! f0; 1gn is an `-AONT, for ` = n � d + 1. Given x, we �nda random solution r 2 f0; 1gn to the linear system Mr = x and let T (x) = r. Wenote that suh T is eÆiently omputable. In fat, the generi solution to Mr = x isalways given by (n � k) \free bits" of r that an be set arbitrarily, while the otherk bits are �xed linear ombinations of the \free bits". Thus, T an be represented99



as a �xed linear transformation given by some n � (n � k) matrix P . We simplyhoose (n � k) random bits t (orresponding to the \free bits") and output r = Pt.In partiular, we an ahive both k and (n� `) to be (small) onstant fators of n bytaking any assymptotially good ode M . We an also push ` to be arbitrarily loseto n=2 by making k signi�antly smaller than n (by a large onstant fator), but annever ross n=2 this way (unless k � logn). Finally, the upper bound of Lemma 5holds as well.ERF's from \uniform" AONT's. We remark that perfet AONT's seem to be muhmore general than perfet ERF's. Given a perfet AONT, one might try to de�ne anERF using the inverse map I of. Unfortunately, this seems to work only in veryspeial ases and to fail dramatially with general AONT's. For example, not everyr 2 f0; 1gn has to be a possible image of some x 2 f0; 1gk under T , so I may not beeven de�ned for many r 2 f0; 1gn (for the simplest possible example, take any AONTand add a \dummy" 0 at the end). More generally, the probabilities that T (x) = ran be potentially very ompliated funtions of x and r (even irrational!), so even ifI was \de�ned" everywhere, the map I(r) has \no reason" to be an ERF.To see this from a di�erent angle, AONT's onstruted from ERF's via Lemma 9satisfy a very \regular" ondition that for every x 2 f0; 1gk and every w 2 f0; 1gn�`there are exatly 2`�k possible images r suh that [r℄�L = w and x 2 T�1(r), eah ofwhih is seleted with a uniform probability by T . We all suh AONT's uniform.More spei�ally, a uniform AONT T : f0; 1gk ! f0; 1gn has the following form: wepartition f0; 1gn into 2k disjoint subsets S1; : : : ; S2k , and every x 2 f0; 1gk is mappedto a uniformly random element of Sx. Not surprisingly, for these very strit andspeial ases of AONT's the onverse of Lemma 9 holds.Lemma 10 Assume T : f0; 1gk ! f0; 1gn is a uniform `-AONT. Then there exists(eÆiently omputable) `-ERF f : f0; 1gn! f0; 1gk.Proof: De�ne f(r) = I(r), where I is the (eÆiently omputable) inversion mapfor T . Let us �x any L 2 fǹg, pik a random x 2 f0; 1gk and ompute r  T (x).Uniformity of T implies that we indue a uniform distribution on r. The fat that T100



is an `-AONT implies that observing [r℄�L gives no information on x. But this meansthat we an �rst pik a random r, let the adversary observe [r℄�L, then omputex = I(r) = f(r), and this will indue a uniform distribution on x. This is exatly thede�nition of an `-ERF.Corollary 6 Perfet uniform `-AONT T : f0; 1gk ! f0; 1gn exist i� perfet `-ERFf : f0; 1gn ! f0; 1gk exist.Another view of perfet AONT's. We now restate the above omparison be-tween (perfet) AONT's and ERF's in a slightly di�erent way. Reall that the de�nitionof a perfet AONT T says that for any x0; x1 2 f0; 1gk we have [T (x0)℄�L � [T (x1)℄�L.We laim that the following is an equivalent de�nition of a perfet1 AONT (again, weignore the eÆieny onsiderations here).De�nition 15 A randomized funtion T : f0; 1gk ! f0; 1gn is a perfet `-AONT ifT is invertible (i.e., there is an inverse transformation I suh that for any x 2 f0; 1gkand any r 2 T (x), we have I(r) = x) and for any L 2 fǹg and for a randomly hosenx 2 f0; 1gk, R 2 f0; 1gk, the following distributions are idential:h[T (x)℄�L; xi � h[T (x)℄�L; RiThe de�nition above says that observing [T (x)℄�L does not give any informationabout a randomly hosen x. Put another way, the onditional distribution of x given[T (x)℄�L is still uniform.Lemma 11 The above de�nition of perfet AONT is equivalent to the original De�-nition 13 of (seret-only) perfet AONT.Proof: Assume T satis�es the original de�nition, i.e. the distributions [T (x)℄�L areall the same (irrespetive of x). Call this distribution p. But then, when x is hosen1Notie, this equivalene does not hold for the statistial and the omputational settings.101



at random, the distribution of [T (x)℄�L is still p, so it gives no information about x.Thus, the onditional distribution on x is the same as we started from, i.e. uniform.Conversely, assume T satis�es the new de�nition. Take any a 2 f0; 1gk and anyw 2 f0; 1gn�` that happens with non-zero probability as the value of [T (x)℄�L whenx is hosen at random. Sine the onditional distribution of x after any oneivableobservation w of [T (x)℄�L is uniform, we know that Prx;T (x = a j [T (x)℄�L = w) = 2�k.By Bayes' law, we an rewrite this probability as2�k = Prx(x = a) � Prx;T ([T (x)℄�L = w j x = a)Prx;T ([T (x)℄�L = w) = 2�k � PrT ([T (a)℄�L = w)Prx;T ([T (x)℄�L = w)Hene, we get PrT ([T (a)℄�L = w) = Prx;T ([T (x)℄�L = w), whih is independent of a.This is exatly the original de�ntion of a perfet AONT.Now given an AONT T , de�ne the probability distributionD on f0; 1gn by D(r) =Prx;T (T (x) = r), i.e. the probability that T (x) = r when x is hosen at random fromf0; 1gk.Claim 1 The distribution D and the inverse transformation I uniquely de�ne T .Proof: Indeed, let Sx = fr j I(r) = xg2 be the set of images of x under T ,and let Dx be the onditional distribution on r 2 Sx indued by D (i.e., Dx(r) =D(r)=Pr02Sx D(r0) for r 2 Sx). Then the invertibility of T and the de�nition of Dimmediately imply that T (x) simply samples r 2 Sx aording to the distribution Dx.Thus, we an replae T by a pair (D; I).Also notie that the invertibility of T implies that if we sample r 2 f0; 1gn a-ording to D and let x = I(r), we get a uniform distribution on x 2 f0; 1gk. Namely,instead of sampling a random x 2 f0; 1gk and omputing r  T (x), we an sampler aording to D and ompute x = I(r). Applying this to De�nition 15, we get yetanother equivalent de�nition of a perfet AONT, whih now really resembles that ofa perfet ERF.2Beause D(r) = 0 for all r that are not images of any x 2 f0; 1gk, it does not really matter whatis the value of I on suh \impossible" r. Say, we �x it to the all-zero string.102



De�nition 16 A transformation T , uniquely given by a distribution D on f0; 1gnand a deterministi funtion I : f0; 1gn ! f0; 1gk (as in Claim 1), is an `-AONT, ifwhen r is sampled aording to D and R is hisen uniformly from f0; 1gk, we havefor any L 2 fǹg: h[r℄�L; I(r)i � h[r℄�L; Ri (5.1)Notie that Equation (5.1) is exatly the same as Equation (3.1) in the de�nitionof a perfet ERF f : f0; 1gn! f0; 1gk, exept the uniform distribution on r is replaedby the distribution D. Thus, we see a rystal-lear relation between perfet AONT'sand ERF's. For a perfet ERF we hoose r uniformly at random from f0; 1gn, whilefor a perfet AONT we allow to have an arbitrary distribution D on r (as long asEquation (5.1) is satis�ed). In other words, in designing perfet AONT's we have anextra degree of freedeom in piking the distribution D in addition to the funtionI : f0; 1gn ! f0; 1gk, while an ERF f : f0; 1gn ! f0; 1gk restrits D to be uniform.In this latter ase of D being the uniform distribution, the resulting AONT is exatlywhat we alled a uniform AONT earlier (where we partition f0; 1gn into sets Sx andlet T (x) be a uniformly random element of Sx). This again shows that ERF's areequivalent to uniform AONT's (Corollary 6).5.1.2 Impossibility ResultWe have seen that ERF's have strong limitations, given by Theorem 9, i.e. ` �n=2 + 1 � n=(2(2k � 1)). Moreover, this bound is tight by Lemma 5. We have alsoseen that AONT's immediately imply ERF's with the same parameters, while theonverse holds only for very speial kinds of uniform AONT's, and does not appear tohold in general. The natural question omes up if perfet AONT's nevertheless sharethe same ombinatirial limitation as perfet ERF's (and uniform AONT's).We notie that the proofs of Friedman [28℄ and Bierbrauer et al. [11℄ of Theorem 9fail one we go to general AONT's, sine they strongly use the \uniformity" of ERF'saross di�erent `-dimensional sububes. Still, we are able to show that the exatanalogs of Theorem 9 and the bound in Equation (4.1) do hold for general perfet103



`-AONT. In fat, we show that the only `-AONT's that an potentially ahieve thesebounds are in fat uniform. In other words, non-uniform perfet AONT's do notseem to bring a signi�ant advantage, despite their generality. While a very broadidea of our proof is the same as that of [28℄, our proof is signi�antly more involvedand requires more are. And, of ourse, it subsumes the result of Theorem 9 due toLemma 9 (i.e., that perfet ERF's imply perfet AONT's). In addition, Lemmas 5 and9 show that this result is tight, and is in fat ahived by a uniform AONT.Theorem 14 If T : f0; 1gk ! f0; 1gn is a perfet `-AONT, then` � 1 + n � 2k�1 � 12k � 1 = n2 + �1� n2(2k � 1)� (5.2)In partiular, for n � 2k we get ` > n2 , so at least half of the output of T has toremain seret even if T exponentially expands its input! Moreover, the above boundan be ahieved only by a uniform `-AONT.As we will see, the proof will follow from the impossibility of ertain weighted\balaned" olorings of an n-dimensional hyperube.5.1.3 Balaned Colorings of the HyperubeIn this setion, we point out a natural relation between perfet AONT's and ertainweighted \balaned" olorings of the hyperube H = f0; 1gn. Reall that in the graphof the hyperube two strings y; z 2 f0; 1gn are adjaent if and only if they di�er in asingle position.For our purposes, a oloring C of a graph with  olors is any map whih assoiatesa olor from f1; : : : ; g to eah node in the graph.3 In a weighted oloring, the nodesthat are olored are also assigned a non-negative real weight. Sometimes, for obviousreasons, we will all the nodes of weight 0 unolored, despite them having assigneda nominal olor. We will denote the weight of node y by �(y). We will also de�ne3Often one onsiders olorings suh that no pair of adjaent nodes has the same olor. We donot impose suh restritions on the olorings we study.104



the weight vetor �i of eah olor i by assigning �i(y) = �(y) if y has olor i, and 0otherwise. We notie that for any given y 2 H, �i(y) > 0 for at most one olor i, andalso P�i = �. A oloring where all the nodes are unolored is alled empty. Sinewe will never talk about suh olorings and the absolute magnitude of the weightswill not be important, we agree on the normalization ondition that the sum of allthe weights is 1, i.e. Py2H �(y) = 1. A uniform oloring is the one where all thenodes are assigned the same weight (i.e., �(y) = 2�n for all y).We will be interested in the properties of olorings on sububes of the hyperube.Reall that a subube is the subgraph obtained by �xing some of the n positionsand letting the others take on all possible values. More formally, given a set of `positions L 2 fǹg and some assignment a 2 f0; 1gn�` to the remaining variables notin L, the subube HL;a is the set of nodes r suh that r agrees with a on L, i.e.[r℄�L = a. Clearly, jHL;aj = 2`. The dimension of a subube is ` = jLj | the numberof variables left un�xed.De�nition 17 We say a weighted oloring of the hyperube is `-balaned if, withinevery subube of dimension `, eah olor has the same weight. That is, for eah Land a, Py2HL;a �i(y) is the same for all olors i.We notie that the empty oloring trivially satis�es this ondition, and that isthe reason why we exlude it from our onsideration. On the other hand, a balanedoloring is allowed to ontain many `-dimensional sububes whih are ompletelyunolored (as long as not all of them are unolored), sine eah olor has the same(zero) weight in suh sububes.Remark 2 If a oloring is `-balaned, it is also `0-balaned for any `0 > `, sine an`0 dimensional subube is the disjoint union of `-dimensional ones.We study balaned olorings sine they apture the ombinatorial properties of`-AONT's and `-ERF's. We get the following equivalenes.Lemma 12 Ignoring omputational eÆieny, we have that the existene of the fol-lowing are equivalent in the perfet setting:105



1. `-AONT's from k bits to n bits.2. `-balaned weighted olorings of n-dimensional hyperube using 2k olors.The following are similarly equivalent in the perfet setting:1. uniform `-AONT's from k bits to n bits.2. `-ERF's from n to k bits.3. uniform `-balaned olorings of n-dimensional hyperube using 2k olors.Proof: We ignore `-ERF's in the proof sine we know that they are (ombinatorially)equivalent to uniform `-AONT's by Corollary 6. We will also use a more onvenientDe�nition 16 of an `-AONT given in terms of the inverse map I : f0; 1gn ! f0; 1gk andthe distribution D on f0; 1gn indued by T and the uniform distribution on f0; 1gk.Now the equivalene between AONT's and weighted olorings is almost immediate.The funtion I orresponds to assigning a olor I(y) to a node y 2 H, while thedistribution D orresponds to assigning a weight D(y) to a node y 2 H. Clearly, theresulting oloring is uniform if and only if the AONT is uniform (i.e., the distributionD is uniform).It remains to hek the balanedness property. But this again immediately followsfrom De�nition 16 of a perfet AONT. In one diretion, the de�nition of an AONTsays that for any \non-empty" (i.e., Pry D([y℄�L = a) > 0) subube HL;a ofH, we havethat the distribution indued by I(y) onditional on y 2 HL;a is uniform (when y ishosen aording to D). But the onditional probability of I(y) = i is proportional tothe total weight of nodes of olor i in this subube. So having a uniform distributionon I(y) is equivalent to saying that eah olor has the same weight in HL;a. Theonverse diretion is the same.We now restate our lower bound on perfet AONT's in Theorem 14 in terms ofweighted `-balaned olorings of the hyperube with  = 2k olors (we prove thetheorem for general ).
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Theorem 15 For any (non-empty) `-balaned weighted oloring of the n-dimensionalhyperube using  olors, ` � n2 + �1� n2(� 1)�Moreover, equality an hold only if the oloring is uniform and no two adjaent nodesof positive weight have the same olor.We believe that the above theorem is interesting in its own right. It says that onethe number of olors is at least 3, it is impossible to �nd a -oloring (even weighted!)of the hyperube suh that all `-dimensional sububes are \equi-olored", unless ` isvery large.5.1.4 Proof of the Lower Bound (Theorem 15)We will work in the 2n-dimensional vetor spae V onsisting of vetors with positionsindexed by the strings in H, and will ruially use the algebrai fats about quadratiforms and Fourier analysis desribed in Setion 2.9. In some sense, it might appearsurprising to use real analysis to prove a ombinatorial fat, but it turns out that thebalanedness property of our oloring is best utilized when we onsider an appropriatealgebrai expression and bound it in two di�erent ways.Consider a non-empty `-balaned weighted oloring � of the hyperube using olors. Let �i be the harateristi weight vetor orresponding to olor i (i.e. �i(y)is the weight of y when y has olor i and 0 otherwise). As we will show, �i's havesome nie properties whih apture the balanedness of the oloring �. In partiular,we know that for any olors i and j and for any `-dimensional subube of H, the sumof the omponents of �i and of �j are the same in this subube. Hene, if we onsiderthe di�erene (�i��j), we get that the sum of its oordinates over any `-dimensionalsubube is 0.Now it turns out that a natural way to exploit the above property is to onsider thequantity (�i��j)>A(�i��j), where A is the adjaeny matrix of the n-dimensionalhyperube (see Setion 2.9). As suggested in Setion 2.9, we an bound this quantityby alulating the Fourier oeÆients of (�i��j) orresponding to large eigenvalues.107



We get the following lemma:Lemma 13 For any i 6= j, we have(�i � �j)>A(�i � �j) � (2`� n� 2) � k�i � �jk2 (5.3)We postpone the proof of this ruial lemma until the the end of the proof, andnow just use it to prove our theorem. First, note that the lemma above only gives usinformation on two olors. To simultaneously use the information from all pairs, weonsider the sum over all pairs i; j, that is� def=Xi;j (�i � �j)>A(�i � �j) (5.4)We will give upper and lower bounds for this quantity (Claims 2 and 3, respe-tively), and use these bounds to prove our theorem. We �rst give the upper bound,based on Lemma 13.Claim 2 � � 2 (2`� n� 2) (� 1) �Xi k�ik2 (5.5)Proof: We an ignore the terms of � when i = j sine then (�i � �j) is the 0vetor. Using Lemma 13 we get an upper bound:Xi;j (�i � �j)>A(�i � �j) � (2`� n� 2) �Xi 6=j k�i � �jk2Now the vetors �i have disjoint supports (sine eah y 2 H is assigned only oneolor), so we have k�i � �jk2 = k�ik2 + k�jk2. Substituting into the equation above,we see that eah k�ik2 appears 2(� 1) times (reall that  is the number of olors).Hene we get the desired result:Xi;j (�i � �j)>A(�i � �j) � (2`� n� 2) � 2(� 1) �Xi k�ik2108



Seond, we an expand this sum diretly to obtain a lower bound.Claim 3 � � �2n �Xi k�ik2 (5.6)Proof: Sine A is symmetri we have �>i A�j = �>j A�i. Then:Xi;j (�i � �j)>A(�i � �j) = Xi;j ��>i A�i + �>j A�j � 2�>i A�j�= 2 �Xi �>i A�i � 2 �Xi;j �>i A�jLet us try to bound this last expression. On one hand, we know that �>i A�i � 0sine it is a produt of matries and vetors with non-negative entries. On the otherhand, we an rewrite the last term as a produt:Xi;j �>i A�j =  Xi �i!>A Xi �i!This quantity, however, we an bound using the fat that the maximum eigenvalueof A is n (see Lemma 4 in Setion 2.9). We get Xi �i!> A  Xi �i! � n � Xi �i2Sine the vetors �i have disjoint support (again, eah node y is assigned a uniqueolor), they are orthogonal and so kPi �ik2 = Pi k�ik2. Combining these results,we get the desired lower bound:Xi;j (�i � �j)>A(�i � �j) � 0� 2n �Xi k�ik2 = �2n �Xi k�ik2Combining the lower and the upper bounds of Claims 2 and 3, we get2(2`� n� 2)(� 1) �Xi k�ik2 � �2n �Xi k�ik2109



Now sine the oloring � is non-empty, we havePi k�ik2 > 0. Dividing the inequalityabove by this sum gives us 2(2`� n� 2)(� 1) � �2n. This implies that` � n2 + �1� n2(� 1)�whih was exatly what we had to prove.Proof of Lemma 13. It remains to prove Lemma 13, i.e.(�i � �j)>A(�i � �j) � (2`� n� 2) � k�i � �jk2By Lemma 4 in Setion 2.9 and the expliit form of the eigenvalues of A (Fat 2),it is suÆient show that all the Fourier oeÆients of (�i � �j) whih orrespondto eigenvalues �z � 2` � n = n � 2(n � `) are 0. In other words, that (�i � �j) isorthogonal to all the eigenvetors vz whose eigenvalues are at least (n � 2(n � `)),i.e. weight(z) � n � `. But reall that on any subube of dimension at least `, theomponents of (�i � �j) sum to 0! This turns out to be exatly the fat we needto in order to show that hvz; �i � �ji = 0 whenever �z � 2` � n, and thus to proveLemma 13.Claim 4 For any z 2 f0; 1gn with weight(z) � n� ` (i.e. �z � 2`� n), we havehvz; �i � �ji = 0Proof: Pik any vetor z = (z1; : : : ; zn) 2 f0; 1gn with weight(z) � n� `, and letS be the support of z, i.e. S = fj : zj = 1g. Note that jSj � n� `. Also, reall thatvz(y) = 1p2n � (�1)z�y (see Fat 2). Now onsider any assignment a to the variables ofS. By letting the remaining variables take on all possible values, we get some sububeof the hyperube, all it Ha.One the one hand, note that vz is onstant (either 1=p2n or �1=p2n) on thatsubube, sine if y and y0 di�er only on positions not in S, we will have z � y = z � y0.Call this value Ca. On the other hand, sine the oloring is `-balaned and sine110



jSj � n�`, the subube Ha has dimension at least ` and so we know that both olorsi and j have equal weight on Ha. Thus summing the values of (�i � �j) over thissubube gives 0.Using the above two observations, we an easily show that h�i � �j;vzi is 0 byrewriting the inner produt as a sum over all assignments to the variables in S:h�i � �j;vzi = Xy2Hvz(y)[�i(y)� �j(y)℄ = Xassignments a Xy2Ha vz(y)[�i(y)� �j(y)℄!= Xa Ca � Xy2Ha �i(y)�Xy2Ha �j(y)! =Xa Ca � 0 = 0
Equality onditions. As we proved Theorem 15 (and also Theorem 14), wemight wonder whih olorings an meet the bound of the theorem. Interestingly,suh olorings are very strutured, as we an see by traing down our proof. Namely,onsider the lower bound proved in Claim 3, i.e. that Pi;j(�i � �j)>A(�i � �j) ��2nPi k�ik2. Going over the proof, we see that equality an our only if twoonditions our.On the one hand, we must have �>i A�i = 0 for all olors i. An easy alulationshows that �>i A�i is 0 only when there is no edge of non-zero weight onneting twonodes of olor i. Thus, this ondition implies that the oloring is in fat a -oloringin the traditional sense of omplexity theory: no two adjaent nodes will have thesame olor.One the other hand, the inequality (Pi �i)>A(Pi �i) � n � kPi �ik2 must betight. This an only hold if the vetor � =Pi �i is parallel to (1; 1; : : : ; 1) sine thatis the only eigenvetor with the largest eigenvalue n. But this means that all theweights �(y) are the same, i.e. that the oloring must be uniform.Extending the Bound to Larger Alphabets. Although the problem of on-struting AONT's is usually stated in terms of bits, it is natural in many appli-ations (e.g., seret-sharing) to onsider larger alphabets, namely to onsider T :111



f0; : : : ; q � 1g ! f0; : : : ; q � 1gn. All the notions from the \binary" ase naturallyextend to general alphabets as well, and so does our lower bound. However, the lowerbound we obtain is mostly interesting when the alphabet size q is relatively smallompared to n. In partiular, the threshold n=2, whih is so ruial in the binaryase (when we are trying to enode more than logn bits), beomes n=q (reall, q is thesize of the alphabet). This threshold beomes meaningless when q > n whih is notsurprising at all, sine in this ase we an use Shamir's seret sharing [54℄ (providedq is the prime power) and ahieve ` = k whih is \inomparable" to n (and ould beas small as 1). We also remark that the bound we state is tight if qk � n and an beahieved similarly to the binary ase by using the analog of the Hadamard ode overthe alphabet of size q.Theorem 16 Let T : f0; : : : ; q � 1gk ! f0; : : : ; q � 1gn be a perfet `-AONT. Then` � nq + �1� q � 1q � nqk � 1�In partiular, ` > n=q when qk > n. Moreover, equality an only hold only for auniform AONT.Similarly to the binary ase, we an also �nd a natural onnetion between suhperfet `-AONT's and weighted `-balaned olorings of the \multi-grid" f0; : : : ; q�1gnwith  = qk olors. And again, the bound of Theorem 15 extends here as well anbeomes ` � nq + �1� q � 1q � n� 1�As we said, we an use the same tehniques as in our previous proof, with thefollowing minor hanges. We now work with the graph f0; : : : ; q� 1gn, whih has anedge going between every pair of words that di�er in a single position. For arithmetipurposes, we think of the nodes in this graph as vetors in Znq . If we let ! be a primitiveqth root of unity in C (e.g. ! = e2�i=q), then an orthonormal basis of the adjaenymatrix of our graph is given by the qn-dimensional vetors vz for z 2 f1; : : : ; qgn,112



where vz(y) = 1pqn � !z�yand now z � y is the standard dot produt modulo q. The eigenvalue of vz is �z =n(q � 1)� qj where j = weight(z) (number of non-zero oordinates).We de�ne �i exatly as before. Claim 4 still holds (i.e. the Fourier oeÆientsof (�i � �j) orresponding to large eigenvalues are 0). Construting upper and lowerbounds as above, we eventually get(q`� n� q)(� 1)Xi k�ik2 � �n(q � 1)Xi k�ik2whih implies the desired inequality. Equality onditions are the same.This ompletes our study of perfet AONT's, and brings us bak to the problem ofonstruting statistial and omputational AONT's, whih we do next.5.2 Simple \Universal" Constrution using ERFWe view the proess of reating `-AONT as that of one-time private-key enryption,similarly to the appliation in Setion 3.2. Namely, we look at the simplest possibleone-time private-key enryption sheme | the one-time pad, whih is unonditionallyseure. Here the seret key is a random string R of length k, and the enryption ofx 2 f0; 1gk is just x�R. We simply replae R by f(r) where f is `-ERF and r is ournew seret. We obtain the following theorem.Theorem 17 Let f : f0; 1gn ! f0; 1gk be a omputational (statistial, perfet) `-ERF. De�ne T : f0; 1gk ! f0; 1gn � f0; 1gk (that uses n random bits r) as follows:T (x; r) = hr; f(r)� xi. Then T is omputational (statistial, perfet) `-AONT withseret part r and publi part f(r)� x.Proof: Take any L 2 fǹg, and x0; x1 2 f0; 1gk. We have to show thathx0; x1; [r℄�L; f(r)� x0i � hx0; x1; [r℄�L; f(r)� x1i113



This immediately follows from Corollary 1 and the de�nition of ERF (Equation (3.1)).Notie that the size of the seret part s = n and size of the publi part p = k. As animmediate orollary of Theorems 7 and 17, we have:Theorem 18 Assume ` � s � poly(`). There exist probabilisti transformationsT : f0; 1gk ! f0; 1gs � f0; 1gk (with seret output of length s and publi output oflength k) suh that1. T is a statistial `-AONT with k = `� o(`), or2. T is a omputational `-AONT with any k � poly(s).On the length of the publi part. We notie that the length of the publipart is k | the size of the message. Having a publi output length neessarily equalto the size of the input seems to be a bit restritive, but is atually quite natural.We an view the publi part as the \masked original message". It takes exatly asmuh spae for the appliation as the seret x used to take, and requires no protetion(even though protetion does not \hurt"). The size of the new seret part s is now aparameter that an be hosen pretty muh arbitrarily (espeially in the omputationalsetting) depending on the level of seurity we desire to ahieve. This level of seurityis now diretly proportional to the extra-spae that we use. To summarize, there is avery lear tradeo� between the amount of extra-spae used and the exposure-resilieneahieved.Statistial AONT. Looking at the statistial onstrution, we get that k = `�o(`)and s an be an arbitrary polynomial in `. For example, we an set ` = s� to ahieveexellent exposure-resiliene. The only drawbak is that k < `. Unfortunately, similarto the ase of ERF, this is unavoidable due to the following simple lemma, that alsoshows that our statistial onstrution is nearly optimal up to the lower order term.Lemma 14 If T : f0; 1gk ! f0; 1gs � f0; 1gp is a statistial `-AONT with statistialdeviation " < 12 , then k � `. 114



Proof: The proof is very similar to that of Lemma 6. Assume k > `. Takeany L 2 fs̀g, say L = [`℄. To show that there exist x0; x1 2 f0; 1gk ontraditingEquation (3.2), we show that Equation (3.2) does not hold for random x0 and x1by onstruting a (omputationally unbounded) distinguisher D who, given randomx0 and x1, an suessfully distinguish [T (x0)℄�L from [T (x1)℄�L. Given hx0; x1; wi, Dsimply tries out all possible 2` ompletions of w and inverts them using I. If he evergot x1 bak, he outputs 1, otherwise he outputs 0. Clearly,D always outputs 1 when worresponds to x1. When w orresponds to x0, there are only 2` possible ompletions,and eah an be inverted in only one way. Sine x1 is hosen at random for f0; 1gk,the probability that any of these inversions is equal to x1 is at most 2`�k � 12 . Thus,the advantage of D is at least 12 > ", a ontradition.Computational AONT. As with ERF's, the omputational onstrution allows usto ahieve the number of missing bits, `, to be arbitrarily small ompared to theinput length k, beating the limitations of statistial AONT's. In essene, we anhoose pretty muh arbitrary ` and s given the input size k. For example, we an set` = s� to have an exellent exposure-resiliene. We an also make the total outputsize N = s + k to be dominated by the input size k, if we hoose s = o(k). Thisseems to be the best setting from a theoretial point of view. Namely, if s = o(k) and` = s�, we get that the total output size is k + o(k), while the exposure-resiliene isas small as we an wish.Seret-only statistial AONT. Observe that any `-AONT with publi and seretoutputs of length p and s, respetively, also gives a seret-only `0-AONT with outputsize N = s+p and `0 = `+p (sine if the adversary misses `+p bits of the output, hemust miss at least ` bits of the seret output). Let us apply this to our onstrution,where p = k. In the statistial setting, we obtain `0 = 2k+o(k) = O(k) and essentiallyany total output size N = s + k > `0. In fat, applying the �rst part of Theorem 11to Theorem 17 and uniting the publi and seret parts of the resulting `-AONT, weget 115



Corollary 7 For any !(logN) � ` � N there exists a statistial seret-only `-AONTT : f0; 1gk ! f0; 1gN , where k = 
(`).Up to a small onstant fator (whih an be made as small as 2 if we relax` = !(log2N loglogN)), this is the best we an hope to ahieve by Lemma 14.Seret-only omputational AONT. Let us turn now to the omputational set-ting and get a seret-only AONT out of it. We see that `0 = ` + k and N = s + k,as before, and we an ahieve essentially any N > `0. In partiular, we an still haveexellent exposure-resiliene `0 = N �, but now the output size N = (`0)1=� > k1=�is large ompared to the input length k. Thus, if we make the total output size Nsmall, we have only moderate exposure-resiliene, and if we want to have very goodexposure-resiliene, we have to make the total output size large. As we demonstrated,these problems disappear if we have a publi part, and there is really no reason notto. However, from a theoreti and aestheti points of view, the following question isimportant to resolve:Question 2 Are there omputational seret-only `-AONT's from k bits to N bits suhthat N = O(k) and ` = N �, for any � > 0 (or even only ` = o(k))?We do not give a full answer to this question, but redue it to the question ofonstruting a plausible funtion, whih desribed in Setion 5.3.Adaptive AONT. We notie that Theorem 17 easily generalizes to the adaptivesetting, where the adversary an adaptively hoose whih (s � `) bits of the seretpart to observe, as stated in De�nition 14. This follows from the fat that Corol-lary 1 learly relativizes to the setting with the orale, who an provide the adversaryany (s � `) bits of the seret output. In partiular, using the eÆient probabilistionstrution of adaptive `-ERF's from Setion 4.4, we get a probabilisti onstrutionof statistial and omputational adaptive AONT's with the same (and even slightlybetter) parameters as we did in the non-adaptive setting above. For example, in thestatistial setting we an ahieve adaptive `-AONT's with ` � k, and even seret-only116



adaptive `-AONT's with ` = O(k). This and Theorem 14 also show an exponentialseparation between statistial and perfet adaptive AONT's.5.3 Towards seret-only AONTWe also give another onstrution of an AONT based on any length-preserving fun-tion f suh that both [r 7! f(r)℄ and [r 7! f(r) � r℄ are ERF's. The onstrutionhas the advantage of ahieving seret-only AONT's, while retaining a relatively shortoutput length, and would provide a positive answer to Question 2 if one onstruts afuntion f as above. It an also be viewed as the speaial ase of the OAEP onstru-tion of [8℄ in the Random Orale model, and an be viewed as the �rst step towardsabstrating the properties of random orales that make this onstrution work as anAONT.Removing random orales from OAEP. Reall that the OAEP onstrutionof Bellare and Rogaway [8℄ sets T (x; r) = hu; ti, where u = G(r)� x, t = H(u)� r,and G : f0; 1gn ! f0; 1gk and H : f0; 1gk ! f0; 1gn are some funtions (e.g.,random orales; see Figure 3-3). Boyko [16℄ formally showed that this is indeed an`-AONT (where ` an be super-logarithmi in the seurity parameter). Let us tryto develop some informal intuition of why this onstrution works; in partiular, toseparate the properties of G and H that are essential (and hopefully suÆient) forthis onstrution to be an AONT (so that we an try to replae random orales byonstrutive funtions). We look at the two extreme ases.First, assume we know u ompletely and miss ` bits of t. Then we miss ` bits ofr, sine r = H(u)� t. Note that x = G(r)� u, so in order to \miss x ompletely", Gmust have the property that missing ` bits of G's random input r makes the outputpseudorandom (random orale learly satis�es this). But this is exatly the notionof an `-ERF! Thus, G must be an ERF, and this seems suÆient to handle the asewhen we miss ` bits of t.Now assume that we know t ompletely and miss ` bits of u. Assume for a seondthat H is a random orale. Then, sine r = H(u) � t, we are essentially missing r117



ompletely. But from the previous argument about G, we know that even missing `bits of r leaves x ompletely unknown. Thus, random orale H ahieves even morethan we need. In some sense, as long as H does not \unhide" information we missabout u, we will miss at least ` bits of r. In other words, assume H satis�es aninformally stated property that missing ` of its input bits implies \missing" at least `of its output bits. Then missing ` bits of u implies missing ` bits of r, whih impliesmissing entire G(r), whih implies missing x ompletely. So we ask the questionof whih H satisfy this informal property? Clearly, the easiest one is the identityfuntion (assuming n = k).Our onstrution. The above informal reasoning has led us to analyze the fol-lowing onstrution, whih is a speial ase of the OAEP onstrution with n = k,and H being the identity funtion.u = f(r)� x (5.7)t = u� r (5.8)where f : f0; 1gk ! f0; 1gk. Thus, T (x; r) = hf(r)� x; (f(r)� r)� xi, and theinverse is I(u; t) = u � f(u� t). This onstrution is illustrated in Figure 5-1 (andshould be again ompared with the original OAEP onstrution in Figure 3-3).Theorem 19 Assume f is suh that both f(r) and (f(r)� r) are length-preservingomputational `-ERFs. Then T above is a omputational seret-only 2`-AONT.Proof: LetN = 2k be the size of the output, L1 = f1 : : : `g, L2 = f`+1 : : : 2`g. Takeany L 2 fN2`g and any x0; x1 2 f0; 1gk. It must be the ase that either jL\L1j � ` orjL\L2j � `. Thus, it suÆes to show the seurity when we either know t ompletelyand miss ` bits of u, or when we know u ompletely and miss ` bits of t. Hene, itsuÆes to assume that jLj = ` and onsider the two ases separately.1) L � L1. Then we must show thathx0; x1; [f(r)� x0℄�L; (f(r)� r)� x0i � hx0; x1; [f(r)� x1℄�L; (f(r)� r)� x1i118
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any statistial ERF (by Lemma 6).5.4 Computational AONT implies OWFsWe have seen in Lemma 14 that statistial `-AONT's an exist only for k � `. Wenow show a strong dual statement that one ` < k, omputational `-AONT's in fatimply the existene of one-way �ntions.Theorem 20 Assume we have a omputational `-AONT T : f0; 1gk ! f0; 1gs �f0; 1gp where ` < k. Then one-way funtions exist.Proof: To show that OWF's exist it is suÆient to show that weak OWF's exist [29℄(see also Setion 2.4). Fix L = [`℄ � [s℄. De�neg(x0; x1; b; r) = hx0; x1; [y℄�Liwhere y = T (xb; r). Intuitively, it might seem that the fat that g is a weak OWFshould follow immediately from the fat that T is an AONT. Namely, to invert gon a random input the adversary needs to determine b orretly, whih he annot dosigni�antly better than guessing, by the seurity of the AONT. While this intuitionis somewhat orret in its spirit, there are some problems that have to be overome.First, to \suessfully invert" g the adversary does not have to ome up with thepreimage that we \started from". In partiular, it ould be that for most x0; x1; b; rwe started from, it is possible to ahieve the same output with x0; x1; 1� b and someother randomness r0 (so that the adversary does not neessarily have to produe b tosueed). To rule out this possibility, we will use the fat that ` < k and that T isinvertible. Seondly, it will not be immeditely lear why the fat that b is hard toguess implies that g is a weak OWF, but this will follow from a areful analysis, whihwe present now.Assume that g is a not weak OWF. Then there is an inverter A suh that whenx0; x1; b; r are hosen at random, y = T (xb; r), z = [y℄�L, h~b; ~ri = A(x0; x1; z), ~y =T (x~b; ~r), ~z = [~y℄�L, we have Pr(z = ~z) > 34 .120



To show that there exist x0; x1 breaking the indistinguishability property of T ,we onstrut a distinguisher F for T that has non-negligible advantage for randomx0; x1 2 f0; 1gk. Hene, the job of F is the following. x0, x1, b, r are hosen atrandom, and we set y = T (xb; r), z = [y℄�L. Then F is given the hallenge z togetherwith x0 and x1. Now, F has to predit b orretly with probability non-negligiblymore than 1=2. We let F run A(x0; x1; z) to get ~b; ~r. Now, F sets ~y = T (x~b; ~r),~z = [~y℄�L. If indeed ~z = z (i.e. A suedeed), F outputs ~b as its guess, else it ips aoin.Let B be the event that A sueeds inverting. From the way we set up theexperiment, we know that Pr(B) � 34 . Also, if B does not happen, F ips a oinand sueeds with probability 1=2. So assume A sueeds inverting. Call U the eventthat when x0; x1; b; r are hosen at random, [T (xb; r)℄�L 2 [T (x1�b)℄�L, i.e. there existssome r0 suh that [T (x1�b; r0)℄�L = z (equivalently, g(x0; x1; 1� b; r0) = g(x0; x1; b; r)).If U does not happen and A sueeded inverting, we know that ~b = b (i.e., F sueedswith probability 1), as (1� b) is an impossible answer. On the other hand, if U doeshappen and A sueeds inverting, we laim that F sueeds with probability exatly1=2, whih we argue next.Indeed, onditioned on B ^ U , our experiment an be view as follows. Let Dbe the distribution on z indued by hoosing a random x and setting z  [T (x)℄�L,and let Dz be the onditional distribution on x indued by hoosing y this way. We�rst hoose z  D, and then independently sample brand new x0; x1  Dz. Notie,no bit b is generated yet! Then we give x0; x1; y to F , who passes them to A. If Asueeds inverting (outputs ~b and ~r s.t. z = [T (x~b; ~r℄�L), we let F output ~b as before.Otherwise, we repeat the whole experiment from srath. Only after we �nished thisexperiment (i.e. A eventually sueeded) do we hoose at random the \right" bit b. Itis easy to see that this experiment is ompletely equivalent to our original experimentonditioned on B ^ U (provided the latter has non-zero probability). On the otherhand, sine b is generated afterwards, Pr(~b = b) = 12 indeed.
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Combining the above observations and using Pr(X ^ Y ) � Pr(X)� Pr(Y ), we get:Pr(~b = b) � 12 Pr(B) + Pr(B ^ U) + 12 Pr(B ^ U)= 12 + 12 � Pr(B ^ U)� 12 + 12 � (Pr(B)� Pr(U))� 12 + 12 � �34 � Pr(U)�To get a ontradition, we show that Pr(U) � 2`�k, whih is at most 12 < 34 sine` < k. To show this, observe that U measures the probability of the event thatwhen we hoose x; x0; r at random and set z = [T (x; r)℄�L, there is some r0 suhthat z = [T (x0; r0)℄�L. However, for any �xed setting of z, there are only 2` possibleompletions y 2 f0; 1gs+p. And for eah suh ompletion y, invertibility of T impliesthat there ould be at most one x0 2 T�1(y). Hene, for any setting of z, at most 2`out of 2k possible x0 have a hane to have the orresponding r0. Sine x0 was hosenat random, Pr(U) � 2`�k indeed.We note that the result is essentially optimal (up to the lower order term), sineby Theorem 18 there are statistial AONT's with ` = k + o(k). In fat, mergingthe seret and publi parts of suh an `-AONT (the latter having length k) gives astatistial seret-only `0-AONT with `0 = `+ k = O(k) still, as stated in Corollary 7.5.5 Worst-ase/Average-ase Equivalene of AONTIn the de�nition of AONT we require that Equation (3.2) holds for any x0, x1. Thisimplies (and is equivalent) to saying that it holds if one is to hoose x0; x1 aordingto any distribution q(x0; x1). A natural suh distribution is the uniform distribution,whih selets random and independent x0; x1 2 f0; 1gk. We all an AONT seureagainst (possibly only) the uniform distribution an average-ase AONT. Note, forinstane, the proofs of Theorem 20 and Lemma 14 work for average-ase AONT's aswell, sine we used random x0 and x1 in both proofs. Thus, statistial average-ase122



`-AONT's are impossible for ` < k and omputational average-ase `-AONT's implyOWF's if ` < k.A natural question to ask is whether average-ase AONT's imply (regular) AONT'swith omparable parameters, whih an be viewed as the worst-ase/average aseequivalene. We notie that in the perfet setting an average-ase AONT is also aworst-ase AONT (for example, this follows from the equivalent De�nition 15 of aperfet AONT), so there is nothing to show here. Perhaps surprisingly, we showthat up to a onstant fator, the worst-ase and the average-ase notions are indeedidential in the statistial and the omputational settings, as well. Below we assumewithout loss of generality that our domain f0; 1gk is a �nite �eld (e.g. GF (2k)), sothat addition and multipliation are de�ned.Theorem 21 Let T : f0; 1gk ! f0; 1gs � f0; 1gp be an average-ase (statistial oromputational) `-AONT. Then the following T 0 : f0; 1gk ! f0; 1g4s � f0; 1g4p isa (statistial or omputational) 4`-AONT, where a1, a2, b are hosen uniformly atrandom from f0; 1gk subjet to a1 + a2 6= 0 (as part of the randomness of T 0):T 0(x0) = hT (a1); T (a2); T (b); T ((a1 + a2) � x0 + b)iIn the above output, we separately onatenate seret and publi outputs of T . Inpartiular, if T is seret-only, then so is T 0.Proof: First, sine T is invertible and a1 + a2 6= 0, we have that T 0 is invertible(invert all four omponents and reover x0). Before arguing that T 0 is an `-AONT, letus de�ne some terminology. Given an output of T 0 of the form y0 = ht1; t2; t3; t4i, welet the quadruple ha1; a2; b; zi, where a1 = I(t1), a2 = I(t2), b = I(t3) and z = I(t4),be the e�etive inputs of y0 (while the atual input x0 = (z� b)=(a1+a2)). In general,a1 will typially stand for the �rst e�etive input to T 0, a2 | for the seond, b | forthe third, and z | for the last.Assume now that T 0 is not an `-AONT, that is for some L0 2 f 4s4`g, x00; x01 2 f0; 1gk123



(obviously, x00 6= x01) we havehx00; x01; [T 0(x00)℄�L0i 6� hx00; x01; [T 0(x00)℄�L0iAnd assume that an adversary A0 distinguishes the above two distributions. First,let us de�ne a subset L 2 fs̀g that would ontradit the fat that T is an average-ase`-AONT. We onstrut L by looking at whih part of the output of T 0 has the mostbits in L0. Formally, let Lj = fm 2 [`℄ j m + (j � 1)` 2 L0g, j = 1; 2; 3; 4. SinejL0j = 4`, some jLjj � `. We let L be any `-element subset of this Lj. Thus, if j = 1the adversary misses \L-bits" of T (a1), if j = 2 | of T (a2), if j = 3 | of T (b), andif j = 4 | of T (z).Let x0; x1 be seleted at random from f0; 1gk, i 2R f0; 1g, w  [T (xi)℄�L, and wehave to onstrut an adversary A (that would use A0) that an determine i with prob-ability non-trivially better than 12 when given hx0; x1; wi. Here is a general strategyof A. He will impliitly (i.e., as a thought experiment pretending that he knows i)reate y0 in suh a way that irrespetive of i being 0 or 1, y0 will orrespond to x0i (i.e.,I 0(y0) = x0i). In addition, y0 will be (statistially lose to) a random output of T 0(x0i).However, A would be able to expliitly ompute w0 = [y0℄�L0 using his input w. Byhanding this w0 to the assumed good distinguisher A0, A would be able to determinei as well as A0 does. Thus, A sueeds in \blindly translating" w to the right w0.Before showing how to (impliitly) onstrut y0, we see what relations it shouldsatisfy. Let ha1; a2; b; zi be the e�etive inputs of y0. Sine they should orrespond tox0i, we must have (a1 + a2) � x0i + b = z (5.9)Moreover, ha1; a2; b; zi should be (statistially lose to) random satisfying the orre-sponding equation above (subjet to a1 + a2 6= 0). To impliitly ompute y0, A willimpliitly set one of a1; a2; b; z to xi (whih one depends on j that \produed" L;namely, set a1 = xi if jL1j � `, set a2 = xi if jL2j � `, et). Assume for onretenessthat j = 1 and so a1 = xi. The remaining three parameters (in our ase, a2; b; z) Awill ompute expliitly in suh a way that it does not matter whether i is 0 or 1 (as124



long as the impliit parameter, here a1, is equal to xi). Assuming A an sueed indoing so, we will be done sine he an expliitly produe w0 = hw; T (a2); T (b); T (z)i.Similar tehnique holds for j = 2; 3; 4.We now show how this an indeed be done for any j.� jL1j � `. We know thathx00; x01; [T (a1)℄�L; T (a2); T (b); T ((a1 + a2) � x00 + b)i 6�hx00; x01; [T (a1)℄�L; T (a2); T (b); T ((a1 + a2) � x01 + b)iClearly, we should (impliitly) make a1 = xi (whih is random sine xi is ran-dom). In order to expliitly set a2; b; z in an idential manner independent of i,we solve the linear system in a2 and d (d is to be interpreted as z � b)(x0 + a2) � x00 = d(x1 + a2) � x01 = dThis system is always solvable sine x00 6= x01. Moreover, a2 and d are randomand independent of eah other for a random hoie of x0 and x1. We then pikrandom b; z suh that z � b = d. We note that x0 + a2 or x1 + a2 are 0 withonly negligibly small probability (sine the resulting a2 is random), so we anignore this ase happening for the statistial or omputational settings. Then weimmediately observe that by onstrution, hxi; a2; b; zi satisfy (xi+a2)�x0i+b = z.Moreover, this is a random quadruple of inputs to T used in omputing T 0(x0i)(tehnially, statistially lose to it). Hene, we an expliitly produe w0 =hw; T (a2); T (b); T (z)i and, by the previous argument, obtain a ontradition tothe fat that T is an average-ase `-AONT.� jL2j � `. This is symmetri to the above with a1 and a2 interhanged.
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� jL3j � `. We know thathx00; x01; T (a1); T (a2); [T (b)℄�L; T ((a1 + a2) � x00 + b)i 6�hx00; x01; T (a1); T (a2); [T (b)℄�L; T ((a1 + a2) � x01 + b)iClearly, we should (impliitly)make b = xi (whih is random sine xi is random).In order to set a1; a2; z in an idential manner independent of i, we solve thelinear system in a and z (a is to be interpreted as a1 + a2)a � x00 + x0 = za � x01 + x1 = zThis system is always solvable sine x00 6= x01. Moreover, a and z are random andindependent of eah other for a random hoie of x0 and x1. Also, unless x0 = x1(whih happens with exponentially small probability), a 6= 0. Pik randoma1; a2 suh that a1 + a2 = a. Then ha1; a2; xi; zi satisfy (a1 + a2) � x0i + xi = z.Moreover, this is a random quadruple of inputs to T used in omputing T 0(x0i)(tehnially, statistially lose to it). Hene, we an expliitly produe w0 =hT (a1); T (a2); w; T (z)i and, by the previous argument, obtain a ontraditionto the fat that T is an average-ase `-AONT.� jL4j � `. We know thathx00; x01; T (a1); T (a2); T (b); [T ((a1 + a2)x00 + b)℄�Li 6�hx00; x01; T (a1); T (a2); T (b); [T ((a1 + a2)x01 + b)℄�LiClearly, we should (impliitly) make z = xi (whih is random sine xi is ran-dom). In order to set a1; a2; b in an idential manner independent of i, we solvethe linear system in a and b (a is to be interpreted as a1 + a2)a � x00 + b = x0126



a � x01 + b = x1This system is always solvable sine x00 6= x01. Moreover, a and b are random andindependent of eah other for a random hoie of x0 and x1. Also, unless x0 = x1(whih happens with exponentially small probability), a 6= 0. Pik randoma1; a2 suh that a1 + a2 = a. Then ha1; a2; b; xii satisfy (a1 + a2) � x0i + b = xi.Moreover, this is a random quadruple of inputs to T used in omputing T 0(x0i)(tehnially, statistially lose to it). Hene, we an expliitly produe w0 =hT (a1); T (a2); T (b); wi and, by the previous argument, obtain a ontraditionto the fat that T is an average-ase `-AONT.
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Chapter 6
Conlusions
We now briey summarize the ontributions of this thesis.All-Or-Nothing Transforms. Our main motivation ame from the problemof partial key exposure and related questions. We have proposed to use the All-Or-Nothing Transform [51℄, whih also has many other appliations, as the mostdiret way to solve these problems. Up to date, however, there were no provableonstrutions of the AONT in the standard model of omputation, based on standardomputational assumptions (e.g., without random orales [16℄, ideal iphers [21℄ andhaving strong enough seurity properties [60℄). We gave very natural and simplede�nitions of AONT in the perfet, statistial and omputational settings, togetherwith the �rst provable onstrutions in all these settings. We have also shown almostmathing lower bounds, making our onstrutions nearly optimal. In partiular, ourlower bound on perfet AONT's is of independent interest, relates to an interestingquestion of balaned olorings of the hyperube, and non-trivially extends the lowerbound of Friedman [28℄ for suh olorings.Exposure-Resilient Funtions. The key ingredient in our approah is an in-teresting new primitive whih we alled an Exposure-Resilient Funtion. We demon-strated that this primitive has natural appliations in ombating key exposure, andalso has many other appliations (for example, it an be viewed as a \super-seure"pseudorandom generator), making it a very interesting notion in its own right. Simi-128



larly to AONT's, we have shown how to build essentially optimal ERF's in the perfet,statistial and omputational settings.Other ontributions. We have also examined other properties of AONT's andERF's (e.g., worst-ase/average-ase equivalene of AONT's, equivalene of \interest-ing" omputational AONT's and ERF's to one-way funtions), as well as several otherresults of independent interest. For example, we formally written down the notion ofÆ-sure extrators (whih we used in onstruting adaptively seure ERF's, and whihhave other appliations) suggested to us and impliitly used by Trevisan and Vad-han [62℄, and also gave a simple \generi" proof that semanti seurity is equivalentto indistinguishability [33℄.Open Problems. There are still several interesting questions remaining open. Twoof them are summarized in Questions 1 and 2. Namely, to have an expliit onstru-tion of adaptively seure statistial ERF's, and to have onstrutions of seret-onlyomputational AONT's with good exposure-resiliene and short output length. Some-what related to the latter problem is the question of designing ERF's, pseudorandomgenerators or pseudorandom funtions having \nie properties" with respet to theexlusive OR operator. For example, we redued the question of onstruting \good"seret-only AONT's to the question of onstruting a length-preserving ERF f suhthat f(x)� x is also an ERF. Similarly, the \ideal blok ipher" onstrution of De-sai [21℄ an be analyized in the standard model if one replaes the ideal ipher witha pseudorandom funtion family that remains pseudorandom if some of the outputsare XORed with the random seed.Exposure-Resilient Cryptography. To reap everything one again, we ob-served that standard ryptographi notions and onstrutions do not guarantee anyseurity even if a tiny fration of the seret entity is ompromised. We then put for-ward the notion of Exposure-Resilient Cryptography, whih is onerned with buildingryptographi primitives that remain provably seure even if most of the seret is ex-posed. 129
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