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Abstract

We prove the first general and non-trivial lower bound for the number of times a 1-out-of-n Oblivious
Transfer of strings of length £ should be invoked so as to obtain, by an information-theoretically secure
reduction, a l-out-of-IN Oblivious Transfer of strings of length L. Our bound is tight in many significant
cases and holds even in the honest-but-curious model.

We also prove the first non-trivial lower bound for the number of random bits needed to implement
such a reduction whenever the receiver sends no messages to the sender. This bound is also tight in
many significant cases.

The novel aspect in deriving these lower bounds is a strong usage of classical information theory.

1 Introduction and Our Results

THE OBLIVIOUS TRANSFER. The Oblivious Transfer (OT) is a fundamental primitive in secure protocol
design, which has been defined in many different ways and contexts (e.g., [27, 16, 15, 3, 6]) and has found
enormously many applications (e.g., [2, 27, 15, 18, 21, 10, 26, 1, 22, 17], to name just a few).

The OT is a protocol typically involving two players, the sender and the receiver, and several parameters.
In the most used form, the (1)-OTZ, the sender has N binary secrets of length L, and the receiver gets
exactly one of these strings, the one he chooses, but no information about any other secret (even if he cheats),
while the sender (even if she cheats) gets no information about the secret learned by the receiver. The most
basic and commonly used type of OT corresponds to the sender having just 2 bits (i.e., N =2 and L = 1),
and is denoted (¥)-OT.

Also important is the notion of a weak Oblivious Transfer!, a relaxation of the traditional OT. The only
difference in a weak (N )—OTL is that a cheating receiver is allowed to obtain partial information about
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several secrets, but at most L bits of information overall.

REDUCTIONS BETWEEN DIFFERENT OTS. Protocol reductions facilitate protocol design because they en-
able one to take advantage of implementing cryptographically only a few, carefully chosen, primitives.
Information-theoretic reductions are even more attractive, because they guarantee that the security of a
complex construction eutomatically coincides with that of the chosen primitive, once the latter is imple-
mented cryptographically.

But to be really useful, reductions must be efficient. In particular, because even the best cryptographic
implementation of a chosen primitive may be expensive to run, it is crucial that reductions call such primitives
as few times as possible.

Because of the importance of OT, numerous reductions from “more complex” to “simpler” OT appear in
the literature (e.g. [5, 11, 3, 9, 12]). Particular attention has been devoted to reducing (?)—OTL to (’f)—OTl,
where N > n and L > £. Typically, these reductions are information-theoretically secure if the simpler OT
is assumed to be so secure.
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The best known results about such reductions appeared in the paper of Brassard, Crépeau and Santha [5]
(who extend the results of Brassard, Crépeau and Robert [4]), who showed a simple reduction of (]Ir)—OT’Z
to ()-OT* using (IV — 1) invocations of (})-OT*. It is not hard to see (and we show it in Section 4) that
this protocol easily generalizes to a reduction from (})-OT¢ to (7)-OT* using (N —1)/(n — 1) invocations.
Improving upon the ideas of [4], Brassard et. al. also showed an elegant reduction from (3)-OTL to (%)-
OT (which is the most basic and commonly used type of OT) using O(L) invocations of (*)-OT, which
again easily generalizes to a reduction from (]Y)—OTL to (]If)—OT’Z with O(L/f) invocations. Combining the
two results, we get that the best known reduction of (]f)—OTL to (7)-OT* uses O(% - =LY invocations of
(z)-01.

We notice that in all the known OT reductions of the above form, the receiver never sends any messages
to the sender. An attractive feature of such reductions is that they immediately imply that the sender gets
no information about the receiver’s index. We call such reductions one-way.

OUR QUESTIONS. So far, researchers have been focusing on improving the upper bounds of these reductions,
that is, the number of times one calls (7)-OT* in order to construct (})-OTL. However, little is known
about the corresponding lower bounds. Indeed,

What is the minimum number of times that the given (?)-OT’Z must be invoked so as to obtain the
desired (?)—OTL ?

Lower bounds were previously addressed in the context of very specific reduction techniques, and for very
specific OTs. For instance, in [5] simple lower bounds are derived for reductions of (f)—OTL to (f)—OT1 that
are bound to use zigzag functions in a specific way.

Another natural resource of a reduction of (})-OT? to (
That is, an OT protocol is necessary probabilistic, but

n

1)—OT€ is the amount of needed randomness.

What is the minimum number of random bits needed in a information-theoretically secure reduction of
(N)-01F to (7)-0T*?

To the best of our knowledge, no significant results have ever been obtained about this crucial aspect.

OUuUR RESULTS. In this paper we provide the first general lower bounds for such information-theoretic OT
reductions, and prove that these bounds are tight in significant cases. Namely, we prove that

e In any information-theoretically secure reduction of (even weak!) (7)-OT% to (7)-OT¢, the latter

protocol must be invoked at least % . % times.

e The lower bound is tight for weak (?’)—OTL.
e The lower bound is tight for (“strong”) (?)—OTL when L = /.
e The lower bound is always tight up to a small constant factor (at most 5).

e The lower bound holds even in the honest-but-curious model, where both parties are assumed to follow
their prescribed protocol.

We also prove the first general lower bound for the amount of randomness needed in a one-way OT reduction.
Namely,

e In any one-way reduction of (even weak!) ()-OTL to (})-OT*, the sender must flip at least %
coins.

e The lower bound is tight for weak (7)-OTL.

e The lower bound is tight for (“strong”) (})-OT% when L = ¢.



We note that, in a one-way reduction, the amount of randomness used by the sender necessarily coincides
with the total amount of randomness needed by both parties.

We point out the interesting special case when n = 2 and ¢ = 1, i.e. reducing (})-OTL to (})-OT, the
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simplest possible 1-out-2 Oblivious Transfer. We obtain that we need at least L(N — 1) invocations of (f)—OT
and, for a one-way OT reduction, at least L(N — 2) random bits. In other words, the number of invocations
and the amount of extra randomness are roughly equal to the size of NV strings held by the sender, so the
sender essentially has to perform an extra 1-out-2 Oblivious Transfer and flip and extra coin for each bit of

his information.

LOWER BOUNDS VIA INFORMATION THEORY. No general lower bound for OT reduction would be provable
without very precisely and generally defining what such a reduction is. Fortunately, one such definition
was successfully given by Brassard, Crépeau, and Santha [5] based on information theory, and in particular
the notion of mutual information. This framework is very useful since it allows one to define precisely
such intuitive (but hard to capture formally) notions as “learn at most k bits of information” or “learn no
information other than ...”.

We point out, however, that information theory is much more useful than merely defining the problem.
Indeed, we shall demonstrate that its powerful machinery is essential in solving our problem, for example,

in proving our £ - =1 Jower bound on the number of invocations. Only the trivial bound of £ appears to

be provable without information theory. But getting the additional % factor in the lower bound (which
is essential when L = ¢) requires explicit or implicit use of information theory.

We believe and hope that information theory will prove useful for other types of lower bounds in protocol
problems.

ORGANIZATION. In Section 2 we define the information-theoretic notions that we will use, as well as the
formal definitions of Oblivious Transfer and Oblivious Transfer reductions. Section 3 is devoted to proving
the lower bounds on the number of invocations and the number of random coins needed. Section 4 will show
the matching upper bounds. Finally, Section 5 will have the concluding remarks.

2 Preliminaries

2.1 Information Theory Background

Let X,Y, Z by random variables over domains X', Y, Z. Let us denote by Px (z), Px|z(%|2), Px,y(7,y) the
probability distribution of X, conditional probability distribution of X given Z, and joint distribution of X
and Y respectively.

Definition 1
e The entropy H(X) = — ) Px(x)log, Px ().

The entropy of a random variable X tells how many truly random bits one can extract from X, i.e
how much “uncertainty” is in X.

e The conditional entropy H(X|Z) is the average over z of the entropy of the variable X, distributed
according to Px\z(x|z) (denoted H(X|Z = z)), i.e.

H(X|Z) = ZPZ H(X|Z =z) = ZPZ ZPX‘Z (z]2) log, Px|z(zz2)

H(X|Z) measures how much uncertainty X still has when one knows Z.

e The joint entropy of X and Y is the entropy of the joint variable (X,Y), i.e

H(X,Y) ZPXY (z,y)log, Px,y (z,y)

T,y



e The mutual information between X and Y is I(X;Y) = H(X) - H(X|Y).
e The mutual information between X and Y given Z is I(X;Y|Z) = H(X|Z) - H(X|(Y, 2)).

The mutual information between X andY (given Z) tells how much “common information” is between
X and Y (given Z), i.e. by how much the uncertainty of X (given Z) decreases after one learns Y.

The following easily verified lemma summarizes some of the properties we will need (for the proof and
further reference in information theory, see [8]).

Lemma 1
1. H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y).
2. I(X;Y) = L(Y; X) = H(Y) - HY|X) = H(X) - H(X|Y) = H(X) + HY) - H(X,Y).
3. I(X,Z;Y) =I(X;Y) + I(Z; Y| X).
4. H(X|Y) = 0 iff X is a deterministic function of Y.
5

. H(X|Y) < H(X) with equality iff X and Y are independent.
(Thus, I(X;Y) > 0 with equality iff X and Y are independent.)

6. I(X;Y) < H(X) < log, |X].
7. I(X;Y) <I(X:;Y|Z) +H(Z).
8. H(Uy) = n, where Uy, is the uniform distribution over n-bit strings.

Items 1. and 3. are called “the chain rule” of entropy and mutual information, respectively. Item 2.
shows that the mutual information is symmetric in X and Y. Item 4. says that X has no uncertainty given Y’
if and only if it can be determined from Y. Item 5. says that conditioning can only reduce the uncertaintly,
so extra-information “never hurts”. In particular, the mutual information is always non-negative and is zero
only if X and Y are independent. Item 6. says that one cannot have more common information between
X and Y than there is uncertainty in X, which in turn is no more than log|X’|. In fact, equality can be
achieved only by the uniform distribution on X'. In particular, the uniform distribution over n-bit strings
has n bits of uncertainty, as expected (item 8.). Finally, Item 7. says that extra-information Z can decrease
the mutual information between X and Y by at most the amount of uncertainty that Z has (and can reveal).

2.2 Information-Theoretically Secure OT Reductions

We can now formally define (1) protocols with an ideal (}')-OT¢ and (2) information-theoretically secure
reduction of (1)-OT? to (7)-OT‘. Despite the difference in presentation, the following definition is a
simplification of that of [5]. For instance, we simplify it by ignoring the additional condition of awareness
that is not going to affect our lower bound in any way. Another difference is that [5] define (]Y)—OTL “by
itself”, rather than in the context of having a “built-in” black-box for (’f)—OTl. While seemingly more
elegant, this definition is vacuous on its own, since no two-party protocol can actually implement Oblivious
Transfer with information-theoretic security.

INTERACTIVE TURING MACHINES (ITMS). A pair of interactive Turing machines (ITMs) is a pair of two
probabilistic Turing machines, each of which has a special communication tape. The joint computation
proceeds in phases. In each phase only one machine is active. It can perform an arbitrary computation,
at the end of which it sends some string s to the other machine by placing s on its communication tape.
In the next round the other machine becomes active, and receives the string s by having it written on its
communication tape. At the end of computation both machines compute their local outputs. (See [20] for
a more detailed exposition.)

PROTOCOLS WITH IDEAL (7)-OT¢. Let us denote by a n-sender a probabilistic ITM having n special
registers, and by a n-receiver is probabilistic ITM having a single special register. Let A be a n-sender and



B a n-receiver. We say that (A, B) is a protocol with ideal (71‘) -OT" if, letting a be a private input for A and

b be a private input for B, the computation of (A, B) proceeds as that of pair of ITMs, except that it consists

of three (rather than the usual two) types of rounds: sender-rounds, receiver-rounds and OT-rounds, where

by convention the first round always is a sender-round and the last is a receiver-round. In a sender-round,

only A is active, and it sends a message to B (that will become an input to B at the start of the next

receiver-round). In a receiver-round, only B is active and, except for the last round, it sends a message to

A (this message will become an input to A at the start of the next sender-round). In an OT round,

(1) A places for each j € [n] an (-bit string o; in its j-th special register, and

(2) B places an integer i € [n] in its special register, and

(3) o; will become a distinguished input to B at the start of the next receiver-round. A will obtain no
information about 4.

At the end of any execution of (A, B), B computes a distinguished string called B’s output.

MESSAGES AND VIEWS. Let (A, B) be a protocol with ideal (?)—OTZ. Then, in an execution of (A, B), we
refer to the messages that A sends in a sender-round as A’s ordinary messages, and to the strings that A
writes in its special registers in an OT-round as A’s potential OT messages. For each OT-round, only one
of the n potential messages will be received by B, and we shall refer to all such received messages as B’s
actual OT messages. Recalling that both A and B are probabilistic, in a random execution of (A, B) where
the private input of A is a and the private input of B is b, let us denote by VIEW 4[A(a), B(b)] the random
variable consisting of

(1) @, (2) A’s coin tosses, and (3) the ordinary messages received by A;
and let us denote by VIEWg[A(a), B(b)] the random variable consisting of

(1) b, (2) B’s coin tosses, and (3) all messages (both the ordinary and the actual OT ones) received by
B.

RepuctioN oF (1)-OT% 1o (7)-OT*!. Denote by W the set of all N-long sequences of L-bit stings and,
given w € W, let w; be the i-th string of w. Denote by W the random variable that selects an element of
W with uniform probability; by I the random variable selecting an integer in [IN] with uniform probability;
and let A be an n-sender and B be an n-receiver. We say that (A, B) is an information-theoretically secure
reduction of (II’)—OTL to (?)—OTZ if the following three properties are satisfied:

(P1) (Correctness) Yw € W and Vi € [N], and V execution of (4, B) where A’s private input is w and B’s
private input is ¢,

B’s output is wj;
(P2) (Receiver Privacy) V sender A" and V string o,

I(VIEW 4/ [A'(a"), B(I)] ; I) = 0; (1)
(P3) (Sender Privacy) V receiver B’ and string o', 3 a random variable I € [N] independent of W s.t.

I(W ; VIEWg/ [A(W),B' (V)] | Wj) =0. (2)

In the context of a reduction of (II’)—OTL to (?)—OT’Z, we shall sometimes say that we are given (?)—OT’Z as
a black-box.

The Correctness Property states that when A and B are honest, B will always obtain the string he wants.
The Receiver Privacy Property states that no malicious sender A’ can learn any information about the index
of the honest receiver B. Finally, the Sender Privacy Property states that a malicious receiver B’ can learn
information about at most one of N strings of the sender A. Moreover, the index I of this single string
cannot depend on W (e.g. we don’t want B’ to learn the first string in W that starts with 10). In other
words, both A and B do not gain anything by not following the protocol.



REDUCTION OF WEAK (?)—OTL TO (?)—OT’Z. We call (A4, B) an information-theoretically secure reduction

of weak (]Y)—OTL to (?)—OT’Z if all the properties of the reduction of (]Y)—OTL to (?)—OTZ hold except
(Sender Privacy) is relaxed to the following:

(P3') (Weak Sender Privacy) V receiver B' and string b’

I(W 5 VIEWs [A(W), B'(t)]) < L. (3)

This property says that we allow a malicious receiver B’ to obtain partial information about possibly several
strings, provided he learns no more than L bits of information overall. To emphasize the difference, we will
sometimes refer to the (regular) reduction between (1)-OTZ and (7)-OT* as reducing strong ()-OTE to
(7)-OT*. To justify this terminology, we show

Lemma 2 If (A, B) is a reduction of (strong) (]Y) -OT" to (7)-OT*, then it is a reduction of weak (]Y) -OT*
to (1)-0T*.

Proof: By Lemma 1 (equations 7 and 6) and Sender Privacy (P3)

I(W: VIEW g [AW), B'(0)]) < I(W;VIEW s [A(W), B'(®)] | W;) + H(W;)
= HWp) <|Wj|=L

3 Lower Bounds

To simplify our notation, we do not worry about “floors” and “ceilings” in the rest of the chapter, assuming
that (N — 1) is divisible by (n — 1) and that L is divisible by ¢ (handling the the general case presents no
significant difficulties). We will also refer to the sender as Alice and to the receiver as Bob.

Throughout, let a be the number of OT-rounds (invocations of (7)-OT) needed to reduce (weak) (]Y)—
0Tt to (’f)—OTl. Since we concentrate on the worst possible number of OT-rounds, we can assume w.l.o.g.
that « is a fixed number and that the sender and receiver always perform exactly @ OT-steps. We start with
a sharp lower bound on «, and then show a bound on the amount of randomness in a one-way reduction.

3.1 Lower Bound on the Number of Invocations

Let us first give the informal intuition behind out lower bound: a > £ . &=L We know by the (weak) sender
privacy condition that Bob can learn at most L (out of total N L) bits of information about W. However, if
in each of the OT rounds Bob was somehow able to obtain all n strings that Alice put as her local inputs
to this OT round (rather than getting only one of them), Bob should be able to learn all (NL bits) of W.
Indeed, if Bob could not cannot learn some W; with certainty, Alice will know that Bob’s index is not 4 (if
it was 7, honest Bob should be able to get W; with probability 1 by the correctness property). But this
would contradict the receiver privacy condition as Alice learns some information about Bob’s index. Hence,
anl —nl = al(n — 1) bits that Bob did not get from the OT rounds, “contain information” about the
remaining at least NL — L = L(N — 1) bits of W that Bob did not learn. The bound follows. Let us now

turn this intuition into a formal proof.

Theorem 1 Any information-theoretically secure reduction of weak? (]Y)—OTL to (Tf)—OT’Z must have

L N-1
aZ?'n—l ()

2Since we are proving a lower bound, it clearly applies to (strong) (If)—OTL as well.



Proof: Let P, P = (Alice, Bob), be an information-theoretically secure reduction of (?)—OTL to (?)—OT’Z
that uses a invocations to (?)—OT’Z. First, we need the following simple lemma.

Local Lemma: For any input w = wy,...,wn, any random tape R4 for Alice, any distinct ¢,i' € [N] and
any random tape tape Ry for Bob, there exists a tape Rp for Bob such that the sequence of messages,
M, received by Alice(w, R4) from Bob(i', Ry) coincides with the sequence of messages that Alice(w,R4)
receives from Bob(i, Rp).

Proof: Assume that Rp does not exist. Then, executing with Bob(i', Rjz), we get that Alice(w, R4) will
determine for sure that Bob’s index is not i. Thus, when Bob’s index is i’, with non-zero probability
over Bob’s random string, Alice(w, R4) would obtain information about Bob’s index (that it is not ),
contradicting the receiver privacy condition. O

To derive our lower bound for «, we define the following two notions: that of a special execution of P
and that of a pseudo-execution of P.

SPECIAL EXECUTION. A special execution of P is an execution of P in which Alice’s input is a sequence
of N randomly selected strings of length L, Alice’s tape consists of randomly and independently selected
bits, Bob’s index is 1, and Bob’s tape is the all-zero string, 0. In other words, we fix the behavior of Bob
by fixing his index and the random string. With respect to a special execution of P, define the following
random variables:

o W — Alice’s N L-bit strings, W = Wy, ..., Wn;

e R — Alice’s random tape;

e M, — the ordinary messages sent by sender Alice;
e M, — the ordinary messages sent by receiver Bob;

e V — Alice’s potential messages (an anl-bit string, that is, for each of the « invocations of (}')-OT*,
the n £-bit strings that are Alice’s local inputs in the invocation).

e V. — the actual messages received by Bob in the OT-rounds, (an af-bit string, that is, for each of the
a invocations of (’f)—OT’Z , the £-bit string that Bob received depending on his local index during that
invocation).

PSEUDO-EXECUTION. Let M, be a sequence of messages, let V be a sequence of o sequences of n strings of
length £ each, let 7 be an index in [N], and let Rp be a bit-sequence. A pseudo-ezecution of P with inputs
Mg, V, i, and Rp, denoted by P(M,,V,i, Rg), is the process of running Bob with index 7 and coin tosses
Rp, letting the k-th message from the sender be the k-th string of M, and by letting the sender’s input to
the j-th invocation of (})-OT* to be the j-th n-tuple of ¢-bit strings in V. In other words, we pretend to be
Alice and see what Bob will do in this situation on some particular index and random string.

Our lower bound for a immediately follows from the following two claims.

Local Claim 1: I((V, M) ; W) = NL.
Proof: By the definition of mutual information, we have

I(V, M;) ; W) = H(W) —H(W | (V, My)).

Because W is randomly selected, H(W) = NL. Therefore, to establish our claim we must prove that
H(W | (V,M;)) = 0. We do that by showing that W is computable from V and M, by means of the
following algorithm.
1. Run P(V, M, 1, 6) and let M, be the resulting “ordinary messages sent by Bob”.
(Comment: Bob’s view and Bob’s messages sent in this pseudo-execution are distributed exactly as in
a special execution.)

2. For ¢ =1...N compute W; as follows:



e Find a string R; such that, when executing P(V, My, i, R;), the sequence of messages sent, by Bob
equals M,..
(Comment: The existence of at least one such R; follows from the Local Lemma with i’ = 1,
Ry = 6, w =W and Ry = R. Further notice that, because M,, W and R totally determine
Alice’s behavior, the messages and ”potential” messages that Alice(W, R) sends to Bob(1,0) and
to Bob(i, R;) are exactly V and M; in both cases. Hence, any R; that produces M, in the pseudo-
execution P(V, My, i, R;), implies that Alice(W, R) would produce messages My and “potential”
messages V when communicating with Bob(i, R;).)

e Let W, be Bob’s output in P(V, My, i, R;).
(Comment: By the correctness property of our reduction, Bob(i, R;) would correctly output W;
when talking to Alice(W, R). And as we noticed, Alice(W, R) would produce M, and V when
communicating with Bob(i, R;), so running pseudo-execution P(V, My, i, R;) indeed makes Bob
to produce the correct W;).

Local Claim 2: I((V, M) ; W) < L+ af(n —1).

Proof: By Lemma 1 (equation 3), we have
L((V, M) ; W) =1((Vy, Ms) ; W)+ I(VA\V;) 5 W [ (Vr, My)).

Now, because P implements weak (IY)—OTL, and because (V., M) consists of Bob’s view in a (special)
execution of P, we have by (P3') that I((V,, M) ; W) < L. Also, by Lemma 1 (equations 5 and 6),

L(VAV:) 5 W (Ve, My)) < [VAVy| = al(n — 1),

The claim follows. a

By combining Local Claims 1 and 2, we have NL < L + af(n — 1), from which the desired lower bound
for a immediately follows.

]

Notice from the proof of Theorem 1 that the bound on the number of invocations of (?)—OT’Z holds even in
the honest-but-curious model, i.e. even if we want the sender and the receiver privacy to hold only for honest
Alice and Bob. Indeed, all the arguments within the proof had Alice and Bob follow the prescribed protocol.
Thus, even if we trust the participants to follow the protocol, we need at least this many invocations to
ensure privacy.

We also remark that Maurer [23] isolated the properties of Oblivious Transfer used in establishing The-
orem 1 and defined slightly more general forms of (]Ir)—OTL and (?)—OTZ for which the same proof goes
through. These generalizations do not seem to be very natural, but make the proof slightly clearer by
distilling the essential properties of the OT that we use.

3.2 Lower Bound on the Number of Random Bits

Let us now prove the lower bound on the number of random bits needed by the sender in a one-way reduction.

Theorem 2 In any information-theoretic one-way reduction of weak® (IIT)—OTL to (;‘)—OTK the sender

must flip at least % random coins.

Proof: Let P, P = (Alice, Bob), be an information-theoretically secure one-way reduction from weak
(Y)-OTE to (1)-OT. As before, let W be the random input of Alice, R be her random tape, M, be her
ordinary messages sent to Bob and V be her “potential” messages. We notice that since the reduction is
one-way, the distribution of V' and M, does not depend on Bob’s index and his random string. Let Vj,
j =1...n, be an a-tuple consisting of string number j taken from each of the a invocations of (?)—OT’Z. We
see that V' is the disjoint union of Vi,..., V).

3 Again, same result applies to (strong) (If)—OTL as well.



As before, we proceed by expanding the mutual information between W and (V,M;) in two different
ways.

I(V, M,); W) = H(W) — H(W | (V,M,)) = NL—0= NL (5)

Here we used the fact that W is determined from V and M. Indeed, since V and Mg do not depend on
Bob’s input or random string, Alice should make sure that honest Bob can retrieve any W; with probability
1 (if his input is 7).

On the other hand, it is a possible behavior for a (malicious) Bob to read string number j in all the
OT-rounds, i.e. to obtain Vj. By the weak sender privacy condition, I((V;, M,); W) < L, and, therefore, for
any j € [n] we have (using Lemma 1, equations 5 and 6)

L((V, My); W) = I((Vj, Ms); W) + L(VAV W[ (V) My)) < L+ H(VAV; | V)
Combining this with Equation (5), we get
H(V\V; | Vj) 2 L(N = 1), vj € [n] (6)

Since V is a disjoint union of V;’s, we get from the above equation (for j = n) and Lemma 1 (equations
1 and 5) that L(N — 1) < H(V\V, | V) < 272—11 H(V; | V). Hence, there is an index j € [n — 1] s.t.
H(V;) >H(V; | V) > % W.lo.g. assume j =1, ie. H(Vy) > % Since for a fixed W, the only

randomness of V' came from R, we have by Equation (6) and Lemma 1 (equation 1)

R > H(\V |W)=H({V,W)-HW)=H(WV;)+HWV\V | V1)-NL
L(N —1) L(N —n)

>
- n—1 n—1

+L(N-1)—LN =
Here H(V, W) = H(V) as W is a function of V', and then we use (6) for j = 1 and our assumption on H(V7).
This completes the lower bound proof. [

We notice that unlike the lower bound proof on the number of invocations, the proof above does not
hold in the honest-but-curious model. Namely, it uses the fact that the sender Alice should be protected
even against the malicious receiver Bob. This is not surprising since no randomness is needed in the honest-
but-curious model. For example, to reduce (})-OTL to (7)-OT¢ we could use NL/(n — 1)¢ invocations of
(7)-OT¢, where each of these invocations will have a zero-string in the first position, and the remaining
positions are filled with NL “data”-bits greedily split into ¢-chunks (where L/¢ chucks from each w; are in
different OT’s). We simply trust Bob to read L/¢ chucks of w;, and to read the all-zero string from the
remaining OT’s.

4 Upper Bounds

Though our main contribution is establishing the lower bounds in Section 3, we now touch upon the upper
bounds to demonstrate the tightness of Theorems 1 and 2. This is done by means of a single one-way
reduction of weak ()-OT% to (¥)-OT¢ that simultaneously achieves both the lower bounds for the number
of invocations of (7)-OT¢ and the number of random bits needed by the sender. This protocol is a simple
generalization of the one given by Brassard, Crépeau and Santha [5] and Brassard, Crépeau and Robert [4]
for the case L = ¢, n = 2. For completeness purposes, we also include the proof that this protocol works.
Though a similar proof could be derived from [5], the one included here is more direct because our definition
of a reduction is slightly simpler.* Note that the same protocol also proves that our lower bounds are tight
for reduction of (strong) (Y)-OT to (7)-OT* (i.e., L = £). At the end of this section we will also show that
the bound on the number of invocations is tight up to a small constant factor even when L > ¢, by slightly
generalizing another protocol of [5, 4].

n

1)—OT[ into the definition of our reduction. Without doing so, one would

4You might notice, we embed the security of (
have to argue about “nested mutual information”.



|OT# || Zero-String | One-String |

1 w1 Ty
2 wa O T T2 Dy
3 ws (2] T2 I3 D )

N-2| wn2o®axNn_3 | TN—2DTN_3
N-1| wn_1®2Ny_2 | wyDrTN_2

Figure 1: Special case of using (%)—OT’Z, ie.n=2.

4.1 Reducing weak (})-OT* to (})-OT*

Theorem 3 There exists a one-way information-theoretically secure reduction of weak (]Y) -OT" to (71‘) -0T*
such that

. L N-1 . ny _ ¢
e it uses 4 - =1 invocations of (1) oT*.

L(N—n)

random bits.
n—1

o the sender uses
Moreover, for L = £, the reduction actually reduces (strong) (]Y)—OTK to (1)-0T*.

Proof: We start with L = ¢, i.e. a reduction of (strong) (\)-OT¢ to (7)-OT¢, making & = 2= invocations

n—1
. N—
and using e(niln)

be Bob’s index.

random bits for Alice. Let w = wq, ..., wn be Alice’s N strings of length £ each, and let i

Protocol P(w,i):

— {(N—n)

——— random

1. Alice chooses (@ — 1) random £-bit strings z1,...,Z4—1 using £(a — 1)
bits. Set zp = 0, zo = wn.

2. Perform « invocations of ()-OT*, where transfer j = 0... (o — 1) is:

(D)-OT° [wjtn-1)1 © Tj, ., Wi 1) (no1) B Ty Tjor © )]

Let z; be the value Bob reads from the j-th invocation, described next.

3. Let jo € {0...(a — 1)} be the index of the OT box which has the XOR~ed value of w;

([£=L],ifi # N, and (a—1), otherwise). Bob reads the value zj, = w; ®w;, from transfer

Jo and values z; = z;j41 ® «; for all § # jo.

j
4. Bob outputs @72 2;-

The special case of n = 2 (originally considered in [5, 4] and yielding (N — 1) invocations and (N — 2)
£-bit random strings) is demonstrated in Figure 1. The intuition behind this protocol (for any n) is the
following. As long as Bob reads the “right-most” value x4, ® x;, he does not learn anything about all the
strings w; used inside the first (j + 1) transfers. As soon as he learns some w; & x; instead of z;11 & x;, he
learns w;, but “misses” all the future wy for £ > ¢ as he “missed” ;1. We now formally prove that the
above protocol indeed implements (strong) (})-OT*.

The Correctness Property (P1) is clear since (w; @ xj,) ® (xj, ® Tjo—1) B ... (2 ® x1) & ¥1 = w;. The
Receiver Privacy (P2) is clear as well since the scheme is one-way and, as we just saw, Bob can recover any
w;. We now show the main condition (P3).

Let W = Wy,...,Wx be chosen at random as well as Alice’s random string R = Xy,..., X4 1. Let V
be the random variable containing all the (an) values of the (?)—OTK boxes. We can assume w.l.o.g. that in
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each of the @ OT boxes, Bob indeed read one entire ¢-bit string that he chose (he can not learn more and it
“does not hurt” to learn as much as possible). Thus, define V,. to be the a-tuple of ¢-bit strings that Bob
read, i.e. everything that Bob learned from the protocol. Let %o, ...,tq—1, where t; € [n], be the (random
variables denoting the) indices of the « strings that Bob read.

Let jo be the smallest number such that ¢;, # n, if it exists. Otherwise, jo = o — 1. Thus, Bob learned
X1, Xi@Xy,...,Xj,—2 ® Xj,—1 and some W; @ Xj,_;. Clearly, this enables him to reconstruct W; (the
exceptional case of all ¢; = n falls here as well giving Bob Wx). We let I =i. First of all, I is independent
from W. Indeed, Bob choose to read index ¢j, in the jo-th invocation of (’f)—OTl only based on his random
coins and Xi,X; @ Xo,...,Xj,—2 ® Xj,—1, which does not depend on W. Thus, it suffices to show that
I(V.; W | W;) = 0. But we already observed that W; is determined from V,. Hence, using Lemma 1
(equations 4 and 3),

IV, ; W) L(Ve, W) 53 W) =1(W; 5 W) +1(V. ; W | Wj)
C+ IV, ; W | Wy)

Thus, we only need to show that I(V,.; W) = ¢, i.e. to establish the weak property (P3'). Intuitively, Bob
always learns some Wj, i.e. ( bits of information. So if we show that he does not learn more than ¢ bits
of information, we know that the only thing he learned was that one string W;. We proceed by showing a
sequence of easy claims.

Local Claim 1: W is a function of V| i.e.

HW [V)=0 (7)

Proof: We already saw from correctness that V' determines each string W;. |
Local Claim 2:

H(WV\V, [ V) =N —-1) (8)

Proof: We show that all (an) £-bit strings of V' are totally independent when W and R are randomly
chosen. Let us view each such string in V' as an (N + a — 1)-dimensional vector over Zs by taking the
characteristic vector of the equation defining this string. Since all W; and X; are chosen randomly, our
strings are independent if and only if the corresponding vectors are linearly independent. Assume that some
linear combination of vectors in V' is zero. This combination cannot include a vector depending on some W;
as there is only one such vector in V. And the remaining vectors X1, X; ® Xo,..., Xq_2 ® X,_1 are clearly
linearly independent. And since our disjoint split of V' into V;. and V'\V,. does not depend on V'\V,., we get
that V'\V, is independent of V,., so by Lemma 1 (equation 5 and 8),

HV\V; | V) = HOV\V,) = [V\V;| = €(n — D)o = (N - 1)

Local Claim 3: V\V, is determined from W and V., i.e.
HVA\V, [ (V;,W)) =0 9)

Proof: The knowledge of W and any string W; & X,—1 in the last (1')-OT¢ box (which we have from V;)
determines X,_;. Knowing X,_1, W and any string of the form z & X,_o from the next to last (?)—OTZ
box (which we have from V,. where z is either some W; or X,_1) enables one to deduce X,_». Continuing
this way, we determine X; from the first (?)—OT’Z box which allows us to reconstruct the whole V\V,.. O

Combining Local Claims 1,2,3 and using Lemma 1 (equations 8, 1, 2 and 3),

(N = H(W)=HW)-HW |V)=LV;W)=1LV;W) +IV\V; W [V})
= LV W)+HWVAV, | V) —HWV\V, | (V;, W)) = I(V;; W) + {(N - 1)

Hence, I(V,.; W) = £ indeed. This completes the proof of correctness when L = ¢.
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For ¢ < L we give a trivial protocol that sacrifices the strong property (P3) leaving only (P3'). The
protocol simply splits each of the strings of the database into L/¢ disjoint parts of length ¢ each, and
N—1

performs the previous protocol implementing ()-OT* using (})-OT¢. It uses £ - Y=L invocations of (7)-

OT! and L (N ”) (T]L\iln) random bits as claimed. The correctness is clear except Alice’s privacy. We
clearly loose the s strong property (P3) as Bob can learn up to L/¢ different blocks of length ¢ from different
strings. However, weak property (P3’) still holds as the L/¢ groups of boxes are totally independent, and
from each of them Bob can learn at most ¢ bits about W, i.e. a total of at most £ - % = L bits. ]

4.2 Reducing (7)-OT* to (

)-OT! for L > ¢

We just saw that the bound of Theorem 1 is tight for reducing (strong) (]Y)—OTL to (?)—OTZ when L = /.
We now generalize another reduction of [5] and [4] to show that the bound is always tight up to a constant
factor. For this we need to define the notion of a zigzag function.

4.2.1 Zigzag Functions

Given z = z;...25 € {0,1}% and J = {iy,...,i; | iy < ... <ij} C[S], welet [z]; = z;, ...z; be the bits of
zin J. Let f:{0,1}° — {0,1}* be a surjective function, W be chosen uniformly at random from {0,1}%,
and Z be a random pre-image of W (which exists due to surjectivity of f).

Definition 2 A set J C [S] is said to bias f if [Z]; reveals some information about W = f(Z):

I(W;[Z]s) >0

In other words, if J does not bias f, observing [Z], gives no information about W.

Definition 3 A surjective function f : {0,1}° — {0,1}F is called an (S, L)-zigzag function if for any
partition of [S] into disjoint subsets Ji,...,Jn, at most one of Ji,...,Jn biases f.

Notice that it suffices to check the definition of a zigzag function only for N = 2, i.e. partitions of [S] into
two disjoint subsets (since if J; and Jj bias f, then so do J; and [S]\J;). Aside from verifying the existence
of zigzag functions, the objective is to make S as small as possible, and we will soon see the reason why.

A particular nice class of zigzag functions are linear zigzag functions, which are given by an L x S binary
matrix M which defines f(z) = M - z (here the operations are in GF(2)). Notice that the matrix M also
defines an error-correcting code C' in {0,1}°, where the codewords are all the elements of the form u - M,
where u € {0,1}F. Brassard, Crépeau and Santha [5] showed an easily verified but surprising connection
between f being a zigzag function and the properties of C'.

Lemma 3 ([5]) f(z) = M-z is an (S, L)-zigzag function if and only if and only if C = {u-M | u € {0,1}L}
is a self-intersecting code, that is every non-zero cy,cy € C have at least one common non-zero coordinate.”

Self-intersecting codes have been studied earlier (for instance, by [7]). In particular, it is known that for
any v > logy/s4 ~ 4.8188, a random yL x L binary matrix M defines a self-intersecting code (or a zigzag
function) with probability exponentially close to 1.5 In particular,

Theorem 4 ([7, 5]) For any L there exist (YL, L)-zigzag functions, where v < 5.

5The reason such code is called self-intersecting is that if we view each non-zero codeword as a subset of {0,1}° (by looking
at its characteristic vector), the condition above says that any two non-empty codewords intersect.

6Brassard et al [5] give efficient deterministic algorithms to construct zigzag functions with much larger constants -y, but we
are not concerned with efficiency or constuctiveness in order to match our lower bound.
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4.2.2 A Simple Protocol using Zigzag Functions

We can now give a simple one-way reduction from (1)-OTL to (})-OT* slightly generalizing the reductions of
[4,5]. Welet f:{0,1}° — {0,1}F be an (S, L)-zigzag function with S = O(L). Let B; = {jl+1,...,(j+1)¢},
j=0,...,L/¢ — 1. In other words, we split [S] = {1,...,S} into @ = S/¢ consecutive blocks of size ¢ each.
Given z € {0,1}° we let [z]; = [2]p, be the restriction of z to its ¢ bits in B;.

Protocol Q(w,1):
1. Alice chooses a random z; such that f(z;) = w;, Vi € [N].

2. Perform « invocations of (]Ir)—OT’Z where transfer j =0...(a — 1) is:

(1)-0T [ [z1lys-- -, [2n]5 ]

3. Bob reads i-th value [z;]; in each OT, reconstructs z; and outputs f(z;).

Let Jy be the union of all B; such that Bob read [2;]; in the j-th OT. Then Bob learned [24], for all k.
Notice that Ji,...,JJy form a disjoint partition of [S]. Since f is a zigzag function, at most one of Jj, biases
f, say Ji. Then Bob does not learn any information about wy, for any k # t, since the distribution of [zx],
is independent of wy. It is a trivial routine matter (much simpler than for the protocol from the previous
section) to transform this intuition into a formal proof, and this was indeed done in [5].

We notice that the number of ()-OT* invocations is S/¢, and that is why we need S to be as small as
possible. Since S = O(L) by Theorem 4, we get:

Theorem 5 There exists a one-way reduction of (]Ir)-OTL to (?’)—OT’Z using O(L/{) invocations of the
latter.

By finally combining the combining the above reduction with the reduction from Theorems 3 (from
()-0T¢ to (7)-0T*), we get

2

—1
n—1

Corollary 1 There exists a one-way reduction of (If)—OTL to (Tf)—OT’Z using O(% :
latter.

) invocations of the

To summarize, the bound of Theorem 1 is always tight up to a constant factor and is exactly tight for
L = ¢ and for the case of weak (]Y)—OTL.

5 Concluding Thoughts

Typically, 1-out-of-2 OT is considered as a basic primitive, and efficient cryptographic protocols have been
designed for this case based on various cryptographic assumptions (for example, those of [1] and [15]). Thus,
in order to implement general 1-out-of-N OT, the following methodology is suggested: use information-
theoretic reduction to l-out-of-2 OT, and then use a cryptographic protocol for every invocation of the
latter. While this methodology works and is often used, there are alternative (and often more efficient)
ways to build l-out-of-N OT. In particular, there are very efficient “direct” cryptographic protocols for
(?)—OTL based on various assumptions. For example, Dodis, Halevi and Rabin [13] give a simple (]Y)—
OTY protocol based on any “blindable” encryption scheme (e.g., El-Gamal [14] or Goldwasser-Micali [19]),

while Naor [24] recently gave a very efficient (\)-OT% protocol based on the Diffie-Helman assumption.

Alternatively, Naor and Pinkas [25] gave a very efficient “cryptographic reduction” from (})-OTZ to (?)-
OT% which uses only log N invocations of (2)-OT% (compare with the lower bound of (N — 1) given by
Theorem 1) in addition to O(N) invocations of a pseudorandom function (which are considered to be more
efficient than (f)—OTL ). Of course, this “gap” from log N to NN is very artifical and not well defined once we

use computational assumptions (in particular, we can build the complex OT directly), and makes sense only
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in terms minimizing the amount of work outside of performing simpler OTs (e.g., using relatively inexpensive
evaluations of a pseudorandom function).

While these cryptographic results surpass the lower bounds we established in Section 3 (in fact, the
lower bounds do not make sense if we use cryptographic assumptions), the lower bounds are still quite
meaningful. For one thing, they show that simple but seemingly inefficient reductions of complex to simpler
OT’s are actually the best we can hope to achieve. On the other side, they show that there are some
non-trivial information-theoretic limitations of expressing a complex OT in terms of a simpler one, forcing
one to either build complex OT’s directly, or to use “cryptographic reductions”, or to settle for somewhat
inefficient performance when building complex OT’s. In particular, the attractive methodology of building
only (?)-OT might not be the best one in practice.
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