
Lower Bounds for Oblivious Transfer Redu
tionsYevgeniy Dodis� Silvio Mi
aliyMar
h 3, 2001Abstra
tWe prove the �rst general and non-trivial lower bound for the number of times a 1-out-of-n ObliviousTransfer of strings of length ` should be invoked so as to obtain, by an information-theoreti
ally se
ureredu
tion, a 1-out-of-N Oblivious Transfer of strings of length L. Our bound is tight in many signi�
ant
ases and holds even in the honest-but-
urious model.We also prove the �rst non-trivial lower bound for the number of random bits needed to implementsu
h a redu
tion whenever the re
eiver sends no messages to the sender. This bound is also tight inmany signi�
ant 
ases.The novel aspe
t in deriving these lower bounds is a strong usage of 
lassi
al information theory.1 Introdu
tion and Our ResultsThe Oblivious Transfer. The Oblivious Transfer (OT) is a fundamental primitive in se
ure proto
oldesign, whi
h has been de�ned in many di�erent ways and 
ontexts (e.g., [27, 16, 15, 3, 6℄) and has foundenormously many appli
ations (e.g., [2, 27, 15, 18, 21, 10, 26, 1, 22, 17℄, to name just a few).The OT is a proto
ol typi
ally involving two players, the sender and the re
eiver, and several parameters.In the most used form, the �N1 �-OTL, the sender has N binary se
rets of length L, and the re
eiver getsexa
tly one of these strings, the one he 
hooses, but no information about any other se
ret (even if he 
heats),while the sender (even if she 
heats) gets no information about the se
ret learned by the re
eiver. The mostbasi
 and 
ommonly used type of OT 
orresponds to the sender having just 2 bits (i.e., N = 2 and L = 1),and is denoted �21�-OT.Also important is the notion of a weak Oblivious Transfer1, a relaxation of the traditional OT. The onlydi�eren
e in a weak �N1 �-OTL is that a 
heating re
eiver is allowed to obtain partial information aboutseveral se
rets, but at most L bits of information overall.Redu
tions between different OTs. Proto
ol redu
tions fa
ilitate proto
ol design be
ause they en-able one to take advantage of implementing 
ryptographi
ally only a few, 
arefully 
hosen, primitives.Information-theoreti
 redu
tions are even more attra
tive, be
ause they guarantee that the se
urity of a
omplex 
onstru
tion automati
ally 
oin
ides with that of the 
hosen primitive, on
e the latter is imple-mented 
ryptographi
ally.But to be really useful, redu
tions must be eÆ
ient. In parti
ular, be
ause even the best 
ryptographi
implementation of a 
hosen primitive may be expensive to run, it is 
ru
ial that redu
tions 
all su
h primitivesas few times as possible.Be
ause of the importan
e of OT, numerous redu
tions from \more 
omplex" to \simpler" OT appear inthe literature (e.g. [5, 11, 3, 9, 12℄). Parti
ular attention has been devoted to redu
ing �N1 �-OTL to �n1�-OT`,where N � n and L � `. Typi
ally, these redu
tions are information-theoreti
ally se
ure if the simpler OTis assumed to be so se
ure.�Department of Computer S
ien
e, MIT, Cambridge, MA 02139 (yevgen�theory.l
s.mit.edu).yDepartment of Computer S
ien
e, MIT, Cambridge, MA 02139 (silvio�tia
.net).1Weak OT is 
losely related to generalized OT of [3℄, and is a spe
ial 
ase of universal OT of [6℄.1



The best known results about su
h redu
tions appeared in the paper of Brassard, Cr�epeau and S�antha [5℄(who extend the results of Brassard, Cr�epeau and Robert [4℄), who showed a simple redu
tion of �N1 �-OT`to �21�-OT` using (N � 1) invo
ations of �21�-OT`. It is not hard to see (and we show it in Se
tion 4) thatthis proto
ol easily generalizes to a redu
tion from �N1 �-OT` to �n1�-OT` using (N � 1)=(n� 1) invo
ations.Improving upon the ideas of [4℄, Brassard et. al. also showed an elegant redu
tion from �21�-OTL to �21�-OT (whi
h is the most basi
 and 
ommonly used type of OT) using O(L) invo
ations of �21�-OT, whi
hagain easily generalizes to a redu
tion from �N1 �-OTL to �N1 �-OT` with O(L=`) invo
ations. Combining thetwo results, we get that the best known redu
tion of �N1 �-OTL to �n1�-OT` uses O( L̀ � N�1n�1 ) invo
ations of�n1�-OT`.We noti
e that in all the known OT redu
tions of the above form, the re
eiver never sends any messagesto the sender. An attra
tive feature of su
h redu
tions is that they immediately imply that the sender getsno information about the re
eiver's index. We 
all su
h redu
tions one-way.Our questions. So far, resear
hers have been fo
using on improving the upper bounds of these redu
tions,that is, the number of times one 
alls �n1�-OT` in order to 
onstru
t �N1 �-OTL. However, little is knownabout the 
orresponding lower bounds. Indeed,What is the minimum number of times that the given �n1�-OT ` must be invoked so as to obtain thedesired �N1 �-OTL?Lower bounds were previously addressed in the 
ontext of very spe
i�
 redu
tion te
hniques, and for veryspe
i�
 OTs. For instan
e, in [5℄ simple lower bounds are derived for redu
tions of �21�-OTL to �21�-OT1 thatare bound to use zigzag fun
tions in a spe
i�
 way.Another natural resour
e of a redu
tion of �N1 �-OTL to �n1�-OT` is the amount of needed randomness.That is, an OT proto
ol is ne
essary probabilisti
, butWhat is the minimum number of random bits needed in a information-theoreti
ally se
ure redu
tion of�N1 �-OTL to �n1�-OT `?To the best of our knowledge, no signi�
ant results have ever been obtained about this 
ru
ial aspe
t.Our results. In this paper we provide the �rst general lower bounds for su
h information-theoreti
 OTredu
tions, and prove that these bounds are tight in signi�
ant 
ases. Namely, we prove that� In any information-theoreti
ally se
ure redu
tion of (even weak!) �N1 �-OTL to �n1�-OT`, the latterproto
ol must be invoked at least L̀ � N�1n�1 times.� The lower bound is tight for weak �N1 �-OTL.� The lower bound is tight for (\strong") �N1 �-OTL when L = `.� The lower bound is always tight up to a small 
onstant fa
tor (at most 5).� The lower bound holds even in the honest-but-
urious model, where both parties are assumed to followtheir pres
ribed proto
ol.We also prove the �rst general lower bound for the amount of randomness needed in a one-way OT redu
tion.Namely,� In any one-way redu
tion of (even weak!) �N1 �-OTL to �n1�-OT`, the sender must 
ip at least L(N�n)n�1
oins.� The lower bound is tight for weak �N1 �-OTL.� The lower bound is tight for (\strong") �N1 �-OTL when L = `.2



We note that, in a one-way redu
tion, the amount of randomness used by the sender ne
essarily 
oin
ideswith the total amount of randomness needed by both parties.We point out the interesting spe
ial 
ase when n = 2 and ` = 1, i.e. redu
ing �N1 �-OTL to �21�-OT, thesimplest possible 1-out-2 Oblivious Transfer. We obtain that we need at least L(N�1) invo
ations of �21�-OTand, for a one-way OT redu
tion, at least L(N � 2) random bits. In other words, the number of invo
ationsand the amount of extra randomness are roughly equal to the size of N strings held by the sender, so thesender essentially has to perform an extra 1-out-2 Oblivious Transfer and 
ip and extra 
oin for ea
h bit ofhis information.Lower bounds via information theory. No general lower bound for OT redu
tion would be provablewithout very pre
isely and generally de�ning what su
h a redu
tion is. Fortunately, one su
h de�nitionwas su

essfully given by Brassard, Cr�epeau, and S�antha [5℄ based on information theory, and in parti
ularthe notion of mutual information. This framework is very useful sin
e it allows one to de�ne pre
iselysu
h intuitive (but hard to 
apture formally) notions as \learn at most k bits of information" or \learn noinformation other than ...".We point out, however, that information theory is mu
h more useful than merely de�ning the problem.Indeed, we shall demonstrate that its powerful ma
hinery is essential in solving our problem, for example,in proving our L̀ � N�1n�1 lower bound on the number of invo
ations. Only the trivial bound of L̀ appears tobe provable without information theory. But getting the additional N�1n�1 fa
tor in the lower bound (whi
his essential when L = `) requires expli
it or impli
it use of information theory.We believe and hope that information theory will prove useful for other types of lower bounds in proto
olproblems.Organization. In Se
tion 2 we de�ne the information-theoreti
 notions that we will use, as well as theformal de�nitions of Oblivious Transfer and Oblivious Transfer redu
tions. Se
tion 3 is devoted to provingthe lower bounds on the number of invo
ations and the number of random 
oins needed. Se
tion 4 will showthe mat
hing upper bounds. Finally, Se
tion 5 will have the 
on
luding remarks.2 Preliminaries2.1 Information Theory Ba
kgroundLet X;Y; Z by random variables over domains X ;Y ;Z . Let us denote by PX (x), PXjZ(xjz), PX;Y (x; y) theprobability distribution of X , 
onditional probability distribution of X given Z, and joint distribution of Xand Y respe
tively.De�nition 1� The entropy H(X) = �Px PX(x) log2 PX (x).The entropy of a random variable X tells how many truly random bits one 
an extra
t from X, i.e.how mu
h \un
ertainty" is in X.� The 
onditional entropy H(X jZ) is the average over z of the entropy of the variable Xz distributeda

ording to PXjZ(xjz) (denoted H(X jZ = z)), i.e.H(X jZ) =Xz PZ(z)H(X jZ = z) = �Xz PZ(z)Xx PXjZ(xjz) log2 PXjZ(xjz)H(X jZ) measures how mu
h un
ertainty X still has when one knows Z.� The joint entropy of X and Y is the entropy of the joint variable (X;Y ), i.e.H(X;Y ) = �Xx;y PX;Y (x; y) log2 PX;Y (x; y)3



� The mutual information between X and Y is I(X ;Y ) =H(X)�H(X jY ).� The mutual information between X and Y given Z is I(X ;Y jZ) =H(X jZ)�H(X j(Y; Z)).The mutual information between X and Y (given Z) tells how mu
h \
ommon information" is betweenX and Y (given Z), i.e. by how mu
h the un
ertainty of X (given Z) de
reases after one learns Y .The following easily veri�ed lemma summarizes some of the properties we will need (for the proof andfurther referen
e in information theory, see [8℄).Lemma 11. H(X;Y ) = H(X) +H(Y jX) = H(Y ) +H(X jY ).2. I(X ;Y ) = I(Y ;X) =H(Y )�H(Y jX) = H(X)�H(X jY ) = H(X) +H(Y )�H(X;Y ).3. I(X;Z;Y ) = I(X ;Y ) + I(Z;Y jX).4. H(X jY ) = 0 i� X is a deterministi
 fun
tion of Y .5. H(X jY ) � H(X) with equality i� X and Y are independent.(Thus, I(X ;Y ) � 0 with equality i� X and Y are independent.)6. I(X ;Y ) � H(X) � log2 jX j.7. I(X ;Y ) � I(X ;Y jZ) +H(Z).8. H(Un) = n, where Un is the uniform distribution over n-bit strings.Items 1. and 3. are 
alled \the 
hain rule" of entropy and mutual information, respe
tively. Item 2.shows that the mutual information is symmetri
 in X and Y . Item 4. says that X has no un
ertainty given Yif and only if it 
an be determined from Y . Item 5. says that 
onditioning 
an only redu
e the un
ertaintly,so extra-information \never hurts". In parti
ular, the mutual information is always non-negative and is zeroonly if X and Y are independent. Item 6. says that one 
annot have more 
ommon information betweenX and Y than there is un
ertainty in X , whi
h in turn is no more than log jX j. In fa
t, equality 
an bea
hieved only by the uniform distribution on X . In parti
ular, the uniform distribution over n-bit stringshas n bits of un
ertainty, as expe
ted (item 8.). Finally, Item 7. says that extra-information Z 
an de
reasethe mutual information between X and Y by at most the amount of un
ertainty that Z has (and 
an reveal).2.2 Information-Theoreti
ally Se
ure OT Redu
tionsWe 
an now formally de�ne (1) proto
ols with an ideal �n1�-OT` and (2) information-theoreti
ally se
ureredu
tion of �N1 �-OTL to �n1�-OT`. Despite the di�eren
e in presentation, the following de�nition is asimpli�
ation of that of [5℄. For instan
e, we simplify it by ignoring the additional 
ondition of awarenessthat is not going to a�e
t our lower bound in any way. Another di�eren
e is that [5℄ de�ne �N1 �-OTL \byitself", rather than in the 
ontext of having a \built-in" bla
k-box for �n1�-OT`. While seemingly moreelegant, this de�nition is va
uous on its own, sin
e no two-party proto
ol 
an a
tually implement ObliviousTransfer with information-theoreti
 se
urity.Intera
tive Turing Ma
hines (ITMs). A pair of intera
tive Turing ma
hines (ITMs) is a pair of twoprobabilisti
 Turing ma
hines, ea
h of whi
h has a spe
ial 
ommuni
ation tape. The joint 
omputationpro
eeds in phases. In ea
h phase only one ma
hine is a
tive. It 
an perform an arbitrary 
omputation,at the end of whi
h it sends some string s to the other ma
hine by pla
ing s on its 
ommuni
ation tape.In the next round the other ma
hine be
omes a
tive, and re
eives the string s by having it written on its
ommuni
ation tape. At the end of 
omputation both ma
hines 
ompute their lo
al outputs. (See [20℄ fora more detailed exposition.)Proto
ols with ideal �n1�-OT`. Let us denote by a n-sender a probabilisti
 ITM having n spe
ialregisters, and by a n-re
eiver is probabilisti
 ITM having a single spe
ial register. Let A be a n-sender and4



B a n-re
eiver. We say that (A;B) is a proto
ol with ideal �n1�-OT ` if, letting a be a private input for A andb be a private input for B, the 
omputation of (A;B) pro
eeds as that of pair of ITMs, ex
ept that it 
onsistsof three (rather than the usual two) types of rounds: sender-rounds, re
eiver-rounds and OT-rounds, whereby 
onvention the �rst round always is a sender-round and the last is a re
eiver-round. In a sender-round,only A is a
tive, and it sends a message to B (that will be
ome an input to B at the start of the nextre
eiver-round). In a re
eiver-round, only B is a
tive and, ex
ept for the last round, it sends a message toA (this message will be
ome an input to A at the start of the next sender-round). In an OT round,(1) A pla
es for ea
h j 2 [n℄ an `-bit string �j in its j-th spe
ial register, and(2) B pla
es an integer i 2 [n℄ in its spe
ial register, and(3) �i will be
ome a distinguished input to B at the start of the next re
eiver-round. A will obtain noinformation about i.At the end of any exe
ution of (A;B), B 
omputes a distinguished string 
alled B's output.Messages and Views. Let (A;B) be a proto
ol with ideal �n1�-OT`. Then, in an exe
ution of (A;B), werefer to the messages that A sends in a sender-round as A's ordinary messages, and to the strings that Awrites in its spe
ial registers in an OT-round as A's potential OT messages. For ea
h OT-round, only oneof the n potential messages will be re
eived by B, and we shall refer to all su
h re
eived messages as B'sa
tual OT messages. Re
alling that both A and B are probabilisti
, in a random exe
ution of (A;B) wherethe private input of A is a and the private input of B is b, let us denote by VIEWA[A(a); B(b)℄ the randomvariable 
onsisting of(1) a, (2) A's 
oin tosses, and (3) the ordinary messages re
eived by A;and let us denote by VIEWB [A(a); B(b)℄ the random variable 
onsisting of(1) b, (2) B's 
oin tosses, and (3) all messages (both the ordinary and the a
tual OT ones) re
eived byB.Redu
tion of �N1 �-OTL to �n1�-OT`. Denote by W the set of all N -long sequen
es of L-bit stings and,given w 2 W , let wi be the i-th string of w. Denote by W the random variable that sele
ts an element ofW with uniform probability; by I the random variable sele
ting an integer in [N ℄ with uniform probability;and let A be an n-sender and B be an n-re
eiver. We say that (A;B) is an information-theoreti
ally se
ureredu
tion of �N1 �-OTL to �n1�-OT` if the following three properties are satis�ed:(P1) (Corre
tness) 8w 2 W and 8i 2 [N ℄, and 8 exe
ution of (A;B) where A's private input is w and B'sprivate input is i, B's output is wi;(P2) (Re
eiver Priva
y) 8 sender A0 and 8 string a0,I(VIEWA0 [A0(a0); B(I)℄ ; I) = 0; (1)(P3) (Sender Priva
y) 8 re
eiver B0 and string b0, 9 a random variable ~I 2 [N ℄ independent of W s.t.I(W ; VIEWB0 [A(W ); B0(b0)℄ j W~I) = 0: (2)In the 
ontext of a redu
tion of �N1 �-OTL to �n1�-OT`, we shall sometimes say that we are given �n1�-OT` asa bla
k-box.The Corre
tness Property states that when A and B are honest, B will always obtain the string he wants.The Re
eiver Priva
y Property states that no mali
ious sender A0 
an learn any information about the indexof the honest re
eiver B. Finally, the Sender Priva
y Property states that a mali
ious re
eiver B0 
an learninformation about at most one of N strings of the sender A. Moreover, the index ~I of this single string
annot depend on W (e.g. we don't want B0 to learn the �rst string in W that starts with 10). In otherwords, both A and B do not gain anything by not following the proto
ol.5



Redu
tion of weak �N1 �-OTL to �n1�-OT`. We 
all (A;B) an information-theoreti
ally se
ure redu
tionof weak �N1 �-OTL to �n1�-OT` if all the properties of the redu
tion of �N1 �-OTL to �n1�-OT` hold ex
ept(Sender Priva
y) is relaxed to the following:(P30) (Weak Sender Priva
y) 8 re
eiver B0 and string b0I(W ; VIEWB0 [A(W ); B0(b0)℄) � L: (3)This property says that we allow a mali
ious re
eiver B0 to obtain partial information about possibly severalstrings, provided he learns no more than L bits of information overall. To emphasize the di�eren
e, we willsometimes refer to the (regular) redu
tion between �N1 �-OTL and �n1�-OT` as redu
ing strong �N1 �-OTL to�n1�-OT`. To justify this terminology, we showLemma 2 If (A;B) is a redu
tion of (strong) �N1 �-OTL to �n1�-OT `, then it is a redu
tion of weak �N1 �-OTLto �n1�-OT `.Proof: By Lemma 1 (equations 7 and 6) and Sender Priva
y (P3)I(W ; VIEWB0 [A(W ); B0(b0)℄) � I(W ; VIEWB0 [A(W ); B0(b0)℄ j W~I ) +H(W~I)= H(W~I ) � jW~I j = L3 Lower BoundsTo simplify our notation, we do not worry about \
oors" and \
eilings" in the rest of the 
hapter, assumingthat (N � 1) is divisible by (n � 1) and that L is divisible by ` (handling the the general 
ase presents nosigni�
ant diÆ
ulties). We will also refer to the sender as Ali
e and to the re
eiver as Bob.Throughout, let � be the number of OT-rounds (invo
ations of �n1�-OT`) needed to redu
e (weak) �N1 �-OTL to �n1�-OT`. Sin
e we 
on
entrate on the worst possible number of OT-rounds, we 
an assume w.l.o.g.that � is a �xed number and that the sender and re
eiver always perform exa
tly � OT-steps. We start witha sharp lower bound on �, and then show a bound on the amount of randomness in a one-way redu
tion.3.1 Lower Bound on the Number of Invo
ationsLet us �rst give the informal intuition behind out lower bound: � � L̀ � N�1n�1 . We know by the (weak) senderpriva
y 
ondition that Bob 
an learn at most L (out of total NL) bits of information about W . However, ifin ea
h of the OT rounds Bob was somehow able to obtain all n strings that Ali
e put as her lo
al inputsto this OT round (rather than getting only one of them), Bob should be able to learn all (NL bits) of W .Indeed, if Bob 
ould not 
annot learn some Wi with 
ertainty, Ali
e will know that Bob's index is not i (ifit was i, honest Bob should be able to get Wi with probability 1 by the 
orre
tness property). But thiswould 
ontradi
t the re
eiver priva
y 
ondition as Ali
e learns some information about Bob's index. Hen
e,�n` � n` = �`(n � 1) bits that Bob did not get from the OT rounds, \
ontain information" about theremaining at least NL� L = L(N � 1) bits of W that Bob did not learn. The bound follows. Let us nowturn this intuition into a formal proof.Theorem 1 Any information-theoreti
ally se
ure redu
tion of weak2 �N1 �-OTL to �n1�-OT ` must have� � L̀ � N � 1n� 1 (4)2Sin
e we are proving a lower bound, it 
learly applies to (strong) �N1 �-OTL as well.6



Proof: Let P , P = (Ali
e; Bob), be an information-theoreti
ally se
ure redu
tion of �N1 �-OTL to �n1�-OT`that uses � invo
ations to �n1�-OT`. First, we need the following simple lemma.Lo
al Lemma: For any input w = w1; : : : ; wN , any random tape RA for Ali
e, any distin
t i; i0 2 [N ℄ andany random tape tape R0B for Bob, there exists a tape RB for Bob su
h that the sequen
e of messages,M , re
eived by Ali
e(w;RA) from Bob(i0; R0B) 
oin
ides with the sequen
e of messages that Ali
e(w;RA)re
eives from Bob(i; RB).Proof: Assume that RB does not exist. Then, exe
uting with Bob(i0; R0B), we get that Ali
e(w;RA) willdetermine for sure that Bob's index is not i. Thus, when Bob's index is i0, with non-zero probabilityover Bob's random string, Ali
e(w;RA) would obtain information about Bob's index (that it is not i),
ontradi
ting the re
eiver priva
y 
ondition. 2To derive our lower bound for �, we de�ne the following two notions: that of a spe
ial exe
ution of Pand that of a pseudo-exe
ution of P .Spe
ial exe
ution. A spe
ial exe
ution of P is an exe
ution of P in whi
h Ali
e's input is a sequen
eof N randomly sele
ted strings of length L, Ali
e's tape 
onsists of randomly and independently sele
tedbits, Bob's index is 1, and Bob's tape is the all-zero string, ~0. In other words, we �x the behavior of Bobby �xing his index and the random string. With respe
t to a spe
ial exe
ution of P , de�ne the followingrandom variables:� W | Ali
e's N L-bit strings, W =W1; : : : ;WN ;� R | Ali
e's random tape;� Ms | the ordinary messages sent by sender Ali
e;� Mr | the ordinary messages sent by re
eiver Bob;� V | Ali
e's potential messages (an �n`-bit string, that is, for ea
h of the � invo
ations of �n1�-OT`,the n `-bit strings that are Ali
e's lo
al inputs in the invo
ation).� Vr | the a
tual messages re
eived by Bob in the OT-rounds, (an �`-bit string, that is, for ea
h of the� invo
ations of �n1�-OT`, the `-bit string that Bob re
eived depending on his lo
al index during thatinvo
ation).Pseudo-exe
ution. Let �Ms be a sequen
e of messages, let �V be a sequen
e of � sequen
es of n strings oflength ` ea
h, let �i be an index in [N ℄, and let �RB be a bit-sequen
e. A pseudo-exe
ution of P with inputs�Ms, �V , �i, and �RB , denoted by �P ( �Ms; �V ;�i; �RB), is the pro
ess of running Bob with index �i and 
oin tosses�RB , letting the k-th message from the sender be the k-th string of �Ms, and by letting the sender's input tothe j-th invo
ation of �n1�-OT` to be the j-th n-tuple of `-bit strings in �V . In other words, we pretend to beAli
e and see what Bob will do in this situation on some parti
ular index and random string.Our lower bound for � immediately follows from the following two 
laims.Lo
al Claim 1: I((V;Ms) ; W ) = NL.Proof: By the de�nition of mutual information, we haveI((V;Ms) ; W ) = H(W )�H(W j (V;Ms)):Be
ause W is randomly sele
ted, H(W ) = NL. Therefore, to establish our 
laim we must prove thatH(W j (V;Ms)) = 0. We do that by showing that W is 
omputable from V and Ms by means of thefollowing algorithm.1. Run �P (V;Ms; 1;~0) and let Mr be the resulting \ordinary messages sent by Bob".(Comment: Bob's view and Bob's messages sent in this pseudo-exe
ution are distributed exa
tly as ina spe
ial exe
ution.)2. For i = 1 : : :N 
ompute Wi as follows: 7



� Find a string Ri su
h that, when exe
uting �P (V;Ms; i; Ri), the sequen
e of messages sent by Bobequals Mr.(Comment: The existen
e of at least one su
h Ri follows from the Lo
al Lemma with i0 = 1,R0B = ~0, w = W and RA = R. Further noti
e that, be
ause Mr, W and R totally determineAli
e's behavior, the messages and "potential" messages that Ali
e(W;R) sends to Bob(1;~0) andto Bob(i; Ri) are exa
tly V andMs in both 
ases. Hen
e, any Ri that produ
esMr in the pseudo-exe
ution �P (V;Ms; i; Ri), implies that Ali
e(W;R) would produ
e messages Ms and \potential"messages V when 
ommuni
ating with Bob(i; Ri).)� Let Wi be Bob's output in �P (V;Ms; i; Ri).(Comment: By the 
orre
tness property of our redu
tion, Bob(i; Ri) would 
orre
tly output Wiwhen talking to Ali
e(W;R). And as we noti
ed, Ali
e(W;R) would produ
e Ms and V when
ommuni
ating with Bob(i; Ri), so running pseudo-exe
ution �P (V;Ms; i; Ri) indeed makes Bobto produ
e the 
orre
t Wi). 2Lo
al Claim 2: I((V;Ms) ; W ) � L+ �`(n� 1).Proof: By Lemma 1 (equation 3), we haveI((V;Ms) ; W ) = I((Vr ;Ms) ; W ) + I((V nVr) ; W j (Vr ;Ms)):Now, be
ause P implements weak �N1 �-OTL, and be
ause (Vr;Ms) 
onsists of Bob's view in a (spe
ial)exe
ution of P , we have by (P30) that I((Vr ;Ms) ; W ) � L. Also, by Lemma 1 (equations 5 and 6),I((V nVr) ; W j (Vr ;Ms)) � jV nVrj = �`(n� 1):The 
laim follows. 2By 
ombining Lo
al Claims 1 and 2, we have NL � L+ �`(n� 1), from whi
h the desired lower boundfor � immediately follows.Noti
e from the proof of Theorem 1 that the bound on the number of invo
ations of �n1�-OT` holds even inthe honest-but-
urious model, i.e. even if we want the sender and the re
eiver priva
y to hold only for honestAli
e and Bob. Indeed, all the arguments within the proof had Ali
e and Bob follow the pres
ribed proto
ol.Thus, even if we trust the parti
ipants to follow the proto
ol, we need at least this many invo
ations toensure priva
y.We also remark that Maurer [23℄ isolated the properties of Oblivious Transfer used in establishing The-orem 1 and de�ned slightly more general forms of �N1 �-OTL and �n1�-OT` for whi
h the same proof goesthrough. These generalizations do not seem to be very natural, but make the proof slightly 
learer bydistilling the essential properties of the OT that we use.3.2 Lower Bound on the Number of Random BitsLet us now prove the lower bound on the number of random bits needed by the sender in a one-way redu
tion.Theorem 2 In any information-theoreti
 one-way redu
tion of weak3 �N1 �-OTL to �n1�-OT ` the sendermust 
ip at least L(N�n)n�1 random 
oins.Proof: Let P , P = (Ali
e; Bob), be an information-theoreti
ally se
ure one-way redu
tion from weak�N1 �-OTL to �n1�-OT`. As before, let W be the random input of Ali
e, R be her random tape, Ms be herordinary messages sent to Bob and V be her \potential" messages. We noti
e that sin
e the redu
tion isone-way, the distribution of V and Ms does not depend on Bob's index and his random string. Let Vj ,j = 1 : : : n, be an �-tuple 
onsisting of string number j taken from ea
h of the � invo
ations of �n1�-OT`. Wesee that V is the disjoint union of V1; : : : ; Vn.3Again, same result applies to (strong) �N1 �-OTL as well. 8



As before, we pro
eed by expanding the mutual information between W and (V;Ms) in two di�erentways. I((V;Ms);W ) =H(W )�H(W j (V;Ms)) = NL� 0 = NL (5)Here we used the fa
t that W is determined from V and Ms. Indeed, sin
e V and Ms do not depend onBob's input or random string, Ali
e should make sure that honest Bob 
an retrieve any Wi with probability1 (if his input is i).On the other hand, it is a possible behavior for a (mali
ious) Bob to read string number j in all theOT-rounds, i.e. to obtain Vj . By the weak sender priva
y 
ondition, I((Vj ;Ms);W ) � L, and, therefore, forany j 2 [n℄ we have (using Lemma 1, equations 5 and 6)I((V;Ms);W ) = I((Vj ;Ms);W ) + I(V nVj ;W j (Vj ;Ms)) � L+H(V nVj j Vj)Combining this with Equation (5), we getH(V nVj j Vj) � L(N � 1); 8j 2 [n℄ (6)Sin
e V is a disjoint union of Vj 's, we get from the above equation (for j = n) and Lemma 1 (equations1 and 5) that L(N � 1) � H(V nVn j Vn) � Pn�1j=1 H(Vj j Vn). Hen
e, there is an index j 2 [n � 1℄ s.t.H(Vj) � H(Vj j Vn) � L(N�1)n�1 . W.l.o.g. assume j = 1, i.e. H(V1) � L(N�1)n�1 . Sin
e for a �xed W , the onlyrandomness of V 
ame from R, we have by Equation (6) and Lemma 1 (equation 1)jRj � H(V j W ) = H(V;W )�H(W ) =H(V1) +H(V nV1 j V1)�NL� L(N � 1)n� 1 + L(N � 1)� LN = L(N � n)n� 1Here H(V;W ) =H(V ) asW is a fun
tion of V , and then we use (6) for j = 1 and our assumption on H(V1).This 
ompletes the lower bound proof.We noti
e that unlike the lower bound proof on the number of invo
ations, the proof above does nothold in the honest-but-
urious model. Namely, it uses the fa
t that the sender Ali
e should be prote
tedeven against the mali
ious re
eiver Bob. This is not surprising sin
e no randomness is needed in the honest-but-
urious model. For example, to redu
e �N1 �-OTL to �n1�-OT` we 
ould use NL=(n� 1)` invo
ations of�n1�-OT`, where ea
h of these invo
ations will have a zero-string in the �rst position, and the remainingpositions are �lled with NL \data"-bits greedily split into `-
hunks (where L=` 
hu
ks from ea
h wi are indi�erent OT's). We simply trust Bob to read L=` 
hu
ks of wi, and to read the all-zero string from theremaining OT's.4 Upper BoundsThough our main 
ontribution is establishing the lower bounds in Se
tion 3, we now tou
h upon the upperbounds to demonstrate the tightness of Theorems 1 and 2. This is done by means of a single one-wayredu
tion of weak �N1 �-OTL to �n1�-OT` that simultaneously a
hieves both the lower bounds for the numberof invo
ations of �n1�-OT` and the number of random bits needed by the sender. This proto
ol is a simplegeneralization of the one given by Brassard, Cr�epeau and S�antha [5℄ and Brassard, Cr�epeau and Robert [4℄for the 
ase L = `, n = 2. For 
ompleteness purposes, we also in
lude the proof that this proto
ol works.Though a similar proof 
ould be derived from [5℄, the one in
luded here is more dire
t be
ause our de�nitionof a redu
tion is slightly simpler.4 Note that the same proto
ol also proves that our lower bounds are tightfor redu
tion of (strong) �N1 �-OT` to �n1�-OT` (i.e., L = `). At the end of this se
tion we will also show thatthe bound on the number of invo
ations is tight up to a small 
onstant fa
tor even when L > `, by slightlygeneralizing another proto
ol of [5, 4℄.4You might noti
e, we embed the se
urity of �n1�-OT` into the de�nition of our redu
tion. Without doing so, one wouldhave to argue about \nested mutual information". 9



OT # Zero-String One-String1 w1 x12 w2 � x1 x2 � x13 w3 � x2 x3 � x2: : : : : : : : :N � 2 wN�2 � xN�3 xN�2 � xN�3N � 1 wN�1 � xN�2 wN � xN�2Figure 1: Spe
ial 
ase of using �21�-OT`, i.e. n = 2.4.1 Redu
ing weak �N1 �-OTL to �n1�-OT`Theorem 3 There exists a one-way information-theoreti
ally se
ure redu
tion of weak �N1 �-OTL to �n1�-OT `su
h that� it uses L̀ � N�1n�1 invo
ations of �n1�-OT `.� the sender uses L(N�n)n�1 random bits.Moreover, for L = `, the redu
tion a
tually redu
es (strong) �N1 �-OT ` to �n1�-OT `.Proof: We start with L = `, i.e. a redu
tion of (strong) �N1 �-OT` to �n1�-OT`, making � = N�1n�1 invo
ationsand using `(N�n)n�1 random bits for Ali
e. Let w = w1; : : : ; wN be Ali
e's N strings of length ` ea
h, and let ibe Bob's index.Proto
ol P (w; i):1. Ali
e 
hooses (�� 1) random `-bit strings x1; : : : ; x��1 using `(�� 1) = `(N�n)n�1 randombits. Set x0 = 0`, x� = wN .2. Perform � invo
ations of �n1�-OT`, where transfer j = 0 : : : (� � 1) is:�n1�-OT` [wj(n�1)+1 � xj ; : : : ; w(j+1)(n�1) � xj ; xj+1 � xj ℄Let zj be the value Bob reads from the j-th invo
ation, des
ribed next.3. Let j0 2 f0 : : : (� � 1)g be the index of the OT box whi
h has the XOR-ed value of wi(b i�1n�1
, if i 6= N , and (��1), otherwise). Bob reads the value zj0 = wi�xj0 from transferj0 and values zj = xj+1 � xj for all j 6= j0.4. Bob outputsLj0j=0 zj .The spe
ial 
ase of n = 2 (originally 
onsidered in [5, 4℄ and yielding (N � 1) invo
ations and (N � 2)`-bit random strings) is demonstrated in Figure 1. The intuition behind this proto
ol (for any n) is thefollowing. As long as Bob reads the \right-most" value xj+1 � xj , he does not learn anything about all thestrings wi used inside the �rst (j + 1) transfers. As soon as he learns some wi � xj instead of xj+1 � xj , helearns wi, but \misses" all the future wk for k > i as he \missed" xj+1. We now formally prove that theabove proto
ol indeed implements (strong) �N1 �-OT`.The Corre
tness Property (P1) is 
lear sin
e (wi � xj0 ) � (xj0 � xj0�1) � : : : (x2 � x1) � x1 = wi. TheRe
eiver Priva
y (P2) is 
lear as well sin
e the s
heme is one-way and, as we just saw, Bob 
an re
over anywi. We now show the main 
ondition (P3).Let W = W1; : : : ;WN be 
hosen at random as well as Ali
e's random string R = X1; : : : ; X��1. Let Vbe the random variable 
ontaining all the (�n) values of the �n1�-OT` boxes. We 
an assume w.l.o.g. that in10



ea
h of the � OT boxes, Bob indeed read one entire `-bit string that he 
hose (he 
an not learn more and it\does not hurt" to learn as mu
h as possible). Thus, de�ne Vr to be the �-tuple of `-bit strings that Bobread, i.e. everything that Bob learned from the proto
ol. Let t0; : : : ; t��1, where tj 2 [n℄, be the (randomvariables denoting the) indi
es of the � strings that Bob read.Let j0 be the smallest number su
h that tj0 6= n, if it exists. Otherwise, j0 = �� 1. Thus, Bob learnedX1; X1 � X2; : : : ; Xj0�2 � Xj0�1 and some Wi � Xj0�1. Clearly, this enables him to re
onstru
t Wi (theex
eptional 
ase of all tj = n falls here as well giving Bob WN ). We let ~I = i. First of all, ~I is independentfrom W . Indeed, Bob 
hoose to read index tj0 in the j0-th invo
ation of �n1�-OT` only based on his random
oins and X1; X1 � X2; : : : ; Xj0�2 � Xj0�1, whi
h does not depend on W . Thus, it suÆ
es to show thatI(Vr ;W j W~I ) = 0. But we already observed that W~I is determined from Vr. Hen
e, using Lemma 1(equations 4 and 3), I(Vr ; W ) = I((Vr ;W~I) ; W ) = I(W~I ; W ) + I(Vr ; W jW~I )= `+ I(Vr ; W jW~I)Thus, we only need to show that I(Vr ;W ) = `, i.e. to establish the weak property (P30). Intuitively, Bobalways learns some W~I , i.e. ` bits of information. So if we show that he does not learn more than ` bitsof information, we know that the only thing he learned was that one string W~I . We pro
eed by showing asequen
e of easy 
laims.Lo
al Claim 1: W is a fun
tion of V , i.e. H(W j V ) = 0 (7)Proof: We already saw from 
orre
tness that V determines ea
h string Wi. 2Lo
al Claim 2: H(V nVr j Vr) = `(N � 1) (8)Proof: We show that all (�n) `-bit strings of V are totally independent when W and R are randomly
hosen. Let us view ea
h su
h string in V as an (N + � � 1)-dimensional ve
tor over Z2 by taking the
hara
teristi
 ve
tor of the equation de�ning this string. Sin
e all Wi and Xj are 
hosen randomly, ourstrings are independent if and only if the 
orresponding ve
tors are linearly independent. Assume that somelinear 
ombination of ve
tors in V is zero. This 
ombination 
annot in
lude a ve
tor depending on some Wias there is only one su
h ve
tor in V . And the remaining ve
tors X1; X1�X2; : : : ; X��2�X��1 are 
learlylinearly independent. And sin
e our disjoint split of V into Vr and V nVr does not depend on V nVr, we getthat V nVr is independent of Vr, so by Lemma 1 (equation 5 and 8),H(V nVr j Vr) = H(V nVr) = jV nVrj = `(n� 1)� = `(N � 1) 2Lo
al Claim 3: V nVr is determined from W and Vr, i.e.H(V nVr j (Vr;W )) = 0 (9)Proof: The knowledge of W and any string Wi � X��1 in the last �n1�-OT` box (whi
h we have from Vr)determines X��1. Knowing X��1, W and any string of the form z �X��2 from the next to last �n1�-OT`box (whi
h we have from Vr where z is either some Wi or X��1) enables one to dedu
e X��2. Continuingthis way, we determine X1 from the �rst �n1�-OT` box whi
h allows us to re
onstru
t the whole V nVr. 2Combining Lo
al Claims 1,2,3 and using Lemma 1 (equations 8, 1, 2 and 3),`N = H(W ) = H(W )�H(W j V ) = I(V ;W ) = I(Vr ;W ) + I(V nVr;W j Vr)= I(Vr;W ) +H(V nVr j Vr)�H(V nVr j (Vr ;W )) = I(Vr ;W ) + `(N � 1)Hen
e, I(Vr ;W ) = ` indeed. This 
ompletes the proof of 
orre
tness when L = `.11



For ` < L we give a trivial proto
ol that sa
ri�
es the strong property (P3) leaving only (P30). Theproto
ol simply splits ea
h of the strings of the database into L=` disjoint parts of length ` ea
h, andperforms the previous proto
ol implementing �N1 �-OT` using �n1�-OT`. It uses L̀ � N�1n�1 invo
ations of �n1�-OT` and L̀ � `(N�n)n�1 = L(N�n)n�1 random bits as 
laimed. The 
orre
tness is 
lear ex
ept Ali
e's priva
y. We
learly loose the strong property (P3) as Bob 
an learn up to L=` di�erent blo
ks of length ` from di�erentstrings. However, weak property (P30) still holds as the L=` groups of boxes are totally independent, andfrom ea
h of them Bob 
an learn at most ` bits about W , i.e. a total of at most ` � L̀ = L bits.4.2 Redu
ing �N1 �-OTL to �n1�-OT` for L > `We just saw that the bound of Theorem 1 is tight for redu
ing (strong) �N1 �-OTL to �n1�-OT` when L = `.We now generalize another redu
tion of [5℄ and [4℄ to show that the bound is always tight up to a 
onstantfa
tor. For this we need to de�ne the notion of a zigzag fun
tion.4.2.1 Zigzag Fun
tionsGiven z = z1 : : : zS 2 f0; 1gS and J = fi1; : : : ; ij j i1 < : : : < ijg � [S℄, we let [z℄J = zi1 : : : zij be the bits ofz in J . Let f : f0; 1gS ! f0; 1gL be a surje
tive fun
tion, W be 
hosen uniformly at random from f0; 1gL,and Z be a random pre-image of W (whi
h exists due to surje
tivity of f).De�nition 2 A set J � [S℄ is said to bias f if [Z℄J reveals some information about W = f(Z):I(W ; [Z℄J) > 0In other words, if J does not bias f , observing [Z℄J gives no information about W .De�nition 3 A surje
tive fun
tion f : f0; 1gS ! f0; 1gL is 
alled an (S;L)-zigzag fun
tion if for anypartition of [S℄ into disjoint subsets J1; : : : ; JN , at most one of J1; : : : ; JN biases f .Noti
e that it suÆ
es to 
he
k the de�nition of a zigzag fun
tion only for N = 2, i.e. partitions of [S℄ intotwo disjoint subsets (sin
e if Ji and Jk bias f , then so do Ji and [S℄nJi). Aside from verifying the existen
eof zigzag fun
tions, the obje
tive is to make S as small as possible, and we will soon see the reason why.A parti
ular ni
e 
lass of zigzag fun
tions are linear zigzag fun
tions, whi
h are given by an L�S binarymatrix M whi
h de�nes f(z) = M � z (here the operations are in GF (2)). Noti
e that the matrix M alsode�nes an error-
orre
ting 
ode C in f0; 1gS, where the 
odewords are all the elements of the form u �M ,where u 2 f0; 1gL. Brassard, Cr�epeau and S�antha [5℄ showed an easily veri�ed but surprising 
onne
tionbetween f being a zigzag fun
tion and the properties of C.Lemma 3 ([5℄) f(z) =M �z is an (S;L)-zigzag fun
tion if and only if and only if C = fu �M j u 2 f0; 1gLgis a self-interse
ting 
ode, that is every non-zero 
1; 
2 2 C have at least one 
ommon non-zero 
oordinate.5Self-interse
ting 
odes have been studied earlier (for instan
e, by [7℄). In parti
ular, it is known that forany 
 > log4=3 4 � 4:8188, a random 
L� L binary matrix M de�nes a self-interse
ting 
ode (or a zigzagfun
tion) with probability exponentially 
lose to 1.6 In parti
ular,Theorem 4 ([7, 5℄) For any L there exist (
L;L)-zigzag fun
tions, where 
 < 5.5The reason su
h 
ode is 
alled self-interse
ting is that if we view ea
h non-zero 
odeword as a subset of f0; 1gS (by lookingat its 
hara
teristi
 ve
tor), the 
ondition above says that any two non-empty 
odewords interse
t.6Brassard et al [5℄ give eÆ
ient deterministi
 algorithms to 
onstru
t zigzag fun
tions with mu
h larger 
onstants 
, but weare not 
on
erned with eÆ
ien
y or 
onstu
tiveness in order to mat
h our lower bound.
12



4.2.2 A Simple Proto
ol using Zigzag Fun
tionsWe 
an now give a simple one-way redu
tion from �N1 �-OTL to �N1 �-OT` slightly generalizing the redu
tions of[4, 5℄. We let f : f0; 1gS ! f0; 1gL be an (S;L)-zigzag fun
tion with S = O(L). Let Bj = fj`+1; : : : ; (j+1)`g,j = 0; : : : ; L=`� 1. In other words, we split [S℄ = f1; : : : ; Sg into � = S=` 
onse
utive blo
ks of size ` ea
h.Given z 2 f0; 1gS we let [z℄j = [z℄Bj be the restri
tion of z to its ` bits in Bj .Proto
ol Q(w; i):1. Ali
e 
hooses a random zi su
h that f(zi) = wi, 8i 2 [N ℄.2. Perform � invo
ations of �N1 �-OT` where transfer j = 0 : : : (�� 1) is:�N1 �-OT` [ [z1℄j ; : : : ; [zN ℄j ℄3. Bob reads i-th value [zi℄j in ea
h OT, re
onstru
ts zi and outputs f(zi).Let Jk be the union of all Bj su
h that Bob read [zk℄j in the j-th OT. Then Bob learned [zk℄Jk for all k.Noti
e that J1; : : : ; JN form a disjoint partition of [S℄. Sin
e f is a zigzag fun
tion, at most one of Jk biasesf , say Jt. Then Bob does not learn any information about wk for any k 6= t, sin
e the distribution of [zk℄Jkis independent of wk. It is a trivial routine matter (mu
h simpler than for the proto
ol from the previousse
tion) to transform this intuition into a formal proof, and this was indeed done in [5℄.We noti
e that the number of �N1 �-OT` invo
ations is S=`, and that is why we need S to be as small aspossible. Sin
e S = O(L) by Theorem 4, we get:Theorem 5 There exists a one-way redu
tion of �N1 �-OTL to �N1 �-OT ` using O(L=`) invo
ations of thelatter.By �nally 
ombining the 
ombining the above redu
tion with the redu
tion from Theorems 3 (from�N1 �-OT` to �n1�-OT`), we getCorollary 1 There exists a one-way redu
tion of �N1 �-OTL to �n1�-OT ` using O( L̀ � N�1n�1 ) invo
ations of thelatter.To summarize, the bound of Theorem 1 is always tight up to a 
onstant fa
tor and is exa
tly tight forL = ` and for the 
ase of weak �N1 �-OTL.5 Con
luding ThoughtsTypi
ally, 1-out-of-2 OT is 
onsidered as a basi
 primitive, and eÆ
ient 
ryptographi
 proto
ols have beendesigned for this 
ase based on various 
ryptographi
 assumptions (for example, those of [1℄ and [15℄). Thus,in order to implement general 1-out-of-N OT, the following methodology is suggested: use information-theoreti
 redu
tion to 1-out-of-2 OT, and then use a 
ryptographi
 proto
ol for every invo
ation of thelatter. While this methodology works and is often used, there are alternative (and often more eÆ
ient)ways to build 1-out-of-N OT. In parti
ular, there are very eÆ
ient \dire
t" 
ryptographi
 proto
ols for�N1 �-OTL based on various assumptions. For example, Dodis, Halevi and Rabin [13℄ give a simple �N1 �-OTL proto
ol based on any \blindable" en
ryption s
heme (e.g., El-Gamal [14℄ or Goldwasser-Mi
ali [19℄),while Naor [24℄ re
ently gave a very eÆ
ient �N1 �-OTL proto
ol based on the DiÆe-Helman assumption.Alternatively, Naor and Pinkas [25℄ gave a very eÆ
ient \
ryptographi
 redu
tion" from �N1 �-OTL to �21�-OTL whi
h uses only logN invo
ations of �21�-OTL (
ompare with the lower bound of (N � 1) given byTheorem 1) in addition to O(N) invo
ations of a pseudorandom fun
tion (whi
h are 
onsidered to be moreeÆ
ient than �21�-OTL). Of 
ourse, this \gap" from logN to N is very arti�
al and not well de�ned on
e weuse 
omputational assumptions (in parti
ular, we 
an build the 
omplex OT dire
tly), and makes sense only13



in terms minimizing the amount of work outside of performing simpler OTs (e.g., using relatively inexpensiveevaluations of a pseudorandom fun
tion).While these 
ryptographi
 results surpass the lower bounds we established in Se
tion 3 (in fa
t, thelower bounds do not make sense if we use 
ryptographi
 assumptions), the lower bounds are still quitemeaningful. For one thing, they show that simple but seemingly ineÆ
ient redu
tions of 
omplex to simplerOT's are a
tually the best we 
an hope to a
hieve. On the other side, they show that there are somenon-trivial information-theoreti
 limitations of expressing a 
omplex OT in terms of a simpler one, for
ingone to either build 
omplex OT's dire
tly, or to use \
ryptographi
 redu
tions", or to settle for somewhatineÆ
ient performan
e when building 
omplex OT's. In parti
ular, the attra
tive methodology of buildingonly �21�-OT might not be the best one in pra
ti
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