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Abstract. Multicast Key Agreement (MKA) is a long-overlooked natural primitive of large prac-
tical interest. In traditional MKA, an omniscient group manager privately distributes secrets over
an untrusted network to a dynamically-changing set of group members. The group members are
thus able to derive shared group secrets across time, with the main security requirement being that
only current group members can derive the current group secret. There indeed exist very efficient
MKA schemes in the literature that utilize symmetric-key cryptography. However, they lack formal
security analyses, efficiency analyses regarding dynamically changing groups, and more modern, ro-
bust security guarantees regarding user state leakages: forward secrecy (FS) and post-compromise
security (PCS). The former ensures that group secrets prior to state leakage remain secure, while
the latter ensures that after such leakages, users can quickly recover security of group secrets via
normal protocol operations.

More modern Secure Group Messaging (SGM) protocols allow a group of users to asyn-
chronously and securely communicate with each other, as well as add and remove each other from
the group. SGM has received significant attention recently, including in an effort by the IETF
Messaging Layer Security (MLS) working group to standardize an eponymous protocol. However,
the group key agreement primitive at the core of SGM protocols, Continuous Group Key Agree-
ment (CGKA), achieved by the TreeKEM protocol in MLS, suffers from bad worst-case efficiency
and heavily relies on less efficient (than symmetric-key cryptography) public-key cryptography. We
thus propose that in the special case of a group membership change policy which allows a single
member to perform all group additions and removals, an upgraded version of classical Multicast
Key Agreement (MKA) may serve as a more efficient substitute for CGKA in SGM.

We therefore present rigorous, stronger MKA security definitions that provide increasing
levels of security in the case of both user and group manager state leakage, and that are suitable
for modern applications, such as SGM. We then construct a formally secure MKA protocol with
strong efficiency guarantees for dynamic groups. Finally, we run experiments which show that the
left-balanced binary tree structure used in TreeKEM can be replaced with red-black trees in MKA
for better efficiency.

1 Introduction

Multicast Key Agreement. Multicast Key Agreement (MKA) is a natural primitive of large practical
interest that has not received much attention recently. In MKA, there is an omniscient group manager
that privately distributes secrets through control messages over an untrusted network to a dynamically-
changing set of group members. The secrets delivered via these control messages allow group members
to derive shared group secrets across time. The main security requirement is that users added to the
group are not able to derive old group secrets while users removed from the group are not able to derive
new group secrets. Traditionally, these derived group secrets could then be used in some higher-level
application, such as digital rights management (DRM) for PayTV, in which the group manager could
broadcast content privately to users in a unidirectional manner.

There are several works in the literature that propose and study practical MKA protocols [36, 38,
20, 15, 25, 34], the best of which achieve O(log nmax) worst-case communication complexity, where nmax

is the maximum number of users ever in the group. Moreover, all of these protocols utilize efficient
symmetric-key cryptography for the control messages of each operation.

However, prior practical multicast works did not (i) provide formal security models or proofs, (ii)
resolve efficiency issues regarding dynamically changing groups, nor, importantly, (iii) achieve more
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modern, robust security notions, such as privacy surrounding leakages of user secret states. With respect
to a user secret state leakage, optimal security requires:

– Forward Secrecy (FS): All group secrets that were generated before the leakage should remain secure.
– Post-Compromise Security (PCS): Privacy of group secrets should be quickly recovered as a result

of normal protocol operations.

Most of these prior schemes base off of the Logical Key Hierarchy (LKH) from [36, 38]. In these
schemes, symmetric keys are stored at the nodes of a tree in which users are assigned to leaf keys and
the group secret is the key at the root. The tree invariant is that users only know the keys at the nodes
along the path from their leaf to the root. Thus in its simplest form, if, for example, a user is removed,
the group manager simply removes their leaf, refreshes the other keys at the nodes along the path from
their leaf to the root, and encrypts these keys to the children of the corresponding nodes on the path.
This strategy thus achieves O(log nmax) communication and computational complexity.

We state the efficiency in terms of nmax, since these schemes never address exactly how the tree should
be balanced if many users are added or removed from the group. In order to achieve optimal efficiency
of the scheme according to the lower bound of Micciancio and Panjwani [24], i.e., have communication
and computational complexity of O(log ncurr), where ncurr is the current number of users in the group,
the tree must remain balanced after such operations. However, this complicates the tree invariant: how
should it be maintained so that security is achieved? Users should never occupy interior nodes nor retain
information for old leaf-to-root paths. The first column of Table 1 summarizes the properties of traditional
practical MKA constructions.

New Applications: Single Administrator Secure Group Messaging. We observe that today, MKA has
several more modern applications, including:

1. Adapting the classical use case of DRM to more modern purposes, such as live streaming on the
internet (e.g., twitch), or

2. Communicating with resource-constrained IoT devices [29], or
3. Enabling Secure Group Messaging (SGM) among the group members.

Here, we focus on SGM and first provide some background: End-to-end Secure Messaging protocols
allow two parties to exchange messages over untrusted networks in a secure and asynchronous manner.
The famous double ratchet algorithm of the Signal protocol [27] achieves great security and efficiency in
this setting, and is now the backbone of several popular messaging applications (e.g., Signal, WhatsApp,
Facebook Messenger Secret Conversations, etc.) which are used by billions of people worldwide.

However, allowing groups of users to efficiently exchange messages over untrusted networks in a secure
manner introduces a number of nontrivial challenges. Such SGM protocols have begun to receive more
attention recently: e.g., the IETF has launched the message-layer security (MLS) working group, which
aims to standardize an eponymous SGM protocol [5]. In the SGM setting, users share evolving group
secrets across time which enable them to asynchronously and securely communicate with each other.
Furthermore, they are allowed to asynchronously add and remove other users from the group. However,
in practice, groups typically utilize some stable policy to determine membership change permissions.

The key agreement primitive at the center of SGM is called Continuous Group Key Agreement
(CGKA) [1, 3, 35] and is achieved by the TreeKEM protocol in MLS [9], among others (e.g., [3, 37]).
Much like MKA, CGKA requires end-to-end security of the evolving group secrets which can only be
known by current group members, but also FS and PCS with respect to user state leakages. Furthermore,
asynchronous dynamic operations can be performed by any user. It is a hard problem to design CGKA
protocols from minimal security assumptions that are efficient. All current practical CGKA construc-
tions require Ω(ncurr) communication in the worst-case, due to complications regarding user-performed
dynamic operations.3 A definitively bad situation is immediately following the creation of a CGKA
group: if many users remain offline for a long time after creation, communication complexity may remain
Ω(ncurr) during this time (for example, if the creator performs updates), since only a few users will have
contributed secrets to the group. Additionally, all current CGKA protocols heavily rely on public-key
cryptography (which is of course less efficient than symmetric-key cryptography).

3 Most constructions informally claim to have “fair-weather” O(lognmax) communication complexity [2], i.e., in
some (undefined) good conditions, they have O(lognmax) communication.
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Traditional MKA CGKA Our MKA

Efficiency O(lognmax)
Ω(ncurr)

(“fair-weather”
O(lognmax))

O(logncurr)

Heavy Use of Public-
Key Cryptography

no yes no

Add/Remove group mgr anybody1 group mgr

Members PCS/FS no/no yes/yes yes/yes

Group Mgr
PCS/FS

no/no N/A weak2/yes

Group Mgr
Local Storage

Ω(ncurr) N/A O(1)

Table 1. A comparison of some properties of the traditonal MKA construction in the literature, CGKA construc-
tions, and our optimal MKA construction. The top half showcases the efficiency advantages of both traditional
and our MKA, while the bottom showcases the functionality advantages of CGKA, and the added security and
efficiency of our MKA with respect to traditional MKA.
1 Although in formal definitions of CGKA constructions, any group member can perform add and remove operations, in practice,

a stable policy is needed.
2 PCS against group manager corruptions in our construction requires every group member at the time of corruption to be either

removed or updated.

Although CGKA is usually the best way to distribute keys amongst group members in the SGM
setting, due to its strong functionality guarantees, it clearly suffers from the above deficiencies. Therefore,
more efficient alternatives should be provided for special cases. One such realistic setting is when the
policy for group membership changes only permits a single group member (administrator) to add and
remove users. In this case, we posit that a great substitute for CGKA is (a stronger version of) MKA.
Therefore, a main contribution of this paper, upon which we elaborate in the next subsection of the
introduction, is providing a strong formal model of MKA that is suitable for modern uses such as SGM,
and then constructing a protocol which efficiently achieves the security of this model. This protocol
does not heavily rely on public-key cryptography as in CGKA, and has much more efficient O(log ncurr)
communication for operations as opposed toΩ(ncurr) communication in the worst-case for CGKA. Table 1
compares the properties of traditional MKA in the literature with CGKA and our more secure, and
efficient, MKA protocol.

We emphasize that the group manager in MKA (who is the single member of the SGM group with
membership change privileges) only generates the secrets of the group and the control messages by which
they are distributed, and can (should) be viewed as completely divorced from the central delivery server
that is usually a part of SGM protocols such as MLS. Therefore, for example, the group manager does
not need to be always online and the group secrets remain private from the delivery server, thus providing
proper end-to-end security for SGM. Furthermore, despite the fact that the group manager performs all
membership change operations, actual SGM communications remain asynchronous by using the group
secret from MKA for the Application Key Schedule, as is usually done with CGKA in MLS [5].

Group Authenticated Key Exchange. MKA and CGKA are closely related to the setting of Group Authen-
ticated Key Exchange (GAKE) (e.g., [23, 13, 12, 14]). In GAKE, several (possibly overlapping) groups
of users work together to establish independent group keys across time. Formal models, constructions,
and proofs for GAKE indeed exist that consider FS and PCS. However, all such constructions involve a
large amount of interaction, requiring many parties to be online, which is undesirable for the MKA and
SGM settings.

1.1 Contributions

Multicast Key Agreement with optimal user security. This paper provides a more rigorous study of prac-
tical MKA constructions by first providing a formal security definition (based on that of [1] for CGKA)
which guarantees correctness and privacy of the protocol, as well as PCS and FS for users. Moreover, our
definition allows for partially active security, meaning the delivery service can send control messages to
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users in arbitrarily different orders (with arbitrary delays), but cannot inject or modify control messages.
We additionally allow for adaptive adversaries, achieving security proofs with quasipolynomial loss in the
standard model, and polynomial loss in the random oracle model, using the proofs of Tainted TreeKEM
(a CGKA protocol) in [3] as a template.

We then provide a secure and efficient construction of the primitive based on LKH that instead utilizes
generic tree structures. This protocol moreover utilizes (dual) pseudorandom functions (dPRFs) [6]
and an Updatable Symmetric Key Encryption (USKE) primitive [7] (which is the symmetric analog to
Updatable Public Key Encryption (UPKE) [22, 1, 17]) to allow for optimal FS by refreshing keys in the
tree as soon as they are used as an encryption secret key.

Furthermore, we show that if the tree structure used is a left-balanced binary tree (LBBT), as in
most CGKA constructions, then the computational and communication complexity of operations besides
creation are O(log nmax). However, we show that if the protocol uses 2-3 trees or red-black trees (RBTs),
this complexity improves to O(log ncurr), thus achieving optimal communication complexity according
to the lower bound of [24]. Indeed, we implement our construction which shows empirically that this
theoretical difference between nmax and ncurr makes RBTs more efficient than LBBTs in practice.4

In section 5.4, we illustrate that in the average case, where updates are performed more often than
additions and removals (which occur at the same rate), RBTs are the most efficient out of the three
trees. Furthermore, in an event in which group membership drastically decreases, LBBTs are much less
efficient than both RBTs and 2-3 trees after this decrease. Even if group membership gradually decreases
over time, RBTs are still the most efficient of the three.

Adding security for group manager corruptions. We then add to the security definition of MKA to
allow for corruptions of the group manager state. Despite these corruptions, our definition still demands
immediate FS, i.e. all group secrets before the corruption should remain secure, and eventual PCS, i.e.
after the group manager has updated or removed all of the members of the group at the time of the
corruption, future group secrets should be secure. While our above construction already achieves this
stronger definition, it relies on the group manager to store the keys at each node of the tree. Such a
requirement assumes that the group manager has the capability to locally store such large (Ω(ncurr))
amounts of data, as well as handle availability, replication, etc. In an effort to reduce the local storage of
the group manager and securely outsource storage of the tree to an untrusted remote server, we use the
recent work of [10], who formalize the notion of Forward Secret encrypted RAM (FS eRAM) and apply
it to MKA.5 Intuitively, the security of FS eRAM only allows the adversary to obtain secrets currently
at the nodes of the MKA tree upon corruption of the group manager, while past secrets at the nodes
remain secure.

The work of [10] focuses on a lower bound for FS eRAM and only sketches its application to MKA,
with similar limitations as the prior works on MKA (no formal analysis of security or dynamism). We
therefore provide a similar result with a fully formal argument that achieves the security of the modified
MKA definition, while retaining asymptotic communication and computational complexity of our original
MKA scheme. Moreover, it enables the group manager to separate her state into O(1) local storage and
O(ncurr) remote storage. The third column of Table 1 shows the properties of our second construction.

Optimal PCS for group manager corruptions. The security notion described above allows us to retain the
use of efficient symmetric-key encryption for control messages, while achieving good, but not optimal,
eventual PCS for group manager corruptions. Indeed, we show in Section 7 that to obtain optimal PCS,
i.e., security after one operation following a group manager corruption, public-key encryption is necessary.
Then we show that achieving optimal PCS (and all the other properties described above) with public-key
encryption is easy: In our construction, we simply replace USKE with UPKE (and the group manager
only remotely, not locally, stores the public keys at the tree nodes).

4 See https://github.com/abienstock/Multicast-Key-Agreement for the code.
5 FS eRAM is also known in the literature as, e.g., “secure deletion” [28, 30, 31, 4, 32], “how to forget a

secret” [16], “self-destruction” [19], and “revocability” [11].
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2 Preliminaries

This section introduces some basic notation and concepts for trees. For more details on left-balanced
binary trees, 2-3 trees, and left-leaning red-black trees, seee Appendix A. Also, for the definitions of
PRGs, (d)PRFs and CPA-secure symmetric-key encryption, refer to Appendix B.

A tree τ is a connected undirected acyclic graph with a special node called the root of the tree. Every
node in the tree has a unique identifier, for our purposes, some value ` ∈ {0, 1}λ, where λ is the security
parameter. For every node in a tree, there is a unique path from (and including) the node to the root
of the tree, referred to as its direct path. The length of the direct path of a node is called the depth of
that node. The height of the tree is the maximum depth of its nodes. The subgraph over the set of nodes
whose direct paths contain node v (with v assigned to be the root) is called the subtree at v. Depth-1
nodes in the subtree at node v are the children of v, and v is their parent, and they are siblings of each
other. The degree of a node v, denoted by deg(v) is its number of children. We call the children of a node
v, v.cj , for j ∈ [deg(v)], and its parent v.p. Nodes v such that deg(v) = 0 are called leaf nodes, and other
nodes are called internal nodes. The maximum degree of any node v of τ is denoted as deg(τ). The set
of siblings of all nodes along the direct path of node v is called the copath of v. We refer to a connected
subgraph of the tree that includes the root as a skeleton of the tree. For any skeleton, its frontier consists
of those nodes in the tree that are not in the skeleton but have edges from nodes in the skeleton.

3 Updatable Symmetric Key Encryption

In this section, we define and construct a symmetric analog to the well-known Updatable Public Key
Encryption primitive in the Secure Messaging literature [22, 1, 17], which we call Updatable Symmetric
Key Encryption (USKE). This notion and the following construction are quite similar to that of Bellare
and Yee [7], except that we implicitly include the key update functionality directly in the encryption
and decryption algorithms (whereas they provide a separate update algorithm): USKE schemes simply
augment the syntax of the encryption algorithm of standard symmetric encryption to output a new key
k′ in addition to the ciphertext, and symmetrically, the decryption algorithm to output new key k′,
when decrypting that ciphertext. If the new key is exposed, then all plaintexts encrypted under previous
versions of the key remain secure.

Definition 1 (Updatable Symmetric Key Encryption (USKE)). A USKE scheme is a double of
algorithms uske = (UEnc,UDec) with the following syntax:

– Encryption: UEnc receives a key k and a message m and produces a ciphertext c and new key k′.
– Decryption: UDec receives a key k and a ciphertext c and produces a message m and new key k′.

Correctness. A USKE scheme must satisfy the following correctness property. For any sequence of mes-
sages m1, . . . ,mq:

Pr

[
k′0 ← k0; For i ∈ [q], (ci, ki)← UEnc(ki−1,mi);

(m′i, k
′
i)← UDec(k′i−1, ci) : mi = m′i

]
= 1.

The following notion of CPA security that we define below is very similar to standard CPA-secure
SKE:

IND-CPA* security for USKE. For any adversary A with running time t we consider the IND-CPA*
security game:

(i) The challenger sets k0 ←$ K
(ii) For i ∈ [q], A outputs mi and receives back ci such that (ci, ki)← UEnc(ki−1,mi).
(iii) A sends challenge messages m∗0,m

∗
1.

(iv) For i ∈ [q], the challenger computes (mi, k
′
i)← UDec(k′i−1, ci), where k′0 = k0.

(v) Then the challenger computes (c∗, kq+1)← UEnc(kq,m
∗
b) for uniform b ∈ {0, 1}, (·, k∗)← UDec(k′q, c

∗)
and sends (c∗, k∗) to A.

(vi) A sends bit b′ ∈ {0, 1} to the challenger.

A wins the game if b = b′. The advantage of A in the game is denoted by Advuske
cpa∗(A) = |Pr[b = b′]−1/2|.

Definition 2 (USKE security). An updatable symmetric key encryption scheme uske is (t, ε)-CPA*-
secure if for all t−attackers A,

Advuske
cpa∗(A) ≤ ε.
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UEnc((s, r),m):
00 c← m⊕ r
01 (s′, r′)← prg(s)
02 return (c, (s′, r′))

UDec((s, r), c):
03 m← c⊕ r
04 (s′, r′)← prg(s)
05 return (m, (s′, r′))

Fig. 1. USKE Construction from one-time pad and PRG.

Consistent USKE schemes. We call a USKE scheme consistent if encryption and decryption keys remain
the same for all versions, i.e., for any sequence of messages m1, . . . ,mq, if k′0 ← k0, then for i ∈ [q],
k′i = ki, where (ci, ki)← UEnc(ki−1,mi); (m′i, k

′
i)← UDec(k′i−1, ci). Our construction below is consistent,

and throughout this work, we will assume that all USKE schemes are consistent.

3.1 Construction

In Figure 1, we give the details of a simple IND-CPA* secure USKE scheme that only relies on one-time
pads and a PRG. It is easy to observe its correctness.

Theorem 1. Assume prg is a (tprg, εprg)-secure pseudorandom generator. Then the USKE scheme of
Figure 1 is (t, q · εprg)-CPA*-secure, where t ≈ tprg and q is the number of adversarial encryption queries
(excluding the challenge).

Proof. The proof simply works over q+1 hybrids H0, . . . ,Hq, where H0 is the original game and for each
i ∈ [q], Hi is the game in which the challenger computes the first i one-time pads uniformly at random
during encryption, and the rest as the output of prg on the (j − 1)-st seed sj−1, for j ∈ [i + 1, q]. Thus
Hq is the game where both the one-time pad used to generate the challenge ciphertext c∗, and thus c∗

itself, are uniformly random and independent of the key k∗ sent to A and all other ciphertexts ci sent
to A, regardless of the challenge bit b. Hence, Advuske

Hq (A) = 0.

We will now show that for i ∈ [q], Advuske
Hi−1

(A) ≤ Advuske
Hi + εprg. Assume towards contradiction that

Advuske
Hi−1

(A) > Advuske
Hi + εprg. Now, consider the reduction algorithm Bprg

i which on input (s∗, r∗) from
the prg challenger does the following:

– Let s0 ← ⊥, r0 ←$ R.

– For j ∈ [i−1], compute the j-th encyrption UEnc(kj−1,mj) as normal, but let sj ← ⊥, rj ←$ {0, 1}λ.

– Then compute the i-th encryption as normal, except let (si, ri)← (s∗, r∗).

– Compute everything else as normal, skipping step (iv) and using k∗ = kq+1.

– Finally, receive bit b′ from A and output 0 iff b′ = b.

Thus, if Advuske
Hi−1

(A) > Advuske
Hi + εprg, then Bprg

i breaks the security of the PRG game, reaching a contra-

diction. So, Advuske
cpa∗(A) = Advuske

H0
(A) ≤ q · εprg. ut

4 Multicast Key Agreement

A Multicast Key Agreement (MKA) scheme allows for a group manager to distribute secret random values
to group members which they can use to obtain shared key material for some higher-level protocol. The
manager (and only the manager) can make changes to the group, i.e. add and remove members, as well
as help individual parties in the group update their secrets, if needed. There are many options for what
a higher-level protocol can do with the shared group key material from the MKA scheme, as stated in
the introduction.

In this section, we formally define the syntax of MKA schemes and introduce a security notion that
captures correctness, key indistinguishability, as well as forward secrecy and post-compromise security
for group members, even with a partially active and adaptive adversary that can deliver control messages
in an arbitrary order for each user.
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4.1 MKA Syntax

Before we formally define the syntax of MKA, observe that the group manager will often need to com-
municate secrets to users with whom she does not share any prior secrets (e.g., when adding them).
Indeed, there are many primitives that require such delivery of secrets with no prior shared secrets –
e.g., CGKA, Identity-Based Encryption (IBE), Broadcast Encryption (BE), etc. – and all do so using
a secure channel (which may be compromised by an adversary on-demand). In modern SGM literature,
this channel is usually implemented by a Public Key Infrastructure (PKI), since the parties anyway need
a PKI to authenticate each other. For our setting, where all control messages are sent by a single party
(much like IBE and BE), we take a more traditional route by not explicitly including a PKI for the secure
channel used to deliver secret keys. Instead, we simply model separate out-of-band channels from the
group manager to each user for such messages (which will indeed often be implemented via a PKI). In the
definition, all out-of-band values kID output by group manager algorithms are small (security parameter
size), and will be sent over the corresponding individual out-of-band channel from the group manager to
user ID. Moreover, any out-of-band values input by the user process algorithm will have been retrieved
from their corresponding out-of-band channel from the group manager.

Definition 3 (Multicast Key Agreement (MKA)). An MKA scheme M = (Minit,Uinit, create, add,
rem, upd, proc) consists of the following algorithms:6

– Group Manager Initialization: Minit outputs initial state Γ .
– User Initialization: Uinit takes an ID ID and outputs an initial state γ.
– Group Creation: create takes a state Γ and a set of IDs G = {ID1, . . . , IDn}, and outputs a new state
Γ ′, group secret I, control message T , and dictionary K[·], which stores a small user out-of-band
value for every ID ∈ G.

– Add: add takes a state Γ and an ID ID and outputs a new state Γ ′, group secret I, control message
T , and a small out-of-band value for ID, kID.

– Remove: rem takes a state Γ and an ID ID and outputs a new state Γ ′, group secret I, and a control
message T .

– Update: upd takes a state Γ and an ID ID and outputs a new state Γ ′, group secret I, control message
T , and a small out-of-band value for ID, kID.

– Process: proc takes a state γ, a control message T sent over the broadcast channel, and an (optional)
out-of-band value k, and outputs a new state γ′ and a group secret I.

One uses a MKA scheme as follows: Once a group is established by the group manager using create, the
manager may call the add, rem, or upd algorithms. We note that including an explicit upd algorithm for
users enables better efficiency than the alternative – removing a user and immediately adding her back.
After each operation performed by the group manager, a new epoch is instantiated with the corresponding
group secret computed by the operation. It is the implicit task of a delivery server connecting the
group manager with the members to relay the control messages to all current group members. The
delivery server can deliver any control message output by the group manager to any user, at any time.
Additionally, the group manager may (directly) send certain members secret values over the out-of-band
channel. Whenever a group member receives a control message and the corresponding out-of-band secret
from the group manager (if there is one), they use the proc algorithm to process them and obtain the
group secret I for that epoch.

4.2 MKA Efficiency Measures

We introduce four measures of efficiency for MKA schemes. These efficiency measures are in terms of
the number of group members at a certain epoch, ncurr, and the maximum number of group members
throughout the execution of the protocol, nmax. The first is that of worst-case space complexity of the

6 We could easily allow for batch operations – as the latest MLSv11 draft does through the “propose-then-
commit” framework [5] – which would be more efficient than the corresponding sequential execution of those
operations, but we choose not to for simplicity. We also note that updating one user at a time in case of their
corruption is of course much more efficient (and just as secure) than updating the whole group in case just
that user was corrupted.
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group manager state, i.e. the size of Γ , which we refer to as s(ncurr, nmax). The second is that of worst-
case communication complexity of control messages output by the group manager for add, rem, and upd
operations, which we refer to as c(ncurr, nmax). The third is that of worst-case time complexity of group
manager add, rem, and upd operations, which we refer to as t1(ncurr, nmax). The fourth is that of worst-
case time complexity of user proc process algorithms for control messages output by group manager,
which we refer to as t2(ncurr, nmax). In our construction, using specific tree structures in Section 5, the
worst-case space complexity of a user, i.e. the size of γ, is proportional to t2(ncurr, nmax). We will often
refer to these measures without writing them explicitly as functions of ncurr and nmax (and will sometimes
informally conflate ncurr and nmax into a single value, n, for simplicity).

4.3 MKA Security

We now introduce the formal security definition for MKA schemes that ensures optimal security for
group members against adaptive and partially active adversaries. The basic properties any MKA scheme
must satisfy for this definition are the following:

– Correctness even with partially active adversaries: The group manager and all group members output
the same group secret in all epochs, once the group members have eventually received all control
messages in order (with different messages possibly arbitrarily ordered in between).

– Privacy : The group secrets look random given the message transcript.
– User Forward Secrecy (FS): If the state of any user is leaked at some point, all previous group secrets

remain hidden from the attacker.
– User Post-compromise Security (PCS): Once the group manager performs updates for every group

member whose state was leaked, group secrets become private again.

All of these properties are captured by the single security game presented in Figure 2, denoted by
user-mult. In the game the attacker is given access to oracles to drive the execution of the MKA protocol.
We note that the attacker is not allowed to modify or inject any control messages, but again, they
can deliver them in any arbitrary order. This is because we assume MKA will be used in a modular
fashion, and thus, whichever higher-level application it is used within will provide authentication (as is
also assumed for CGKA). However, we do assume that the attacker sees all broadcast control messages
and can corrupt out-of-band messages.

Epochs. The main oracles to drive the execution of the game are the oracles for the group manager to
create a group, add users, remove users, and update individual users’ secrets, as well as the oracle to
deliver control messages to users, i.e. create-group, add-user, remove-user, update-user, deliver.
The first four oracles allow the adversary to instruct the group manager to initiate a new epoch, while
the deliver oracle advances group members to the next epoch in which they are a group member, if in
fact the message for that epoch is the one being delivered. The game forces the adversary to initially
create a group, and also enables users to be in epochs which are arbitrarily far apart.

Initialization. The init oracle sets up the game and all variables needed to keep track of its execution.
The game initially starts in epoch t = 0. Random bit b is used for real-or-random challenges, Γ stores
the group manager’s current state, and γ is a dictionary which keeps track of all of the users’ states.
The dictionary ep keeps track of which epoch each user is in currently (−1 if they are not in the group).
Dictionaries G and I record the group members in each epoch, and the group secret of each epoch,
respectively. Dictionary chall is used to ensure that the adversary cannot issue multiple challenges or
reveals per epoch. Additionally, K records any out-of-band random values that the group manager needs
to send to any of the group members for each epoch. Finally, M records all control messages that the
group manager associates with group members for each epoch; the adversary has read access to M , as
indicated by pub.

Operations. When the adversary calls any of the oracles to perform operations to define a new epoch t, the
resulting control messages for group members ID are stored in M with the key (t, ID). Additionally, any
associated out-of-band values for ID are stored in K with the key (t, ID). The oracle create-group causes
the group manager to create a group with members G = {ID1, . . . , IDn}, only if t = 0. Thereafter, the
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init():
06 b←$ {0, 1}
07 Γ ← Minit()
08 ∀ID : γ[ID]← Uinit(ID)
09 t← 0, ep[·]← −1
10 chall[·]← false
11 G[·], I[·],K[·]← ε
12 pub M [·]← ε

add-user(ID):
13 req t > 0 ∧ ID 6∈ G[t]
14 t+ +
15 (Γ ′, I, T, k)←

add(Γ, ID)
16 I[t]← I
17 G[t]← G[t− 1] ∪ {ID}
18 for every ID′ ∈ G[t]:
19 M [t, ID′]← T
20 K[t, ID]← k

update-user(ID):
21 req t > 0 ∧ ID ∈ G[t]
22 t+ +
23 (Γ ′, I, T, k)←

upd(Γ, ID)
24 I[t]← I
25 G[t]← G[t− 1]
26 for every ID′ ∈ G[t]:
27 M [t, ID′]← T
28 K[t, ID]← k

create-group(G):
29 req t = 0
30 t+ +
31 (Γ ′, I, T,K)←

create(Γ,G)
32 I[t]← I
33 G[t]← G
34 for every ID ∈ G[t]:
35 M [t, ID]← T
36 K[t, ID]← K[ID]

remove-user(ID):
37 req t > 0 ∧ ID ∈ G[t]
38 t+ +
39 (Γ ′, I, T )← rem(Γ, ID)
40 I[t]← I
41 G[t]← G[t− 1] \ {ID}
42 for every ID′ ∈ G[t− 1]:
43 M [t, ID′]← T

chall(t∗):
44 req I[t∗] 6= ε ∧ ¬chall[t∗]
45 I0 ← I[t∗]
46 I1 ←$ I
47 chall[t∗]← true
48 return Ib

deliver(td, ID):
49 req t ≥ td
50 (γ[ID], I)← proc(γ[ID],

M [td, ID], (K[td, ID]))
51 if (td = ep[ID] + 1 ∨

(ep[ID] = −1 ∧
added(td, ID))):

52 if removed(td, ID):
53 ep[ID]← −1
54 return
55 else if I 6= I[td]:
56 win
57 if added(td, ID):
58 ep[ID]← td
59 else:
60 ep[ID] + +

reveal(tr):
61 req I[tr] 6= ε ∧ ¬chall[tr]
62 chall[tr]← true
63 return I[tr]

corrupt(ID):
64 return γ[ID]

corrupt-oob(to, ID):
65 return K[to, ID]

Fig. 2. Oracles for the MKA security game user-mult for a scheme M = (Minit,Uinit, create, add, rem, upd, proc).
Functions added and removed are explained in the text.

group manager calls the group creation algorithm and produces the resulting control message and out-of-
band values for their respective users. In each of the oracles add-user, remove-user, and update-user,
the req statements checks that the call is proper (e.g., that an added ID was not already in the group);
exiting the call if not. Subsequently, the oracles call the corresponding MKA algorithms, and store the
resulting control messages (and possibly out-of-band values) in M (and K).

Delivering Control Messages and out-of-band values. The oracle deliver is called with the same argu-
ments (td, ID) that are used as keys for M and K. The associated control message (and possibly out-of-
band value) is retrieved from M (and K) and run through proc on the current state of ID. The security
game then checks that this is the next message for ID to process, i.e., either ID is in epoch td− 1, or was
added to the group in epoch td, as checked by the function: added(td, ID) := ID /∈ G[td − 1]∧ ID ∈ G[td].
If so, the game first checks if ID is removed from the group in epoch td, as checked by the function:
removed(td, ID) := ID ∈ G[td−1]∧ ID /∈ G[tD]. In this case, the game sets the epoch counter for ID to −1.
Otherwise, the game requires that the group secret I which is output by proc(γ[ID],M [td, ID], (K[td, ID]))
is the same as the secret output by the group manager for that epoch. If it is not, the instruction win
reveals the secret bit b to the attacker (this ensures correctness). Finally, the epoch counter for ID is
set to td. Note: although the security game only requires correctness for control messages that are even-
tually delivered in order, the adversary can choose to deliver them in arbitrary order, and users must
immediately handle them.

Challenges, corruptions, and deletions. In order to capture that group secrets must look random and
independent of those for other rounds, the attacker is allowed to issue a challenge chall(t∗) for any epoch
or use reveal(tr) to simply learn the group secret of an epoch.

We model forward secrecy and PCS by allowing the adversary to learn the current state of any
party by calling the corrupt oracle. Through such corruptions, the security game also prohibits the
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user-safe(q1, . . . ,qq):
66 for (i, j) s.t. qi = corrupt(ID) ∨ (qi = corrupt-oob(t, ID) ∧

added(t, ID)) for some t, ID and qj = chall(t∗) for some t∗:
67 if q2e(qi) < t∗ ∧ @l s.t. 0 < q2e(qi) < q2e(ql) ≤ t∗∧

((ql = update-user(ID) ∧ @m > l s.t.
qm = corrupt-oob(q2e(ql), ID)) ∨ ql = remove-user(ID)):

68 return 0
69 return 1

Fig. 3. The user-safe safety predicate determines if a sequence of calls (q1, . . . ,qq) allows the attacker to trivially
win the MKA game.

phenomenon called double joining : In the specification of a protocol, users may delete certain secrets
from their state, when they are deemed to be useless. However, a user could decide to act maliciously by
saving all of these old secrets. Double joining is the phenomenon in which a user has been removed from
the group in some epoch, but perhaps they have saved some secrets that allow them to still derive the
group secret for future epochs. In fact, since the group manager handles all operations, this is the only
way that users can act maliciously. The corrupt oracle on its own prohibits double joining because if the
adversary corrupts some user ID in epoch t and removes them in some later epoch t′ > t without calling
the update oracle before t′, the group secret for epoch t′ (and all later epochs for which ID is still not a
group member) should be indistinguishable from random. This should hold even though the adversary
can save all information ID can derive from their state at epoch t and control messages through time t′.

We also allow the adversary to corrupt out-of-band messages sent to a user in a given epoch by
querying the corrupt-oob oracle. Note that since we do not explicitly require the out-of-band channel
to be implemented in a particular way, the adversary can only corrupt individual messages. However, if
for example a PKI is used without PCS after corruptions to implement the out-of-band channel, then
the adversary in user-mult can simply repeatedly query the corrupt-oob oracle. Our modeling choice
abstracts out the corruption model of the out-of-band channel, allowing the adversary to decide the
consequences of corruption at a given time.

Avoiding trivial attacks. We prevent against trivial attacks by running the user-safe predicate at the
end of the game on the queries q1, . . . ,qq in order to determine if the execution had any such attacks.
The predicate checks for every challenge epoch t∗ if there is any ID ∈ G[t∗] that was corrupted in epoch
t < t∗; or who was added in epoch t < t∗ and whose corresponding out-of-band message for that add was
corrupted. If so, the predicate checks if the user was not removed by the group manager or did not have
her secrets updated by the group manager for an operation whose corresponding out-of-band message is
not later corrupted, after t and before or during t∗.

If this were true, then the attacker could trivially compute the group secret in the challenge epoch
t∗ by using the state of corrupted user ID, or her corrupted out-of-band message, in epoch t and the
broadcast control messages and/or future corrupted out-of-band messages. The predicate is depicted in
Figure 3, which uses the function q2e(q), that returns the epoch corresponding to query q. Specifically
if q = corrupt(ID), if ID is a member of the group when q is made, q2e(q) corresponds to ep[ID],
otherwise, q2e(q) returns ⊥.7 If q = corrupt-oob(t, ID), then q2e(q) = t. For q ∈ {update-user(ID),
remove-user(ID)}, q2e(q) is the epoch defined by the operation.

Observe that this predicate achieves optimal security for users. For forward secrecy, if an adversary
corrupts a user that is currently at epoch t, for every epoch 0 < t′ ≤ t, the group secret is indistinguishable
from random. For PCS, if the adversary corrupts a user that is currently at epoch t, or their out-of-
band channel at epoch t if they are added in epoch t, once the group manager updates their secrets
in some epoch t′ > t for which the corresponding out-of-band message is not corrupted (and does the
same for every other corrupted user), the group secret is indistinguishable from random. Additionally,
double-joins are prohibited, since once a user is removed from the group, even if their state is corrupted
before the removal, the group secret of all future epochs in which the user is not a group member are
indistinguishable from random.

7 Any expression containing ⊥ evaluates to false.
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Advantage. In the following, a (t, qc, nmax)-attacker is an attacker A that runs in time at most t, makes
at most qc challenge queries, and never produces a group with more than nmax members. The attacker
wins the MKA security game user-mult if he correctly guesses the random bit b in the end and the safety
predicate user-safe evaluates to true on the queries made by the attacker. The advantage of A against
MKA scheme M is: AdvM

user-mult(A) :=
∣∣Pr[A wins]− 1

2

∣∣ .
Definition 4 (MKA User Security). A MKA scheme M is (s, c, t1, t2, t

′, qc, nmax, ε)-secure in user-mult
against adaptive and partially active attackers, if for all (t′, qc, nmax)-attackers, AdvM

user-mult(A) ≤ ε, and
the complexity measures of the group managers and users are s, c, t1, t2, as defined in Section 4.2.

5 MKA Construction

Our MKA construction is similar to LKH [36, 38] described in the introduction, in which the group
manager stores for each epoch, the whole tree with the group secret at at the root, keys at all other
nodes, and n users at the leaves (with no extra leaves). We call this tree the MKA tree and it has O(n)
values in total for most commonly used trees. Observe that the group manager should be expected to
store Ω(n) amount of information, since she must minimally be aware of the group members. Users only
need to store in their state the secrets along their direct path, which we will show is size O(log(n)) for
most balanced trees.

5.1 MKA Trees

Below, we describe operations on MKA trees needed for our construction. In addition to modifying the
tree, for the purposes of our MKA construction, each operation also returns a skeleton (refer back to
Section 2 for a definition of skeleton and frontier). This skeleton consists of any new nodes added to the
tree, as well as any nodes in the original tree whose subtree (rooted at that node) has been modified
(i.e., a node has been removed from or added to it by the operation), and their edges to each other.
Every edge in the skeleton is labeled with a color green or blue with the requirement that for each node
v in the skeleton, at most one of its edges to its children can be colored green. When we specify the
cryptographic details of our MKA scheme, if an edge is blue, it means that the secret at the parent will
be encrypted under a key at the child, whereas if an edge is green, it means that the secret at the parent
will be generated using a dPRF computation on a key at the child.8 A tree has the following operations:

– Initialize. The τmka ← Init(`1, . . . , `n) operation initializes τmka with n leaves labeled by (`1, . . . , `n)
(which will be user IDs).

– Add. The Add(τmka, `) operation adds a leaf to the tree τmka labeled by ` (ID of added user).
– Remove. The Remove(τmka, `) operation removes the leaf from the tree τmka with label ` (ID of user

to be removed).

MKA Tree efficiency measures. We say a node in a MKA tree is utilized in a given epoch if it contains a se-
cret. We assume w.l.o.g., that every interior node of a MKA tree is utilized, since otherwise, a needless effi-
ciency decrease would result. We refer to a MKA tree τmka as a (stree(n,m), sskel(n,m), d(n,m),deg(τmka))-
tree if it has degree of nodes bounded by deg(τmka) and given that it contains at maximum m leaves
throughout its existence: with n utilized leaves in any configuration it has depth d(n,m), stree(n,m) total
nodes in the worst case and skeletons formed by Add or Remove operations with total number of nodes
sskel(n,m) in the worst case. In terms of our MKA scheme, m = nmax is the maximum number of users
in the group throughout the execution of the protocol and n = ncurr is the number of users in the group
at a given epoch. We will often refer to these measures without writing them explicitly as functions of m
and n. It will become clear in our construction below that measure stree upper bounds MKA efficiency
measure s and measure sskel upper bounds MKA efficiency measures c, t1, t2 as described in Section 4.2
for constant-degree trees.

See Appendix A for the implementation details and efficiency of three types of trees that can be used in
our MKA construction: LBBTs, 2-3 trees, and left-leaning red-black trees (LLRBTs) [33]. There we show
that LBBTs are (O(m), O(logm), O(logm), 2)-trees, 2-3 trees are (O(n), O(log n), O(log n), 3)-trees, and
LLRBTs are (O(n), O(log n), O(log n), 2)-trees. Figure 4 highlights this difference by demonstrating a
removal of a leaf node from each type of tree starting in the same configuration.

8 Where we use the standard PRF security of a dPRF dprf on the child’s key (see Appendix B).
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Fig. 4. The top part of the figure shows the deletion of a leaf from a LLRBT. As expected, black LLRBT nodes
are drawn with black outline, while red LLRBT nodes are drawn with red outline. Observe that the LLRBT
balances itself after the deletion, causing the rightmost leaf to have decreased depth from 3 to 2. The middle
shows the deletion of the same leaf from a 2-3 tree with the same configuration. Observe that the height of the
tree decreases from 3 to 2. The bottom shows the deletion of the same leaf from a LBBT starting with the same
configuration. In the case of the LBBT, the deleted leaf is just marked as removed, and the structure of the tree
does not change at all. We also show how the skeletons for the respective operations are constructed: skeleton
nodes are colored green and frontier nodes are colored blue. For clarity, we also color edges within the skeleton as
green, and edges from skeleton nodes to the frontier as blue to represent the corresponding dPRF computations
and encryptions, respectively, in our MKA schemes. One can further observe that although the height of the 2-3
tree shrinks, the number of ciphertexts from the operation (5) is greater than that of the LBBT and LLRBT
operations (3).

12



GUS-Minit):
70 τmka ← ⊥, t← 0

GUS-Uinit(ID):
71 ME← ID, PME ← ⊥, tME ← −1

GUS-create(G = (ID1, . . . , IDn)):
72 t+ +
73 (τmka, skeleton)← Init(τmka, G)
74 (I,K,CT, τmka)←

SecretGen(skeleton, τmka)
75 T ← (t, create,−1, skeleton,CT)
76 return (I, T,K)

GUS-add(ID):
77 t+ +
78 (τmka, skeleton)← Add(τmka, ID)
79 (I,K,CT, τmka)←

SecretGen(skeleton, τmka)
80 T ← (t, add, ID, skeleton,CT)
81 kID ← K[ID]
82 return (I, T, kID)

GUS-rem(ID):
83 t+ +
84 (τmka, skeleton)←

Remove(τmka, ID)
85 (I,K,CT, τmka)←

SecretGen(skeleton, τmka)
86 T ← (t, rem, ID, skeleton,CT)
87 return (I, T )

GUS-upd(ID):
88 t+ +
89 skeleton← SkelGen(τmka, ID)
90 (I,K,CT, τmka)← SecretGen(skeleton, τmka)
91 T ← (ID, skeleton,CT)
92 kID ← K[ID]
93 return (I, T, kID)

GUS-proc(T = (t, op, ID, skeleton,CT), (kID)):
94 if tME = t− 1 ∨ (tME = −1 ∧

op ∈ {create, add} ∧ ID ∈ {−1,ME}):
95 if op = rem ∧ ID = ME:
96 tME ← −1
97 else:
98 tME + +
99 (PME, I)← proc(T, (kID))
100 return I

proc(T = (t, op, ID, skeleton,CT)):
101 (kp, `v)← GetEntrySecret(PME, vME,CT,

skeleton)
102 (PME, I)← PathRegen(PME, `v, skeleton, kp,

CT)
103 return (PME, I)

proc(T = (t, op,ME, skeleton,CT), kME):
104 (PME, I)← PathRegen(PME,ME,

skeleton, kME,CT)
105 return (PME, I)

Fig. 5. Generic construction of multicast scheme GUS that achieves security in the user-mult security game.

5.2 GUS MKA protocol

We now describe the cryptographic details of an MKA scheme utilizing a generic tree structure that
achieves security with respect to the user-mult game. We denote the scheme GUS (for Generic User
Security). GUS makes (black-box) use of a dPRF dprf and an Updatable Symmetric Key Encryption
(USKE) scheme uske = (UEnc,UDec).

We use USKE in GUS to obtain forward secrecy: Essentially, each node v in the MKA tree τmka for
a given epoch t will store a key k which the manager can use to communicate to the users at the leaves
of the subtree rooted at v information needed to derive the group secret. If the operation for t causes
some information to be encrypted to some node key k, k must be refreshed (as in USKE): if k is not
refreshed, in epoch t+ 1, an adversary can corrupt any user storing k and break FS by regenerating the
group secret for epoch t.

GUS is depicted in Figure 5. Note that the group manager’s state only consists of the current epoch
t and the MKA tree for the current epoch t, which we denote as τmka. Each user ID stores the current
epoch which they are in, tME, as well as the secrets of their direct path in τmka at tME, which we denote
as PID, and refer to as their secret path.

GUS MKA Group Manager Operations. Here we define operations with generic trees for how the
group manager creates the group, adds and removes members, and updates key material for members.
In initialization, the group manager simply initializes her MKA tree to be empty, and her epoch t← 0.

Skeleton Secret Generation. We first describe a procedure to generate the secrets and any corresponding
ciphertexts for a skeleton. Refer to Figure 4 for a demonstration of the construction of the skeleton and
edge coloring for a leaf removal in a LBBT, 2-3 tree, and LLRBT which start in the same configuration.
The procedure (I,K,CT, τ ′mka)← SecretGen(skeleton, τmka) first initializes sets CT[·]← ⊥,K[·]← ⊥ then
recursively for each node v in skeleton starting with its leaves:
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1. If v is a leaf of skeleton or a node for whom all edges to its children are labeled blue in skeleton, the
procedure samples a random value ks and computes (kp||k′d,v||ke,v) ← dprf(ks, kd,v),

9 where kd,v is
the current dPRF key at v (if it exists, ⊥ otherwise), ke,v will be the new encryption key at v, k′d,v
will be the new dPRF key at v, and kp may be used for the parent of v. Then:
(a) The group manager writes (k′d,v, ke,v, `v) to node v of τmka, where `v is either a new value if v is

new, or its old value otherwise.
(b) Additionally, if v was a leaf node of τmka, the manager sets K[ID]← ks, for the label ID of v.

2. Otherwise, it uses the key ks (labeled as kp above) obtained from the child whose edge from v is
green and does the same.

3. For every child u of v that has a blue edge from v or is a utilized node in the frontier of skeleton,
it retrieves (kd,u, ke,u, `u) from node u, computes (k′e,u, c) ← UEnc(ke,u, ks), ct ← (c, `v, `u), sets
CT[u]← ct, and lastly writes (kd,u, k

′
e,u, `u) to node u.

4. If v is the root, it sets I ← dprf(kp,⊥).

Group Operations. To create a group G = (ID1, . . . , IDn), the manager first increments t then calls
(τ ′mka, skeleton)← Init(τmka, G), which initializes the tree with the IDs in G at its leaves in τmka and re-
turns the skeleton (which will be the whole tree). Then they call (I,K,CT, τ ′′mka)← SecretGen(skeleton, τ ′mka)
to generate secrets and ciphertexts for skeleton, set T ← (t, create, −1, skeleton, CT) and return (I, T,K).

To add a user ID to the group, the manager first increments t then calls (τ ′mka, skeleton)← Add(τmka, ID),
which adds a leaf for ID to τmka. Then they call (I,K,CT, τ ′′mka)← SecretGen(skeleton, τ ′mka) to generate
new secrets and ciphertexts for skeleton, set T ← (t, add, ID, skeleton,CT) and oob value kID ← K[ID],
and return (I, T, kID).

To remove a group member ID from the group, the group manager increments t then calls (τ ′mka, skeleton)←
Remove(τmka, ID), which removes the leaf for ID from τmka. Then they call (I,K,CT, τ ′′mka)← SecretGen(
skeleton, τ ′mka) to generate new secrets and ciphertexts for skeleton, set T ← (t, rem, ID, skeleton,CT), and
return (I, T ).

To update the secrets of a group member ID, the group manager first increments t, then, in the
procedure skeleton ← SkelGen(τmka, ID), forms the skeleton skeleton, consisting of the nodes on the
direct path of vID (the leaf occupied by ID) and its frontier being the copath of vID. They do so by
traversing the direct path of vID, and for each node v besides vID, they color the edge to the child of
v on the direct path as green. Then they call (I,K,CT, τ ′mka) ← SecretGen(skeleton, τmka) to generate
new secrets and ciphertexts for skeleton, set control message T ← (t, up, ID, skeleton,CT) and out-of-band
value kID ← K[ID], and return (I, T, kID).10

GUS MKA User Operations. Here we define operations for how group members process changes that
the group manager makes to the group, in an effort to recover the group secret. In initialization, users
simply set ME← ID for input ID ID, PME ← ⊥, and tME ← −1.

Path regeneration. When processing operations, users will have to regenerate secret pairs in PID. The
procedure (PID, I)← PathRegen(PID, `w, skeleton, ks,CT):

1. First finds w corresponding to the label `w in skeleton and then traverses the direct path of w in
skeleton to the root vr, while at each node u:
(a) Computes (kp||k′d,u||ke,u) ← dprf(ks, kd,u), where kd,u is the current encryption key at u (if it

exists, ⊥ otherwise) and writes (k′d,u, ke,u, `u) to u in PID.
(b) Then, if the edge in skeleton from u to its parent v is blue, the procedure:

i. Retrieves CT[u] = (c, `v, `u) then computes (k′p, k
′
e,u) ← UDec(ke,u, c), and writes (k′d,u,

k′e,u, `u) to u.
ii. In this case, k′p is used at v, i.e. ks ← k′p.

(c) Otherwise, kp is used at v, i.e. ks ← kp.
2. Lastly, it returns I ← dprf(kp,⊥), where kp was generated at the root vr.

9 We only need to use a dPRF at leaves of the MKA tree for updates in which the corresponding oob message
is corrupted (we could use a PRG elsewhere), but we use one at all nodes, for all operations, for simplicity.

10 Note: we do not actually have to include the skeleton, since the tree does not actually change after updates,
but we do for ease of exposition. It should not affect the complexity of the scheme since its size should be
proportional to that of CT.
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Processing Control Messages. A user processing a control message T = (t, op, ID, skeleton,CT) first checks
that either 1. tME = t−1; or 2. tME = −1∧op ∈ {create, add}∧ID ∈ {−1,ME}. If not, they stop processing.
Otherwise, they first check if op = rem ∧ ID = ME; if so, they set tME ← −1 and stop processing.

Otherwise, they increment tME. Then if ID ∈ {−1,ME}, that user needs to completely refresh
their secret path PME as a result of processing the operation from which T was generated. Using
the dPRF key kME (sent via an out-of-band channel) for the leaf vME, the user computes (PME, I) ←
PathRegen(PME,ME, skeleton, kME,CT) and returns I.

Otherwise, if ID 6∈ {ME,−1}, she needs only change part of her secret path PME as a result of
processing the operation on ID from which T was generated. She:

1. First finds the node u that is on the direct path of her corresponding leaf vME and is in the frontier
of skeleton.

2. Then retrieves the ciphertext (c, `v, `u)← CT[u].
3. Next, retrieves (kd,u, ke,u, `u) from u and computes

(kp, k
′
e,u) ← UDec(ke,u, c) to obtain the dPRF key kp used at the parent v of u, then writes

(kd,u, k
′
e,u, `u) to u.

We call this operation (kp, `v)← GetEntrySecret(PME, vME,CT, skeleton). They then compute (PME, I)←
PathRegen(PME, `v, skeleton, kp,CT) and return I.

5.3 Security of GUS MKA protocol

Theorem 2 (security of GUS). Let Q be the number of queries an adversary makes to the oracles of
the user-mult game. Assume dprf is a (tdprf , εdprf)-secure pseudorandom generator, uske is a (tcpa∗, εcpa∗)-
CPA*-secure USKE scheme, and τmka is a (stree, sskel, d,deg(τmka))-tree. Then, GUS is a (stree,deg(τmka) ·
sskel,deg(τmka) · sskel, sskel, t, qc, nmax, ε)-secure MKA protocol with respect to the user-mult security game
for ε ∈ {εS, εRO}, where t ≈ tdprf ≈ tcpa∗. In the standard model, εS = qc(Q · εdprf + 2εcpa∗ · deg(τmka)) ·
(2 deg(τmka))d ·Q(deg(τmka)·d+1). In the random oracle model, εRO = qc(εcpa∗ · 2(stree ·Q)2 + negl).

The proof of Theorem 2 is provided in Appendix C.

Corollary 1.

1. If the tree used in the GUS protocol is a LBBT, then GUS is a (O(nmax), O(log nmax), O(log nmax),
O(log nmax), t, qc, nmax, ε)-secure MKA protocol, where εS = O(qcn

2
max ·Q2 log(nmax)+1 ·(Qεdprf +εcpa∗))

and εRO = O(qcεcpa∗ · (nmaxQ)2).
2. If the tree used in the GUS protocol is a 2-3 tree or LLRBT, then GUS is a (O(ncurr), O(log ncurr),

O(log ncurr), O(log ncurr), t, qc, nmax, ε)-secure MKA protocol, where εS = O(qcn
3
curr · Q2 log(ncurr)+1 ·

(Qεdprf + εcpa∗)) and εRO = O(qcεcpa∗ · (nmaxQ)2).

Proof. In Appendix A, we show that LBBTs are (nmax, log nmax, log nmax, 2)-trees, 2-3 trees are (ncurr,
log ncurr, log ncurr, 3)-trees and LLRBTs are (ncurr, log ncurr, log ncurr, 2)-trees. The results follow easily
from this. ut

5.4 Comparison of Trees in GUS

Here we compare the performance of GUS using LBBTs, 2-3 trees, and restricted LLRBTs empirically
(see Appendix A for the details of these trees; we use restricted instead of normal LLRBTs simply
because they give empirically slightly better performance).11 We simulate GUS with the different trees
on a randomized sequence of Add/Remove/Update operations, starting from a certain initial group
size. The measure we adopt is the number of encryptions per operation, which encapsulates the goal of
reducing communication for bandwidth-constrained devices.

Following [3] in the TreeKEM context, the scales of the simulations we conduct are represented by
tree sizes 23, 24, . . . , 214; for simulation with tree size 2i, the initial group size is 2i−1, and the number of
operations is 10 ·2i, where each operation is sampled to be an Add/Remove/Update operation with ratio
1:1:8 (and the user to be removed/updated is chosen uniformly at random from current group members),
as one expects updates to be more frequent.

11 See https://github.com/abienstock/Multicast-Key-Agreement for the code.
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Fig. 6. Top Left: number of encryptions per operation of GUS using different trees in simulations with different
initial tree sizes. Top Right: same as top left, except that at the beginning of simulations a random choice of
99% of the users are removed. Bottom: number of encryptions per operation of GUS using different trees in
simulations with initial tree size 214 and different probabilities of Remove operations. The bands illustrate one
standard deviation under 8 independently repeated experiments.

As shown in the graph at the top left of Figure 6, although 2-3 trees have better worst-case complexity
O(log ncurr) than the complexity O(log nmax) of LBBTs, they empirically suffer, likely from the large
overhead introduced by degree-3 nodes. Moreover, although restricted LLRBTs are isomorphic to 2-3
trees, they lead to dramatically improved efficiency in terms of number of encryptions, outperforming
both 2-3 trees and LBBTs in a stable manner, likely due to improved asymptotic complexity and also
retention of degree-2 nodes.

To see the difference between worst-case O(log ncurr) and (log nmax) complexity, we repeated the
simulations, but this time before performing the operations with 1:1:8 ratio, we first remove a random
choice of 99% of the users from the group (and consequently the number of operations becomes 0.1 · 2i).
Removing a large number of users can happen in practice, e.g., after a popular event or livestream has
concluded. As shown in the graph at the top right of Figure 6, this time both 2-3 trees and LLRBTs,
which have worst-case complexity O(log ncurr), have better performance in accordance with the decrease
of the group size, while the performance of LBBTs, which have worst-case complexity O(log nmax), does
not improve even once the group becomes 99% smaller.

To provide more evidence that O(log ncurr) instead of O(log nmax) complexity makes a difference,
we conduct additional simulations with initial tree size 214 while increasing the probability of Remove
operations from the previous 10% to as large as 12.5% (and decreasing the probability of Add operations
so that the 80% probability of Update operations remains). Thus, in these experiments the group size
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has a decreasing trend during the execution of the operations.12 As can be observed in the graph at the
bottom of Figure 6, both 2-3 trees and LLRBTs (complexity O(log ncurr)) benefit from the decreasing
trend of group size, while LBBTs (complexity O(log nmax)) hardly benefit. Besides, the variance when
using LBBTs is dramatically larger than 2-3 trees and LLRBTs, which verifies that the performance of
LBBTs is highly sensitive to the actual choices of removed users and cannot directly benefit from the
decreasing trend of group size. Moreover, the performance of LLRBTs is stable and is better than that
of LBBTs by roughly at least twice the huge standard deviation, which further verifies that LLRBTs
outperform LBBTs in a stable manner.

6 Adding Security for Group Manager Corruptions

In this section, we introduce a security definition that requires both security with respect to user corrup-
tions, and FS and eventual PCS for group manager corruptions: If the secret state of the group manager
is leaked at some point, all previous group secrets remain hidden from the attacker. Furthermore, once
every user has their secrets updated by the group manager or is removed from the group after her
corruption, all future group secrets remain hidden.

Before we formally define this security, we observe that our GUS construction indeed already achieves
it – the MKA tree only stores unused USKE keys and thus the adversary learns nothing about old
group secrets from corrupting the group manager (eventual PCS also trivially follows). However, the
group manager has large local storage in GUS (the whole MKA tree), which is undesirable. Therefore,
in Section 8 we slightly modify our GUS construction to create our GMS (Generic Manager Security)
construction, which has the above security, but O(1) local storage and O(n) remote storage for the group
manager. We show how the group manager can use Forward Secret Encrypted RAM [10] (FS eRAM)
in the GUS MKA scheme to achieve this. Intuitively, FS eRAM allows a client to securely outsource
data storage to some remote server such that if the client’s secret storage is leaked, in addition to the
outsourced (encrypted) data, then all previously overwritten data remains secure. Canonical FS eRAM
schemes allow for O(1) local storage, O(n) remote storage, and only introduce O(log n) overhead for
Read() and Write() operations. Thus, GMS simply uses FS eRAM to outsource storage of the MKA
tree, and does everything else as in GUS, so that corruptions of the group manager are forward secret
(and eventual PCS trivially follows). Therefore, group manager local storage is O(1), group manager
remote storage is O(n), computational complexity of the group manager becomes O(log2 n),13 and all
other efficiency measures from GUS stay the same (namely O(log n) communication).

Although eventual PCS as defined in the security definition may be less than ideal, it allows us to
use only symmetric-key encryption for control messages. We in fact show in Section 7 that public-key
encryption is necessary for optimal PCS, i.e., security after one operation following a group manager
corruption. Then, we show that achieving optimal PCS (and all the other properties described above)
with public-key encryption is easy: In our construction, we simply replace USKE with UPKE (and the
group manager only remotely stores the public keys at the tree nodes; with no local storage).

6.1 Group Manager State Separation and Efficiency Measures

For such added properties, we separate the state MKA group manager state Γ into two components: the
secret (local) state, Γsec, which the attacker can only read upon state corruption of the group manager,
and public (remote) state Γpub, for which the attacker always has read access. We will use s1(ncurr, nmax)
to refer to the worst-case Γsec space complexity in a group with ncurr users currently and nmax maxi-
mum users across all epochs of the protocol execution. We will also use s2(ncurr, nmax) to refer to the
corresponding worst-case Γpub space complexity.

6.2 MKA Security with Group Manager FS and Eventual PCS

To obtain security with respect to group manager corruptions, in addition to the security captured by
user-mult, we create a new security game mgr-mult, in which we add to the user-mult game an additional

12 Note that 12.5% is the threshold such that the group size does not approach zero in expectation, as the
number of operations 10 · 2i is 20 times more than the initial group size 2i−1 and thus the difference between
the probabilities of Remove and Add operations needs to be less than 1/20 = 5%.

13 In Section 8, we also show how to retain GUS’s O(logn) computational complexity.
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oracle mgr-corrupt, which simply returns the secret state of the group manager to the adversary.
Observe that there are now more trivial attacks which the adversary can use to win mgr-mult (e.g.,
corrupting the group manager and then challenging before every user has been updated or removed from
the group). We therefore check a new mgr-safe predicate at the end of the game on the queries q1, . . . ,qq
in order to determine if the execution had any trivial attacks. In addition to that which user-safe checks
for, mgr-safe also checks for every challenge epoch t∗ if the group manager was corrupted in some epoch
t < t∗, and there was any ID ∈ G[t] that did not have its secrets updated by the group manager (in an
operation for which the oob to ID is not corrupted), and was not removed by the group manager, after
the corruption, but before t∗.

mgr-corrupt():
106 return Γsec

mgr-safe(q1, . . . ,qq):
107 for (i, j) s.t. qi = mgr-corrupt(), qj = chall(t∗) for some t∗:
108 if q2e(qi) < t∗ and ∃ID ∈ G[q2e(qi)] s.t. @l s.t.

0 < q2e(qi) < q2e(ql) ≤ t∗∧ ((ql = update-user(ID) ∧
@m s.t. qm = corrupt-oob(q2e(ql), ID)) ∨
ql = remove-user(ID)):

109 return 0
110 return user-safe(q1, . . . ,qq)

Fig. 7. Oracle and mgr-safe safety predicate introduced in the MKA security game mgr-mult for a scheme
M = (Minit,Uinit, create, add, upd, proc) to capture forward secrecy and eventual PCS for the group manager, as
well as prevent trivial attacks.

Figure 7 denotes both of these changes. The predicate mgr-safe uses q2e() to additionally return the
epoch corresponding to a query to q = mgr-corrupt(). In this case, q2e(q) corresponds to the epoch t
that the group manager is in when the query is made (i.e., the epoch defined by the most recent group
manager operation create-group,add-user, remove-user,update-user).

Advantage. A (t, qc, nmax)-attacker A and AdvM
mgr-mult(A) are defined in the same manner as in Section 4.3.

Definition 5 (MKA Security with Group Manager FS and Eventual PCS). A MKA scheme
M is (s1, s2, c, t1, t2, t

′, qc, nmax, ε)-secure in mgr-mult against adaptive, partially active attackers, if for
all (t′, qc, nmax)-attackers, AdvM

mgr-mult-na(A) ≤ ε, and the efficiency measures of the group manager and
users are s1, s2, c, t1, t2 as defined in Sections 4.2 and 6.1.

7 Necessity of Public Key Cryptography for Optimal PCS of Group
Manager Corruptions

In our mgr-mult security definition of Section 6, we only provide eventual PCS for group manager
corruptions. We do so to allow the group manager to continue to use symmetric-key encryption for control
messages. Indeed, in this section, we informally show that to obtain optimal PCS for group manager
corruptions, i.e., security following a single operation after such a corruption, public-key encryption
(PKE) is necessary. Moreover, we suggest a simple modification to GMS (of Section 8) to achieve optimal
PCS by using UPKE instead of USKE.

Lemma 1 (Informal). If optimal PCS is obtained for group manager corruptions in an MKA scheme,
then a two-party key agreement protocol (and thus PKE) can be constructed from the algorithms of the
manager.

We first informally define a two-party key agreement:

Two-party key agreement (informal). A two-party key agreement between two parties, Alice and Bob, is a
protocol in which Alice and Bob share no secret randomness upon initialization, but upon sampling secrets
and communicating publicly with one another, they are able to agree on a shared secret. Moreover, any
adversary, Eve, who can see their public communication only has negligible advantage in distinguishing
the shared secret from random.

18



Proof (sketch). Assume that the size of the group of the MKA scheme is two. Refer to these two members
as A and B. From the group manager, M, A, and B, we will construct key exchange algorithms C and
D:

1. C creates a group with A and B, then sends the entire group manager state Γ to D.
2. D, upon reception of Γ , runs the update algorithm of M for A to obtain group secret I and control

message T , which it sends to C.
3. Finally, C processes T using B’s secret state to obtain I.

By correctness of the protocol M, the secret I which C and D obtain is in fact the same. Moreover, if
optimal PCS with respect to group manager corruptions is achieved by the MKA scheme, then even
though the adversary sees Γ (and T ), no attacker A has a non-negligible advantage of distinguishing I
from random. ut

To augment our GMS scheme (of Section 8) to additionally achieve optimal PCS for group manager
corruptions (in addition to FS for group manager corruptions and optimal security with respect to user
corruptions as presented in mgr-mult), we simply replace the USKE keys at each MKA tree node with
UPKE key pairs as in [1]. The group manager then only stores the public keys of the tree nodes remotely
and for each operation encrypts new secrets for the tree to the corresponding public keys as in GMS.
This augmented scheme achieves the same asymptotic efficiency measures as GMS.

8 GMS MKA protocol

In this section, we give the formal details for our MKA construction GMS, secure with respect to the
mgr-mult security game defined in Section 6, and with small group manager local storage. We start by
formally defining FS eRAM and providing a secure and efficient scheme for it.

8.1 Forward Secret Encrypted RAM Definition

We formally define the syntax and security game for Forward Secret encrypted RAM, which one can use
to securely store and retrieve outsourced data from a remote server in a forward secret manner.

Forward Secret encrypted RAM Syntax. The syntax allows a user to initialize, read, and write to
the FS eRAM using a master key MK.

Definition 6 (Forward Secret Encrypted RAM). A Forward Secret encrypted RAM scheme eram =
(eram-init, eram-read, eram-write) consists of the following algorithms:

– (M,MK)← eram-init(1λ), which initializes the public RAM cells M and generates a master key MK.
– (M′,MK′, d)← eram-read(M,MK, i), which returns data d of virtual cell i.
– (M′,MK′)← eram-write(M,MK, d, i), which replaces the contents of virtual cell i with data d.

It can be the case that d = ⊥ for deletion when eram-write(M,MK, d, i) is used. For simplicity, we will
often use eram-read(M,MK, i) and eram-write(M,MK, d, i) in a manner that implicitly changes M and
MK.

Forward Secret encrypted RAM Efficiency Measures. We provide three measures of efficiency
for forward secret encrypted RAMs. All three measures will be in terms of ncurr, the number of virtual
cells which the user has written data other than ⊥ to at a given point in time, and nmax, the maximum
number of such cells at any point in the protocol execution. The first is worst case space complexity of
MK, which we refer to as s1(ncurr, nmax). The second, s2(ncurr, nmax), is the worst case space complexity
of M, i.e. the total number of cells in M that do not contain ⊥. The third, t(ncurr, nmax), is the worst case
time complexity of eram-read and eram-write operations. We will often refer to these measures without
writing them explicitly as functions of ncurr and nmax.
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Forward Secret encrypted RAM Correctness. An FS eRAM scheme is correct if for any sequence
of operations:

Pr[(·, ·, d∗)← eram-read(M,MK, i) : d∗ = d] = 1,

for any execution of eram-read(M,MK, i) in the sequence after an execution of eram-write(M,MK, d, i),
with d 6= ⊥ and before a subsequent execution of eram-write(M,MK, d′, i), for some data d′, in the
sequence where the probability is over the random coin tosses of the protocol.

Forward Secret encrypted RAM Security. We define security with respect to the following game
between a challenger and an adversary. We emphasize that the adversary has read-access to all of M
(which is usually encrypted) on which the FS eRAM operates.

The challenger initially chooses b ∈ {0, 1} uniformly and runs (M,MK) ← eram-init(1λ). Then, the
adversary has access to the following oracles:

– write(d, i), which computes eram-write(M,MK, d, i).
– corrupt(), which simply returns MK.
– chall(d0, d1, i), which computes eram-write(M,MK, db, i) with the requirement that d0 6= ⊥, d1 6= ⊥.

An adversary is not allowed to call corrupt() after a call to chall(d0, d1, i), without first using write(d, i)
to overwrite the i-th virtual cell with some other data d, since otherwise they would trivially win. Observe
that w.l.o.g. there is no read oracle since the adversary already knows the data in cells which they filled
using write(), and should not know the data in cells filled via chall(). Further observe that this definition
provides forward secrecy, since upon a corruption, any data previously written to any virtual cell should
be hidden.

Advantage. In the following, a (t′, nmax)-attacker is an attacker A that runs in time at most t′ and
never fills more than nmax virtual cells with data (not equal to ⊥). The attacker wins the forward secret
encrypted RAM security game if she correctly guesses the random bit b in the end. The advantage of A
against a forward secret encrypted RAM scheme eram is defined by

Adveram
enc-ram(A) := |Pr[A → 1|b = 1]− Pr[A → 0|b = 1]|

Definition 7 (Forward secret encrypted RAM security). A forward secret encrypted RAM pro-
tocol R is (s1, s2, t, t

′, nmax, ε)-secure, where s1, s2, t are the efficiency measures discussed above, if for
all (t′, nmax)-attackers,

AdvR
enc-ram(A) ≤ ε.

8.2 FS eRAM Construction tRAM

We now formally construct a dynamic forward secret encrypted RAM scheme tRAM utilizing the following
cryptographic primitives: a pseudorandom generator prg, and a CPA-secure symmetric key encryption
scheme Π = (Gen,Enc,Dec).

We use the same high-level idea as in the folklore constructions [10, 28, 30, 31, 4, 32, 16, 19, 11],
wherein the public RAM cells M are arranged in a generic encryption tree τeram. Each of the interior
nodes in M will hold an (encrypted) symmetric key which encrypts the keys (or data) of its two children,
and is encrypted by its parent, so that the contents of all of the cells in M are ciphertexts encrypting
their associated data.14 The master key MK allows the protocol to decrypt the key at the root r of τeram.
Figure 8 shows an example configuration of tRAM for ncurr = 4.

The same Init, Add, and Remove operations as those defined in section 5.1 for MKA trees are also
used for τeram, with the following modifications:

– they use a one-to-one correspondence of node labels with RAM cell identifiers, so that a node with
label i is stored in cell i,

– Add and Remove operations return not only a new skeleton skeleton, as before, but also an old
skeleton skeleton′ defined below, and

14 We assume the forward secret encrypted RAM scheme can arrange these cells in accordance with the generic
tree operations using unencrypted pointers, for example.
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M
Enc(MK, kr)

Enc(kr, k0)

Enc(k0, d00) Enc(k0, d01)

Enc(kr, k1)

Enc(k1, d10) Enc(k1, d11)

Fig. 8. An example of our forward secret encrypted RAM construction with four virtual cells. The four leaf cells
of τeram hold the (encrypted) user data and the interior cells hold keys encrypted by the keys at their parents in
M. Using MK, the protocol can decrypt down to the leaves to access the data.

– for Add operations, the color of the edge in skeleton from the added leaf to its parent is always blue.

The skeleton skeleton′ consists of the old nodes in τeram before the operation that had edges to nodes in
the frontier of skeleton, along with all of their ancestors, up to the root, and all edges between nodes.
For the Init operation, skeleton′ = skeleton. The existence of skeleton′ will allow the scheme to find and
decrypt the keys of the frontier of skeleton in τeram, before encrypting them under the new keys of their
parents. We note that all tree operations above are performed on the public cells M of the encrypted
RAM.

Encryption Tree efficiency measures. To provide full flexibility for generic encryption trees, we allow the
symbol ε to be written to nodes of τeram by the construction to indicate empty nodes that are not deleted
from the tree, but do not hold any data.15 We say a node in an encryption tree is utilized if it holds
data d 6∈ {⊥, ε}. We assume w.l.o.g., that every interior node of a MKA tree is utilized, since otherwise,
a needless efficiency decrease would result.

Encryption trees have very similar efficiency measures to those of MKA trees, where here m is the
maximum number of leaves used throughout an encryption tree’s existence (with data other than ⊥) and
n refers to the number of utilized leaves in the tree, in any configuration, at a given time. Thus stree(n,m)
refers to the total number of nodes in the worst case with n utilized leaves in any configuration, and
sskel(m,n) refers to the total number of nodes in skeleton formed by Add and Remove operations, in
the worst case. We also add measure s′skel(n,m), which refers to the total number of nodes in skeleton′

formed by Add and Remove operations, in the worst case. Observe that s′skel(n,m) ≈ sskel(n,m) for
many commonly used trees, including LBBTs, 2-3 trees, and LLRBTs. With these measures, we define
(stree, sskel, s

′
skel,deg(τeram))-trees, where deg(τeram) is a bound on the degree of nodes in τeram, and as

usual, we do not explicitly write the measures as functions of m and n. In terms of our encrypted RAM
scheme, m = nmax is the maximum number of virtual cells that are used to store data d 6= ⊥ throughout
the execution of the scheme and n = ncurr is the number of utilized virtual cells at a given point in time.

Construction Specifications. In the specification, we will use the notation ctv to refer to the ciphertext
stored in M at the node v of τeram. The details of the scheme are as follows:

– (M,MK)← eram-init(1λ) initializes the public cells M with ⊥, and MK← ⊥.
– d← eram-read(M,MK, i) fetches the direct path of cell i from the server and performs the following:

1. kr ← Dec(MK, ctr), where r is the root of τeram (if τeram is a single node, then actually d = kr
and we return d).

2. Then recursively, kv ← Dec(kw, ctv) at the nodes v along the direct path of i, using kw at parent
w of v, until the key kp for the parent p of cell i is obtained. If ctv = ⊥ at any point, return ⊥.

3. Returns d← Dec(kp, cti).

– eram-write(M,MK, d, i) performs the following:

15 For example, a leaf node marked as removed in an encryption tree using a LBBT structure will hold data ε.
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1. If d = ⊥, executes (τeram, skeleton, skeleton′)←
Remove(τeram, i).

2. Otherwise, if i is not already in τeram:

• (τeram, skeleton, skeleton′)← Init(τeram, i), if not done before.
• Otherwise, it adds i to τeram: (τeram, skeleton, skeleton′)← Add(τeram, i)

3. Otherwise, it builds skeleton = skeleton′ itself, namely the skeleton consisting of the direct path
of the cell i, where its frontier is the copath of i, and each edge within the skeleton is colored
green (except blue to i).

4. Then it fetches skeleton and skeleton′ from the server and computes skeleton-modify(τeram, skeleton,
skeleton′, d, i).

– skeleton-modify(τeram, skeleton, skeleton′, d, i) sets D[·]← ⊥, D[i]← d, then:

1. If the corresponding eram-write() operation did not initialize τeram, decrypts the keys of nodes v
on the frontier of the skeletons by executing:

• kr ← Dec(MK, ctr), where r is the root of τeram.
• Then recursively D[v] ← Dec(kw, ctv) at the the nodes v in skeleton′ and its frontier using
kw at the parent w of v, until the pre-existent data dj , j ∈ deg[p], of cell i and its siblings
are obtained. If ctv = ⊥ for any v, set D[v]← ⊥.

2. Then recursively for each node v in skeleton (sans the new leaf in cell i):

• If v is a leaf node of the skeleton, or for whom all edges to its children are labeled blue, the
procedure samples a random seed s and computes prg(s) = (s′||kv), where s′ may be used by
its parent to generate its key, and sets D[v]← kv.
• Otherwise, it uses the seed s obtained from the child whose edge from v is green and does

the same.
• For every child u of v, it writes Enc(kv, D[u]) to node u in M.

3. The new seed s′ that is generated at the root r of τeram is again used to generate a new master
key MK← prg(s′) (if τeram is a single node, we just sample s′ uniformly at random).

4. Finally, Enc(MK, kr) is written to the root in M.

For the purposes of Theorem 3 below, the skeleton associated with computation eram-read(M,MK, i)
contains those nodes on the direct path of cell i.

Security of tRAM Protocol.

Theorem 3 (Security of tRAM). Assume that prg is a (tprg, εprg)-secure pseudorandom generator, Π
is a (tcpa, εcpa)-CPA-secure symmetric-key encryption scheme, and τeram is a (stree, sskel, s

′
skel,deg(τeram))-

tree. Then, tRAM is a (O(1), stree, (sskel + s′skel) · deg(τeram), t, nmax, ε)-secure forward secret encrypted
RAM protocol for ε = qstree(nmax, nmax)(εprg + εcpa), where q is the number of times write() or chall()
is queried by A and t ≈ tprg ≈ tcpa.

The proof of Theorem 3 is provided in Appendix D.

Corollary 2.

1. For LBBT τeram, tRAM is a (O(1), O(nmax), O(log nmax), t, nmax, ε)-secure forward secret encrypted
RAM protocol, where ε = O(qnmax(εprg + εcpa)).

2. For 2-3 tree or LLRBT τeram, tRAM is a (O(1), O(ncurr), O(log ncurr), t, nmax, ε)-secure forward secret
encrypted RAM protocol, where ε = O(qnmax(εprg + εcpa)).

Proof. In Appendix A, we show that LBBTs are (nmax, log nmax, 2)-trees, 2-3 trees are (ncurr, log ncurr, 3)-
trees, and LLRBTs are (ncurr, log ncurr, 2)-trees. It is also easy to show that they are indeed (nmax,
log nmax, log nmax, 2)-, (ncurr, log ncurr, log ncurr, 3), and (ncurr, log ncurr, log ncurr, 3)-trees, respectively. The
results follow easily from this. ut
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8.3 GMS Construction

In this section, we discuss how to compose our GUS MKA protocol, secure with respect to the user-mult
game, with FS eRAM to obtain a new MKA scheme, GMS, secure with respect to the mgr-mult security
game. Such a composition results in Γsec = MK, Γpub = M for GMS, where MK is the master key and M
is the public cells of the FS eRAM scheme.

In GMS, the virtual cells of the FS eRAM scheme that the group manager interacts with contain the
nodes of τmka. Now, when retrieving and writing values at a node v of τmka in GUS, the group manager
executes d ← eram-read(M,MK, v), eram-write(M,MK, d, v), respectively, in GMS. Observe that this
change does not affect the view of the users and so they do not have to change their behavior at all.
However, one must also observe that the computational complexity of all operations is increased, as the
eram-read(), eram-write() encrypted RAM operations to access and write data to the RAM have their own
non-negligible computational complexity. In the case of LBBTs, 2-3 trees, and LLRBTs, if we use our
tRAM encrypted RAM scheme, computational complexity of add, update, and remove operations become
O(log2 n), where n is nmax for LBBTs, or ncurr for the latter two. On the other hand, communication
complexity of O(log nmax) or O(log ncurr) is preserved.

Remark 1. One can optimize the above composition of GUS and tRAM by overlaying the two trees
used in the constructions as done in [10]. Doing so will recover O(log n) computational complexity of
add, rem, upd MKA operations, instead of O(log2 n), where n = nmax or ncurr, depending on what type
of tree is used. Additionally, security and all other efficiency measures are preserved. We conjecture the
security proof to be almost identical to that of Appendix E.

Composition Theorem. We will argue that our composed protocol GMS is secure with respect to the
mgr-mult game. Intuitively, from the perspective of users, nothing changes since their state is identical
to that which it would have been in GUS, so corrupting them gives no more advantage than it did in the
user-mult game. In terms of forward secrecy of the group manager, both the encrypted RAM protocol
and GUS are forward secure, so no old data can be accessed upon corruption. Finally, in terms of eventual
PCS for the group manager, once the group manager removes or updates all of the users that were in
the group at the time of the corruption, the adversary no longer possesses any keys that can help her
derive the group secret; every cell in Γpub has changed.

Theorem 4 (security of GMS). Let Q be the number of queries an adversary makes to the ora-
cles of the mgr-mult game. Assume dprf is a (tdprf , εdprf)-secure dPRF, uske is a (tcpa∗, εcpa∗)-CPA*-
secure USKE scheme, eram is a (seram

1 , seram
2 , teram

1 , teram
2 ,meram

max , εeram)-secure forward secret encrypted
RAM scheme, and τmka is a (stree(n,m), sskel,deg(τmka))-tree. Then GMS is a (seram

1 (stree(ncurr, nmax),
stree(nmax, nmax)), s

eram
2 (stree(ncurr, nmax), stree(nmax, nmax)),deg(τmka) · sskel,

deg(τmka) ·sskel · teram
1 , sskel, t, qc, nmax, ε)-secure MKA scheme with respect to the mgr-mult security game,

for ε ∈ {εS, εRO}, where t ≈ tdprf ≈ tcpa∗. In the standard model, εS = (εeram +Q ·εdprf +2εcpa∗ ·deg(τmka)) ·
(2 deg(τmka))d+1 ·Q(deg(τmka)·d+2). In the random oracle model, εRO = (εeram +εcpa∗) ·2 ·deg(τmka) · ((stree +
1) ·Q)2 + negl.

The proof of Theorem 4 is provided in Appendix E.

Corollary 3.

1. If we use our GUS MKA protocol and our forward secret encrypted RAM protocol tRAM, both with
LBBTs, then GMS is a (O(1), O(nmax), O(log nmax), O(log2 nmax), O(log nmax), t, qc, nmax, ε)-secure
MKA protocol with respect to mgr-mult, where ε = O(qcn

2
max ·Q2 log(nmax)+2 · (εtRAM +Qεdprf + εcpa∗))

in the standard model and ε = O(qc(εtRAM + εcpa∗) · (nmax ·Q)2) in the random oracle model.
2. If we use our GUS MKA protocol and our forward secret encrypted RAM protocol tRAM, both with

2-3 trees or LLRBTs, then GMS is a (O(1), O(ncurr), O(log ncurr), O(log2 ncurr),
O(log ncurr), t, qc, nmax, ε)-secure MKA protocol with respect to mgr-mult, where ε = O(qcn

2
curr ·

Q2 log(ncurr)+2 ·(εtRAM +Qεdprf +εcpa∗)) in the standard model and ε = O(qc(εtRAM +εcpa∗) ·(nmax ·Q)2)
in the random oracle model.

Proof. This follows directly from Theorem 4, and Corollaries 1 and 2. ut
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A Balanced Trees

Here we describe different balanced trees that one can use in our MKA construction, including left-
balanced binary trees, 2-3 trees, and left-leaning red-black trees. We compare the performance of GUS
using these different trees in Section 5.4.

A.1 Left-Balanced Binary Trees

We first recall some definitions regarding binary trees. A binary tree is a tree where all internal nodes
are degree-2. For a degree-2 node, its two children are often referred to as the left child and the right
child. A binary tree is said to be full if its leaf nodes share the same depth.

Definition 8 (Left-Balanced Binary Tree). A tree is a (non-empty) left-balanced binary tree (LBBT)
if it satisfies either of the following conditions:

– the tree is a single node;

– the root of the tree is a degree-2 node, where the left child is a full binary tree, the right child is a
LBBT, and the height of the left child is no less than the height of the right child.
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Initializing Tree. Given labels for the leaf nodes `1, . . . `n, the Init operation for a LBBT proceeds as
follows:

– if n = 1, create the tree τ as a single (leaf) node;

– otherwise, let m be the largest power of 2 below n (exclusive);

– create a degree-2 node whose left child is a full binary tree with m leaf nodes and whose right child
is a LBBT with n−m leaf nodes as the root of τ .

Note that this construction is unique because of the uniqueness of number m that is a power of 2 below
n and satisfies m ≥ n−m.

The skeleton skeleton that will be returned consists of the whole initialized tree, where for each interior
node, the edge to its left child is colored green and the edge to its other child is colored blue.

Adding Leaf Node to Tree. The Add operation for a LBBT proceeds as follows: If there exists leaf node
marked as removed, then simply replace the marked leaf node with the new leaf node labeled with `.
Otherwise, append the new leaf node v to the tree τ as follows:

– if τ is full, create a degree-2 node whose children are (τ, v) as the new root;

– if τ is not full, append v to the right child of τ (which by definition is also a LBBT) recursively.

The skeleton skeleton that will be returned consists of the nodes on the direct path of node newly
labeled `. For each node in skeleton, if it has a child that is also in skeleton, the edge to this child is
colored green.

Removing Leaf Node from Tree. The Remove operation for a LBBT proceeds as follows:

– Mark the leaf node v` corresponding to the label ` to be removed as removed.

– Recursively replace the parent of the rightmost leaf v in τ with the (left) sibling of v until the
rightmost leaf node in τ is not marked as removed.

The skeleton skeleton that will be returned consists of the nodes on the direct path of v` (not including
v` itself) that are still in the tree (or just the root r if all such nodes have been removed). For each node
in skeleton, if it has a child that is also in skeleton, the edge to this child is colored green.

Efficiency measures of LBBTs for MKA. Due to the mechanics of the remove operation for LBBTs,
namely lazily marking nodes as removed, the total number of nodes can remain relatively unchanged
even after several removals of leaves. For example, if at some point all of the leaves that will be removed
are in the subtree of the left child of the root, the number of nodes can only increase. Figure 4 shows
how the deletion of a leaf that is not the rightmost leaf of the tree does not change the structure of the
LBBT.

We note that if a given leaf is marked as removed in a LBBT being used as a MKA tree, it will not
have any associated user or secrets and will thus not be considered utilized. Since this is the worst case, we
must state the efficiency measures of LBBTs used as MKA trees in terms of m, the maximum number of
leaves used throughout its existence. Therefore, it can easily be seen that LBBTs are (m, logm, logm, 2)-
trees.

A.2 2-3 Trees

Definition 9 (2-3 Tree). A tree is a (non-empty) 2-3 tree if it satisfies either of the following condi-
tions:

– the tree is a single node;

– the root of the tree is a node of degree 2 or 3, where the children are 2-3 trees of the same height.
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Initializing Tree. Given labels for the leaf nodes `1, . . . , `n, the Init operation for a 2-3 tree proceeds as
follows:

– if n = 1, create the tree τ as a single (leaf) node;
– otherwise, let h be the integer such that 3h−1 < n ≤ 3h (explicitly, h = dlog3 ne);
– if n > 2 · 3h−1, create a degree-3 node whose children are 2-3 trees with respectively m, m + r1,
m + r2 leaf nodes16 as the root of τ , where m = bn/3c, and r1 = r2 = 0 if n ≡ 0 (mod 3), r1 = 0,
r2 = 1 if n ≡ 1 (mod 3) and r1 = r2 = 1 if n ≡ 2 (mod 3);

– otherwise (n ≤ 2 · 3h−1), create a degree-2 node whose children are 2-3 trees with respectively bn/2c
and dn/2e leaf nodes as the root of τ .

The correctness of this construction derives from the following arithmetic facts:

– if 2 · 3h−1 < n ≤ 3h, then 3h−2 < 2 · 3h−2 ≤ bn/3c ≤ dn/3e ≤ 3h−1;
– if 3h−1 < n ≤ 2 · 3h−1, then 3h−2 < 3h−1/2 ≤ bn/2c ≤ dn/2e ≤ 3h−1.

The skeleton skeleton that will be returned consists of the whole initialized tree, where for each interior
node, the edge to its leftmost child is colored green and the edge to its other child(ren) is (are) colored
blue.

Adding Leaf Node to Tree. The Add operation for a 2-3 tree adds a new leaf node v with label `v to the
tree τ as follows:

– set skeleton = {v};
– Choose a position to add v i.e. choose a future sibling u of v;17

– add v as a new child of the parent p of u;
– if the degree of p becomes invalid i.e. reaches 4, then
• remove u and v from the children of p and create a degree-2 node p′ whose children are (u, v);
• set skeleton = skeleton ∪ {p, p′} and color the edge from p′ to u as blue, and the edge from p′ to
v green;

• if p is the root of τ , then create a degree-2 node r whose children are (p, p′) as the new root and
set skeleton = skeleton ∪ {r}, color the edge to p blue and the edge to p′ green;

• otherwise, add p′ recursively (with future sibling p).
– otherwise, set skeleton = skeleton ∪ {p, v1, . . . , vl}, where vl, . . . , vl are on the direct path of p, and

color the edges of these nodes to their children in the skeleton green.

The skeleton skeleton that will be returned consists of the direct path of v and any nodes p that had
children removed from them.

Removing Leaf Node from Tree. The Remove operation for a 2-3 tree proceeds as follows: Remove the
leaf node v with label `v from the tree τ as follows:

– set skeleton = ∅;
– remove v from the children of its parent p;
– if the degree of p becomes invalid i.e. reaches 1, then

1. if p is the root of τ , then use the only child of p as the new root;
2. otherwise, if there exists sibling p′ of p whose degree is 3, then move one child from p′ to p.

Additionally, for the nodes p, v1, . . . , vl on the direct path of p and the node p′, set skeleton =
skeleton∪{p, v1 . . . , vl, p

′}, then for all of these nodes, except for v1, the parent of p and p′, color
edges to their children in the skeleton green. For v1, color its edge to p green and its edge to p′

blue;
3. otherwise (all siblings of p are degree-2), move the only child of p to one of its siblings, p′, set

skeleton = skeleton ∪ {p′}, color the edge from p′ to its child in the skeleton green (if it exists),
and finally remove p recursively.

– otherwise, for the nodes p, v1, . . . , vl on the direct path of p, set skeleton = skeleton ∪ {p, v1, . . . , vl},
and for all of these nodes, color edges to their children in the skeleton green.

The skeleton skeleton consists of any parents p′ from step (3.), as well as the parent p′ and the direct
path of p from step (2.), if the step is taken, OR the direct path of p in the last case otherwise.

16 In order to ensure that the children have the same height, when recursively constructing the children, h should
not be re-calculated independently and h← h− 1 should be used.

17 Randomly choosing such a position suffices, but one can make more sophisticated choices by, for example,
greedily choosing the lowest non-full subtree to insert into.
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Efficiency measures of 2-3 trees for MKA. Since all leaves of a 2-3 tree are at the same depth, a 2-3 tree
shrinks and grows proportionally to the number of leaves it contains. Indeed, the height of a 2-3 tree is
always O(log n), where n is the current number of leaves. Figure 4 shows that the height of a 2-3 tree
decreases when the same leaf as discussed above in an identically configured LBBT is removed, however
the number of ciphertexts from the operation is larger than that of the LBBT operation, due to degree-3
nodes. These degree-3 nodes render 2-3 trees at times less efficient than LBBTs, despite smaller height.

We note that all leaves in a 2-3 tree being used as a MKA tree are always utilized, and therefore n
corresponds exactly to the number of utilized leaves in the tree, as defined in Section 5.1. Therefore, 2-3
trees are (n, log n, log n, 3)-trees.

A.3 Left-Leaning Red-Black Trees

The red-black tree is a widely used balanced tree data structure. The left-leaning red-black tree [33]
is a restricted variant of red-black tree that preserves the favorable properties of red-black tree while
simplifies the associated algorithms such as addition and removal of leaf nodes.

Definition 10 (Left-Leaning Red-Black Trees). A tree is a (non-empty) left-leaning red-black tree
(LLRBT) if it is binary, has every node colored either red or black, and satisfies either of the following
conditions:

– the tree is a single black node;

– the root of the tree is a black node, and the children of every interior node match with either of the
following color patterns:

1. both children are black, or

2. left child is red and internal, both grandchildren of the left child are black, and right child is black,
or

3. both children are red and internal, and all of the four grandchildren are black,

and every leaf node in the tree has the same black depth, i.e., the number of black nodes on the direct
path of that leaf node.

It can be observed that LLRBTs are isomorphic to 2-3-4 trees, the generalization of 2-3 trees that
also allows degree-4 internal nodes (while both 2-3 and 2-3-4 trees are special cases in a family called
B trees), by “contracting” the red nodes (which are always internal and non-root). More specifically, by
contracting the red nodes, color pattern 1 remains a degree-2 node, color pattern 2 becomes a degree-3
node, and color pattern 3 becomes a degree-4 node, while the uniform black depth ensures that the leaf
nodes has the same depth after the contraction. This contraction process is invertible, by “inserting”
red nodes to form color pattern 1, 2, or 3 for degree-2, -3, or -4 nodes accordingly, and hence is an
isomorphism between LLRBTs and 2-3-4 trees. Note that due to the correspondence between color
patterns and degrees, by forbidding color pattern 3, the restricted LLRBTs become exactly isomorphic
to 2-3 trees.

The isomorphism between normal/restricted LLRBTs and 2-3-4/2-3 trees induces the addition and
removal (as well as initialization) processes for LLRBTs; specifically, the induced processes map to the
isomorphic 2-3-4/2-3 trees, apply the corresponding process there, and map back to get the resulting
normal/restricted LLRBTs. The induced processes indeed yield results that match with certain canonical
processes for LLRBTs. One can come up with efficient algorithms that yield the same results as the
induced processes but do not explicitly carry out the mapping forth and back, while we omit the detailed
algorithms here for simplicity. In particular, the algorithms can be as efficient as those for 2-3-4/2-3 trees,
and therefore LLRBTs are (n, log n, log n, 2)-trees.

It is worth mentioning that although there exists isomorphism between normal/restricted LLRBTs
and 2-3-4/2-3 trees, it does not mean that they lead to the same performance when applied in GUS, for
they have different organizations of nodes, which are the critical units for storing keys in GUS. Indeed,
Figure 4 shows that after deleting the same leaf from an identically configured tree as above for LLBTs
and 2-3 trees, the LLRBT remains balanced, and the number of ciphertexts is low due to having only
degree-2 nodes.
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B Basic Definitions

We introduce the cryptographic primitives that our protocols will make use of in this paper. We often
make use of their multi-instance versions, in which the security of multiple independent instantiations of
the primitive are together considered secure.

B.1 Pseudorandom Generators

A pseudorandom generator (PRG) is a function prg :W →W ×K such that prg(U) is indistinguishable
from U ′ for uniformly random U ∈ W and U ′ ∈ W×K. The advantage of the attacker A at distinguishing
between these two distributions is denoted by Advprg

prg(A); the attacker is parameterized by its running
time t.

Definition 11. A pseudorandom generator prg is (t, ε)-secure if for all t-attackers A,

Advprg
prg(A) ≤ ε.

B.2 Dual Pseudorandom Functions

A Pseudorandom Function Family (PRF) is a function family prf : K×X → Y that is secure with respect
to the following security game against some adversary A with running time t:

– The challenger chooses b uniformly from {0, 1}.
– If b = 1, then the challenger samples k ←$ K and sets F← prf(k, ·) : X → Y.
– Otherwise, the challenger samples random function F : X → Y.
– A adaptively sends queries x1, . . . , xq ∈ X and receives back F(x1), . . . ,F(xq) after each such query,

for q polynomial in the security parameter.
– A sends bit b′ ∈ {0, 1} to the challenger.

A wins the game if b = b′. The advantage of A in winning the above security game is denoted by
Advprf

prf(A).

Definition 12. A pseudorandom function family prf is (t, ε)-secure if for all t-attackers A,

Advprf
prf(A) ≤ ε.

For a function family F : K1×K2 → Y, let Fswap : K2×K1 → Y be defined by Fswap(k1, k2) = F(k2, k1).
A dual Pseudorandom Function Family (dPRF) is a function family dprf : K1 ×K2 → Y such that both
dprf and dprfswap are PRFs [6].

Definition 13. A dual pseudorandom function family dprf is (t, ε)-secure if both dprf and dprfswap are
(t, ε)-secure PRFs.

B.3 Symmetric-Key Encryption

Definition 14. A symmetric-key encryption (SKE) scheme is a triple of algorithms Π = (Gen,Enc,Dec)
with the following synatx:

– Key generation: Gen receives (implicitly) a security parameter and outputs a fresh key k ← Gen.
– Encryption: Enc receives a key k and a message m and produces a ciphertext c.
– Decryption: Dec receives a key k and a ciphertext c and produces a message m.

Correctness. A SKE scheme must satisfy the following correctness property. For any message m,

Pr[k ← Gen; c← Enc(k,m);m′ ← Dec(k, c) : m = m′] = 1.
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IND-CPA security. For any adversary A with running time t we consider the IND-CPA security game:

– The challenger runs k ← Gen.
– A adaptively sends encryption queries for messages m1, . . . , mq1 and receives back Enc(k,m1), . . . ,

Enc(k,mq1) after each such query, where q1 is polynomial in the security parameter.
– A sends challenge messages m0,m1.
– The challenger chooses b uniformly from {0, 1}, computes c = Enc(k,mb) and sends c to A.
– A adaptively sends encryption queries for messages m′1, . . . , m

′
q2 and receives back Enc(k,m′1), . . . ,

Enc(k,m′q2) after each such query, where q2 is polynomial in the security parameter.
– A sends bit b′ ∈ {0, 1} to the challenger

A wins the game if b = b′. The advantage of A in winning the above game is denoted by AdvΠ
cpa(A).

Definition 15. A symmetric-key encryption scheme Π is (t, ε)-CPA-secure if for all t-attackers A,

AdvΠ
cpa(A) ≤ ε.

C GUS Security Proofs

In this section, we provide two security proofs of our construction GUS against the adaptive, partially
active adversary in the user-mult game – one in the standard model achieving Quasi-polynomial secu-
rity loss, and another in the Random Oracle model achieving polynomial security loss. We thus prove
Theorem 2 of the main body. We use the proofs of Tainted TreeKEM (a CGKA protocol) in [3] as a
template.

We will prove security against an adversary that issues a single challenge query. Using a standard
hybrid argument,18 we can show that if the protocol is (stree,deg(τmka) · sskel,deg(τmka) · sskel, sskel, t, 1,
nmax, ε)-secure then it is (stree,deg(τmka)·sskel,deg(τmka)·sskel, sskel, t, qc, nmax, ε

′)-secure, where ε′ = qc ·ε.
We omit it for brevity.

C.1 Challenge Graph

We will argue for the security of GUS in the framework of Jafargholi et al. [21], with which we will assume
familiarity throughout this section. To do so, we need to view the user-mult game for GUS as a game on
a graph, then define the challenge graph for group key I∗ as a (modified) subgraph of the whole GUS
graph.

Intuitively, each node i in the GUS-user-mult graph is associated with:

1. dPRF key kis that is sampled randomly in Step 1 of the SecretGen procedure of the group manager

for a node u in τmka, or computed via a dPRF computation on key kjs and the old dPRF key kj,old
d

at a child u.c of u (corresponding to node j in the GUS-user-mult graph) in Step 2 of SecretGen;

2. new dPRF key kid computed from kis and ki,old
d ; and

3. USKE keys kie,0, . . . , k
i
e,vi , where vi is the number of times GUS encrypts to u before removing or

refreshing it (i.e., before u is removed from τmka or appears in a subsequent skeleton for an operation).

However, nodes i in the graph corresponding to keys for leaves `ID in τmka, generated starting with an
update for some ID, do not contain kis if the out-of-band message (that contains kis) for the update was
corrupted.

The edges of the graph are induced by 1. encryptions of kjs to kie,l for some l ∈ [vi]; 2. dPRF

computations in which the PRF security of dprf is used to compute kjs with key kis; 3. dPRF computations
in which the PRF security of dprfswap is used to compute kjd with key kid (c.f. Appendix B.2); and 4. dPRF
computations in which the PRF security of dprfswap is used to compute kjs with key kid. Observe that
these edges (when viewed with respect to τmka) are in the opposite direction that standard tree definitions
use. Unless otherwise stated, we will throughout this section refer to the child of a node u in the GUS-
user-mult graph as the node to which u has an edge and that is closer to the root than u, and the parents
of u as those nodes from which u has an edge and that are closer to the leaves than u. Formally:

18 For example, one very similar to Lemma 6 from [1].
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Definition 16 (GUS-user-mult graph). The GUS-user-mult graph Guser-mult = (Vuser-mult, Euser-mult) is
implicitly generated by the adaptive actions of an adversary A against GUS in the user-mult MKA game.
For each key kis that is sampled randomly in Step 1 or computed via a dPRF computation in Step 2
of the SecretGen procedure of the group manager for some node u in τmka, and is encrypted to vi
times before being removed from τmka or appearing in some skeleton of a subsequent operation, where
(·, kid, kie,0)← dprf(kis, ·), (·, kie,l)← UEnc(kie,l−1, ·) for l ∈ [vi]:

1. Node i = {kid, kie,0, kie,1, . . . , kie,vi} ∈ Vuser-mult if u is some leaf `ID in τmka such that ks is sampled
during query
update-user(ID) of epoch t and corrupt-oob(t, ID) is later queried; or

2. Node i = {kis, kid, kie,0, kie,1, . . . , kie,v} ∈ Vuser-mult otherwise.

Edge (i, j) ∈ Euser-mult if

1. GUS creates a ciphertext (ct, ·)← UEnc(kie,l, k
j
s) for some l ∈ [vi]; or

2. GUS computes dprf(kis, ·)→ (kjs, ·, ·) (Note: only if kis ∈ i); or
3. GUS computes dprf(·, kid)→ (·, kjd, ·), where j replaces i at leaf `ID in τmka during query update-user(ID)

of epoch t, and corrupt-oob(t, ID) is later queried; or
4. GUS computes dprf(·, kid) → (kjs, ·, ·), where j replaces the parent of `ID which i corresponds to in

τmka (in the standard tree sense) during query update-user(ID) of epoch t, and corrupt-oob(t, ID)
is later queried.

The challenge graph for I∗ is intuitively the subgraph of the GUS-user-mult graph Guser-mult induced on
the nodes from which I∗ is trivially reachable (and also trivially computable using their keys). Therefore,
each vertex i does not include the dPRF key kid computed for it, nor those USKE key versions which
cannot be used to trivially derive I∗ (i.e., keys that may be corrupted at challenge epoch t∗ or later but
cannot be used to compute I∗ using normal dPRF or decryption operations).

Definition 17 (GUS-user-mult-challenge Graph). The GUS-
user-mult-challenge Graph G∗user-mult = (V∗user-mult, E∗user-mult) includes only the nodes which have a path to I∗

in Guser-mult, and the corresponding edges on those paths. Moreover, for each i ∈ V∗user-mult which was node
iVuser-mult

∈ Vuser-mult that corresponds to a τmka node u at time t∗, or the version of epoch t < t∗ at u if u is
leaf `ID and the most recent update-user(ID) query before t∗ in epoch t is such that corrupt-oob(t, ID)
is later queried:

– If in Guser-mult, iVuser-mult
has an ingoing path (j1, j2), (j2, j3), . . . , (jci , jci+1 = iVuser-mult

) of type 3 edges
of length ci ≥ 1, where j1 ∈ Vuser-mult has no ingoing edges and jc ∈ Vuser-mult, c ∈ {2, 3, . . . , ci + 1}
have only one ingoing edge which is of type 3, then, i = iVuser-mult

∪c∈[ci]jc. Therefore also, jc /∈ V∗user-mult

and (jc, jc+1) 6∈ E∗user-mult, for c ∈ [ci].
– Otherwise, let v∗i +1 ∈ [vi] be the corresponding version of the USKE key for iVuser-mult

that is generated
at time t∗, the challenge epoch. Then, i = iVuser-mult

\ {kid, ke,v∗i +1, . . . , ke,vi}.

Thus G∗user-mult (roughly) corresponds to τmka at the challenge epoch t∗, plus each leaf `ID absorbs the
old keys that were at old versions of the leaf until the most recent version corresponding to an Update
of ID for which the out-of-band channel was not corrupted. Thus, we have the following lemma which
stipulates that none of the keys in G∗user-mult are leaked to the adversary via corruption, according to
predicate user-safe.

Lemma 2. For queries q1, . . . ,qQ made by an adversary A in user-mult, if user-safe(q1, . . . ,qQ) →
true, it holds that none of the keys contained in nodes of G∗user-mult are leaked to A via corruption.

Proof. Intuitively, user-safe ensures that for all ID that were in the group up to and including the
challenge operation op∗ at t∗, if 1. ID was previously corrupted, or 2. ID was added to the group in
epoch tID for which corrupt-oob(tID, ID) is later queried by A, then either ID has since been removed or
has been updated in an operation such that the out-of-band message is not corrupted. Thus, since only
(updated and since uncorrupted) users that are in the group at time t∗ know any secrets at the nodes of
τmka at this time (or any old version of encryption keys, or leaf keys that were updated with out-of-band
corrupted keys), no information on these keys are leaked to the adversary via corruption.

Formally, assume that some key k in some i ∈ V∗user-mult is leaked to A via corruption. We will show
that user-safe(q1, . . . ,qQ)→ false, a contradiction. There are three cases:
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1. k is in some i ∈ V∗user-mult corresponding to a leaf node `ID in τmka at epoch t∗ that is in G∗user-mult, and
k was generated for the oldest version of `ID that was absorbed by i in V∗user-mult. In this case, either
when ID was most recently added to the group in epoch t ≤ t∗, A queried corrupt-oob(t, ID); or A
queried corrupt(ID) while ID was still in some epoch t ≤ t∗ during which k was in the version of i at
`ID. Moreover, by the definition of G∗user-mult if A queried (possibly multiple times) update-user(ID)
in some epoch t < t′ ≤ t∗, then A later queried corrupt-oob(t′, ID). However, it is clear that A
violates user-safe in this case.

2. k is in some i ∈ V∗user-mult corresponding to a leaf node `ID in τmka at epoch t∗, and k was generated
for some more recent version of `ID that was absorbed by i in V∗user-mult. Then it must be that the
dPRF key of the version before this one in i was known to A, from which we can inductively
apply this argument until we (possibly) reach the first case and apply the above argument; or A
queried corrupt(ID) while ID was still in some epoch t ≤ t∗ during which i was the version of `ID.
And moreover as above, all later update out-of-band messages were corrupted by A. In either case,
user-safe is violated.

3. k is in some i ∈ V∗user-mult corresponding to an interior node u in τmka. Then there must exist some
user ID at one of the leaves in the subtree rooted at u such that one of the two above arguments
hold. ut

C.2 Security Proof for GUS in the Standard Model

For security of GUS in the standard model, we use the framework of Jafargholi et al. [21]. In user-mult,
the adversary needs to execute queries that result in user-safe evaluating to true, and distinguish a
challenge group key I∗ from a uniformly random value. We will first consider the selective user-mult
game, where the adversary needs to schedule its queries all at once at the beginning of the game. We
will call the two possible executions of the game as the real and random user-mult games and prove
their indistinguishability through a sequence of hybrid games. Using the framework of [21], we will define
these hybrid games via the reversible black pebbling game, introduced by Bennett [8], where, starting
with a directed acyclic graph with a unique sink and no pebbles on any nodes (in our case, G∗user-mult with
sink I∗), in each step one can put or remove one pebble on a node following certain rules. The goal is
to reach the point in which only the sink has a pebble. Each pebbling configuration P` then uniquely
defines a hybrid game H`: a node i in G∗user-mult being pebbled means that in this hybrid game, whenever

dprf(kis, k
i,old
d )→ (kp||kid||kie,0) is computed (for the final time, for i corresponding to a leaf), we instead

sample the output (kp||kid||kie,0) randomly in the simulation. All other nodes and edges are simulated
as in the real user-mult game. Thus the real game Hreal is the empty pebbling configuration P0 and the
random game Hrandom is the final configuration PL where only the sink node is pebbled (where L is the
length of the pebbling sequence).

Definition 18 (Reversible black pebbling). A reversible pebbling of a directed acyclic graph G =
(V, E) with unique sink sink is a sequence (P0, . . . ,PL) with P` ⊆ V (` ∈ [0, L]), such that P0 = ∅ and
PL = {sink}, and for all ` ∈ [L] there is a unique v ∈ V such that: 1. P` = P`−1∪{v} or P` = P`−1 \{v};
and 2. for all u ∈ parents(v) : u ∈ P`−1.

By Lemma 2, we know that none of the keys in the challenge graph are leaked to the adversary
throughout the entire game. This will allow us to prove indistinguishability of consecutive hybrid games
from dPRF security and USKE security.

Lemma 3. Let (P0, . . . ,PL) be a valid pebbling sequence on the challenge graph. If dprf is a (tdprf , εdprf)-
secure dPRF and uske = (UEnc,UDec) is a (tcpa∗, εcpa∗)-CPA*-secure USKE scheme, then any two con-
secutive hybrid games H`, H`+1 are (t, Qεdprf + 2εcpa∗ ·deg(τmka))-indistinguishable for t ≈ tdprf ≈ tcpa∗.

19

Proof. Let H`, H`+1 be two consecutive hybrid games. We assume that P`+1 has one additional pebble
on node v∗ that P` does not have. The case where P`+1 is obtained from P` by removing one pebble can
be proved in a similar way.

19 For many pairs of consecutive hybrid games (those where a pebble is neither being added nor removed from a
leaf), the extra Q factor is not needed.
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First, consider the case where v∗ is a leaf. Let kv
∗,cv

∗

d be the (final) key at v∗ which is used to compute
kus for the child u of v∗ in G∗user-mult (the parent in τmka). In this case, kv

∗

d is first computed via a sequence
of dPRF computations of length cv

∗
. Let hybrids H` := H0, H1, . . . ,Hcv∗ := H`+1 be such that for hybrid

Hi, Hi is defined similarly to Hi−1 except that the i-th dPRF output is replaced by a uniformly random
value. For the first dPRF computation, uniformly random key kv

∗

s , which is not leaked to the adversary

by Lemma 2, is used to compute kv
∗,1
d . Thus, we can construct reduction algorithm B0, where we rely

on the PRF security of dprf using key kv
∗

s to output real or random kv
∗,1
d . For all subsequent dPRF

computations, kv
∗,c
d , which is not leaked to the adversary by Lemma 2, is used to compute kv

∗,c+1
d , for

c ∈ [cv
∗
]. Thus, we can construct reduction algorithm Bc, where we rely on the PRF security of dprfswap

(c.f. Appendix B.2) using key kv
∗,c
d to output real or random kv

∗,c+1
d . For c ∈ [0, cv

∗
], Bc can perfectly

simulate the rest of the hybrids, as by Lemma 2, all preceding keys are never leaked to A, and B can
simply embed kv

∗c
d into the state of the corresponding ID during the operation that creates kv

∗c
d . Thus,

any advantage ε of an adversary in distinguishing any Hc−1, Hc, c ∈ [cv
∗
] leads to the same advantage for

Bc in the PRF game on dprf (or dprfswap for B0). Therefore, H` and H`+1 are (cv
∗ ·εdprf)-indistinguishable,

and thus (Q · εdprf)-indistinguishable.
Otherwise, observe that v∗ has 0 ≤ me ≤ deg(τmka) ingoing encryption edges (u1, v

∗), . . . , (ume , v
∗),

and at most one ingoing dPRF edge (u′, v∗). We prove indistinguishability of hybrids H` := H`,0, . . . ,
H`,2me+1 := H`+1, where the intermediate hybrids are defined as follows:

– H`,m for m ∈ [me] is defined similarly to H`,m−1 except that the encryption UEnc(ke,v∗um , k
v∗

s ) is
replaced by an encryption of a uniformly random key.

– H`,me+1 is defined similarly to H`,me+1 except that instead of (kp||kv
∗

d ||kv
∗

e,0) being the output of a

dPRF computation on kv
∗

s and kv
∗,old
s , it is uniformly sampled.

– H`,me+1+m for m ∈ [me] is defined similarly to H`,me+1+m−1, except that the encryption of a
uniformly random key is replaced by UEnc(ke,v∗um , k

v∗

s ). Note that we indeed have H`,2me+1 = H`+1.

For all m ∈ [me] εcpa∗-indistinguishability of H`,m−1 and H`,m follows from the CPA* security of uske
and the fact that by pebbling rules, um must be pebbled so that in game H`,m, kume,0 is sampled uniformly
at random: A reduction algorithm B against a CPA* challenger can simply query the challenger on all
messages (keys kws for some parent w – in the traditional tree sense – of um in τmka) encrypted to um up
to kv

∗

s and include the output ciphertexts c in the corresponding control messages as usual. Then, B can
issue challenge query on kv

∗

s and uniformly random key k and include the output ciphertext c∗ in the
corresponding control message as usual. B can perfectly simulate the rest of the hybrid, as by Lemma 2
all USKE keys kume,0 until kume,vum are never leaked to A, then B can use the key kume,v∗um+1 returned by the

challenge query as usual to encrypt later messages to um. Moreover, B can simply embed all keys kws into
the state of any ID that would normally have it when they process the corresponding control message for
the operations that encrypt kws . Thus any advantage ε of an adversary in distinguishing H`,m−1, H`,m

leads to the same advantage of B in the CPA* game on uske.
εdprf -indistinguishability ofH`,me , H`,me+1 follows from the pseudorandomness of dprf: If v∗ has parent

u′ in G∗user-mult, by pebbling rules u′ must be pebbled, in game H`,me , so kv
∗

s (resp. ku
′

d if v∗ corresponds
to the child of u′ which is in a leaf node `ID in τmka whose last update up to and including t∗ had
its oob message corrupted) is sampled uniformly at random instead of being the output of a dPRF
computation. It is also independent of all ciphertexts generated by GUS, as in game H`,me . Therefore,
a reduction algorihtm B against a dPRF challenger (using the PRF security of dprf (resp. dprfswap, c.f.
Appendix B.2) with key kv

∗

s (resp. ku
′

d ) can simply query the dPRF challenger on the input that normally

computes (kp||kv
∗

d ||kv
∗

e,0) (either the old version ku
′

d or ⊥ (resp. kv
∗

s )) to get (k′p||k′d||k′e,0). B can then use
k′p in place of kp, and similarly for the other output keys as needed. B can perfectly simulate the rest of

the hybrid, as by Lemma 2, kv
∗

s (resp. ku
′

d ) is never leaked to A, and B can simply embed k′p, k
′
d, k
′
e,0 into

the state of any ID that would normally have them after processing the corresponding control message
for the operation that creates them. Thus any advantage ε of an adversary in distinguishing H`,me and
H`,me+1 leads to the same advantage for B in the PRF game on dprf (resp. dprfswap).

εcpa∗-Indistinguishability of H`,me+1,m−1, H`,me+1+m is identical to the case of H`,m−1, H`,m, follow-
ing from the CPA* security of uske.

It is clear that in the reductions, the running time remains essentially the same. Thus, the lemma is
proved. ut
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By choosing a trivial pebbling sequence of the challenge graph, the above already implies selective
user-mult security of GUS. However, in the adaptive setting, the challenge graph is not known to the
reduction until the adversary makes her query challenge, at which point it is too late for the reduction to
embed any dPRF or USKE challenges, since some of the keys may have already been used in answering
previous queries of the adversary. Thus, to simulate a hybrid H`, the reduction needs to guess some of
the adaptive choices the adversary makes. This would naively result in exponential security loss; however,
the framework of Jafargholi et al. [21] allows us to achieve quasi-polynomial loss:

Theorem 5 (Framework for proving adaptive security, informal [21]). Let Greal, Grandom be two
adaptive games, and Hreal, Hrandom be their respective selective versions, where the adversary schedules its
queries all at once at the beginning of the game. Furthermore, let Hreal := H0, H1, . . . ,HL := Hrandom be
a sequence of hybrid games such that each pair of subsequent games can be simulated and proven (t, ε)-
indistinguishable by guessing only M bits of information on the adversary’s choices. Then Greal, Grandom

are (t, ε · L · 2M )-indistinguishable.

Now, the problem of proving user-mult security of GUS reduces to finding a sequence of indistinguish-
able hybrids such that each hybrid can be simulated using only a small amount of random guessing.
Defining hybrid games via pebbling configurations as above and using the space-optimal pebbling se-
quence for directed acyclic graphs, described in [18, Algorithm 1], which uses L = (2 deg(τmka))d steps
and only (deg(τmka) + 1) · d pebbles, where d is the depth of τmka, implies a security reduction for GUS
with only quasipolynomial loss in security.

Theorem 6. If dprf is a (tdprf , εdprf)-secure dPRF, uske = (UEnc, UDec) is a (tcpa∗, εcpa∗)-CPA*-secure
USKE scheme, and τmka is a (stree, sskel, d,deg(τmka))-tree, then GUS is (stree,deg(τmka) · sskel, deg(τmka) ·
sskel, sskel, t, qc, nmax, ε)-user-mult secure for ε = (Q·εdprf +2εcpa∗ ·deg(τmka))·(2 deg(τmka))d ·Qdeg(τmka)·d+1.

Proof. Observe that the challenge graph is a directed acyclic graph of degree deg(τmka) and depth d, and
let (P0, . . . ,PL) be the recursive pebbling stratedgy for directed acyclic graphs from [18, Algorithm 1]
which uses L = (2 deg(τmka))d steps and at most (deg(τmka) + 1) · d pebbles. We will prove that each
pebbling configuration P` can be represented using M = (deg(τmka) · d + 1) · (logQ) bits. The theorem
then follows from Lemma 3 and Theorem 5.

We use the following property of the pebbling strategy: For all ` ∈ [0, L], there exists a leaf in τmka such
that all pebbled nodes lie either on the path from that leaf to the sink or on the copath. Furthermore, the
subgraph on this set of potentially pebbled nodes contains at most deg(τmka) · d+ 1 nodes. Throughout
the game, the reduction always knows in which position in the binary tree a node ends up, but it does
not know which of the up to Q versions of the node will end up in the challenge tree. Note: we do not
need to guess the number of USKE keys at each node u in the challenge graph, nor, if it is a leaf, how
many dPRF keys it absorbs. This is because we can just fake encryptions (resp. dPRF computations)
until the dPRF key corresponding to the version of the child which we guess to be in the challenge graph
is encrypted (resp. computed) under u. So, the reduction needs to only guess for at most deg(τmka) ·d+ 1
nodes, which of the up to Q versions of that node will be in the challenge graph. This proves the security
loss in the claim.

It is obvious that correctness holds for the protocol. The adversary is not allowed to modify messages
transmitted over the network and thus the protocol does not allow the group to split: all users process
the same message output by the group manager at each epoch t that allows them to obtain the group
secret.

It is clear that the worst-case space complexity of the group manager state is always stree, since
she just stores the whole tree and its secrets. The worst-case communication and time complexity of
the group manager for add, remove, and update operations is deg(τmka) · sskel since for each operation,
the group manager creates a skeleton of size sskel and generates secrets and ciphertexts for at most all
of the edges from each node in skeleton, including all edges to the frontier, whose number is bounded
by deg(τmka). The time complexity of users per add, remove, and update operations is sskel, since the
PathRegen subroutine traverses along a path in skeleton for each operation whose size is indeed bounded
by sskel. ut

C.3 Security Proof for GUS in the ROM

To show the security of GUS in the ROM we use and adapt the results of Alwen et al. [3] on Generalized
Selective Decryption (GSD) to the USKE setting for our purposes:
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Definition 19 (Generalized Selective Decryption (GSD), adapted from [3, 26]). Let (UEnc,UDec)
be a USKE scheme with secret key space K and message spaceM such that K ⊆M. The GSD game (for
USKE schemes) is a two-party game between challenger C and an adversary A. On input an integer N ,
for each v ∈ [N ] the challenger C picks a uniformly random initial key kv0 and intializes the key graph
G = (V, E) := ([N ], ∅) and the set of corrupt users C = ∅. A can adaptively issue the following queries:

– (encrypt, u, v): On input two nodes u and v, C returns an encryption (kui+1, c) ← UEnc(kui , k
v
0) of

the 0-th version of the key at node v, kv0 , under the current version of the key at node u, kui , adds
the directed edge (u, v) to E, and replaces the current version of kui at u with new version kui+1. Each
pair (u, v) can only be queried at most once.

– (corrupt, v): On input a node v, C returns kvi , the current version of the key at node v and adds v
to C.

– (chall, v), single access: On input a challenge node v, C samples b ←$ {0, 1} and returns kvi (the
current version of the key at node v) if b = 0, otherwise it outputs a uniformly random k ∈ K. In
the context of GSD we denote the challenge graph as the graph induced by all nodes from which the
challenge node v is reachable. We require that none of the nodes in the challenge graph are in C, that
G is acyclic and that the challenge node v is a sink – thus kvi = kv0 .

Finally, A outputs bit b′ and it wins the game if b′ = b. We call the encryption scheme (t, ε)-adaptive
GSD-secure if for any adversary A running in time t it holds

AdvGSD(A) := |Pr[A → 1|b = 1]− Pr[A → 1|b = 0]| ≤ ε.

We use the following result of [3], which they prove for a public key encryption version of GSD, and
can be easily adapted to our setting of USKE GSD.

Theorem 7. For any USKE scheme uske = (UEnc,UDec) and hash function H, let the encryption
scheme uske′ = (UEnc′,UDec′) be defined as follows: 1. It samples ks, kd randomly for its initial key
k′0 = (ks, kd). 2. Then, the first time it uses UEnc′ or UDec′, it computes k0 ← dprf(ks, kd), and uses k0

as the first input to UEnc,UDec, with the corresponding message or ciphertext. 3. Then, for the next use
of UEnc′ (resp. UDec′), it uses the key k1 (resp. k′1) output by UEnc (resp. UDec) in (2) above as input
to UEnc (resp. UDec) again; and proceeds like this for all subsequent computations.

If uske is (t, εcpa∗)-CPA* secure and dprf is modelled as a random oracle H, then uske′ is (t, εGSD)-
adaptive GSD secure, where εGSD = 2N2 · εcpa∗ + mN

2`−1 , with N the number of nodes, m the number of
oracle queries to H, ` the length of dPRF keys.

The theorem can be proved almost identically to that of [3, Theorem 3]. We provide a sketch below
for exposition.

Proof (Sketch). We prove GSD security by a sequence of hybrids inerpolating between the real game
GSD0 where the challenge query is answered with real key kv0(= (kvs , k

v
d)) and the random game GSD1

where it is answered with an independent uniformly random key in K2 (where we assume the dPRF key
space is the same as the USKE key space).

– Define G0 := GSD0, the real GSD game.
– Let k′ ∈ K2 and v be the challenge node. For 1 ≤ i ≤ indeg(v) we define the hybrid game Gi

as follows: The game is similar to Gi−1 except that the i-th query of the form (encrypt, u, v) is
answered by UEnc(kui , k

′(= (k′s, k
′
d)).

Observe that the game Gindeg(v) is distributed exactly the same as GSD1. Therefore, in this case, for
any GSD-adversary A with advantage ε, the advantages of A in distinguishing hybrid games Gi−1 from
Gi sum up to at least ε. Since two subsequent hybrid games differ in exactly one encryption edge, we
will use this distinguishing advantage to solve a CPA* challenge. To simulate the game Gi, the reduction
simply guesses the challenge node v as well as the source node u of the i-th encryption edge to v. We
denote these guesses v∗ and u∗, respectively. However, this simulation is only possible if A does not
query its oracle H on any of the pairs of dPRF keys corresponding to the parents of v∗ (in the traditional
graph-theoretic sense, i.e., those that nodes that have an edge to v∗), since otherwise A can trivially
distinguish G0 from Gindeg(v). Alwen et al. [3] encompass this issue by the following (more general) event.

35



– Event E: A queried a pair of dPRF keys (ks, kd) to the random oracle which correspond to the initial
uske′ key for a node that was not corrupted and is not reachable by any corrupted node, and no
challenge query was issued for it.

Intuitively, event E is true if A queried the random oracle H on some pair of dPRF keys which it does not
trivially know and which is associated with a node that might end up in the challenge graph. Note that
if E is not true, we do not need to recursively fake any encryptions of ku

∗
to fake the encryption query of

v∗ under u∗, because the first uske key ke,0 that is generated at u∗ is done so via an H computation on a
pair of dPRF keys such that (at least one of them) is not known to A. Thus for any reduction algorithm
B that needs to answer an encryption query of adversary A with target u∗, B can just assign a random
uske′ key k′ to u∗ and encrypt k′ instead of ku

∗
. As long as A never queries the random oracle on ku

∗
,

then using k′ in the encryption is information-theoretically indistinguishable to A from using ku
∗
.

In fact, whether or not an adversary A is successful in triggering event E in games GSD0 and GSD1,
Alwen et al. [3] show how to obtain an reduction algorithm with advantage > ε

2N2 − m
N2`

against the
CPA security of a PKE scheme. Using almost the exact same techniques (except querying the USKE
encryption oracle when needed for non-challenge encryptions, as opposed to the reduction algorithm
generating them itself using the public key given to it by the challenger), we can obtain a reduction
algorithm with the same advantage against the CPA* security of uske. ut

Now, as [3] does, we can adapt the above theorem to show a polynomial time reduction for GUS in
the ROM. Intuitively, the GUS-user-mult graph Guser-mult corresponds to a GSD graph in the above sense
(i.e., for the transformed uske′, where dprf is replaced by the random oracle H), with two differences:20

1. There are additional edges corresponding to initial keys that are derived from each other via H
computations; and

2. A given leaf `ID of the challenge graph G∗user-mult may contain x sequences of USKE keys, where x
is the number of consecutive times ID is updated before the challenge epoch t∗ (and without any
subsequent updates after the x updates and before t∗) such that the oob message for the update is
corrupted by A.

The following Theorem shows that this differences do not impact security.

Theorem 8. If the USKE scheme in GUS is (t, εcpa∗)-secure and dprf is modelled as a random oracle
H, then GUS is (t, Q, ε)-user-mult-secure, where ε = εcpa∗ · 2(stree ·Q)2 + negl.21

Proof (Sketch). In order to adapt the proof of Theorem 7 to the GUS-user-mult graph Guser-mult, we begin
by accounting for the first case above: i.e., keys can be derived from each other via H computations. This
can be handled easily, since in the GSD game, the reduction can just sample all initial keys randomly and
independently as before, and when nodes u get corrupted, it can just program H to ensure consistency for
keys kv0 , which are generated via a computation of H on a key at corrupted nodes u. In the case where event
E from Theorem 7 happens with low probability (cf. Lemma 6 of [3]), we still obtain indistinguishability,
since as before the computation of H on keys at u occurs with low probability. Furthermore, in the case
where event E happens with large probability (cf. Lemma 5, Corollary 2 of [3]), the main observation
that Alwen et al. make is that it is still sufficient to simulate the GSD game correctly until E happens.

To account for the second case above: it is easy to see that when faking encryptions of the challenge
node v∗ to leaf `ID, we do so as normal to the latest USKE key of the most recent sequence of USKE
keys in `ID, and indistinguishability still follows from the fact that the 0-th version of this most recent
sequence was generated via an H computation on a key which is not leaked to A via Lemma 2. Thus, we
can reach the same conclusions of event E as usual.

We conclude by observing that the GUS-user-mult graph Guser-mult has at most N = streeQ nodes and
that by Lemma 2, none of the keys in the challenge graph G∗user-mult are leaked if user-safe evaluates to
true. ut
20 Also, corruptions have small differences due to the presence of corrupt-oob and corrupt, but we omit this

due to simplicity and the fact that by Lemma 2, all nodes in the challenge graph are not fully leaked to A
(i.e., at least one of ks, kd is not leaked).

21 The efficiency of the protocol is the same as in the standard model theorem.
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Hybird Hpj , j ∈ {0, 1, . . . , d} is as follows:

1. Initialize (τeram,MK)← eram-init(1λ) as usual; set Chall← ∅. Define H := Hj+1.
2. For each call corrupt(), process it as in H.
3. For each call write(d, i):

(a) If i ∈ Chall, set Chall← Chall \ {i}.
(b) Proceed as in H except that for each l ∈ Chall:

– Perform the generation of seeds and keys for the nodes v ∈ skeleton at depths j′ > j along the direct path of l
(not including l) as in H.

– For the node v at depth j, if v ∈ skeleton instead of using a randomly sampled seed s, or one obtained from its
child, to compute prg(s) = (s′||k), simply uniformly at random sample $→ (s′||k).

– Encrypt its children as in H.
4. For each call chall(d0, d1, i): Set Chall← Chall ∪ {i} and proceed as in step (b) of 3. above.

Hybrid Hcj , j ∈ {0, 1, . . . , d} is as follows:

1. Initialize (τeram,MK) ← eram-init(1λ) as usual; set Chall ← ∅, D′[·] ← ε. If j = 0, define H = Hp0 . Otherwise, define
H := Hcj−1.

2. For each call corrupt(), process it as in H.
3. For each call to write(d, i):

(a) If i ∈ Chall, set Chall← Chall \ {i}.
(b) Proceed as in H except that for each l ∈ Chall:

– Replace all seeds and keys for the nodes v ∈ skeleton along the direct path of l with uniformly random values
and perform all encryptions for those nodes v of depth j′ < j as in H.

– Replace the data of the node v at depth j with instead Enc(k, 0), where k = MK if j = 0 and k = kv.p for the
parent v.p of v otherwise.

– Set D′[v]← D[v].
– If the key for a node w whose cell contains an encryption of 0 is needed, retrieve it from D′, i.e. kw ← D′[w].

4. For each call chall(d0, d1, i): Set Chall ∪ {i} and proceed as in step (b) of 3. above.

Fig. 9. Definition of hybrid experiments in the security proof of the encrypted RAM scheme.

D Proof of Theorem 3

Theorem 3 (Security of tRAM). Assume that prg is a (tprg, εprg)-secure pseudorandom generator, Π
is a (tcpa, εcpa)-CPA-secure symmetric-key encryption scheme, and τeram is a (stree, sskel, s

′
skel,deg(τeram))-

tree. Then, tRAM is a (O(1), stree, (sskel + s′skel) · deg(τeram), t, nmax, ε)-secure forward secret encrypted
RAM protocol for ε = qstree(nmax, nmax)(εprg + εcpa), where q is the number of times write() or chall()
is queried by A and t ≈ tprg ≈ tcpa.

Proof. We consider the following experiments:

Hp
d , H

p
d−1, . . . ,H

p
0 , H

c
0 , . . . ,H

c
d,

where Hp
d is the original encrypted RAM game and the remaining hybrids are defined in Figure 9. The

difference between the p hybrids is in faking one more depth of PRG computations, while the difference
between the c hybrids is in faking one more depth of encryptions under the CPA-secure SKE scheme.

Now we prove indistinguishability between hybrids. As in the proof of Theorem 2, we let vi,j , i ∈
[h], j ∈ [nbi] be the j-th node at depth i of τeram, where nbi is the number of nodes at depth i.

Lemma 4. For j ∈ [d]:

1. AdvtRAM
Hpj

(A) ≤ AdvtRAM
Hpj−1

(A) + q deg(τeram)j−1εprg.

2. AdvtRAM
Hcj

(A) ≤ AdvtRAM
Hcj+1

(A) + q deg(τeram)j+1εcpa.

Also, AdvHp0 (A) ≤ AdvtRAM
Hc0

(A) + qεcpa,

where q is the number of queries A makes to write() and chall().

Proof. The proof is by contradiction. Let j1 be the minimum value in [d] for which relation (1.) does
not hold, or if relation (1.) holds for all such j ∈ [d], let j2 = 0 if AdvHp0 (A) > AdvtRAM

Hc0
(A) + εcpa, or

otherwise the maximum value in [d] for which (2.) does not hold, and in the sequence of hybrids, at least
two adjacent hybrids are distinguishable. For all previous values of j1 and/or j2, we assume the relations
hold. We consider two cases:

Case a) Assuming relation (1.) does not hold, for index j, we make a reduction to the security of
the PRG. We define the adversary Bpj in Figure 10.
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Algorithm Bp
j :

1. Query the oracle of the PRG experiment and receive the challenge(
s1vj−1,1

||k1vj−1,1

)
, . . . ,

(
s
mvj−1,1
vj−1,1 ||k

mvj−1,1
vj−1,1

)
, . . . ,

(
s1vj−1,nbj−1

||k1vj−1,nbj−1

)
,

. . . ,
(
s
mvj−1,nbj−1
vj−1,nbj−1

||k
mvj−1,nbj−1
vj−1,nbj−1

)
,

where mvj−1,g , g ∈ [nbj−1] is the number of queries to write() or chall() in which the PRG computation
at g-th node of depth j − 1 is replaced with a uniformly random value in Hp

j−1.
2. During the h-th such query for each node vj−1,g, simulate Hp

j , with the only difference that the (seed,

key) pair for the node at depth j − 1 is set to
(
shvj−1,g

||khvj−1,g

)
.

3. For the rest of the execution simulate Hp
j and output 1 if and only if A outputs b = b′.

Fig. 10. Reduction algorithm Bp
j .

The difference between Hp
j and Hp

j−1 is that in each query to write() or chall(), the latter may fake
one more level of PRG computations. In particular, in Hp

j , only the PRG computations up to depth j
are faked, while in Hp

j−1, those at depth j−1 is also faked. Now observe that if the challenge of the PRG
game consists of uniformly random values, Bpj , simulates the execution of Hp

j−1. On the other hand, if
the challenge is output by the PRG, Bpj , simulates the execution of Hp

j .
We formally argue that the simulation described above is correct. By assumption, we have that the

hybridsHp
d , . . . ,H

p
j are computationally indistinguishable and we need to prove thatHp

j ≈ H
p
j−1. Observe

that the only way for the adversary to distinguish between the two hybrids is by distinguishing a uniformly
random (s′||k) from one that is output by the PRG on some uniformly random seed s. Since A cannot
corrupt the encrypted RAM before overwriting any cells i ∈ Chall, no key along the direct path of any cell
i before it is overwritten is leaked to the adversary. Thus, we conclude that the above simulation is correct,
without Bpj accessing the seed of the PRG game. Hence, if AdvtRAM

Hpj
(A) > AdvtRAM

Hpj−1
(A)+q deg(τeram)j−1εprg,

Bpj breaks the security of the PRG in the game, reaching a contradiction. We conclude that

AdvtRAM
Hpj

(A) ≤ AdvtRAM
Hpj−1

(A) + q deg(τeram)j−1εprg.

Case b) For the second case, we make a reduction to the CPA security of the encryption scheme.
We define the adversary Bcj in Figure 11.

Algorithm Bc
j :

1. For any query to write() or chall(), simulate Hc
j (or Hp

0 ) with the only differnce being:
– For the parents p of nodes vj+1,g, g ∈ [nbj+1] such that vj+1,g is on the direct path of some cell
i ∈ Chall, disregard its sampled key kp.

– For any siblings w of such nodes vj+1,g that are themselves not along the direct path of any such i,
query the encryption oracle for node vj+1,g on D[w], the data of w, receive ciphertext cvj+1,g and
write cvj+1,g to vj+1,g).

– Set M0 ← D[vj+1,g], and M1 ← 0, and send them to the CPA challenger for vj+1,g.
– Write the returned ciphertext c∗ to vj+1,g).

2. For the rest of the execution simulate Hc
j (or Hp

0 ) and output 1 if and only if A outputs b = b′.

Fig. 11. Reduction Algorithm Bc
j .

The difference between hybrids Hc
j , Hc

j+1 (resp. Hp
0 , Hc

0) is that the latter may fake one more level
of encryption for each query to write() or chall(). In Hc

j (resp. Hp
0 ), we have that the ciphertexts down

to depth j (resp. none of the ciphertexts) are faked, while in Hc
j+1, we also fake the ciphertexts of the
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nodes at depth j + 1 (resp. depth 0). Hc
j writes into the RAM the real encryptions of D[vj+1,g] at cells

for nodes vj+1,g, c
∗
0, while Hc

j+1 writes into the RAM the fake encryptions of 0, c∗1. Clearly, if they are
c∗0, Bcj simulates Hc

j (resp. Hp
0 ), while if they are c∗1, Bcj simulates Hc

j+1 (resp. Hc
0).

Now we formally argue that the above simulation is correct. Again, since A cannot corrupt the en-
crypted RAM before overwriting any cells i ∈ Chall, no key along the direct path of any cell i is leaked to
the adversary before it is overwritten. In addition, despite the fact that Bcj is writing encryptions of 0 to
the RAM, the real data d′ are stored in D′ and retrieved if necessary. Moreover, Bcj can equivalently simu-
late the view of A at any point in which Chall = ∅, because all nodes will have been overwritten with real
encryptions at this point, since only nodes on the direct path of challenge cells ever contain encryptions
of 0. Thus, if AdvtRAM

Hcj
(A) > AdvtRAM

Hcj+1
(A) + q deg(τeram)j+1εcpa (resp. AdvHp0 (A) > AdvtRAM

Hc0
(A) + qεcpa),

Bcj breaks the CPA-security of the SKE game, reaching a contradiction. We conclude that

AdvtRAM
Hcj

(A) ≤ AdvtRAM
Hcj+1

(A) + q deg(τeram)j+1εcpa,

AdvHp0 (A) ≤ AdvtRAM
Hc0

(A) + qεcpa.

Thus, the proof of the lemma is concluded. ut

Total security loss. From the above, we have that the total security loss for all hybrids is at most

d∑
j=0

q deg(τeram)j(εprg + εcpa) ≤ qstree(nmax, nmax)(εprg + εcpa).

Correctness. Correctness is obvious since the scheme stores MK, which can decrypt the root, and every
node in the tree decrypts its children, down to the data at the leaves. So at any time, data at any cell
can be retrieved correctly.

Protocol Efficiency. It is clear that the space complexity of MK and τeram are O(1) and stree, respectively.
It is also clear that the time complexity of eram-read, eram-write operations is O(sskel + s′skel) · deg(τ))
since the skeleton-modify operation visits each node in both of the skeletons as well as their frontier at
most twice, and performs a constant number of operations.

Conclusion. The final hybrid is Hc
d. In that hybrid, the contents of each challenged cell i (for each time

they are challenged), is independent of db since it has been replaced by an encryption of the zero message,
and moreover all other information in the encrypted RAM is independent of db. Thus AdvtRAM

Hcd
(A) = 0

and given the above:

AdvtRAM
enc−RAM(A) = AdvtRAM

Hpd
(A) ≤ qstree(nmax, nmax)(εprg + εcpa).

Now, the complete theorem has been proved. ut

E GMS Security Proofs

In this section, we provide two security proofs of our construction GMS against the adaptive, partially
active adversary in the mgr-mult game – one in the standard model achieving Quasi-polynomial secu-
rity loss, and another in the Random Oracle model achieving polynomial security loss. Thus, we prove
Theorem 4. We again use the proofs of Tainted TreeKEM in [3] as a template.

We will prove security against an adversary that issues a single challenge query. Using a standard
hybrid argument,22 we can show that if the protocol is (stree,deg(τmka) · sskel,deg(τmka) · sskel, sskel, t, 1,
nmax, ε)-secure then it is (stree,deg(τmka)·sskel,deg(τmka)·sskel, sskel, t, qc, nmax, ε

′)-secure, where ε′ = qc ·ε.
We omit it for brevity.

22 For example, one very similar to Lemma 6 from [1].

39



Challenge Graph As in Section C, we will argue for the security of GMS in the framework of Jafargholi
et al. [21]. To do so, we need to view the mgr-mult game for GMS as a game on a graph, then define the
challenge graph for group key I∗ as a subgraph of the whole GMS graph.

We really only need to address how the use of Forward Secret encrypted RAM in GMS affects the GUS-
user-mult graph Guser-mult of Definition 16 and the GUS-user-mult-challenge graph G∗user-mult of Definition 17.
In short, there is not much effect: The Forward Secret encrypted RAM eram generates a sequence of
master keys MK0, . . . ,MKl, each of which may be used to recover some of the keys of the MKA tree τmka

in a given epoch. Thus we introduce to Guser-mult one node uMK = {MK0, . . . ,MKl} and edges from uMK

to all other nodes in Guser-mult. Formally:

Definition 20 (GMS-mgr-mult graph). The GMS-mgr-mult graph Gmgr-mult = (Vmgr-mult, Emgr-mult) is the
same as Guser-mult = (Vuser-mult, Euser-mult) of Definition 16, with the additions

– Vmgr-mult = Vuser-mult

⋃
{uMK}; and

– Emgr-mult = Euser-mult

⋃
u∈Vuser-mult

{(uMK, u)}.

Additionally for the challenge graph, we ensure that the FS eRAM master key node, u′MK, only
contains those FS eRAM master keys MKi ∈ {MK0, . . . ,MKl} such that for some key k that is contained
in some node u of V∗user-mult and is written to virtual cell w of eram (corresponding to node w of τmka that
is present in the challenge epoch), at the point in which MKi was generated, the write containing k was
the most recent write to virtual cell w of eram (including deletions – ⊥).

Definition 21 (GMS-mgr-mult-challenge graph). The GMS-
mgr-mult-challenge graph G∗mgr-mult = (V∗mgr-mult, E∗mgr-mult) is the same as G∗user-mult = (V∗user-mult, E∗user-mult)
of Definition 17, with the additions

– V∗mgr-mult = V∗user-mult

⋃
{u′MK}, where u′MK =23

MKi ∈ {MK0, . . . ,MKl} : ∃u ∈ V∗user-mult, k ∈ u,w, d, k ∈ d, j ≤ i.
(·,MKj)← eram-write(·,MKj−1, d, w) ∧ ∀r ∈ [j, i],

·, (MKr)← eram-write(·,MKr−1, d
′, w′), w′ 6= w

 ;

and
– E∗mgr-mult = E∗user-mult

⋃
u∈V∗user-mult

{(u′MK, u)}.

Thus, those MKi in u′MK correspond to those master keys which by the correctness of eram can read
some key k that is contained in a node of V∗user-mult from virtual cell w of eram. Thus, we have an analog of
Lemma 2 for G∗mgr-mult, which stipulates that none of the keys in the graph can be leaked to the adversary,
according to predicate mgr-safe.

Lemma 5. For queries q1, . . . ,qQ made by an adversary A in mgr-mult, if mgr-safe(q1, . . . ,qQ) →
true, it holds that none of the keys contained in nodes of G∗mgr-mult are leaked to A via corruption.

Proof. Intuitively, in addition to the usual conditions of user-safe, mgr-safe also ensures that if the
group manager was corrupted before the challenge operation op∗ at t∗, then all users ID in the group at
that time were since removed or updated in an operation such that the oob message is never corrupted.
After these operations, the master key MK which is corrupted can only be used to derive old versions of
keys in τmka, since all virtual cells in eram will have been overwritten during the operations to remove
or update the users in the group at the time of the group manager corruption. Thus, no information on
the keys in the graph is leaked to the adversary via corruption.

Formally, assume that some key k in some i ∈ V∗mgr-mult is leaked to A via corruption. We will show
that mgr-safe(q1, . . . ,qQ)→ false, a contradiction. There are two cases:

1. k = MK ∈ u′MK is some eram master key that by definition of G∗mgr-mult can be used to derive some key
k that is contained in a node u ∈ V∗user-mult and data d written to virtual cell w of eram, corresponding
to node w of τmka. In this case, A queried mgr-corrupt() in some epoch t ≤ t∗, in which d was most
recently written to w in eram. However, it is thus clear that before the challenge epoch t∗ and after
epoch t, w was never overwritten during some query update-user(ID) or remove-user(ID) by A,
for some ID that has w on its direct path in τmka. Thus A clearly violates mgr-safe.

23 k ∈ d means that k is included in the data d written to virtual cell w.
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2. Otherwise, k is in some i ∈ V∗user-mult. Since from above it must be that k was not leaked to A
through some eram operation using a master key MK that was leaked to A via a mgr-corrupt()
query: It must be that k was leaked to A through some corrupt() or corrupt-oob() operation. The
lemma thus follows from Lemma 2, since mgr-safe(q1, . . . ,qQ) → true implies user-safe(q1, . . . ,
qQ)→ true. ut

Security Proof for GMS in the Standard Model We will again use the framework of Jafargholi et
al. [21] for security of GMS in the standard model. We will first consider the selective mgr-mult game,
where the adversary needs to schedule its queries all at once at the beginning of the game. We will
call the two possible executions of the game as the real and random mgr-mult games and prove their
indistinguishability through a sequence of hybrid games. We will again define these hybrids via the
reversible black pebbling game of Bennett [8] described in Definition 18, but this time on G∗mgr-mult. If a

node i in G∗mgr-mult which is also in G∗user-mult is pebbled, then in this hybrid game, (kp||kid||kie,0) is sampled
uniformly at random as before. However, if i = u′MK, then in this hybrid game, all FS eRAM writes
(M′,MK′) ← eram-write(M,MK, d, w), for d containing some key k that is in a node u of V∗user-mult, are
replaced with (M′,MK′)← eram-write(M,MK, 0, w).

By Lemma 5, we know that none of the keys in the challenge graph are leaked to the adversary
throughout the entire game. This will allow us to prove indistinguishability of consecutive hybrid games
from dPRF security, USKE security, and FS eRAM security.

Lemma 6. Let (P0, . . . ,PL) be a valid pebbling sequence on the challenge graph. If dprf is a (tdprf , εdprf)-
secure dPRF, uske = (UEnc,UDec) is a (tcpa∗, εcpa∗)-CPA*-secure USKE scheme, and eram is a (teram, εeram)-
secure FS eRAM protocol, then any two consecutive hybrid games H`, H`+1 are (t, εeram +Qεdprf +2εcpa∗ ·
deg(τmka))-indistinguishable for t ≈ tdprf ≈ tcpa∗.

24

Proof. Let H`, H`+1 be two consecutive hybrid games. We assume that P`+1 has one additional pebble
on node v∗ that P` does not have. The case where P`+1 is obtained from P` by removing one pebble can
be proved in a similar way.

For the cases where v∗ 6= u′MK, indistinguishability of H`, H`1 follows from the same argument as
Lemma 3 and the fact that Lemma 5 ensures that none of the keys in the challenge graph are leaked to
A, so that the corresponding reductions B can perfectly simulate their hybrids.

When v∗ = u′MK, εeram-indistinguishability of H`, H`+1 follows from the FS eRAM security of eram:
We can construct a reduction algorithm B against the FS eRAM challenger that simply queries the
write() oracle of the challenger on all data d that it normally writes to eram and that does not contain
any keys k that are contained in a node u ∈ V∗user-mult. Then, for GMS writes of data d∗ to eram that do
contain some key k that is contained in a node u ∈ V∗user-mult, B can query the chall() oracle of the FS
eRAM challenger on d∗ and 0. B can perfectly simulate the rest of the hybrid, since by Lemma 5, none
of the master keys MK that can read any challenge data d∗ from eram by correctness of eram are leaked
to A via mgr-corrupt() corruptions. Moreover, it can just keep track of the keys in τmka itself, so that
it can use them when needed, and ignore the contents of the public cells M of eram. Thus any advantage
ε of an adversary in distinguishing H`, H`+1 leads to the same advantage of B in the FS eRAM security
game on eram.

It is clear that in the reductions, the running time remains essentially the same. Thus, the lemma is
proved. ut

As for the user-mult security of GUS, with a trivial pebbling sequence of the challenge graph, the above
already implies selective mgr-mult security of GMS. However, in the adaptive setting, the reduction that
simulates a hybrid H` needs to guess some of the adaptive choices the adversary makes. We again use
the framework of Jafargholi et al. [21], given in Theorem 5 and the space-optimal pebbling sequence for
directed acyclic graphs, described in [18, Algorithm 1], which uses L = (2 deg(τmka))d+1 steps and only
(deg(τmka)+1) ·(d+1) pebbles, to achieve quasi-polynomial loss in security. Note: we use d+1 to account
for the extra FS eRAM master key node u′MK.

24 For many pairs of consecutive hybrid games (those where a pebble is neither being added nor removed from a
leaf), the extra Q factor is not needed. Also, for many pairs of consecutive hybrid games (those where a pebble
is neither being added nor removed from u′MK), the extra εeram term is not needed.
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Theorem 9. If dprf is a (tdprf , εdprf)-secure dPRF, uske = (UEnc, UDec) is a (tcpa∗, εcpa∗)-CPA*-secure
USKE scheme, eram is a (seram

1 , seram
2 , teram

1 , teram
2 ,meram

max , εeram)-secure forward secret encrypted RAM scheme,
and τmka is a (stree(n,m), sskel,deg(τmka))-tree, then GMS is (seram

1 (stree(ncurr, nmax), stree(nmax, nmax)),
seram

2 (stree(ncurr, nmax), stree(nmax, nmax)),deg(τmka)·sskel,deg(τmka)·sskel ·teram
1 , sskel, t, qc, nmax, ε)-secure,

for ε = (εeram +Q · εdprf + 2εcpa∗ · deg(τmka)) · (2 deg(τmka))d+1 ·Q(deg(τmka)·d+2).

Proof. Observe that the challenge graph is a directed acyclic graph of degree deg(τmka) and depth d+ 1,
and let (P0, . . . ,PL) be the recursive pebbling stratedgy for directed acyclic graphs from [18, Algorithm
1] which uses L = (2 deg(τmka))d+1 steps and at most (deg(τmka) + 1) · (d + 1) pebbles. From the proof
of Theorem 6, it is easy to see that each pebbling configuration P` can be represented using M =
(deg(τmka) · d + 2) · (logQ) bits. This is because the reductions need to guess the same information on
the nodes V∗user-mult as the reductions for GUS in user-mult did, plus whether or not the master key node
u′MK is pebbled. This proves the security loss in the claim.

The correctness of the composed protocol GMS trivially follows from the correctness of GUS and
eram.

It is clear that the space complexity of Γsec is seram
1 (stree(ncurr, nmax),

stree(nmax, nmax)) and the space complexity of Γpub is seram
2 (stree(ncurr, nmax), stree(nmax, nmax)), since

the encrypted RAM holds the nodes of τmka. Thus the worst-case current and maximum number of
encrypted RAM cells used by τmka are its total number of nodes currently, and its maximum number of
nodes throughout the protocol execution. The communication complexity of group manager operations
is still deg(τmka) ·sskel, since for each operation of the group manager in GMS, the same exact ciphertexts
are created as those in GUS. The time complexity of group manager operations is deg(τmka) · sskel · teram

1 ,
since for each node that is in the skeleton or frontier of an operation, the group manager reads or writes
to at most one cell of the encrypted RAM. Finally, the time complexity of user processes is the same as
that of GUS, since the proc() algorithm does not change at all in GMS. ut

Security Proof for GMS in the ROM To show the security of GMS in the ROM, we again use our
Appendix C.3 adaptation of the results of Alwen et al. [3] on Generalized Selective Decryption (GSD)
to the USKE setting.

We can just adapt our proof of the security of GUS against user-mult in the ROM model of Theorem 8
to show a polynomial time reduction for GMS in the ROM. First, we need to account for group manager
corruptions. We then also have to account for the uMK and u′MK nodes in the GMS-mgr-mult graph
Gmgr-mult and challenge graph G∗mgr-mult, respectively, and their outgoing edges in the two (which may

correspond to encryptions of uske′ keys ki for i not necessarily 0). These changes can be taken care of
relatively easily:

Theorem 10. If the USKE scheme in GUS is (t, εcpa∗)-secure, eram is a (t, εeram)-secure FS eRAM, and
dprf is replaced with a random oracle H, then GMS is (t, Q, ε)-mgr-mult-secure, where ε = (εeram +εcpa∗) ·
2 · deg(τmka) · ((stree + 1) ·Q)2 + negl.25

Proof (Sketch). We first can make the same adaptations as Theorem 8 did to account for the change
between our defined GSD game and what occurs in GUS against user-mult. Then, to also account for the
first change above, when mgr-corrupt() is queried by A, the GSD challenger C simply returns the most
recent eram master key MK. Since by Lemma 5, MK is not in the challenge graph (nor are any of the
other corrupted keys), this does not change anything.

To account for the second change above, in the sequence of hybrids GSD0 := G0, . . . , Gindeg(v) := GSD1

defined in Theorem 7, we introduce hybrid games G1,a, . . . , Gindeg(v),a; where each Gi,a occurs before Gi
in the new sequence. The hybrid games Gi,a are defined the same as Gi−1 except that when any uske′

keys for node v or u in the challenge graph (corresponding to the i-th query of the form (encrypt, u, v))
are written to eram, we instead write 0. We thus again have that Gindeg(v) = GSD1.

To show εeram-indistinguishability of Gi,a and Gi for each i, we can construct reduction algorithm
B against the FS eRAM challenger that is very similar to that of Lemma 6, except that it only issues

25 We do not believe we can use the optimized Lemma 6 of [3] due to the introduction of FS eRAM, which
requires the reduction to guess GSD edges it will fake in a way that we believe is incompatible with Lemma 6;
hence we use their Lemma 4 which introduces the extra deg(τmka) factor in the security loss, which is constant
in most cases. Note also: the efficiency of the protocol is the same as in the standard model theorem.
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challenge queries to the FS eRAM challenger for USKE keys of node v and u in the challenge graph
(again, corresponding to the i-th query of the form (encrypt, u, v)); it issues write queries to the FS
eRAM challenger for all other writes of GMS. Since by Lemma 5, none of the keys of the challenge graph
are leaked to A (including useful eram master keys), B can perfectly simulate the rest of the hybrid as
in Lemma 6. ut
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