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Abstract

A Random Oracle Combiner (ROC), introduced by Dodis et al. (CRYPTO ’22), takes two
hash functions h1, h2 from m bits to n bits and outputs a new hash function C from m′ to n′

bits. This function C is guaranteed to be indifferentiable from a fresh random oracle as long as
one of h1 and h2 (say, h1) is a random oracle, while the other h2 can “arbitrarily depend” on
h1.

The work of Dodis et al. also built the first length-preserving ROC, where n′ = n.
Unfortunately, despite this feasibility result, this construction has several deficiencies. From the
practical perspective, it could not be directly applied to existing Merkle-Damg̊ard-based hash
functions, such as SHA2 or SHA3. From the theoretical perspective, it required h1 and h2 to
have input length m > 3λ, where λ is the security parameter.

To overcome these limitations, Dodis et al. conjectured — and left as the main open
question — that the following (salted) construction is a length-preserving ROC:

Ch1,h2

Z1,Z2
(M) = h∗

1(M,Z1)⊕ h∗
2(M,Z2),

where Z1,Z2 are random salts of appropriate length, and f∗ denotes the Merkle-Damg̊ard-
extension of a given compression function f .

As our main result, we resolve this conjecture in the affirmative. For practical use, this
makes the resulting combiner applicable to existing, Merkle-Damg̊ard-based hash functions. On
the theory side, it shows the existence of ROCs only requiring optimal input lengthm = λ+O(1).

Keywords: hash functions, combiners, random oracle model, indifferentiability framework.

1 Introduction

Cryptographic combiners [20, 19] take two implementations of a given primitive, into a new instan-
tiation of this primitive which is provably secure as long as one of the two input instantiations is
secure, and the other could be arbitrary. A long line of work on the subject [3, 18, 19, 20, 23] stud-
ied combiners for various cryptographic primitives, with particular attention given to hash function
combiners [6, 8, 26, 27]. The reason for this interest is twofold. First, the question of choosing a
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given hash function between mutually untrusted parties is quite common. For example, [12] men-
tion an application when one party is a software company trusting one hash function h1, but the
potential client must use another function h2 (say, per client’s country different hash standard).
Hash combiners, when simple and efficient, provide a perfect solution to this dilemma.

Second, there is a particular technical issue in building such hash combiners: output length.
Concretely, the most natural and common way to formalizing security of hash combiners is through
their collision-resistance (CR) property, as this is typically the minimal security property re-
quired from a hash function. And there is a trivial CR-combiner C: concatenation, defined as
Ch1,h2(M) = h1(M)∥h2(M). While simple, for many applications doubling the output length is
extremely inconvenient. For example, in hash-then-sign signatures (such as FDH [4] or BLS [7]),
this forces one to use much heavier public-key cryptography, and similar considerations apply for
virtually any real-world application we can think of. Unfortunately, the works of [6, 26, 27] showed
that this limitation is inherent, even if the combiner is allowed to be salted (with the salt chosen
independently of h1 and h2).

Random Oracle Combiners. Fortunately, extending an earlier “cryptophia” proposal by Mit-
telbach [25], Dodis et al. [12] recently proposed a different solution to this unfortunate state
of affairs, while simultaneously providing a possibly better formalization to “hash-combiners”
than CR-combiners. They noticed that many applications of hash functions anyway assume
stronger/different properties than collision-resistance, and are analyzed in the Random Oracle
(RO) model. As a result, it seems natural to define an build random oracle combiners (ROCs).
While starting with the stronger assumption of random oracle than CR, they also reach a similarly
stronger conclusion. Which is anyway what is needed for most applications.

Moreover, ROCs no longer have the unfortunate CR-combiners lower bound on the output
length! Indeed, Dodis et al. [12] build a simple and efficient length-preserving ROC C, as follows:

Ch1,h2

Z1,Z2
(M) := h1(M,Z1)⊕ h2(M,Z2), (1)

where Z1,Z2 are sufficiently long random salts.1 At first, this appears to almost settle the question
of building practical hash combiners. The combiner C is quite efficient, making only one call to
the underlying hash functions h1 and h2. Also, although it turns out that the lengths of the salts
Z1 and Z2 must be slightly longer than the length of the message M , this roughly loses “only” a
factor of 2 in terms of bandwidth for long enough messages M .

Unfortunately, as was already noticed by [12], and as we discuss next, the construction above
was not really applicable to combining existing hash functions such as SHA2 and SHA3. Addi-
tionally, even ignoring practicality and applicability constraints, the combiner does not achieve
theoretically optimal feasibility of ROCs. We explain both of these deficiencies separately.

For simplicity of exposition and by symmetry, below we will always assume that h1 is the true
random oracle, while h2 is the adversarial one.

The Practical View of ROCs. Imagine we want to apply a given ROC — e.g., the one in
Equation (1) — to an existing “good” hash function F , such as SHA2 or SHA3. (We do not care
about the “bad” hash function for now.) The most obvious way of doing it would be to model
F as the good RO h1 in Equation (1). Unfortunately, all existing cryptographic hash function

1Dodis et al. [12] showed that no deterministic ROCs are possible, so the existence of salt is necessary.
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F are not “monolithic”, and have a lot of lower-level structure to it. In particular, virtually all
of them are based of iterating some compression function f using the classical Merkle-Damg̊ard
transform. Ignoring some small variations regarding the last block of the input,2 the Merkle-
Damg̊ard transform of a given compression function f splits the long input M into appropriate-
length blocks M = (m1, . . . ,mℓ) and outputs:

f∗(M) = f(. . . f(f(0,m1),m2), . . . ),mℓ)

In particular, as first advocated by Coron et al [9] and many follow-up works, it is very dangerous
to ignore the Merkle-Damg̊ard structure of existing functions F , and assume that the entire F = f∗

is a monolithic random oracle. Instead, the approach advocated by [9], and followed by virtually
all the follow-up work, is to only model the underlying compression function f as ideal, thereby
accounting for the Merkle-Damg̊ard structure of F . In the world of ROCs, this means that:

One should model h1 as the compression function f ,
and not as the overall hash function F = f∗

This leaves three avenues to proceed, if we still want to apply the ROC in Equation (1) to real-world
hash functions F .

1. The first one is to attempt using the indifferentiability composition framework of [21], which
is a formal way to say that any (single-stage) security game secure assuming one ideal object,
is still secure if this object is replaced by a construction from other (say, smaller) ideal objects.
Indeed, Coron et al. [9] showed that many Merkle-Damg̊ard-like hash functions, — including
plain Merkle-Damg̊ard F (M) = f∗(M) for fixed lengths inputs M , — yield a construction
which is indifferentiable from a “monolithic” RO. This seems to suggest that the ROC from
Equation (1) would be secure if h1 = f∗, and f is modeled as RO. Unfortunately, as shown by
[12], this reasoning is false. The indifferentiability-style ROC definition of [12] is a “two-stage”
security game [28], to which the composition theorem of [21] does not apply. Moreover, this
was not a hypothetical mismatch, as [12] provided a convincing counter-example. Thus, this
approach does not work generically: the resulting construction is either insecure, or a new,
direct proof of its security must be provided. We will come back to this point shortly.

2. The second avenue is to indeed directly apply the ROC from Equation (1) to the compression
function f ; i.e., set h1 = f . This has two big issues. First, the entire input (M,Z1) has to fit
inside the compression function f = h1. And since the salt Z1 in the analysis of [12] has to
be at least security parameter λ longer than the message M , the largest block we can insert
inside C would be (m− λ)/2, where m is the length of the compression function. For SHA2,
m = 512, and setting λ = 128 leaves less than 200 bits left. Which is probably not enough
for any practical use. For SHA3, m = 1600, which leaves more than 700 bits for the message
M . This is more reasonable, but still not enough to be directly used in most applications of
the combiner (e.g., to hash-and-sign signatures, and others).

This brings us to the second issue with this approach: huge inconvenience. Instead of using
a given “good” hash function like SHA2 or SHA3 as a black-box, we will be forced to explicitly

2The subtle variations with the last blocks are needed to prevent so called “extension attacks” for variable-length
inputs. Since variable-length inputs are not super-relevant for the rest of the Intoduction, and since the “plain”
Merkle-Damg̊ard transform is secure [9] for fixed-length inputs, we will not worry about low-level details concerning
the last block, until relevant much later in the paper.
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extract their corresponding compression functions f , apply Equation (1) to f (and another
“bad” compression function) to build a new compression function C, and finally directly
implement some Merkle-Damg̊ard-like mode of operation to this new compression function
C. In sum, this approach is either inapplicable or completely impractical.

3. The final option, and indeed one advocated by [12], is to directly build a ROC C̃h1,h2(M)
which: (a) only treats a fixed-length compression function h1 = f as its “good” random
oracle in its analysis; but (b) only makes black-box calls to the iterated function F = f∗ (e.g.,
SHA2 or SHA3, so it does not need to “yank out” anything from the internals of such hash
functions). And, of course, (c) is capable of supporting “long-enough” inputs M for the final
applications of the combiner. Unfortunately, we have seen that the combiner in Equation (1)
does not meet these properties (a)-(c). Looking ahead, our main result will resolve this issue.

The Theoretical View of ROCs. We have concluded that properties (a)-(c) above are impor-
tant for practical applicability of ROCs. But we can also momentarily ignore all these practical
considerations, and instead focus on the theoretical feasibility only. From this perspective, and as-
suming λ is a security parameter, we are asking about the minimal input length m for the “good”
hash function h1 that is sufficient to build a good ROC. Notice, the output length n of h1 is not
important in terms of feasibility, as even 1-bit output h1 can be converted to n = poly(λ) at the
expense of “only” log n = O(log λ) bits in the input (and n = poly(λ) slowdown in efficiency, which
is fine from this perspective).

Also, we clearly need m ≥ λ, if λ is the security parameter. Moreover, since we mentioned that
we cannot apply the composition theorem of the indiffentiability framework to the input function
h1, we cannot start with a poor choice of m ≫ λ, and then “reduce” it to the m ≈ λ using
some domain-extension technique for random oracles (i.e., the powerful beyond-birthday domain
extension result of Maurer and Tessaro [22]). Thus, we need to minimize m directly. Finally,
for simplicity we will also require the ROC C to support at least inputs of length m′ ≥ λ, as
otherwise we cannot even achieve security poly(λ)/2λ for the final application, against polynomial
time attackers.3

We can now evaluate the minimal length m for the ROC in Equation (1) to work. As we already
mentioned, the salt Z1 in the analysis of [12] has to be at least security parameter λ longer than the
message M , which has to be at least λ bits long. This means that m = |M |+ |Z1| ≥ 2|M |+λ ≥ 3λ.

In contrast, we shall see that our ROC will only require optimal m = λ+ Õ(1), in addition to
satisfying the desired properties (a)-(c) described in the “Practical View” above.

The Conjecture of Dodis et al. As we mentioned, the original work of [12] noticed the
limitations of the ROC construction in Equation (1). To overcome these limitations, they directly
revisited the “failed” composition attempt of building a “monolithic” h1 = f∗ in Equation (1) from
a smaller compression function f , modeled as a fixed-length random oracle. In fact, renaming this
new compression function by h1 itself, — as required by ROC’s syntax, — we arrive at the following
ROC candidate proposed by [12]:

C̃h1,h2

Z1,Z2
(M) := h∗1(M,Z1)⊕ h∗2(M,Z2), (2)

3As we will see, our final construction in Equation (2) will naturally work for any m′ = poly(λ), but for the
perspective of comparing to the construction in Equation (1), we will just settle on minimal acceptable m′ ≥ λ.
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Namely, it simply replaced “monolithic” h1 and h2 by their Merkle-Damg̊ard-implementations
which will anyway occur in practice. We can immediately see that this construction, if secure,
would simultaneously achieve all the desired properties mentioned so far, including:

• Merkle-Damg̊ard-friendliness: C̃ only makes a single black-box call to the iterated functions
h∗1 and h∗2. This means the combiner does not need to “yank out” anything from the internals
of such hash functions, and use existing libraries, for example.

• Length-Preservation: The output of C̃ is the same as that of the given hash functions h1 and
h2, once again overcoming the “concatenation barrier” for collision resistant combiners [6, 26,
27].

• Large Combiner Input: The input M for the combiner can be made effectively as large as
needed, as Merkle-Damg̊ard iteration can handle arbitrary long inputs, by chopping them
into smaller blocks.

• Feasibility-Friendliness: Since h1 and h2 operate via Merkle-Damg̊ard, there is no issue in
needing to fit the salts Z1 and Z2 inside the compression function. Thus, at least in principle
(see below for our results), this ROC candidates has the potential of supporting arbitrary
compression functions h1 and h2 from m bits to n bits, satisfying m > n ≥ λ. In particular, if
efficiency is not an issue,4 the input m might be as short as theoretically optimal m = n+1 =
λ+ 1.

The authors of [12] also realized that, while their proof for the simpler ROC in Equation (1) does
not translate to that of ROC in Equation (2), there is no explicit attack on this variant, as long as
the salts are appended to the input M .5 Indeed, they conjectured that the ROC C̃ in Equation (2)
is secure. As partial evidence, they directly showed that C̃ is at least collision-resistant. Which
is already very interesting, as this overcomes the “concatenation barrier” for collision-resistant
combiners, at the cost of making a much stronger (random oracle) assumption on the “good”
compression function h1.

Unfortunately, the collision-resistant proof, while giving some confidence in the security of C̃,
is a much weaker properly than indifferentiability from random oracle, required by ROC. Even
syntactically, while the collision-resistance proof “only” has to show resilience to a particular type
of collision-finding attacker, the indiffentiability proof must define a general “indifferentiability
simulator”, and then formally argue that no distinguisher can tell apart the real world from the ideal
world (the latter with the simulator). We expand on this in Section 1.1, but mention that we did not
manage to meaningfully extend the collision-resistant proof from [12] to a full indifferentiability
analysis (e.g., define the simulator, analyze its termination, or do the actual indifferentiability
proof).

4Recall, each Merkle-Damg̊ard call to the compression function is processing δ = m−n bits of M , and the number
of such calls is |M |/δ. Thus, if one makes n = λ and δ as small as 1, the number of compression calls increases to
|M |, compared to at most |M |/λ, when the compression function is at least length-doubling (as is the case in the
real-world).

5They had attacks on the prepend version, which they used to demonstrate the lack of composition properties for
ROCs.

5



Our Main Result. Nevertheless, our main result resolves this conjecture in the affirmative: the
Random Oracle Combiner in Equation (2) is secure.

The result is formally stated in Theorem 3.1, but here is an informal version, more precisely
accounting for salt lengths:

Theorem 1.1 (Informal version of Theorem 3.1). Let h1, h2 : {0, 1}n+δ → {0, 1}n be two oracles.
Then, as long as |Z1| = |Z2| > |M |+λ, the following construction C̃h1,h2 is a secure random oracle
combiner:

C̃h1,h2

Z1,Z2
(M) := h∗1(M,Z1)⊕ h∗2(M,Z2).

We notice that this construction is simultaneously satisfying all the attractive properties men-
tioned above. In particular, it gives an efficient hash combiner both for practical use (output
preservation, Merkle-Damg̊ard-friendliness, large input, good exact security), as well as in theory
(the minimal input length m of h1 can be as low as λ+O(1)).

1.1 Technical Overview

We briefly present the idea of our proof, and the difficulties we had to overcome.

The Definitional Framework. We first recall the indifferentiability framework for hash func-
tions, due to Coron et al. [9]. The high-level objective is to build a simulator Sim in the “ideal
world” which can fool any polynomial-query distinguisher D into thinking that D is in the “real
world”. These worlds are defined as follows: In the real world, D has access to a true random oracle
h1, and the real-world implementation of the combiner C̃h1,h2 . In the ideal world, the combiner is
replaced by a true |M |-bit random oracle H, while the compression function h1 must be “faked”
by the simulator Sim, so that the outputs of Sim make the fake h1 “consistent” with H, as if H
was also following the combiner construction. For the lack of better name, we call this task of the
simulator as combiner-consistency.

In the world of ROCs [12], there is an additional complication for the simulator, having to do
with the adversarial hash function h2. In the preprocessing step, we allow the distinguisher to
select an arbitrary oracle circuit g(·) which is allowed to make a bounded number of oracle calls to
a true random oracle h1. In the real world, we then define h2 = gh1 , while in the ideal world the
simulator gets g(·), but now has to define fake h1 so that combiner-consistency of a true random
function holds w.r.t. h1 = Sim and h2 = gSim.

This is quite ambitious, as every time Sim defines h1 on some input, this could force the definition
of h2 = gh1 , making it hard to respect the combiner-consistency. In fact, Dodis et al. [12] showed
that this is impossible to do deterministically. This is where the salts Z = (Z1,Z2) come in. D has
to commit to g before the salts are chosen. Afterwards, all the parties (including D and Sim) get
the salts, with the hope that it is too late for the circuit g to “mess up” the combiner-consistency
property, despite the fact that D(Z) can freely evaluate gSim(M) on many inputs M which depend
on the salt Z.

Easy Case: The “Monolithic” Combiner. For the construction of [12] given in Equation (1),
this simulator task turns out to be simple. This is because the entire long salt Z1 can fit inside
the monolithic input to h1, making the salted random oracle H ′(M) = h1(M,Z1) completely
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independent from the adversarial hash function g (which was chosen before Z1 was known). In
particular, the simulator can define

h1(M,Z1) = H(M)⊕ gh1(M,Z2)

to ensure combiner-consistency, provided gh1(M,Z2) never called h1 on any input ending in Z1,
even if the input M above was chosen by the distinguisher as a function of the salt Z1. Fortunately,
this is easy to ensure in the real-world (meaning the simulator never needs to worry about this in
the ideal world). Indeed, all one needs to do is make the salt-length |Z1| ≥ |M |+ λ, and a simple
union bound does the trick: the input M is too short to encode enough information about Z1 to
cause gh1(M,Z2) to ever evaluate h1(·,Z1).

Hard Case: The “Merkle-Damg̊ard” Combiner. Unfortunately, the situation is consider-
ably more involved for the Merkle-Damg̊ard-friendly construction given in Equation (2). The key
challenge is that it is no longer the case that h1(M,Z1) is independent of the adversarial hash
function g. In fact, it is possible for the (real-world) distinguisher to find some pair of messages
M,M ′ such that (gh1)∗(M ′,Z2) = h∗1(M,Z1).

In particular, consider M ′ = (h∗1(M,Z(1)
1 , . . . ,Z(k−1)

1 ),Z(k)
1 ), where k is the block-length of Z1.

That is, M ′ is the value of computing all but the last step of h∗1(M,Z1), followed by the last block

of Z1. By definition of Merkle-Damg̊ard, h∗1(M,Z1) = h1(h
∗
1(M,Z(1)

1 , . . . ,Z(k−1)
1 ),Z(k)

1 ) = h1(M
′),

and so it is not difficult to define g such that (gh1)∗(M ′,Z2) = h1(M
′) = h∗1(M,Z1).

Defining a simulator. In order to achieve combiner-consistency for C̃, we will need the simulator
controlling h1 to define it to satisy this equation:

h∗1(M,Z1) = H(M)⊕ (gh1)∗(M,Z2)

The first challenge we need to resolve is to figure out how the simulator can recognize when the
last query needed to compute h∗1(M,Z1) is made. The idea here is the same idea that is used in
most other length-extension indifferentiability proofs [9, 2]. Namely, the simulator will simply track
all queries made to it. If a query h1(a, b) is really equivalent to completing h∗1(M,Z1), then there
should be a record in the simulator of queries to all the previous rounds. That is, for each query
(a, b), the simulator will track the path of messages m1, . . . ,mt such that h1(a, b) = h∗1(m1, . . . ,mt).
With some work, we can show that this tracking is sufficient to recognize all queries of the form
h∗1(M,Z1).

Bounding the runtime of the simulator. The second major problem is that our simulator
is recursive. It is not clear that it will terminate quickly. The main challenge of this argument is
to give a runtime bound on our simulator. We will show that the number of recursive calls to the
simulator can be bounded by the number of queries made to the distinguisher.

A weaker separation property. In order to achieve this bound, we will show a weaker separa-
tion property than the claim that (gh1)∗(M,Z2) never computes h∗1(M

′,Z1). In particular, we will
show that if you can find an M such that (gh1)∗(M,Z2) queries h∗1(M

′,Z1), then you must have
queried h∗1(M

′) directly to the simulator when figuring out M . Note that this means that calling
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(gh1)∗(M,Z2) cannot recurse more times than queries made to h1, and so the simulator we defined
earlier terminates quickly.

Looking at the real world, where h1 is a true random oracle, this property is not too hard to
see. Assume towards contradiction that M is such that (gh1)∗(M,Z2) computes h∗1(M

′,Z1), but M
is chosen without querying h∗1(M

′,Z1). We can observe that the entire process of choosing M and
running g must query each round of h∗1(M

′,Z1) in order. But since M is chosen without querying
h∗1(M

′,Z1), this means that (gh1)∗(M,Z2) queries the last k rounds of h∗1(M
′,Z1), where k is the

“block-length” of Z1. And so looking at the queries made by (gh1)∗(M,Z2) completely reveals
M ′. This means that M alone is enough information to describe Z1. But this is impossible, since
|M | ≪ |Z1|.

However, the situations gets significantly more complicated when operating in the ideal world.
In the ideal world, whenever h∗1(M,Z1) is queried, (g

h1)∗(M,Z2) is called, which may itself compute
h∗1(M

′) without revealing it to h1. Thus, the argument before breaks down, since the process
of computing M may implicitly compute h∗1(M

′) before querying (gh1)∗(M,Z2). Furthermore,
adversaries in the ideal world also have oracle access to H as well as the simulator h1. In particular,
this means that whenever the adversary makes a query computing h∗1(M,Z1), they get the following
equation for free:

(gh1)∗(M,Z2) = h∗1(M,Z1)⊕H(M)

For simplicity, we will first consider only adversaries in the real world which only have oracle
access to the simulator h1, but not H. We will show that every recursive call made by the simulator
must be made on a message M for which h∗1(M) has already been queried.

Coloring queries. To illustrate this claim, we will color all queries made to the simulator h1. Any
query made directly we will color blue, and any query made indirectly via a call to (gh1)∗(M,Z2) we
will color orange. When we consider a particular recursive call, we will color queries made during
that call green. For an example, see Figure 1.

The outline of the argument is that we will prove three properties about the coloring of the
queries made to the simulator, and these three properties will together imply the result. We
represent each of these three properties visually in Figure 2.

First, no blue query can ever follow an orange query. The reason this is the case is intuitively
because we can generate the results of all blue queries without making any orange queries. Thus,
the only way for a blue query to follow an orange query is if the random output of some orange
query collides with one of the choices of input for a blue query.

Second, let us consider any recursive call made for a message M , where M has a path marked
entirely in blue in the state of the simulator. Let us mark all queries made directly by that
recursive call green. Then no green query can ever follow an orange query. The reasoning is the
same as before. Since the recursive call is made from a blue query, the corresponding message M
can be revealed by just looking at the blue queries. Thus, we can discover the queries made by
(gSim)∗(M,Z2) without making any orange queries.

Finally, we cannot have a sequence of green queries which correspond to the last k blocks
of h∗1(M

′,Z1). We show this using a compression argument. Let M be the message queried to
(gSim)∗(M,Z1) which triggered this sequence of green queries. Observe that if we know M , we can
recover the entire list of green queries by running (gh1)∗(M,Z2). If in addition we know the index
of the last query made for h∗1(M

′,Z1), we can follow the trail backwards to get the indices for all
queries of the last k blocks of h∗1(M

′,Z1). But the description of M as well as the index of the final
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ℓ = 2 ℓ+ k = 5
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1 Z(3)
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2 Z(1)
1

m′′
1 m′′

2 Z(1)
1

Figure 1: An example illustration of the simulator state with ℓ = 2, k = 3. Blue nodes refer to direct
queries, orange nodes refer to recursive queries, and green nodes refer to queries made in the current recursive
call. Here, the distinguisher has called the simulator directly on h1(0,m

′
1) as well as h

∗
1(m1,m2,Z1), which

has triggered (gh1)∗(m1,m2,Z2) to query h∗
1(m

′
1,m

′
2,Z

(1)
1 ). Earlier, some other recursive call has queried

h∗
1(m

′′
1 ,m

′′
2 ,Z

(1)
1 ).

query is of length |M |+ log2(Tg∗), where Tg∗ is the number of h1 oracle calls inside g∗. This is less
than |Z1|, meaning that such situation is impossible.

We now can see that if a recursive call (gh1)∗(M,Z2) is triggered on a message M , then M must
have a path marked entirely in blue. If not, consider the first such recursive call. If it is triggered
by a blue query, then by the first property the entire path corresponding to (M,Z1) must be blue,
and so we are good. If it is triggered by a green query, then by the second and third properties,
there must be some blue query along the last k nodes of the path corresponding to (M,Z1). And
so by the first property, M must have a path marked entirely in blue. Since the number of blue
messages is bounded by the number of queries made by the distinguisher, we can bound the number
of recursive calls by the number of queries made by the distinguisher.

Extending to distinguishers with access to H. The key idea here is that by construction,
H(M) = Sim∗(M,Z1) ⊕ (gh1)∗(M,Z2). Thus, we can take any distinguisher with oracle access to
H, and simulate its oracle queries H(M) by querying h∗1(M,Z1) ⊕ (gh1)∗(M,Z2). Thus, since we
know a distinguisher only querying h1 can’t cause h1 to make more recursive queries than direct
queries, we also get a bound on distinguishers with oracle access to both h1 and H.

1.2 Related Work

As mentioned before, our work directly answers open questions from the work of [12] on random
oracle combiners. This also puts us in a long line of work on combiners, initiated by [20] and [19],
and continuing through works such as [3, 18, 19, 20, 23]. In particular, combiners for collision-
resistance were studied by [6, 8, 26, 27], including their limitations of doubling the output length.
Multi-property preserving combiners, have been defined and constructed by [16, 17]. However, these

9



b b b b b b

o o o b

m1 m2 Z(1)
1 Z(2)

1 Z(3)
1

m′
1 m′

2 Z(1)
1

b b b b b b

o o o g

m1 m2 Z(1)
1 Z(2)

1 Z(3)
1

m′
1 m′

2 Z(1)
1

b b b b b b

b b g g g g

ℓ = 2 ℓ+ k = 5

m1 m2 Z(1)
1 Z(2)

1 Z(3)
1

m′
1 m′

2 Z(1)
1 Z(2)

1 Z(3)
1

Figure 2: Illustration of the three impossible situations for the simulator state. The first represents no blue
query following an orange query. The second represents no green query coming from a message M whose
path is entirely blue following an orange query. The third represents no sequence of green queries containing
all of Z1.
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also face the same lower bounds as [6, 27] (one of the multi-property being collision-resistance),
so they necessarily have long output length. They also preserve indifferentiability from a random
oracle, but in a much weaker model than the one from [12].

Mittelbach [25] considered a similar notion to ROCs called “cryptophia short combiners” (ad-
ditionally, a follow up work [24] identifies and fixes a flaw in the original paper). Mittelbach [25]
was the first to show that the lower bounds on the output length of collision-resistance combiners
(that is, nearly double the length of the outputs of the input hash functions [6, 26, 27]) can be
overcome by assuming one of the two functions is ideal, even under the strong assumption that the
other hash function can arbitrarily depend on the ideal one.

Finally, we mention several papers on proving indifferentiability of various constructions [10, 14,
1, 13, 11], where complex combinatorial and probabilistic arguments needed to be made in order
to ensure the termination and/or security of a given indifferentiability simulator.

2 Preliminaries

2.1 Random Oracles and Indifferentiability

This work is concerned with proving indifferentiability from a random oracle, using the indifferen-
tiability framework due to Maurer, Renner, and Holenstein.

Definition 2.1 (Maurer, Renner, Holenstein 2003). Let F ,G be two ideal primitives, and let SFZ
be a family of constructions of G from F . We say that S is (T1, T2, TSim, ϵ)-indifferentiable from G
if there exists a simulator SimO making at most TSim queries to its oracle such that the following
holds:
For all oracle algorithms DO1,O2 making at most T1, T2 queries respectively to each of its oracles,∣∣∣∣∣ Pr

Z
$←−U

[DF ,SF
Z (Z)→ 1]− Pr

Z
$←−U

[DSimG(Z),G(Z)→ 1]

∣∣∣∣∣ ≤ ϵ

where U is the uniform distribution.

We give the definition of a random oracle, along with some useful facts about the random oracle
that we will make use of.

Definition 2.2. A random oracle H : {0, 1}m → {0, 1}n is an oracle giving access to a function
{0, 1}m → {0, 1}n chosen uniformly at random during initialization.

Lemma 2.3 (Birthday Bound). Let h : {0, 1}n+δ → {0, 1}n be a random oracle. For any algorithm
D making at most T queries to h, the probability that D produces two inputs (x1, x2) such that

h(x1) = h(x2) is ≤ T 2

2n .

Lemma 2.4 (Guessing Lemma). Let h : {0, 1}n+δ → {0, 1}n be a random oracle. For any algorithm
D making at most T queries to h, the probability that D produces an input output pair (x, y) such
that h(x) = y without querying h(x) is ≤ 1

2n .

Proof. This immediately follows from the lazy sampling technique. If D does not query h(x), then
the value of h(x) is uniformly random, and so the probability that D guesses it correctly is 2−n.

11



REALb:

Sample Z $←− {0, 1}k
Sample h : {0, 1}n+δ → {0, 1}n u.a.r.
Run DO1,O2(Z)→ b′

Output b′.

O1(x):
Output h(x)

O2(M):

If b = 0, output CO1,gO1

Z (M).

If b = 1, output CgO1 ,O1

Z (M).

IDEAL(C):

Sample Z $←− {0, 1}k
Sample H : {0, 1}ℓ → {0, 1}s u.a.r.
Run DO1,O2(Z)→ b′

Output b′.

O1(x):
Output SimO2(x,Z)

O2(M):
Output H(M).

Figure 3: We say that the combiner C is (T1, T2, Tg, TSim)-secure if for all b ∈ {0, 1}, circuits DO1,O2 , gO1

with D making at most T1 queries to O1, T2 queries to T2 and g making at most Tg queries to O1, there

exists a simulator SimO2 such that |Pr[D(REALb)→ 1]− Pr[D(IDEAL)→ 1]| ≤ ϵ. (Reproduced from [12])

Finally, we present the indifferentiability-based definition of Random Oracle combiners, as they
appeared in [12].

Definition 2.5 (Definition 3.3 from [12]). Let Ch1,h2

Z : {0, 1}m → {0, 1}n be a PPT algorithm tak-
ing in an input M , a seed Z, and two oracles h1 and h2. Let H : {0, 1}n+δ → {0, 1}n,G : {0, 1}m →
{0, 1}n be two random oracles. We say that C is a (Tg, T1, T2, TSim, ϵ)-random oracle combiner if,

for all oracle circuits gO making at most Tg oracle queries, both CH,gH

Z and CgH,H
Z are (T1, T2, TSim, ϵ)-

indifferentiable from G.

An equivalent, game-based formulation is given in Figure 3.

2.2 The Merkle-Damg̊ard Transform

We present the Merkle-Damg̊ard Transform, which allows one to convert a fixed-length hash func-
tion into one which takes inputs of arbitrary size by processing the input block by block.

Definition 2.6 (Merkle-Damg̊ard Transform). Let f : {0, 1}n+δ → {0, 1}n be a function. We
define f∗ : {0, 1}∗ → {0, 1}n as follows:
On input x, write x = (x1, . . . , xℓ) where |xi| = δ (if |x| is not a multiple of ∆, pad with 0s). Then,

f∗(x) := f(xℓ, . . . , f(x2, f(x1, 0)) . . . )

We will use f∗ to refer to Merkle-Damg̊ard applied to f . We will slightly abuse notation and
use the same notation even when f is some stateful oracle. That is, if O is an oracle, we will define

O∗(x) := O(xℓ, . . . ,O(x1, 0) . . . ),

where O(x1, 0) is performed before O(x2,O(x1, 0)), and so on.

12



3 Our Main Result

We now have the background to present the main result of the work, Theorem 3.1.

Theorem 3.1. Let h1, h2 : {0, 1}n+δ → {0, 1}n be two oracles. Let k > ℓ be integers and let
Ch1,h2 : {0, 1}(ℓ+k)δ → {0, 1}n be defined as follows:

Ch1,h2

Z1,Z2
(M) : h∗1(M,Z1)⊕ h∗2(M,Z2).

Then for all Tg, T1, T2, C is a (Tg, T1, T2, TSim, ϵ) random oracle combiner with

ϵ ≤ O

(
(T1Tg(ℓ+ k) + T2T

2
g (ℓ+ k)2)2

2n
+

Tg(ℓ+ k)

2(k−ℓ)δ

)

TSim ≤ O
(
T1Tg(ℓ+ k) + T2T

2
g (ℓ+ k)2

)
To prove this theorem, it suffices to show that for gO any oracle circuit and h1 : {0, 1}n+δ →

{0, 1}n a random oracle, Ch1,gh1 is indifferentiable from a bigger random oracle H : {0, 1}(ℓ+k)δ →
{0, 1}n. Since the construction is symmetric, we then immediately get that Cgh1 ,h1 is also indiffer-
entiable from H.

Description of the simulator We define a simulator for the indifferentiability game in Figure 4.
The simulator tracks all queries made to it in T . The purpose of this is so that if the adversary
queries

Sim∗(X) = Sim(Sim(. . . Sim(Sim(0, x1), x2), . . . ), xℓ)

then the simulator should be able to recoverX from the input to the last query (Sim(. . . Sim(Sim(0, x1), x2), . . . ), xℓ).
This is formalized through the subroutine TPath. In particular, if (a, b) is the last query made in
computing Sim∗(X), then it should be the case that TPath(X) = (a, b).

Recall that for consistency the simulator should satisfy the property

H(M) = (SimH)∗(M,Z1)⊕ (gSim
H

)∗(M,Z2)

for messages M which are ℓ blocks long. In other words, we need

(SimH)∗(M,Z1) = H(M)⊕ (gSim
H

)∗(M,Z2)

So there are two cases the simulator needs to handle.
On input (a, b) such that TPath(a, b) ̸= (M,Z1) for an ℓ-block long M , SimH(a, b) should just

act like a random oracle. Thus, in this case the simulator outputs a random string (and stores it
in T to maintain consistency).

On input (a, b) such that TPath(a, b) = (M,Z1) for an ℓ-block long M , SimH(a, b) explicitly

computes H(M)⊕ (gSim
H
)∗(M,Z2) and outputs that. Note that this may cause recursive queries,

and so we also include a safeguard limiting the number of recursive calls to some value tmax, which
we will set later.

13



Sim− INIT :
Initialize T = [].
Initialize rcount = 0.

SimO(a, b):
If (a, b) ∈ T , output T [a, b].
rcount← rcount+ 1.
If rcount > tmax, terminate.
Set X ← Tpath(a, b).
If X = (M,Z1) with |M | = ℓ · δ:
-Set T [a, b]← H(M)⊕ (gO1)∗(M,Z2).

Else: set T [a, b]
$←− {0, 1}n.

Output T [a, b].

Subroutine Tpath(a, b):
Let (a1, b1), . . . , (as, bs) be the longest sequence in T such that
-a1 = 0
-ai = T [ai−1, bi−1] for i > 1
-a = T [as, bs]
Output b1|| . . . ||bs||b

Figure 4: Our simulator for the indifferentiability game.

3.1 The hybrid argument

For the ease of notation, throughout the rest of this paper Tg∗ will be (ℓ + k)Tg, a bound on the
number of queries made by g during any call to (g(·))∗.

We will prove this indifferentiability through a sequence of hybrids. In particular, for each
indifferentiability adversary DO1,O2 , we define a sequence of games G0, G1, . . . , G8, Gf . G0 will be
REAL the ”real” game from Theorem 2.5, where O1 is a random oracle h and O2 is the construction

Ch,gh

Z1,Z2
= h∗(M,Z1) ⊕ (gh)∗(M,Z2). Gf will be IDEAL, the ”ideal” game from Theorem 2.5 with

O2 a random oracle H and O1 the simulator described above SimH . To complete the argument,
we will bound for each i,

|Pr[Gi→ 1]− Pr[G(i− 1)→ 1]| .

These hybrids are detailed in Figures 5, 6 and 8. Note that in each hybrid, TPath refers to the
subroutine defined in Figure 4.

Lemma 3.2. REAL ≡ G1

Proof. Note that G1 acts identically to REAL, but performs extra computations which are not
returned by the oracles. Because of the recursion counter, G1 can never enter an infinite loop.
Thus, it is clear that the oracles behave identically in both games.

Lemma 3.3. |Pr[G1→ 1]− Pr[G2→ 1]| ≤ Pr[G2→ ⊥] ≤ tmax(tmax+1)
2n .
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REAL:

Sample Z1, Z2
$←− {0, 1}k

Sample h : {0, 1}n+δ → {0, 1}n u.a.r.
Run DO1,O2(Z1,Z2)→ b′.
Output b′.

O1(a, b):
Output h(a, b)

O2(M):
Output O∗

1(M,Z1)⊕ (gO1)∗(M,Z2).

(a) The real game, where O1 is a wrapper for the small
random oracle and O2 is a wrapper for our combiner
construction.

G1:

Sample Z1, Z2
$←− {0, 1}kδ

Sample h : {0, 1}n+δ → {0, 1}n u.a.r.
Initialize T = [], rcount = 0.
Run DO1,O2(Z1,Z2)→ b′

Output b′.

O1(a, b):
If (a, b) ∈ T , output T [a, b].
rcount← rcount+ 1.
Set X ← Tpath(a, b).
If X = (M,Z1) with |M | = ℓ · δ:
-If rcount ≤ tmax, call (g

O1)∗(M,Z2).
Set T [a, b]← h(a, b).
Output T [a, b].

O2(M):
Output O∗

1(M,Z1)⊕ (gO1)∗(M,Z2).

(b) The first hybrid, where we track queries made to O1

in T . When a path is of the form (M,Z1) for an ℓ block
long M , we additionally call (gO1)∗(M,Z2), although we
do nothing with it. We also add a safeguard so that this
does not infinitely recurse.

G2:

Sample Z1, Z2
$←− {0, 1}kδ

Sample h : {0, 1}n+δ → {0, 1}n u.a.r.
Initialize T = [], rcount = 0.
Run DO1,O2(Z1,Z2)→ b′

If flag FAIL is set, output ⊥.
Output b′.

O1(a, b):
If (a, b) ∈ T , output T [a, b].
rcount← rcount+ 1.
Set X ← Tpath(a, b).
If X = (M,Z1) with |M | = ℓ · δ:
-If rcount ≤ tmax, call (g

O1)∗(M,Z2).
Set T [a, b]← h(a, b).
If rcount ≤ tmax:
-If T [a, b] = 0, set flag FAIL.
-If there exists (a′, b′) ∈ T such that

T [a, b] = a′ or T [a, b] = T [a′, b′], set flag FAIL.
Output T [a, b].

O2(M):
Output O∗

1(M,Z1)⊕ (gO1)∗(M,Z2).

(c) The second hybrid, where we add consistency checks
to T . If any checks fail, we force the game to output ⊥.

G3:

Sample Z1, Z2
$←− {0, 1}kδ

Sample h : {0, 1}n+δ → {0, 1}n u.a.r.
Initialize T = [], rcount = 0.
Run DO1,O2(Z1,Z2)→ b′

If flag FAIL is set, output ⊥.
Output b′.

O1(a, b):
If (a, b) ∈ T , output T [a, b].
rcount← rcount+ 1.
If rcount > tmax, terminate and set flag FAIL.
Set X ← Tpath(a, b).
If X = (M,Z1) with |M | = ℓ · δ:
-Call (gO1)∗(M,Z2).

Set T [a, b]← h(a, b).
If T [a, b] = 0, set flag FAIL.
If there exists (a′, b′) ∈ T such that T [a, b] = a′

or T [a, b] = T [a′, b′], set flag FAIL.
Output T [a, b].

O2(M):
Output O∗

1(M,Z1)⊕ (gO1)∗(M,Z2).

(d) The third hybrid, where we output ⊥ if the recursion
counter ever exceeds its limits.

Figure 5: The REAL game and Hybrids G1, G2, and G3.
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G4:

Sample Z1, Z2
$←− {0, 1}kδ

Sample h : {0, 1}n+δ → {0, 1}n u.a.r.
Initialize T = [], rcount = 0.
Run DO1,O2(Z1,Z2)→ b′

If flag FAIL is set, output ⊥, else b′.

O1(a, b):
If (a, b) ∈ T , output T [a, b].
rcount← rcount+ 1.
If rcount > tmax, terminate and set flag FAIL.
Set X ← Tpath(a, b).
If X = (M,Z1) with |M | = ℓ · δ:
-Call (gO1)∗(M,Z2).

-Sample y
$←− {0, 1}n.

-Set T [a, b]← y.
Else: set T [a, b]← h(a, b).
If T [a, b] = 0, set flag FAIL.
If there exists (a′, b′) ∈ T such that T [a, b] = a′

or T [a, b] = T [a′, b′], set flag FAIL, else output
T [a, b].

O2(M):
Output O∗

1(M,Z1)⊕ (gO1)∗(M,Z2).

(a) The fourth hybrid, where we sample the output of O1

uniformly (and store it in T ).

G5:

Sample Z1, Z2
$←− {0, 1}kδ

Sample h : {0, 1}n+δ → {0, 1}n u.a.r.
Initialize T = [], rcount = 0.
Run DO1,O2(Z1,Z2)→ b′

If flag FAIL is set, output ⊥, else b′.

O1(a, b):
If (a, b) ∈ T , output T [a, b].
rcount← rcount+ 1.
If rcount > tmax, terminate and set flag FAIL.
Set X ← Tpath(a, b).
If X = (M,Z1) with |M | = ℓ · δ:
-Sample y

$←− {0, 1}n.
-Set T [a, b]← y⊕(gO1)∗(M,Z2).

Else: set T [a, b]← h(a, b).
If T [a, b] = 0, set flag FAIL.
If there exists (a′, b′) ∈ T such that T [a, b] = a′

or T [a, b] = T [a′, b′], set flag FAIL, else output
T [a, b].

O2(M):
Output O∗

1(M,Z1)⊕ (gO1)∗(M,Z2).

(b) The fifth hybrid, where we ⊕ the output of recursive
calls with (gO1)∗(M,Z2).

Figure 6: Hybrids G4 and G5.
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G6:

Sample Z1, Z2
$←− {0, 1}kδ

Sample h : {0, 1}n+δ → {0, 1}n u.a.r.
Sample H : {0, 1}ℓ·δ → {0, 1}n u.a.r.
Initialize T = [], rcount = 0.
Run DO1,O2(Z1,Z2)→ b′

If flag FAIL is set, output ⊥, else b′.

O1(a, b):
If (a, b) ∈ T , output T [a, b].
rcount← rcount+ 1.
If rcount > tmax, terminate and set flag FAIL.
Set X ← Tpath(a, b).
If X = (M,Z1) with |M | = ℓ · δ:
-Set T [a, b]← H(M)⊕ (gO1)∗(M,Z2).

Else: set T [a, b]← h(a, b).
If T [a, b] = 0, set flag FAIL.
If there exists (a′, b′) ∈ T such that T [a, b] = a′

or T [a, b] = T [a′, b′], set flag FAIL, else output
T [a, b].

O2(M):
Output O∗

1(M,Z1)⊕ (gO1)∗(M,Z2).

(a) The sixth hybrid, where we sample all the randomness
used for recursive calls in the beginning as the function H.

G7:

Sample Z1, Z2
$←− {0, 1}kδ

Sample h : {0, 1}n+δ → {0, 1}n u.a.r.
Sample H : {0, 1}ℓ·δ → {0, 1}n u.a.r.
Initialize T = [], rcount = 0.
Run DO1,O2(Z1,Z2)→ b′

If flag FAIL is set, output ⊥, else b′.

O1(a, b):
If (a, b) ∈ T , output T [a, b].
rcount← rcount+ 1.
If rcount > tmax, terminate and set flag FAIL.
Set X ← Tpath(a, b).
If X = (M,Z1) with |M | = ℓ · δ:
-Set T [a, b]← H(M)⊕ (gO1)∗(M,Z2).

Else: set T [a, b]← h(a, b).
If T [a, b] = 0, set flag FAIL.
If there exists (a′, b′) ∈ T such that T [a, b] = a′

or T [a, b] = T [a′, b′], set flag FAIL, else output
T [a, b].

O2(M):
Call O∗

1(M,Z1)⊕ (gO1)∗(M,Z2).
Output H(M).

(b) The seventh hybrid, where O2 ignores the results of
its queries and outputs H(M) directly.

Figure 7: Hybrids G6 and G7.
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G8:

Sample Z1, Z2
$←− {0, 1}kδ

Sample h : {0, 1}n+δ → {0, 1}n u.a.r.
Sample H : {0, 1}ℓ·δ → {0, 1}n u.a.r.
Initialize T = [], rcount = 0.
Run DO1,O2(Z1,Z2)→ b′

If flag FAIL is set, output ⊥, else b′.

O1(a, b):
If (a, b) ∈ T , output T [a, b].
rcount← rcount+ 1.
If rcount > tmax, terminate and set flag FAIL.
Set X ← Tpath(a, b).
If X = (M,Z1) with |M | = ℓ · δ:
-Set T [a, b]← H(M)⊕ (gO1)∗(M,Z2).

Else: set T [a, b]← h(a, b).
If T [a, b] = 0, set flag FAIL.
If there exists (a′, b′) ∈ T such that T [a, b] = a′

or T [a, b] = T [a′, b′], set flag FAIL, else output
T [a, b].

O2(M):
Output H(M).

(a) The eighth hybrid, where O2 no longer queries
O∗

1(M,Z1)⊕ (gO1)∗(M,Z2).

IDEAL:

Sample Z1, Z2
$←− {0, 1}kδ

Sample H : {0, 1}ℓ·δ → {0, 1}n u.a.r.
Sim− INIT . Run DO1,O2(Z1,Z2)→ b′

If flag FAIL is set, output ⊥, else b′.
O1(a, b):
Output SimO2(a, b).

O2(M):
Output H(M).

(b) The ideal game, where O1 is a wrapper for the sim-
ulator and O2 is a wrapper for the big random oracle
H.

Figure 8: The IDEAL game and the last hybrid G8.
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Proof. Consider the situation where h(a, b) is sampled uniformly at random each time it is called
for the first time. Then, each time O1 is called, the probability that h(a, b) = 0 or there exists

(a′, b′) ∈ T such that h(a, b) = a′ is ≤ |T |+1
2n by a union bound.

Since this check can be made at most tmax times, and for each of these checks, |T | ≤ tmax, by
a union bound we have

Pr[G2→ ⊥] ≤ tmax(tmax + 1)

2n
.

The claim follows from the fact that G1 and G2 are identical conditioned on G2 not outputting
⊥.

Lemma 3.4. For tmax ≥ T1 + T2(ℓ+ k + Tg∗),

Pr[G3→ ⊥] ≤ Pr[G2→ ⊥] + 3t2max

2n
+

Tg∗

2(ℓ−k)δ

and

|Pr[G2→ 1]− Pr[G3→ 1]| ≤ 3t2max

2n
+

Tg∗

2(ℓ−k)δ

Note that as long as rcount ≤ tmax, the oracles in both games are identical. Thus, it remains to
bound Pr[G3→ ⊥]. In particular, this step is essentially equivalent to showing that the simulator
terminates before rcount ≤ tmax. This argument goes along the same lines as described in the
technical overview. Since this hybrid is formally very technically involved, we delay its proof
to Section 3.2, see Theorem 3.13.

Lemma 3.5. G3 ≡ G4.

Proof. Note that in G3, h(a, b) will only be called exactly once the first time O1(a, b) is called.
Thus, replacing some of these calls to h(a, b) with uniformly random strings leads to the exact
same distributions of oracles.

Lemma 3.6. G5 ≡ G4.

Proof. Since XORing by any value is a permutation, sampling a random string is equivalently
distributed to XORing a random string to any value. The claim follows.

Lemma 3.7. G6 ≡ G5.

Proof. By the definition of Tpath, it is clear that for any table T and any message X, there is at
most one (a, b) ∈ T such that Tpath(a, b) = X. Thus, H(M) will be used at most once in G6, and
so is identically distributed to a random value. As the only difference between G5 and G6 is that
a random value is replaced by H(M), the two games are identically distributed.

Lemma 3.8. Consider any call to G6 in which ⊥ is not set. Let (a1, b1),. . . ,
(aℓ+k, bℓ+k) be any path in T such that a1 = 0 and ai = T [ai−1, bi−1] for i > 1 Then the first query
made to O1(aℓ+k, bℓ+k) triggered the recursive condition with X = b1|| . . . bℓ+k.

Proof. First, we need to show that at the time O1(aℓ+k, bℓ+k) is queried, T [ai, bi] has already been
set for i < ℓ + k. If this is not the case, then there is some i such that T [ai, bi] is set before
T [ai−1, bi−1]. But then when T [ai−1, bi−1] is set, since T [ai−1, bi−1] = ai, the flag FAIL would have
been set.

Next, we need to show that there is no other path of length ≥ ℓ+ k ending at (aℓ+k, bℓ+k). Say
there is some other path (a′1, b

′
1), . . . , (a

′
t, b

′
t) with
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1. a′1 = 0

2. a′i = T [a′i−1, b
′
i−1] for i > 1

3. a′t = aℓ+k and b′t = bℓ+k

Since the path is different, there must be some point at which they diverge. That is, there should
be some i, j such that

1. T [a′i, b
′
i] = aj

2. Either j = 1 or (a′i, b
′
i) ̸= (aj−1, bj−1)

If j = 1, then since a1 = 0, we have T [a′i, b
′
i] = 0, which would cause G6 to fail. If j ̸= 0, then we

have T [a′i, b
′
i] = T [aj , bj ] with (a′i, b

′
i) ̸= (aj , bj), which would also cause G6 to fail.

Thus, whenO1(aℓ+k, bℓ+k) is called for the first time, the longest path corresponding to (aℓ+k, bℓ+k)
is (a1, b1), . . . , (aℓ+k−1, bℓ+k−1), and so
Tpath(aℓ+k, bℓ+k) = b1|| . . . bℓ+k.

Lemma 3.9. |Pr[G6→ 1]− Pr[G7→ 1]| ≤ Pr[G6→ ⊥] and
Pr[G7→ ⊥] ≤ Pr[G6→ ⊥].

Proof. It is sufficient to show that as long as G6 does not output ⊥, every query to O2(M) outputs
H(M). If this is the case, then as long as G6 does not output ⊥, G6 and G7 behave identically.

Consider any query to O2(M) in G6 where FAIL is not set after the end of the query. Dur-
ing this query O∗

1(M,Z1) calls O1 directly on some inputs (a1, b1), . . . , (aℓ+k, bℓ+k) with ai =
O1(ai−1, bi−1) = T [ai−1, bi−1] and a1 = 0. Here b1|| . . . ||bℓ+k = (M,Z1)

Thus, by Theorem 3.8, O1 ∗ (M,Z1) = O1(ai−1, bi−1) triggers the recursive condition with
X = (M,Z1). And so O∗

1(M,Z1) = H(M)⊕ (gO1)∗(M,Z2).
Since results from O1 are cached, the second call to (gO1)∗(M,Z2) gives the same response.

And so O2(M) = H(M)⊕ (gO1)∗(M,Z2)⊕ (gO1)∗(M,Z2) = H(M).

Lemma 3.10. |Pr[G7→ 1]− Pr[G8→ 1]| ≤ Pr[G7→ ⊥] + 2tmax
2n and

Pr[G8→ ⊥] ≤ Pr[G7→ ⊥] + 2tmax
2n

The intuition behind this hybrid is that by induction, with high probability the responses to
queries in G8 are the same as those in G7. In particular, the set T in G8 should be a subset of the
set T in G7 since strictly fewer calls are made to O1. However, making this fully formal is fairly
technically involved, and so we defer the proof to Appendix A.

Lemma 3.11. |Pr[IDEAL→ 1]− Pr[G8→ 1]| ≤ Pr[G8→ ⊥].

Proof. The only differences between G8 and IDEAL are the following:

1. h(a, b) is sampled only when needed, instead of all at the beginning.

2. IDEAL can not output ⊥.
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Runtime:

Sample Z1, Z2
$←− {0, 1}kδ

Sample h : {0, 1}n+δ → {0, 1}n u.a.r.
Initialize T = [], rcount = 0.
Run DO(Z1,Z2)
Output 0.

O(a, b):
If (a, b) ∈ T , output T [a, b].
rcount← rcount+ 1.
If rcount > tmax, end the game with output 1.
Set X ← Tpath(a, b).
If X = (M,Z1) with |M | = ℓ · δ:
-Call (gO)∗(M,Z2).

Set T [a, b]← h(a, b).
If T [a, b] = 0, end the game and output 0.
If there exists (a′, b′) ∈ T such that T [a, b] = a′ or T [a, b] = T [a′, b′], end the game and output
0, else output T [a, b].

Subroutine Tpath(a, b):
Let (a1, b1), . . . , (as, bs) be the longest sequence in T such that
-a1 = 0
-ai = T [ai−1, bi−1] for i > 1
-a = T [as, bs]
Output b1|| . . . ||bs||b

Figure 9: The game for which we will bound runtime.

Note that the first difference clearly leads to identical distributions, since it doesn’t matter when
the values of h are sampled as long as h(a, b) is sampled by the time (a, b) is queried.

Thus, the games are equivalently distributed conditioned on G8 not outputting ⊥. But we know
that

Pr[G8→ ⊥] ≤ tmax(tmax + 1)

2n
+

3t2max

2n
+

Tg∗

2(ℓ−k)δ
+

2tmax

2n

And so the claim follows.

Putting this all together, we get that for tmax ≥ (T1 + T2(ℓ+ k + Tg∗)) · (Tg∗ + 1)

|Pr[REAL→ 1]− Pr[IDEAL→ 1]| = O

(
t2max

2n
+

Tg∗

2(ℓ−k)δ

)
which concludes the proof of Theorem 3.1.

3.2 Runtime Proof

Our goal is to show that for all DO1,O2 , with all but negligible probability, G3 from Figure 5d never
overflows its recursion counter. To show this, we will consider a slightly simplified game, defined
in Figure 9. In the simplified game, we remove O2 and we say that the game outputs 1 if and only
if the recursion counter overflows.
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To describe the runtime game directly, we give D oracle access to a random function h through
a wrapper oracle O. O will then keep track of all queries made to it. Whenever there is a path in
the table of queries corresponding to a message X = M ||Z1, then we run (gO)∗(M,Z2), allowing g
to call O (which may then recursively call gO again). In addition, we keep a recursion counter to
track how many times O is called.

We will prove that the probability the recursion counter overflows in this simplified game is
negligible.

Lemma 3.12 (Key Lemma). For all circuits g and adversaries D making at most T1 queries to
O, as long as tmax ≥ T1 · (Tg∗ + 1),

Pr[Runtime→ 1] ≤ t2max

2n
+

2 · T1 · tmax · Tg∗

2n
+

Tg∗

2(ℓ−k)δ
,

where Runtime is as in Figure 9.

Corollary 3.13 follows naturally.

Corollary 3.13. Let tmax = (T1 + T2(ℓ+ k + Tg∗))(Tg∗ + 1). Then,

Pr[rcount ≥ tmax in G3] ≤ 3t2max

2n
+

Tg∗

2(ℓ−k)δ

Proof. Let DO1,O2 be an adversary for G3 making T1 queries to O1 and T2 queries to O2. We define
D̃O to run D but replacing all O1 queries by D with a O query and replacing all O2 queries by D
with O∗(M,Z1)⊕ (gO)∗(M,Z2). It is clear that

Pr[rcount ≥ tmax in G3(D)] ≤ Pr[Runtime(D′)→ 1]

Furthermore, D′ makes ≤ T1 + T2(ℓ+ k + Tg∗) queries to O.
The corollary follows.

We then proceed to the proof of the key lemma.
To illustrate our argument, we assign colors to the truth table of h(a, b) defined during the

duration of the game as follows:

1. If h(a, b) was not queried at all during the game, color it gray.

2. If h(a, b) was queried by a non-recursive call to O, color it blue.

3. If h(a, b) was queried to O, but only during recursive calls, color it orange.

Furthermore, we call a message X of arbitrary length blue if there exists (a, b) ∈ T such that
Tpath(a, b) = X and for each (ai, bi) in the corresponding path, (ai, bi) is blue. That is, X is blue
if there exists a path of only blue queries reconstructing X.

The main idea of our argument is to show that with all but negligible probability, if (gO)∗(M,Z2)
were to recurse when called on a blue message M , then the recursive calls (gO)∗(M ′,Z2) will be
made only on blue messages M ′. We will then show that with all but negligible probability, an
honest query to O will only recurse on a message M if M is blue. Together, this implies that
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the only recursive calls made will be on blue messages, and so the number of total recursions is
bounded by the number of blue messages.

We will define three properties of executions of Runtime, and then we will show that these
properties all hold with high probability. Together, these properties will imply that the the total
number of recursions is bounded by the number of blue messages.

Notation 3.14. For ease of notation, We will call the state of Runtime immediately after rcount
is set to t to be the state of Runtime at time step t.

Notation 3.15. We say a message M is blue if there exists a path (a1, b1), . . . , (aℓ, bℓ) corresponding
to M . That is,

1. a1 = 0,

2. ai = T [ai−1, bi−1] for i > 1,

3. b1|| . . . ||bℓ = M .

Property 1. If at any time step t, (a1, b1), (a2, b2) ∈ T with h(a1, b1) = a2 and (a2, b2) is blue,
then (a1, b1) is blue at time t.

Property 2. Let M be any message which is blue at time t. Let M ′ be any recursive query
(gO)∗(M ′,Z2) made directly by O in the call to (gO)∗(M,Z2). Let (a′1, b

′
1), . . . , (a

′
ℓ+k, b

′
ℓ+k) be the

path corresponding to M ′||Z2. In particular, this means that Tpath(a′ℓ+k, b
′
ℓ+k) = M ′||Z2. Then

for all i, either

1. (a′i, b
′
i) is blue at time t or

2. (a′i, b
′
i) is queried by (gh)∗(M,Z2).

Property 3. Let M be any message. Let M ′ be any recursive query O∗
1(M

′,Z1) made directly by
O in the call to (gO1)∗(M,Z2). Let (a′1, b

′
1), . . . , (a

′
ℓ+k, b

′
ℓ+k) be the path corresponding to M ′||Z1.

In particular, this means that Tpath(a′ℓ+k, b
′
ℓ+k) = M ′||Z1. Then there exists an ℓ < i ≤ ℓ+ k such

that (a′i, b
′
i) is not queried directly by (gh)∗(M,Z2).

Informally, Property 1 says that blue queries can only follow blue queries. Property 2 says that
every complete sequence of Merkle-Damgard query O∗(M) = O(O(. . . ,O(O(0,m1),m2), . . . ),mℓ)
must have all of its corresponding orange queriesO(. . . ,mi) within a single recursive call. Property 3
says that no single recursive call can query the last k rounds of O∗(M,Z1) by itself. The idea is
that if all three properties hold, then for all recursive queries made, at least one round in the
corresponding path is blue. Thus, the number of recursive queries is bounded by the number of
direct queries.

Lemma 3.16. Consider any randomness r = (Z1,Z2, h). Let Runtime(r) be Runtime instantiated
with the given randomness. The probability over r that Runtime(r) satisfies Property 1 is greater

than or equal to 1− t2max
2n .

Proof. Let ϵ := Pr[Runtime(r) does not satisfy Property 1]. We construct an adversary D′ predict-
ing h(x) without querying it, violating Theorem 2.4.
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We first observe that if we run Runtime(r), but do not make any recursive queries, then up until
the point where either terminates, the input output behavior of the oracles is exactly the same as
if we were making recursive queries. Thus, we can recover the blue queries made by Runtime(r) at
any point of the execution by simply running Runtime(r) without making recursive queries.

Thus, if there is some blue query which continues a non-blue query in Runtime(r), then we can
recover the input to the blue query without knowing the output of the non-blue query. Formally,
define D′ as follows:

1. Guess two indices q′1, q
′
2

$←− [tmax].

2. Guess r
$←− {0, 1}2kδ × {h : {0, 1}n+δ → {0, 1}n}.

3. Run Runtime(r) normally until just before query q′1 on input (a′1, b
′
1).

4. Run Runtime(r) without making recursive queries until just before query q′1 on input (a′2, b
′
2).

5. Output (x = (a′1, b
′
1), y = a′2).

If Runtime(r) does not satisfy Property 1, then at some point in the execution there exist two
queries (a1, b1), (a2, b2) ∈ T such that (a2, b2) is blue and (a2, b2) is not and h(a1, b1) = a2. Say
that (a1, b1) is made during the q1st query and (a2, b2) is made during the q2nd direct query.

Then, if q′1 = q1 and q′2 = q2, it is clear that when running D′, we have (a′1, b
′
1) = (a1, b1)

and (a′2, b
′
2) = (a2, b2). Furthermore, since (a1, b1) is not blue by the time (a2, b2) is added to T ,

when D′ runs Runtime(r) without making recursive queries, D′ does not query h(a1, b1). Since D′

terminates before querying (a2, b2), D′ does not query h(a1, b1).
But since we have h(x) = h(a1, b1) = a2 = y, D′ is an attacker for Theorem 2.4 with success

probability ≥ ϵ · Pr[q′1 = q1 and q′2 = q2]. Thus,

ϵ · 1

t2max

≤ 1

2n
.

Lemma 3.17. The probability over r = (Z1,Z2, h) that Runtime(r) satisfies Property 2 is greater

than or equal to 1− 2·T1·tmax·Tg∗
2n .

Proof. The idea behind this proof is roughly the same as for Theorem 3.16. In particular, we can
generate all blue queries without making any recursive calls. This means that we can recover M
and thus generate all queries made by (gh)∗(M,Z2) without making recursive calls.

In particular, let ϵ := Pr[Runtime(r)does not satisfy Property 2]. We will construct D′ violat-
ing Theorem 2.4.

Consider any r such that Runtime(r) does not satisfy Property 2. Let M and M ′ be two
messages such that M is blue at time t, (gO)∗(M,Z2) triggers a recursion (gO)∗(M ′,Z2) and there
is a query in the path of M ′ which is neither blue nor queried by (gh)∗(M,Z2).

Since we know that the last query in the path of M ′ is queried by (gh)∗(M,Z2), there must be
some pair of queries (a1, b1), (a2, b2) ∈ T such that (a1, b1) is not blue at time t nor queried directly
by (gh)∗(M,Z2), and (a2, b2) is either blue or queried directly by (gh)∗(M,Z2). Formally, define
D′ as follows:

1. Guess indices q̃1
$←− [tmax].
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2. Guess r
$←− {0, 1}2kδ × {h : {0, 1}n+δ → {0, 1}n}.

3. Run Runtime(r) normally until just before query q̃1 with input (ã1, b̃1).

4. Flip a coin b
$←− {0, 1}.

5. If b = 0,

(a) Guess index q̃2
$←− [T1].

(b) Run Runtime(r) without making recursive queries until just before query q̃2 with input
(ã2, b̃2).

(c) Output (x = (ã1, b̃1), y = ã2).

6. If b = 1,

(a) Guess indices q̃M
$←− [T1], q2

$←− [Tg∗ ].

(b) Run Runtime(r) without making recursive queries until just before query q̃M with input

(ãM , b̃M ). Set X̃ = Tpath(ãM , b̃M ). Set M̃ = X̃≤ℓ the first ℓ blocks of X̃.

(c) Run (gh)∗(M̃,Z2) until just before query q̃2 with input (ã2, b̃2).

(d) Output (x = (ã1, b̃1), y = ã2).

Let r be such that Runtime(r) does not satisfy Property 2. We first consider the case where
(a2, b2) is blue. Let q1 be the index of the query to (a1, b1) and let q2 be the index of the query to
(a2, b2) when we run D without making recursive calls. If b = 0, q′1 = q1, and q′2 = q2, then D′ sets
x = (a1, b1) and y = a2. Since (a1, b1) is not blue by the time (a2, b2) is queried, D′ does not query
(a1, b1).

We now consider the case where (a2, b2) is queried directly by (gh) ∗ (M,Z2). Let qM be the
index of the query (aM , bM ) which triggered the recursive call (gO)∗(M,Z2). Let q2 be the index
of the query of (a2, b2) in the call (gh)∗(M,Z2). If b = 1, q′1 = q1, q

′
M = qM , and q′2 = q2, we see

Tpath(ãM , b̃M ) = M ||Z1 and so M̃ = M . Also, (ã1, b̃1) = (a1, b1) and (ã2, b̃2) = (a2, b2) and so
x = (a1, b1) and y = a2. Since (a1, b1) is not blue at the point (aM , bM ) is queried nor queried by
(gh)∗(M,Z2), D′ does not query (a1, b1).

Thus, if r is such that Runtime(r) does not satisfy Property 2, D′ is an attacker for Theorem 2.4
with success probability

≥ min

(
ϵ

2T1 · tmax
,

ϵ

2T1 · tmax · Tg∗

)
≥ ϵ

2T1 · tmax · Tg∗
.

The lemma follows from Property 2.

Lemma 3.18. The probability over r = (Z1,Z2, h) that Runtime(r) satisfies Property 3 is greater

than or equal to 1− Tg∗

2(ℓ−k)δ .

Proof. The idea behind this proof is that if the property does not hold, we can use M to compress
Z1. More formally, we will compress (Z1,Z2, h) into fewer bits than is possible.
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Let ϵ := Pr[Runtime(r) does not satisfy Property 3]. Note that if Runtime(r) does not sat-
isfy Property 3, then that means there exists messages M,M ′ such that (gO)∗(M,Z2) queries the
last k rounds of the path (a′1, b

′
1), . . . , (a

′
ℓ+k, b

′
ℓ+k) corresponding to M ′||Z1.

We define COM , DECOM as follows.
COM(Z1,Z2, h):

1. Run Runtime(Z1,Z2, h).

2. If ever Property 3 is violated, set M to be the violating message. Let qk be the index of the
query (aℓ+k, bℓ+k) made by (gh)∗(M,Z1).

3. If Property 3 holds, Output ⊥.

4. Output (qk,M,Z2, h).

DECOM(qk,M,Z2, h):

1. If input is ⊥, fail.

2. Run (gh)∗(M,Z2).

3. Let (ãℓ+k, b̃ℓ+k) be the qkth query to (gh)∗(M,Z2).

4. For i from ℓ+ k− 1 to ℓ+1, recursively define (ãi, b̃i) to be any query made by (gh)∗(M,Z2)
such that h(ãi, b̃i) = ãi+1.

5. Output (bℓ+1|| · · · ||bℓ+k,Z2, h).

Note that if COM does not output ⊥, then (ãℓ+k, b̃ℓ+k) = (a′ℓ+k, b
′
ℓ+k). Since Runtime(r) checks

if there exists a collision in T , it must be the case that (a′ℓ+1, b
′
ℓ+1), . . . , (a

′
ℓ+k, b

′
ℓ+k) is the unique

path in T satisfying h[ai, bi] = ai+1 terminating at (a′ℓ+k, b
′
ℓ+k). Thus, (ãi, b̃i) = (a′i, b

′
i). So, if

COM does not output ⊥, then DECOM(COM(Z1,Z2, h) = (Z1,Z2, h). By pigeonhole principle,
we have:

Pr[DECOM(COM(r)) = r] ≤ # of values of (qk,M,Z2, h)

# of values of (Z1,Z2, h)
≤ Tg∗ · 2kδ

2ℓδ
(3)

As Pr[DECOM(COM(r)) = r] ≥ ϵ, we have that ϵ is also upper bounded by this, thus completing
the proof.

Lemma 3.19. If Properties 1 to 3 all hold and tmax ≥ T1 · (Tg∗ + 1), Runtime(r) outputs 0.

Proof. We will show that if Properties 1 to 3 all hold for Runtime(r), then every recursive query
(gO)∗(M,Z2) must be made on a blue message M . If not, there must be some first recursive query
(gO)∗(M ′,Z2) made on a non-blue message M ′. Let (a′1, b

′
1), . . . , (a

′
ℓ+k, b

′
ℓ+k) be the corresponding

path.
If any of (a′ℓ+1, b

′
ℓ+1), . . . , (a

′
ℓ+k, b

′
ℓ+k) is blue, then by Property 1 the whole preceding path is

blue and so M ′ is blue, which is a contradiction.
If none of (a′ℓ+1, b

′
ℓ+1), . . . , (a

′
ℓ+k, b

′
ℓ+k) are blue, (a′ℓ+k, b

′
ℓ+k) must be queried by some recursive

query (gO)∗(M,Z2). Since M ′ is the first non-blue message we recurse on, M must be blue.
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Thus, by Property 2, each (a′i, b
′
i) is either blue or queried directly by (gh)∗(M,Z2). Each of

(a′ℓ+1, b
′
ℓ+1), . . . , (a

′
ℓ+k, b

′
ℓ+k) is queried directly by (gh)∗(M,Z2). Since b′ℓ+1|| · · · ||b′ℓ+k = Z1, this

contradicts Property 3.
Every recursive query (gO)∗(M,Z2) must be made on a blue message M . So, the number of

recursive calls is bounded by the number of blue messages. The number of blue messages is bounded
by the number of calls to O. But rcount ≤ (# recursive queries) · (Tg∗ +1) ≤ T1 · (Tg∗ +1) and the
lemma follows.

4 Conclusion and Open Problems

In this work we resolved the main open problem of [12], and showed security for the Merkle-
Damg̊ard-friendly (salted) random oracle combiner

C̃h1,h2

Z1,Z2
(M) = h∗1(M,Z1)⊕ h∗2(M,Z2)

This construction has many desirable features, such as output-preservation, compatibility with
existing Merkle-Damg̊ard-based hash functions, and minimal requirements on the input length of
the corresponding compression function.

The main remaining inefficiency comes from the requirements on the salt lengths Z1 and Z2;
each of them must be longer than the message M of the combiner. This still allows us to use
this for any application where the length of the message M is a-priori fixed, such as Fiat-Shamir
signatures [15], OAEP encryption [5], RSA encryption [5], hashed ElGamal, and others.

Combiners for Longer Inputs. Some applications would require either unbounded or variable
inputs M . In these cases, it may be impractical to select a-priori unbounded salts. Note we could
still use our combiner above, to first build a new fixed-length compression function f out of h1 and
h2, and then manually built a variable-input function F which is indifferentiable from a variable-
length random oracle. E.g., one of the Merkle-Damg̊ard-based constructions from [9]. As shown
by [12], here the composition theorem for the indifferentiability framework still holds (unlike the
opposite case of first applying it to h1, and then using such h1 inside our combiner). As a result,
we can obtain a secure ROC with a fixed-length salt. As a negative, this would require making the
number of “Merkle-Damg̊ard calls” to h∗1 and h∗2 grow with the message length M .

Open Problems. This leaves the following main open problem: Is there a secure random oracle
combiner that (a) has O(λ) length salts and (b) makes a constant number of calls to h∗1 and h∗2,
independent of message length? Conversely, show that such a combiner satisfying (a)+(b) cannot
exist; in this case, it would be great to find the trade-off in salt length vs. number of “Merkle-
Damg̊ard-calls”.

While our analysis of C̃ critically uses the fact that |Zi| > |M |+ λ, we do not have any attacks
against this construction, once the |Zi| is a constant number of blocks, independent of |M |. In
particular, it is possible our construction C̃ provides a solution to this main open problem! Thus, it
would be very interesting to either show that C̃ is insecure unless |Zi| > |M |, or find a supporting
proof of security for much shorter salts (ideally, constant number of blocks).
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A Hard Hybrid

Lemma A.1. We will write G7(h,H; r) and G8(h,H; r) to denote G7 and G8 respectively when the
random functions chosen by the game are h and H and the randomness chosen by the adversary
is r. We will write T 7(t, h,H) to be the state of T in G7(h,H) just before the tth (direct or
recursive) call to O1. We will write Tpath7(a, b; t, h,H) to denote the result of calling Tpath7 on
(a, b) with hash functions h,H immediately after the tth call to O1. We similarly define T 8(t, h,H)
and Tpath8(a, b; t, h,H).

Then with probability ≥ 1− 2tmax
2n over h,H and the internal randomness r of D, the following

holds for all time steps t7, t8. If FAIL is not set at time t7 − 1 in G7(h,H) and at time t8 − 1 in
G8(h,H), and if the t7th query in G7 and the t8th query in G8 are to the same string (a, b), then

Tpath7(a, b; t7, h,H) = Tpath8(a, b; t8, h,H)

as long as either path is ≤ ℓ+ k blocks long.

Proof. Let ϵ be the probability that the condition in Theorem A.1 fails. If the condition fails, then
the paths in G7 and G8 corresponding to (a, b) must diverge. That is, either

1. There exists (a7, b7) ∈ T 7(t7, h,H) and (a8, b8) ∈ T 8(t8, h,H) such that (a7, b7) /∈ T 8(t8, h,H)
and T 7[a7, b7] = a8.

2. There exists (a8, b8) ∈ T 8[t8, h,H] and (a7, b7) ∈ T 7(t7, h,H) such that (a8, b8) /∈ T 7(t7, h,H)
and T 8[a8, b8] = a7.
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Let
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7
1), . . . , (a

7
r7 , b
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and
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1), . . . , (a

8
r8 , b

8
r8)

be the paths inG7 andG8 traversed by TPath7(a, b; t7, h,H) and TPath8(a, b; t8, h,H) respectively.
By assumption, if r7 > ℓ+ k, then r8 ≤ ℓ+ k. We observe that if this occurs, we must be in the

second case. If not, then this means that the entire path in G8 must be included in T 7(t7−1, h,H).
And since there are no collisions in T 7(t7 − 1, h,H) (as FAIL is not set), we must have

(a71, b
7
1), . . . , (a

7
r7 , b

7
r7) = (a71, b
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1), . . . , (a

7
r7−r8 , a

7
r7−r8), (a

8
1, b

8
1), . . . , (a

8
r8 , b

8
r8)

But we know that a81 = 0. But this means T 7(t7 − 1, h,H)[a7r7−r8 , b
7
r7−r8 ] = 0, which is impossible

since we know FAIL is not set in G7 at time t7 − 1.
Analogously, if the path in G8 is longer than ℓ + k blocks, then we must be in the first case.

This means that in the first case we can assume that the length of the path leading up to (a7, b7)
is < ℓ+k blocks (since (a7, b7) ̸= (a, b)), and so a8 = T 7[a7, b7] = h(a7, b7). Similarly, in the second
case, we can assume a7 = h(a8, b8). More formally, we have that one of the following two conditions
hold

1. There exists (a7, b7) ∈ T 7(t7, h,H) and (a8, b8) ∈ T 8(t8, h,H) such that (a7, b7) /∈ T 8(t8, h,H)
and h(a7, b7) = a8.

2. There exists (a8, b8) ∈ T 8[t8, h,H] and (a7, b7) ∈ T 7(t7, h,H) such that (a8, b8) /∈ T 7(t7, h,H)
and h(a8, b8) = a7.

We will produce an attacker D for Theorem 2.4 which succeeds with probability ≥ ϵ
2tmax

.

1. Sample h,H, r uniformly at random.

2. Guess t7, t8
$←− [tmax]

3. Run G7(h,H; r) up until just before the t7th query to O1, with input (ã7, b̃7).

4. Run G8(h,H; r) up until just before the t8th query to O1, with input (ã8, b̃8).

5. With probability 0.5, output (x = (ã7, b̃7), y = ã8).

6. With probability 0.5, output (x = (ã8, b̃8), y = ã7).

If the first case holds for h,H, then with probability ≥ 1
tmax

, t7 marks the first time (a7, b7) is

queried to O1 in G7(h,H). If so, then ã7 = a7, b̃7 = b7, ã8 = a8, and D never queries h(a7, b7).
Since h(a7, b7) = a8, D succeeds with probability ≥ 1

2tmax
. Similarly, if the second case holds for

h,H, D succeeds with probability ≥ 1
2tmax

.
Since either the first or second case holds with probability ϵ, D succeeds with probability

ϵ

2tmax

and so by Theorem 2.4,

ϵ ≤ 2tmax

2n
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Corollary A.2 (Theorem 3.10 restated).

|Pr[G7→ 1]− Pr[G8→ 1]| ≤ Pr[G7→ ⊥] + 2tmax

2n

and

Pr[G8→ ⊥] ≤ Pr[G7→ ⊥] + 2tmax

2n

Proof. Let h,H, r be any collection of randomness such that G7(h,H) does not return ⊥ and the
condition of Theorem A.1 holds.

Let t7i be the time step of G7(h,H) immediately after the ith non-recursive call to O1 or O2.
Similarly define t8i . We will show by induction that for all i, T 8[t8i , h,H] ⊆ T 7[t7i , h,H] and the
response to query i is the same in both games.

In particular, this is trivial for i = 0. So assume that for all i ≤ k, T 8[t8i , h,H] ⊆ T 7[t7i , h,H]
and the response to query i is the same in both G7(h,H; r) and G8(h,H; r). Then, since D in both
games has the same randomness and has received the same responses to the same queries up until
query k, the k + 1st query made by D in both games is also the same.

Furthermore, since G7 has not set FAIL at this point in time, and since T 8[t8k, h,H] ⊆
T 7[t7k, h,H], G8 has also not set FAIL at this point in time.

If query k + 1 is a query to O2, then it returns H(M) in both games and so gives the same
response.

If query k + 1 is a query to O1, we will denote it by (a, b). By Theorem A.1, we have that
TPath7(a, b) = TPath8(a, b).

If G8 treats this as a stored query, then so will G7 by the inductive hypothesis. Thus, both
games will not modify T and will simply return T 7[a, b] = T 8[a, b].

If G8 treats this as a direct query, so will G7, and so both games return h(a, b) and set T [a, b] =
h(a, b). Thus, T 8[t8k+1, h,H] ⊆ T 7[t7k+1, h,H] since both are just the previous rounds value with
T [a, b] = h(a, b) added on.

If G8 treats this as a recursive query, so will G7. An inductive argument following the same lines
as this case analysis shows that this recursive query will return the same value and any elements
added in the recursive calls in G8 will either be added in G7 or were already there. Thus, we get
that T 8[t8k+1, h,H] ⊆ T 7[t7k+1, h,H] and both games return the same value to query k + 1.

Thus, since for all i, T 8[t8i , h,H] ⊆ T 7[t7i , h,H], since G7 does not set flag FAIL, neither does
G8. Furthermore, since they return the same query responses in both games, D returns the same
value in both games. The corollary follows.
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