
Universal Con�gurations in Light-Flipping GamesYevgeniy Dodis� Peter Winklery1 \Lights Out" and \Orbix"The following is a popular hand-held ele
troni
 gameby Tiger Ele
troni
s, 
alled \Lights Out". This gameis played on a 5 � 5 grid of buttons whi
h also havelights in them. By pressing a button, its light and thoseof the (non-diagonally) adja
ent buttons will 
hange(swit
h ON if it was OFF, and vi
e versa). Givensome initial pattern of lights, one has to swit
h themall OFF by pressing several buttons. Obviously, thegame 
an be played on other boards (indeed, Tigerprodu
ed a 6 � 6 version, and even a 3 � 3 � 3 
ubeversion), and naturally generalizes to any graph G. Inaddition, there are many on-line implementations andother interesting do
umentation about the game (see[4℄ and the numerous links therein, or simply sear
h theweb for \lights out tiger").On a more s
ienti�
 front, \Lights Out" and thequestions derived from it (e.g., whi
h 
on�gurations 
anbe turned o� for whi
h graphs, how many buttons doesone have to press, what is the smallest number of lightsthat 
an be left ON, et
.) have generated a surprisingamount of resear
h (see [5℄ and the referen
es therein).We shall point out only one somewhat surprising fa
t,�rst dis
overed by Sutner [3℄, and later simpli�ed by[1, 2℄. Namely, while many initial 
on�gurations 
annotbe 
ompletely turned o� for many graphsG, it turns outthat the \all-ON" 
on�guration 
an always be turnedo�, for any n-vertex graph G. We will 
all su
h a
on�guration universal. We noti
e that another (trivial)universal 
on�guration is the \all-OFF" 
on�guration.By looking at the 
omplete graph G (whi
h has onlytwo opposite 
on�gurations for any initial 
on�gurationof lights), we see that all-ON and all-OFF are the onlyuniversal 
on�gurations for the \Lights Out" game.\Orbix" is another very similar sounding ele
troni
game produ
ed by Me�ert's [6℄. Now the basi
 gameis played on the i
osahedron rather than a grid. Butthe rules are the same ex
ept for one major di�eren
e:pressing a button only 
hanges the state of the neigh-boring buttons, but not the state of the a
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pressed. Again, \Orbix" obviously generalizes to anygraph G. Now, however, the only universal 
on�gura-tion (the one that 
an be 
ompletely turned o� for anyG) is the trivial all-OFF 
on�guration (whi
h 
an beseen by looking at the empty graph, where any initial
on�guration 
an not be 
hanged in \Orbix").2 Common GeneralizationWe now 
onsider the following 
ommon generalizationof the above two games, whi
h we 
all the light-
ippinggame. As before, we are given some undire
ted n-vertexgraph G, ea
h of whose nodes has an indi
ator light(whi
h 
an be ON or OFF) and a button. However,now the buttons are of two possible types: ex
lusiveand in
lusive. Pressing any ex
lusive button will 
ipthe state of all of the neighboring buttons in G (fromON to OFF and vi
e versa), but leaves un
hanged thestate of the button pressed (ala \Orbix"). On the otherhand, pressing any in
lusive button will also 
ip thestate of this button as well (ala \Lights Out"). Let bbe the ve
tor of button types, i.e. bv = 0 if button vis ex
lusive, and bv = 1 for an in
lusive v. Given someinitial 
on�guration 
 of lights, the obje
tive of the light-
ipping game is to turn all the lights OFF by pressingseveral buttons.Definition 2.1. A 
on�guration 
 is 
alled universalfor a button pattern b, if 
 
an be turned o� for anygraph G.In this paper we determine all universal 
on�gu-rations for arbitrary light-
ipping games (given by b).Given a 
on�guration of lights 
, we will write 
v = 1 ifv's light is ON, and 
v = 0 if it is OFF. Then, our mainresult is given by the followingTheorem 2.1. The only universal 
on�gurations 
 fora given button pattern b are 
 = ~0 (the trivial all-OFF
on�guration) and 
 = b. In parti
ular, for any graphG one 
an turn o� all the lights when 
 = b.Noti
e that our result generalizes the result ofSutner [3℄ for the \Lights Out" game, stating that
 = ~1 (all-ON) is a universal 
on�guration for this game.Also, any light-
ipping game other than \Orbix" has a(unique) non-trivial universal 
on�guration 
 = b. In1



2other words, a 
on�guration that is ON on in
lusivebuttons, and OFF on ex
lusive buttons 
an always beturned o�!3 Proof of Main TheoremTake any button pattern b. Let us start with determin-ing whi
h initial 
on�gurations 
ould be universal. Con-sider a graph G whose (only) edges form a 
lique K onall the in
lusive buttons. In parti
ular, all the ex
lusivebuttons are the isolated verti
es of G. Assume that aninitial 
on�guration 
 
an be turned o� for this G (andb). Then all the ex
lusive (isolated) buttons should beOFF in 
, sin
e there is no other way to turn them o�.On the other hand, sin
e pressing any in
lusive buttonsimultaneosly 
ips the state of all the in
lusive buttons(sin
e G forms a 
lique on these buttons), and sin
ethe all-OFF state has to be rea
hed, there are only twopossibilities for 
 on K: either all the in
lusive buttonsshould be OFF (this gives 
 = ~0), or all should be ON(this gives 
 = b).Before showing the 
onverse, we rewrite our prob-lem using some linear algebra. First, it never makessense to press a button twi
e (whi
h is the same as notpressing the button at all), and the order of the buttonsis not important as well. Thus, turning o� an initial
on�guration 
 is equivalent to �nding a subset S ofbuttons to press. Take any su
h 
andidate S and let xbe the 
hara
teristi
 ve
tor of S: xw = 1 if w 2 S andxw = 0 otherwise. Then the �nal status of a light at vafter pressing buttons in S is simply
v + Xw2N(v)xw + bvxv(3.1)where the addition modulo 2, and N(v) = fw j (v; w) 2E(G)g is the set of v's neighbors inG. Indeed, 
v was v'sinitial state, the sum in the middle is the 
ontributionof v's neighbors in G, and bvxv is the 
ontribution frompossibly pressing the button v itself. But Equation (3.1)is just an aÆne linear transformation over GF (2)!Namely, if we let A = A(G; b) be the n � n adja
en
ymatrix of G with the ve
tor b on the diagonal (i.e., forv 6= w, av;w = 1 i� (v; w) 2 E(G), and av;v = bv), the�nal light 
on�guration of G will be (Ax+ 
), where allthe operations are over GF (2). Hen
e, a set S turningall the lights o� (i.e., making Ax + 
 = ~0) exists i� thelinear system Ax = 
 is solvable over GF (2). Namely,Lemma 3.1. Let b be a button pattern, G be a graph andA = A(G; b). An initial 
on�guration 
 
an be turnedo� if and only if the linear system Ax = 
 is solvableover GF (2).As a side remark, the above lemma gives an eÆ
ientpro
edure to turn all the lights o�, when possible. But

let us get ba
k to the 
onverse of our theorem. Sin
e ~0 isa trivial universal 
on�guration, it remains to show thatone 
an always turn o� the 
on�guration 
 = b. Noti
ethat by varying the graph G, the matrix A = A(G; b)ranges through all the symmetri
 matri
es over GF (2)whose whose diagonal (denoted diag(A)) is equal to b.Thus, to show that the 
on�guration 
 = b is universal itis (ne
essary and) suÆ
ient to show the following lemmaof independent interest:Lemma 3.2. Let A = (aij) be an n�n symmetri
 zero-one matrix, and let b = diag(A). Then the linear systemAx = b is solvable over GF (2).Proof. Assume on the 
ontrary that the system is notsolvable. This means that there are linearly dependentrows i1; : : : ; ik of A whi
h yield a 
ontradi
tion, i.e.bi1 + : : :+ bik 6= 0. Sin
e b = diag(A), we get thatai1;i1 + : : :+ aik ;ik = 1(3.2)Let A0 be a square sub-matrix of A generated by rowsi1; : : : ; ik and 
olumns i1; : : : ; ik. Let us denote by sthe sum of all the elements of A0, and 
ompute s intwo di�erent ways. First, sin
e the rows i1; : : : ; ik of Aare linearly dependent, ea
h 
olumn of A0 sums to 0,making s = 0.On the other hand, sin
e A is symmetri
, then so isA0. But the sum of all the entries of a symmetri
 matrixover GF (2) equals to the sum of its diagonal entries!Indeed, all the o�-diagonal elements are summed twi
e
an
eling ea
h other over GF (2). Hen
e, s = ai1;i1 +: : :+aik;ik , whi
h is equal to 1 by Equation (3.2). Hen
e,we got both s = 0 and s = 1, a 
ontradi
tion.A
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