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1 “Lights Out” and “Orbix”

The following is a popular hand-held electronic game
by Tiger Electronics, called “Lights Out”. This game
is played on a 5 x 5 grid of buttons which also have
lights in them. By pressing a button, its light and those
of the (non-diagonally) adjacent buttons will change
(switch ON if it was OFF, and vice versa). Given
some initial pattern of lights, one has to switch them
all OFF by pressing several buttons. Obviously, the
game can be played on other boards (indeed, Tiger
produced a 6 x 6 version, and even a 3 X 3 x 3 cube
version), and naturally generalizes to any graph G. In
addition, there are many on-line implementations and
other interesting documentation about the game (see
[4] and the numerous links therein, or simply search the
web for “lights out tiger”).

On a more scientific front, “Lights Out” and the
questions derived from it (e.g., which configurations can
be turned off for which graphs, how many buttons does
one have to press, what is the smallest number of lights
that can be left ON, etc.) have generated a surprising
amount of research (see [5] and the references therein).
We shall point out only one somewhat surprising fact,
first discovered by Sutner [3], and later simplified by
[1, 2]. Namely, while many initial configurations cannot
be completely turned off for many graphs G, it turns out
that the “all-ON” configuration can always be turned
off, for any n-vertex graph G. We will call such a
configuration universal. We notice that another (trivial)
universal configuration is the “all-OFF” configuration.
By looking at the complete graph G (which has only
two opposite configurations for any initial configuration
of lights), we see that all-ON and all-OFF are the only
universal configurations for the “Lights Out” game.

“Orbix” is another very similar sounding electronic
game produced by Meffert’s [6]. Now the basic game
is played on the icosahedron rather than a grid. But
the rules are the same except for one major difference:
pressing a button only changes the state of the neigh-
boring buttons, but not the state of the actual button
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pressed. Again, “Orbix” obviously generalizes to any
graph G. Now, however, the only universal configura-
tion (the one that can be completely turned off for any
G) is the trivial all-OFF configuration (which can be
seen by looking at the empty graph, where any initial
configuration can not be changed in “Orbix”).

2 Common Generalization

We now consider the following common generalization
of the above two games, which we call the light-flipping
game. As before, we are given some undirected n-vertex
graph G, each of whose nodes has an indicator light
(which can be ON or OFF) and a button. However,
now the buttons are of two possible types: exclusive
and inclusive. Pressing any exclusive button will flip
the state of all of the neighboring buttons in G (from
ON to OFF and vice versa), but leaves unchanged the
state of the button pressed (ala “Orbix”). On the other
hand, pressing any inclusive button will also flip the
state of this button as well (ala “Lights Out”). Let b
be the vector of button types, i.e. b, = 0 if button v
is exclusive, and b, = 1 for an inclusive v. Given some
initial configuration c of lights, the objective of the light-
flipping game is to turn all the lights OFF by pressing
several buttons.

DEFINITION 2.1. A configuration c is called universal
for a button pattern b, if ¢ can be turned off for any
graph G.

In this paper we determine all universal configu-
rations for arbitrary light-flipping games (given by b).
Given a configuration of lights ¢, we will write ¢, = 1 if
v’s light is ON, and ¢, = 0 if it is OFF. Then, our main
result is given by the following

THEOREM 2.1. The only universal configurations c¢ for
a given button pattern b are ¢ = 0 (the trivial all-OFF
configuration) and ¢ = b. In particular, for any graph
G one can turn off all the lights when ¢ = b.

Notice that our result generalizes the result of
Sutner [3] for the “Lights Out” game, stating that
¢ =1 (all-ON) is a universal configuration for this game.
Also, any light-flipping game other than “Orbix” has a
(unique) non-trivial universal configuration ¢ = b. In



other words, a configuration that is ON on inclusive
buttons, and OFF on exclusive buttons can always be
turned off!

3 Proof of Main Theorem

Take any button pattern b. Let us start with determin-
ing which initial configurations could be universal. Con-
sider a graph G whose (only) edges form a clique K on
all the inclusive buttons. In particular, all the exclusive
buttons are the isolated vertices of G. Assume that an
initial configuration ¢ can be turned off for this G' (and
b). Then all the exclusive (isolated) buttons should be
OFF in ¢, since there is no other way to turn them off.
On the other hand, since pressing any inclusive button
simultaneosly flips the state of all the inclusive buttons
(since G forms a clique on these buttons), and since
the all-OFF state has to be reached, there are only two
possibilities for ¢ on K: either all the inclusive buttons
should be OFF (this gives ¢ = 0), or all should be ON
(this gives ¢ = b).

Before showing the converse, we rewrite our prob-
lem using some linear algebra. First, it never makes
sense to press a button twice (which is the same as not
pressing the button at all), and the order of the buttons
is not important as well. Thus, turning off an initial
configuration c¢ is equivalent to finding a subset S of
buttons to press. Take any such candidate S and let x
be the characteristic vector of S: z,, =1 if w € S and
2y = 0 otherwise. Then the final status of a light at v
after pressing buttons in S is simply

Cy + Z Ty + byy
weN (v)

(3.1)

where the addition modulo 2, and N (v) = {w | (v,w) €
E(G)} is the set of v’s neighbors in G. Indeed, ¢, was v’s
initial state, the sum in the middle is the contribution
of v’s neighbors in G, and b,z, is the contribution from
possibly pressing the button v itself. But Equation (3.1)
is just an affine linear transformation over GF(2)!
Namely, if we let A = A(G,b) be the n x n adjacency
matrix of G with the vector b on the diagonal (i.e., for
UV F W, Gy = 1iff (v,w) € E(G), and a,,, = by), the
final light configuration of G will be (Az + ¢), where all
the operations are over GF'(2). Hence, a set S turning
all the lights off (i.e., making Az + ¢ = 0) exists iff the
linear system Ax = c¢ is solvable over GF(2). Namely,

LemMA 3.1. Letb be a button pattern, G be a graph and
A = A(G,b). An initial configuration c can be turned
off if and only if the linear system Ax = c is solvable
over GF(2).

As a side remark, the above lemma gives an efficient
procedure to turn all the lights off, when possible. But

let us get back to the converse of our theorem. Since 0is
a trivial universal configuration, it remains to show that
one can always turn off the configuration ¢ = b. Notice
that by varying the graph G, the matrix A = A(G,b)
ranges through all the symmetric matrices over GF'(2)
whose whose diagonal (denoted diag(A4)) is equal to b.
Thus, to show that the configuration ¢ = b is universal it
is (necessary and) sufficient to show the following lemma
of independent interest:

LEMMA 3.2. Let A = (a;5) be an n xn symmetric zero-
one matriz, and let b = diag(A). Then the linear system
Az = b is solvable over GF(2).

Proof. Assume on the contrary that the system is not
solvable. This means that there are linearly dependent
rOwWS i1,...,ix of A which yield a contradiction, i.e.
bi, + ...+ b;, #0. Since b = diag(A), we get that

(32) ail,il + ...+ aiw-k =1
Let A’ be a square sub-matrix of A generated by rows
i1,...,%r and columns %1,...,%x. Let us denote by s

the sum of all the elements of A’, and compute s in
two different ways. First, since the rows iy,...,4; of A
are linearly dependent, each column of A’ sums to 0,
making s = 0.

On the other hand, since A is symmetric, then so is
A'. But the sum of all the entries of a symmetric matrix
over GF(2) equals to the sum of its diagonal entries!
Indeed, all the off-diagonal elements are summed twice
canceling each other over GF(2). Hence, s = a;, ;, +
...+a;, i, which is equal to 1 by Equation (3.2). Hence,
we got both s = 0 and s = 1, a contradiction.
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