Key-Insulated Public-Key Cryptosystems

YEVGENIY DODIS* JONATHAN KaTZ! SHOUHUAI XUt MoTI YuNG$

June 17, 2002

Abstract

Cryptographic computations (decryption, signature generation, etc.) are often performed on
a relatively insecure device (e.g., a mobile device or an Internet-connected host) which cannot
be trusted to maintain secrecy of the private key. We propose and investigate the notion of
key-insulated security whose goal is to minimize the damage caused by secret-key exposures. In
our model, the secret key(s) stored on the insecure device are refreshed at discrete time periods
via interaction with a physically-secure — but computationally-limited — device which stores
a “master key”. All cryptographic computations are still done on the insecure device, and the
public key remains unchanged. In a (¢, N)-key-insulated scheme, an adversary who compromises
the insecure device and obtains secret keys for up to ¢ periods of his choice is unable to violate
the security of the cryptosystem for any of the remaining N — ¢ periods. Furthermore, the
scheme remains secure (for all time periods) against an adversary who compromises only the
physically-secure device.

We notice that key-insulated schemes significantly improve the security guarantee of forward-
secure schemes [3, 5], in which exposure of the secret key at even a single time period (necessarily)
compromises the security of the system for all future time periods. This improvement is achieved
with minimal cost: infrequent key updates with a (possibly untrusted) secure device.

We focus primarily on key-insulated public-key encryption. We construct a (¢, N)-key-
insulated encryption scheme based on any (standard) public-key encryption scheme, and give
a more efficient construction based on the DDH assumption. The latter construction is then
extended to achieve chosen-ciphertext security.

“dodis@cs.nyu.edu. Department of Computer Science, New York University.

fjkatz@cs.columbia.edu. Department of Computer Science, Columbia University. Portions of this work were
done while the author was at Telcordia Technologies.

isxul@gmu.edu. Department of Information and Software Engineering, George Mason University.

Smoti@cs.columbia.edu. CertCo, Inc.

1 Introduction

MOTIVATION. Exposure of secret keys is perhaps the most devastating attack on a cryptosystem
since it typically means that security is entirely lost. This problem is probably the greatest threat
to cryptography in the real world: in practice, it is typically easier for an adversary to obtain a
secret key from a naive user than to break the computational assumption on which the system is
based. The threat is increasing nowadays with users carrying mobile devices which allow remote
access from public or foreign domains.

Two classes of methods exist to deal with this problem. The first tries to prevent key exposure
altogether. While this is an important goal, it is not always practical. For example, when using
portable devices to perform cryptographic operations (e.g., decrypting transmissions using a mobile
phone) one must expect that the device itself may be physically compromised in some way (e.g., lost
or stolen) and thus key exposure is inevitable. Furthermore, complete prevention of key exposure
— even for non-mobile devices — will usually require some degree of physical security which can be
expensive and inconvenient. The second approach assumes that key exposure will inevitably occur
and seeks instead to minimize the damage which results when keys are obtained by an adversary.
Secret sharing [37], threshold cryptography [14, 13], proactive cryptography [33], exposure-resilient
cryptography [10] and forward-secure signatures [3, 5] may all be viewed as different means of
taking this approach.

The most successful solution will involve a combination of the above approaches. Physical
security may be ensured for a single device and thus we may assume that data stored on this
device will remain secret. On the other hand, this device may be computationally limited or else
not suitable for a particular application and thus we are again faced with the problem that some
keys will need to be stored on insecure devices which are likely to be compromised during the
lifetime of the system. Therefore, techniques to minimize the damage caused by such compromises
must also be implemented.

OUR MODEL. We focus here on a notion we term key-insulated security. Our model is the following
(the discussion here focuses on public-key encryption, yet the term applies equally-well to the case
of digital signatures). The user begins by registering a single public key PK. A “master” secret
key SK* is stored on a device which is physically secure and hence resistant to compromise. All
decryption, however, is done on an insecure device for which key exposure is expected to be a
problem. The lifetime of the protocol is divided into distinct periods 1,..., N (for simplicity, one
may think of these time periods as being of equal length; e.g., one day). At the beginning of each
period, the user interacts with the secure device to derive a temporary secret key which will be
used to decrypt messages sent during that period; we denote by SK; the temporary key for period
7. On the other hand, the public key PK used to encrypt messages does not change at each period;
instead, ciphertexts are now labeled with the time period during which they were encrypted. Thus,
encrypting M in period ¢ results in ciphertext (i, C).

The insecure device, which does all actual decryption, is vulnerable to repeated key exposures;
specifically, we assume that up to ¢ < N periods can be compromised (where t is a parameter). Our
goal is to minimize the effect such compromises will have. Of course, when a key SK; is exposed,
an adversary will be able to decrypt messages sent during time period 7. Our notion of security
(informally) is that this is all an adversary can do. In particular, the adversary will be unable to
determine any information about messages sent during all time periods other than those in which
a compromise occurred. This is the strongest level of security one can expect in such a model. We
call a scheme satisfying the above notion (¢, N)-key-insulated.

If the physically-secure device is completely trusted, we may have this device generate (PK, SK*)

itself, keep SK*, and publish PK. When a user requests a key for period 7, the device may compute
SK; and send it to the user. More involved methods are needed when the physically-secure device
is not trusted by the user. In this, more difficult case (which we consider here), the user may
generate (PK,SK) himself, publish PK, and then derive keys SK* SK;. The user then sends
SK* to the device and stores SK(himself. When the user requests a key for period 4, the device
sends “partial” key SK! to the user, who may then compute the “actual” key SK; using SK;_;
and SK;. In this way, the user’s security is guaranteed during all time periods with respect to the
device itself, provided that the knowledge of SK* alone is not sufficient to derive any of the actual
keys SK;. We note that this strong security guarantee is essential when a single device serves many
different users, offering them protection against key exposure. In this scenario, users may trust this
device to update their keys, but may not want the device to be able to read their encrypted traffic.
Thus, there is no reason this device should have complete (or any!) knowledge of their “actual”
keys. Finally we note that assuring that the devices are synchronized to the same period (so that
only one secret key per period is given by the physically secure device) and that they handle proper
authenticated interaction is taken care of by an underlying protocol (which is outside our model).

OTHER APPLICATIONS. Besides the obvious application to minimizing the risk of key exposures
across multiple time periods, key-insulated security may also be used to protect against key expo-
sures across multiple locations, or users. For example, a company may establish a single public key
and distribute (different) secret keys to its various employees; each employee is differentiated by his
“non-cryptographic ID” 7 (e.g., a social security number or last name), and can use his own secret
key SK; to perform the desired cryptographic operation. This approach could dramatically save on
the public key size, and has the property that the system remains secure (for example, encrypted
messages remain hidden) for all employees whose keys are not exposed.

A key-insulated scheme may also be used for purposes of delegation [23]; here, a user (who has
previously established a public key) delegates his rights in some specified, limited way to a second
party. In this way, even if up to ¢ of the delegated parties’ keys are lost, the remaining keys — and,
in particular, the user’s secret key —- are secure.

Finally, we mention the application of key escrow by legal authorities. For example, consider
the situation in which the FBI wants to read email sent to a particular user on a certain date. If a
key-insulated scheme (updated daily) is used, the appropriate key for up to ¢ desired days can be
given to the FBI without fear that this will enable the FBI to read email sent on other days. A
similar application (with weaker security guarantees) was considered by [2].

OUR CONTRIBUTIONS. We introduce the notion of key-insulated security and construct efficient
schemes secure under this notion. Although our definition may be applied to a variety of cryp-
tographic primitives, we focus here on public-key encryption. In Section 3, we give a generic
construction of a (¢, N)-key-insulated encryption scheme based on any (standard) public-key en-
cryption scheme. Section 4 gives a more efficient construction which is secure under the DDH
assumption. Both of these schemes achieve semantic security; however, we show in Section 5 how
the second scheme can be improved to achieve chosen-ciphertext security. The complexity of all
our schemes is essentially independent of the total number of users N. However, at least one of
the parameters is polynomial in £. This makes our schemes applicable only for moderate values
of ¢, which is, however, sufficient for many applications. In a companion paper [16], we consider
key-insulated security of signature schemes.

RELATED WORK. Arriving at the right definitions and models for the notion we put forth here
has been somewhat elusive. For example, Girault [22] considers a notion similar to key-insulated
security of signature schemes. However, [22] does not present any formal definitions, nor does

it present schemes which are provably secure. Recently and concurrently with our work, other
attempts at formalizing key-insulated public-key encryption have been made [39, 31]. However,
these works consider only a non-adaptive adversary who chooses which time periods to expose at
the outset of the protocol, whereas we consider the more natural and realistic case of an adaptive
adversary who may choose which time periods to expose at any point during protocol execution.
Furthermore, the solution of [39] for achieving chosen-ciphertext security is proven secure in the
random oracle model; our construction of Section 5 is proven secure against chosen-ciphertext
attacks in the standard model ([31] does not address chosen-ciphertext security at all). Finally, our
definition of security is stronger than that considered in [39, 31]. Neither work considers the case
of an untrusted, physically-secure device. Additionally, [31] require only that an adversary cannot
fully determine an un-exposed key S K;; we make the much stronger requirement that an adversary
cannot break the underlying cryptographic scheme for any (set of) un-exposed periods.

Our notion of security complements the notion of forward security for digital signatures.
this model [3, 5], an adversary who compromises the system during a particular time period obtains
all the secret information which exists at that point in time. Clearly, in such a setting one cannot
hope to prevent the adversary from signing messages associated with future time periods (since
the adversary has all relevant information), even though no explicit key exposures happen during
those periods. Forward-secure signatures, however, prevent the adversary from signing messages
associated with prior time periods. Many improved constructions of forward-secure signatures have
subsequently appeared [1, 29, 26, 32].

Our model uses a stronger assumption in that we allow for (a limited amount of) physically-
secure storage which is used exclusively for key updates and is not used for the actual cryptographic
computations. As a consequence, we are able to obtain a much stronger level of security in that
the adversary is unable to sign/decrypt messages at any non-compromised time period, both in the
future and in the past.

L' In

RELATION TO IDENTITY-BASED CRYPTOGRAPHY. The idea of ID-based cryptography [38] (for
concreteness, we concentrate on the case of ID-based encryption) is to have a trusted center publish
a single public key so that users who know only each other’s “non-cryptographic” identities (e.g., e-
mail addresses) can securely communicate. In particular, a PKI (in which every user is additionally
associated with a public key) is not needed beyond knowledge of a single global public key. Of
course, the trusted center now must provide each user with a secret key which is a function of his
identity. Roughly speaking, an ID-based scheme is secure if no coalition of users can compromise
the privacy of any other user. Note, however, that the trusted server can compromise the security
of any user (since this center knows all secrets of the system).

It is easy to see that an ID-based encryption scheme may be converted an (N — 1, N)-key-
insulated encryption scheme by viewing the period number as an “identity” and having the physically-
secure device implement the trusted center. The converse is true as well; in other words, a (¢, N)-
key-insulated encryption scheme with a fully trusted device may be viewed as a relaxation of ID-
based encryption, where we do not insist on ¢ = N — 1. We notice that the first practical ID-based
encryption scheme was proposed only recently by Boneh and Franklin [8] in the random oracle
model. Moreover, even though the model of ID-based encryption assumes a fully trusted center, it
was observed by [6] that the particular scheme of [8] — when viewed as an (N — 1, N)-key-insulated
encryption scheme — can be very easily modified so that the secure device no longer needs to be
trusted. This almost immediately gives a fully secure key-insulated encryption scheme. It should

! Although forward-security also applies to public-key encryption, forward-secure encryption schemes are not yet
known. The related notion of “perfect forward secrecy” [15], where the parties exchange ephemeral keys on a per-
session basis, is incomparable to our notion here.

be noted, however, that the security of this scheme is proven in the random oracle model under a
very specific, number-theoretic assumption. By focusing on key-insulated security for ¢ < N, as we
do here, schemes based on weaker assumptions (in particular, not utilizing the random oracle which
is the standard model we consider in this paper) and/or with improved efficiency and functionality
may be designed. In particular, our results yield several ID-based encryption schemes which are
provably secure in the standard model, when at most ¢ out of N users collude. It is still a big
open problem to design a fully secure ID-based (or key-insulated) encryption scheme without the
random oracle assumption.

2 Definitions

2.1 The Model

We now provide a formal model for key-insulated security, focusing on the case of public-key
encryption (other key-insulated primitives can be defined similarly; e.g., signature schemes are
treated in [16]). Our definition of a key-updating encryption scheme parallels the definition of a key-
evolving signature scheme which appears in [5], with one key difference: in a key-updating scheme
there is some data (in particular, SK*) which is never erased since it is stored on a physically-secure
device. However, since the physically-secure device may not be fully trusted, new security concerns
arise.

Definition 1 A key-updating (public-key) encryption scheme is a 5-tuple of poly-time algorithms
(G, U*,U,E,D) such that:

e G, the key generation algorithm, is a probabilistic algorithm which takes as input a security
parameter 1% and the total number of time periods N. It returns a public key PK, a master
key SK*, and an initial key SKy.

e U*, the device key-update algorithm, is a deterministic algorithm which takes as input an
index i for a time period (throughout, we assume 1 < i < N) and the master key SK*. It
returns the partial secret key SK| for time period i.

e U, the user key-update algorithm, is a deterministic algorithm which takes as input an index
i, secret key SK; 1, and a partial secret key SK|. It returns secret key SK; for time period i
(and erases SK;_1,SK]).

e &, the encryption algorithm, is a probabilistic algorithm which takes as input a public-key
PK, a time period i, and a message M. It returns a ciphertext (i,C').

e D, the decryption algorithm, s a deterministic algorithm which takes as input a secret key
SK; and a ciphertext (i,C). It returns a message M or the special symbol L.

We require that for all messages M, Dsg,(Epk (i, M)) = M.

A key-updating encryption scheme is used as one might expect. A user begins by generating
(PK,SK*,SKy) < G(1*, N), registering PK in a central location (just as he would for a standard
public-key scheme), storing SK* on a physically-secure device, and storing SK, himself. At the
beginning of time period ¢, the user requests SK; = U*(i, SK*) from the secure device. Using SK]
and SK; ;, the user may compute SK; = U(i,SK;_1,SK}). This key may be used to decrypt
messages sent during time period ¢ without further access to the device. After computation of SKj,

the user must erase SK/ and SK; ;. Note that encryption is always performed with respect to a
fixed public key PK which need not be changed. Also note that the case when the device is fully
trusted corresponds to SKy =1 and SK; = SK].

RANDOM-ACCESSs KEY UPDATES. All the schemes we construct will have a useful property we
call random-access key updates. For any current period j and any desired period 4, it is possible to
update the secret key from SK; to SK; in “one shot”. Namely, we can generalize the key updating
algorithms U* and U to take a pair of periods 7 and j such that U*((7,7), SK*) outputs the partial
key SK;; and U((i,7), SK;, SK];) outputs SK;. Our definition above implicitly fixes j =i —1. We
remark that random-access key updates are impossible to achieve in the forward-security model.

2.2 Security

The are three types of exposures we protect against: (1) ordinary key ezposure, which models
(repeated) compromise of the insecure storage (i.e., leakage of SK;); (2) key-update exposure, which
models (repeated) compromise of the insecure device during the key-updating step (i.e., leakage of
SK;_; and SK)); and (3) master key exposure, which models compromise of the physically-secure
device (i.e., leakage of SK*; this includes the case when the device itself is untrusted).

To formally model key exposure attacks, we give the adversary access to two (possibly three)
types of oracles. The first is a key ezposure oracle Expgk- g K, (-) which, on input i, returns the
temporary secret key SK; (note that SK; is uniquely defined by SK* and SKj). The second is a
left-or-right encryption oracle [4], LRPK,E(" -,+), where b=by...by € {0,1}", defined as:

. def .
LRPK,E(ZaMoaMl) = EPK(Z,Mbi)

This models encryption requests by the adversary for time periods and message pairs of his choice.
We allow the adversary to interleave encryption requests and key exposure requests, and in partic-
ular the key exposure requests of the adversary may be made adaptively and in any order. Finally,
we may also allow the adversary access to a decryption oracle DEK*’SKO(-) that, on input (i, C),
computes Dg, ((i,C)). This models a chosen-ciphertext attack by the adversary.

The vector b for the left-or-right oracle will be chosen randomly, and the adversary succeeds
by guessing the value of b; for any un-exposed time period i. Informally, a scheme is secure if any
probabilistic polynomial time (PPT) adversary has success negligibly close to 1/2. More formally:

Definition 2 Let Il = (G,U*,U,E,D) be a key-updating encryption scheme. For adversary A,
define the following:

Succan(k) < pr [(PK,SK*,SKO) — (1%, N);b « {01},

(’i,b,) — ALRPK,E('a'a')zEXpSK*,SKO('):O(')(PK) . b’ = bi ,

where i was never submitted to Expgy- g, (+), and O(:) =L for a plaintext-only attack and O(-) =
DE‘K*,SKO(') for a chosen-ciphertext attack (in the latter case the adversary is not allowed to query
D*((i,C)) if (i,C) was returned by LR(7,-,-)). II is (t, N)-key-insulated if, for any PPT A who
submits at most t requests to the key-exposure oracle, |Succy 11(k) — 1/2| is negligible.

As mentioned above, we may also consider attacks in which an adversary breaks in to the user’s
storage while a key update is taking place (i.e., the exposure occurs between two periods 7 — 1
and i); we call this a key-update exposure at period 7. In this case, the adversary receives SK;_1,

SK], and (can compute) SK;. Informally, we say a scheme has secure key updates if a key-update
exposure at period ¢ is equivalent to key exposures at periods ¢ — 1 and ¢+ and no more. More
formally:

Definition 3 Key-updating encryption scheme I1 has secure key updates if the view of any adver-
sary A making o key-update exposure request at period i can be perfectly simulated by an adversary
A" who makes key exposure requests at periods 1 — 1 and 1.

This property is desirable in real-world implementations of a key-updating encryption scheme since
an adversary who gains access to the user’s storage is likely to have access for several consecutive
time periods (i.e., until the user detects or re-boots), including the key updating steps.

We also consider attacks which compromise the physically-secure device (this includes attacks
in which this device is untrusted). Here, our definition requires that the encryption scheme be
secure against an adversary which is given SK* as input. Note that we do not require security
against an adversary who compromises both the user’s storage and the secure device — in our
model this is impossible since, given SK* and SK;, an adversary can compute SK; (at least for
J > i) by himself.

Definition 4 Let I be a key-updating scheme which is (t, N)-key-insulated. For any adversary B,
define the following:

Succpn(k) & Pr [(PK,SK*,SKO) — (1%, N);b « {01},

(3,¥) « B-Rewst)O0(PK, SK7) b =]

where O(-) =L for a plaintext-only attack and O(-) = Dy g, (+) for a chosen-ciphertext attack (in
the latter case the adversary is not allowed to query D*((i,C)) if (i,C) was returned by LR(,-,-)).
IT is strongly (¢, N)-key-insulated if, for any PPT B, |Succp (k) —1/2| is negligible.

3 Generic Semantically-Secure Construction

Let (G, E,D) be any semantically secure encryption scheme. Rather than giving a separate (by
now, standard) definition, we may view it simply as a (0, 1)-key-insulated scheme. Namely, only one
secret key SK is present, and any PPT adversary, given PK and the left-or-right-oracle LRp 5,
cannot predict b with success non-negligibly different from 1/2. Hence, our construction below can
be viewed as an amplification of a (0, 1)-key-insulated scheme into a general (¢, N)-key-insulated
scheme.

We will assume below that t,log N = O(poly(k)), where k is our security parameter. Thus, we
allow exponentially-many periods, and can tolerate exposure of any polynomial number of keys.
We assume that E operates on messages of length ¢ = £(k), and construct a (¢, N)-key-insulated
scheme operating on messages of length L = L(k).

AUXILIARY DEFINITIONS. We need two auxiliary definitions: that of an all-or-nothing trans-
form [35, 9] (AONT) and a cover-free family [19, 17]. Informally, an AONT splits the message M
into n secret shares x1,...,x, (and possibly one public share z), and has the property that (1)
the message M can be efficiently recovered from all the shares z1,...,z,, z, but (2) missing even a
single share z; gives “no information” about M. As such, it is a generalization of (n — 1, n)-secret
sharing. We formalize this, modifying the conventional definitions [9, 10] to a form more compatible
with our prior notation.

Definition 5 An efficient randomized transformation T is called an (L,¢,n)-AONT if: (1) on
input M € {0,1}-, T outputs (X, z) def (T1,...,Tn,2), where z; € {0,1}*; (2) there ewists an
efficient inverse function T such that Z(X,z) = M; (3) T satisfies the indistinguishability property
described below.

Let X_j = (x1,...,%j—1,%j41,.-.,%pn) and T_j(M) = (X_j,2), where (X,z) < T(M). Define the
left-or-right oracle LRy(j, Mo, M) of T—;(My), where b € {0,1}. For any PPT A, we let

Succ 47 (k) & Pr[b « {0, 1} + ARG @by o o =]

We require that |Succa 7(k) — 1/2| is negligible.

A family of subsets Si,..., Sy over some universe U is said to be t-cover-free if no t subsets
Siy,---, 95, contain a (different) subset S;,; in other words, for all {3, ..., } with o & {i1,...,%},
we have S;, & U;-:lSij. A family is said to be (¢, «)-cover-free, where 0 < a < 1, if, for all
{io, .. it} with ig & {i1,... i}, we have [Sj\ UL, Si;| > @S;,|. Such families are well known
and have been used several times in cryptographic applications [11, 30, 21]. In what follows, we fix
a = 1/2 for simplicity, and will use the following (essentially optimal) result, non-constructively
proven by [19] and subsequently made efficient by [30, 25].

Theorem 1 ([19, 30, 25]) For any N and t, one can efficiently construct a (¢, 3)-cover-free col-
lection of N subsets S1,...,Sy of U ={1,...,u} with |S;| = n for all i, satisfying u = O(t*log N)
and n = O(tlog N).

Since we assumed that t,log N = O(poly(k)), we have u,n = O(poly(k)) as well.

CONSTRUCTION. For simplicity, we first describe the scheme which is not strongly secure (see

Definition 4), and then show a modification making it strongly secure. Let Si,...,Sy C [u] def
{1,...,u} be the (¢, %)—cover—free family of n-element sets, as given by Theorem 1. Also, let T

be a secure (L,¢,n)-AONT. Our (¢, N)-key-insulated scheme will have a set of u independent
encryption/decryption keys (sk;,pk,) for our basic encryption E, of which only the subset S; will
be used at time period i. Specifically, the public key of the scheme will be PK = {pky,...,pky,},
the secret key at time ¢ will be SK; = {sk, : r € S;}, and the master key (for now) will be
SK* = {ski,...,sk,}. We define the encryption of M € {0,1}* at time period i as:

EPK(ZaM) — (i, (Epkrl ($1)7' .. 7Epkm (mn)a Z))7

where (z1,...,2p,2) < T(M) and S; = {r1,...,r,}. To decrypt (i, (y1,...,Yn,2)) using SK; =
{sk, : r € S;}, the user first recovers the z;’s from the y;’s using D, and then recovers the
message M = Z(z1,...,2Zpn,2). Key updates are trivial: the device sends the new key SK; and
the user erases the old key SK; ;. Obviously, the scheme supports secure key updates as well as
random-access key updates.

SECURITY. We sketch the intuition for (¢, N)-key-insulated security of this scheme. The definition
of the AONT implies that the system is secure at time period ¢ provided the adversary misses at least
one key sk,, where r € S;. Indeed, semantic security of £ implies that the adversary completely
misses the shares encrypted with sk, in this case, and hence has no information about the message
M. On the other hand, if the adversary learn any ¢ keys SK;,, ..., SK;,, he learns the auxiliary keys
{sky : 7€ 8;,US;,...US;,}. Hence, the necessary and sufficient condition for (¢, N)-key-insulated
security is exactly the ¢-cover freeness of the S;’s! The parameter @ = % is used to improve the

exact security of our reduction.

Theorem 2 The generic scheme 11 described above is (t, N)-key-insulated with secure key updates,
provided (G, E, D) is semantically-secure, T is a secure (L,£,n)-AONT, and the family Si,...,Sn
is (t, %)—cover—fr@e, Specifically, breaking the security of 11 with advantage € implies the same for
either (G, E, D) or T with advantage at least Q(e/t).

Proof: Let A be the adversary for II with Succa (k) = % + ¢. First, we create the following
adversary A’ such that Succayp > 3 +¢- 9% = § 4+ Q(5). A’ first picks a random index r € [u].
Then it runs A up to the point when A outputs (7,0). At this stage, A’ looks at indices i1,. ..,
of the ¢ exposed time periods, and checks if r € S;\ U§:1 Si;- 1f this test succeeds, A’ also outputs
(2,b'). Else, it outputs (i,c), where ¢ is a random bit. In other words, A’ uses the output of
A provided the guess r is such that sk, is used at period ¢ but A did not learn sk,. Since A
cannot output i € {71 ...1;} and since our family is (¢, 1)-cover-free, there are at least «|S;| = n/2
indices r' € S;\ U§:1 Si;. Also, since A’ chose r € [u] at random and independently of the run
of A, with probability at least ¢ = 5= = Q(%) we get that A" will use the output of A, so that
Succarn > (1—q)3 +4q(5+¢) > 1+ Q(3), as claimed.

Next, we create a more favorable environment for A’ to simplify the proof. Right after A’ picks
its random r, we give A’ the secret keys sk, for all p # r. At this point, there is no need to
encrypt with any keys other than pk, (A’ can decrypt anyway). Moreover, there is no need for
our environment to pick a full-fledged N-bit vector (;; rather, only b;’s such that r € S; should be
chosen. In fact, rather than choosing the b;’s (where r € S;) independently, we choose only one
random bit b and set b; = b for all i s.t. r € S;. Clearly, this only helps A’.? Since A’ is committed
to output a non-random bit b’ only for period 7 such that r» € S; and the original adversary A did
not learn sky, we get that Pr(t/ = b) > 1 + Q(£) in the modified environment.

To summarize, we can assume A’ runs in the following environment Enuvg. A’ picks a random
r € [u]. We pick a random key pair (sk;,,pk,) for E and a random bit b € {0,1}. We give A’
the public key pk,, and access to the “reduced” left-or-right oracle LR;,kT,b(i,Mo,Ml) which can
be called only for i satisfying r € S;. The oracle runs (X, z) « 7 (M,;), and returns the following:
(T_;(My), Ep, (x;)), where j € [n] is the position of r inside S;. The goal of A’ is to predict b, and
we assumed that it does so correctly with probability go = Pr(b =" | Envg) > 3 + Q(%).

Next, we run A’ in a different environment Env;. It is identical to Envg except that on left-
or-right query (4, My, My) (where r € S;), rather than returning (7, (M,), Ep, (), Envy instead
returns (1_;(My), Epk, (0)). Namely, it encrypts the all-zero string 0 instead of the share z;. We
let ¢y =Pr(b =10 | Envy).

The proof is now almost complete. The fact that g9 > 3 + (%) implies that either: (a)
g0 —q > Q(%); or (b) g1 > 5 4+ Q(5). We show that either case is a contradiction: case (a) to the
indistinguishability of encryption £, while case (b) to the indistinguishability of AONT 7.

CAsE (A): If o —q1 > Q(3), we break the indistiguishability of £ by means of the following
adversary A; which in turn runs A’ as follows. When A’ chooses r € [u], A1 views the public key
of E as pk, and picks a random b € {0,1}. From now on, A; runs A" and answers the left-or-right
queries (i, My, M7) of A’ as follows. If r € S;, it ignores it. Else, it sets (X, z) «+ T (M), and gives
its own left-or-right oracle the query (z;,0), where j is the position of r inside S;. When it gets y
(encryption of either z; or 0) back from its oracle, it returns to A’ the answer (X_;, z,y). When
A’ finally outputs its guess b', A; checks if b = /. If so, it guesses its own bit d was 0 (i.e., z; was
always encrypted), else that it was 1 (0 was always encrypted). It is easy to see that if d = 0, we

20One way to see this is to imagine that we picked all the b;’s independently, then picked a random b and told A’
the set of 7 such that b; = b (and thus, the set of 7 where b; = 1 — b), but did not disclose b.

exactly run A’ in Envg, else — exactly in Env,. Hence, A; predicts d correctly with probability
%(1 —q1) + %QU > 1+ Q(%), contradicting the security of E.

Case (B): If ¢ > 1 + Q(%), we break the indistingushability of 7~ by means of the following
adversary As which in turn runs A’ as follows. A, picks a random key (pk;, sk;) and runs A’ up
to completion, outputting the same b' as A’ does. To answer the left-or-right-query (i, My, M),
where r € S;, Ay calls its own oracle of (j, My, M), where j is the position of r inside S;. It gets
back T_;(Mp), and returns A’ the pair (T_;(My), Epg, (0)). Clearly, As exactly recreates Env, and
hence predicts its own b with probability ¢; > % + €2(%), contradicting security of 7. [|

STRONG KEY-INSULATED SECURITY. The above scheme is not strongly (¢, N)-key-insulated since
the device stores all the secret keys (sky, ..., sk,). However, we can easily fix this problem. The user
generates one extra key pair (sko,pko). It publishes pko together with the other public keys, but
keeps sk for itself (never erasing it). Assuming now that 7 produces n + 1 secret shares zy,...,z,
rather than n, we just encrypt the first share zy with pky (and the others, as before, with the
corresponding keys in S;). Formally, let S] = S;U{0}, the master key is still SK* = {sk, ..., sk,},
but now PK = {pko,pki,...,pky,} and the i-th secret key is SK; = {sk, : r € S!}. Strong
key-insulated security of this scheme follows a similar argument as in Theorem 2.

EFFICIENCY. The main parameters of the scheme are: (1) the size of PK and SK* are both u =
O(t?log N); and (2) the user’s storage and the number of local encryptions per global encryption
are both n = O(tlog N). In particular, the surprising aspect of our construction is that it supports
an exponential number of periods N and the main parameters depend mainly on ¢, the number
of exposures we allow. Since ¢ is usually quite small (say, ¢ = O(1) and certainly ¢ < N), we
obtain good parameters considering the generality of the scheme. (In Section 4 we use a specific
encryption scheme and achieve |PK]|,|SK*| = O(t) and |SK;| = O(1).)

Additionally, the choice of a secure (L,#,n)-AONT defines the tradeoff between the number
of encrypted bits L compared to the total encryption size, which is (6nf + |z|), where [is the
expansion of F, and |z| is the size of the public share. In particular, if L = ¢, we can use any
traditional (n — 1, n)-secret sharing scheme (e.g., Shamir’s scheme [37], or even XOR-sharing: pick
random z;’s subject to M = @ ;). This way we have no public part, but the ciphertext increases
by a factor of Gn as compared to the plaintext. Computationally-secure AONT’s allow for better
tradeoffs. For example, using either the computational secret sharing scheme of [28], or the AONT
constructions of [10], we can achieve |z| = L, while # can be as small as the security parameter
k (in particular, ¢ < L). Thus, we get additive increase nf, which is essentially independent of
L. Finally, in the random oracle model, we could use the construction of [9] achieving |z| = 0,
L = £(n — 1), so the ciphertext size is 3¢n ~ (L. Finally, in practice one would use the above
scheme to encrypt a random key K (which is much shorter than M) for a symmetric-key encryption
scheme, and concatenate to this the symmetric-key encryption of M using K.

ADAPTIVE VS. NON-ADAPTIVE ADVERSARIES. Theorem 2 holds for an adaptive adversary who
makes key exposure requests based on all information collected so far. We notice, however, that
both the security and the efficiency of our construction could be somewhat improved for non-
adaptive adversaries, who choose the key-exposure periods i1,...,7; at the outset of the protocol
(which is the model of [39, 31, 2]). For example, it is easy to see that we no longer lose the factor
t in the security of our reduction in Theorem 2. As for the efficiency, instead of using an AONT
(which is essentially an (n — 1,n)-secret sharing scheme), we can now use any (n/2,n)-“ramp”
secret sharing scheme [7]. This means that n shares reconstruct the secret, but any n/2 shares
yield no information about the secret. Indeed, since our family is (¢, %)—cover—free, any non-exposed

period will have the adversary miss more than half of the relevant secret keys. For non-adaptive
adversaries, we know at the outset which secret keys are non-exposed, and can use a simple hybrid
argument over these keys to prove the security of the modified scheme. For example, we can use
the “ramp” generalization of Shamir’s secret sharing scheme?® proposed by Franklin and Yung [20],
and achieve L = ¢n/2 instead of L = ¢ resulting from regular Shamir’s (n — 1,n)-scheme.

4 Semantic Security Based on DDH

In this section, we present an efficient strongly (¢, N)-key-insulated scheme, whose semantic security
can be proved under the DDH assumption.

We first describe the basic encryption scheme we build upon. The key generation algorithm
Gen(1%) selects a random prime ¢ with |g| = & such that p = 2¢+ 1 is prime. This defines a unique
subgroup G C Z,, of size ¢ in which the DDH assumption is assumed to hold; namely, it is hard
to disinguish a random tuple (g, h,u,v) of four independent elements in G from a random tuple
satisfying log, u = log;, v. Given group G, key generation proceeds by selecting random elements
g,h € G and random z,y € Z,; The public key consists of g, h, and the Pedersen commitment [34]
to z and y: z = g*hY. The secret key contains both z and y. To encrypt M € G, choose random
r € Zq and compute (¢",h", 2" M). To decrypt (u,v,w), compute M = w/u"v¥. This scheme is
very similar to El Gamal encryption [18], except it uses two generators. It has been recently used
by [27] in a different context.

OUR SCHEME. Our (¢, N)-key-insulated scheme builds on the above basic encryption scheme and
is presented in Figure 1. The key difference is that, after choosing G, g, h, as above, we select two

random polynomials f(7) & Z§:0 a;;ij and fy(7) & Z§:0 y;-‘Tj over Zgq of degree ¢t. The public
key consists of g, h and Pedersen commitments {zj, ..., 2} to the coefficients of the two polynomials

(see Figure 1). The user stores the constant terms of the two polynomials (i.e., zf and y;) and
the remaining coefficients are stored by the physically-secure device. To encrypt during period i,

*

first z; is computed from the public key as z; def ngo(zj)ij. Then (similar to the basic scheme),
encryption of message M is done by choosing r € Z, at random and computing (i, (¢, h", 2] M)).
Using our notation from above, it is clear that z; = ¢/* @ pfy(), Thus, as long as the user has secret
key SK; = (f,(7), fy(¢)) during period 4, decryption during that period may be done just as in the
basic scheme. As for key evolution, the user begins with SKy = (,y5) = (f2(0), fy(0)). At the
start of any period ¢, the device transmits partial key SK! = (z},y}) to the user. Note that (cf.
Figure 1) «} = f. (i) — fo(¢ — 1) and y; = f, (i) — fy(¢ — 1). Thus, since the user already has SK; 1,
the user may easily compute SK; from these values. At this point, the user erases SK;_1, and uses
SK; to decrypt for the remainder of the time period.

Theorem 3 Under the DDH assumption, the encryption scheme of Figure 1 is strongly (t,N)-
key-insulated under plaintext-only attacks. Furthermore, it has secure key updates and supports
random-access key updates.

Proof: Showing secure key updates is trivial, since an adversary who exposes keys SK; ; and
SK; can compute the value SK] by itself (and thereby perfectly simulate a key-update exposure at
period ¢). Similarly, random-access key updates can be done using partial keys SK;; = (z};, ;)

*Here the message length L = ¢n/2, and the £-bit parts mu,...,m, » of M are viewed as the n/2 lower order
coefficients of an otherwise random polynomial of degree (n — 1) over GF[2‘]. This polynomial is then evaluated at
n points of GF[2*] to give the final n shares.

10

G(1F): (g,h,q) < Gen(1%); 5, u5,. .., 2f,yf + Zq
2y = g“”ghyg,...,zf = g%t h¥i
PK :=(g,h,q,25,...,%)
SK* := (z7,9],...,2},yf); SKo:= (x,y3)
return PK, SK*, SK

U*(%SK* = (xlvylv . mtvyt)) u(iaSKi—l = (fL'i—layi—l)aSK{ = (:’L';,y;))
:v; Z{ "](’L]—(’L—l)) T =T + 2}
v =29 (@ — (i -1)) Yi = Yi-1 +Y;
return SK| = (), y}) return SK; = (z;,i)
g(g hqzo, w2y ()) D(wi,yi)(<i7 C= (uvvvw»):
;= H (z;‘)l] M = w/u%iv¥i
T Ly return M
C:= (gr,hr,sz)
return (i, C')

Figure 1: Semantically-secure key-updating encryption scheme based on DDH.

where zi; = fi(i) — fu(4), ¥i; = fy(é) — fy(j). The user can then compute z; = z; + zj; and
Yi = Yj + Yi;-

We now show that the scheme satisfies Definition 2. By a standard hybrid argument [4], it is
sufficient to consider an adversary A who asks a single query to its left-or-right oracle (for some
time period 7 of A’s choice) and must guess the value b;. So we assume A makes only a single query
to the LR oracle during period 7 for which it did not make a key exposure request. In the original
experiment (cf. Figure 1), the output of LRPK,E(ivM()? M) is defined as follows: choose r € Z at
random and output (i, (9", h", 2{ My,)). Given a tuple (g, h,u,v) which is either a DDH tuple or
a random tuple, modify the original experiment as follows: the output of LR, K’g(i,Mo,Ml) will
be (i, (u,v,u" v¥ My)). Note that if (g, h,u,v) is a DDH tuple, then this is a perfect simulation of
the original experiment. On the other hand, if (g, h,u,v) is a random tuple then, under the DDH
assumption, the success of any PPT adversary in this modified experiment cannot differ by more
than a negligible amount from its success in the original experiment. It is important to note that,
in running the experiment, we can answer all of A’s key exposure requests correctly since all secret
keys are known. Thus, in contrast to [39, 31], we may handle an adaptive adversary who chooses
when to make key exposure requests based on all information seen during the experiment.

Assume now that (g,h,u,v) is a random tuple and log, h # log, v (this will occur with all
but negligible probability). We claim that the adversary’s view in the modified experiment is
independent of b. Indeed, the adversary knows only ¢ values of f,(-) and fy(-) (at points other than
i), and since both f,(-) and fy(-) are random polynomials of degree ¢, the values z;, y; (= f(7), fy(¢))
are information-theoretically uniformly distributed, subject only to:

log, zi = x; + y;log, h. (1)
Consider the output (i, (u, v, u” v¥ My)) of the encryption oracle. Since:
log, (u*v¥") = z; + y; log,, v, (2)

and (1) and (2) are linearly independent, the conditional distribution of u*iv¥ (conditioned on b;
and the adversary’s view) is uniform. Thus, the adversary’s view is independent of b; (and hence

11

=,

b). This implies that the success probability of A in this modified experiment is 1/2, and hence the
success probability of A in the original experiment is at most negligibly different from 1/2.

We now consider security against (compromises of) the physically-secure device; in this case,
there are no key exposure requests but the adversary learns SK*. Again, it is sufficient to consider
an adversary who asks a single query to its left-or-right oracle (for time period i of its choice)
and must guess the value b;. Since SK* only contains the ¢ highest-order coefficients of ¢-degree
polynomials, the pair (x;,y;) is information-theoretically uniformly distributed (for all 7) subject
to x; + y;log, h = logg z;. An argument similar to that given previously shows that the success
probability of the adversary is at most negligibly better than 1/2, and hence the scheme satisfies
Definition 4. |

5 Chosen-Ciphertext Security Based on DDH

We may modify the scheme given in the previous section so as to be resistant to chosen-ciphertext
attacks. In doing so, we build upon the chosen-ciphertext-secure (standard) public-key encryption
scheme of Cramer and Shoup [12].

g(lk): (g,h,q) < Gen(lk); H « CRHF(lk)
fori =0totand n =0 to 2:
meyZn — Zq
for i =0 to ¢t:

* * * * * *
Z;k = gwi,Ohyi,O; C;F = gwi,l hyi,l; d:‘ = gwi,zhyi,Q
PK := (97 h7 q, H7 {Z;(JC’);? df}ogzgt)

SK* = ({27, vinh<i<t,0<n<2)i SKo = ({25 1, Y5 n}o<n<2)

return PK,SK*,SKy

u*(Z,SK*) U(Z,SKl_l,SK{)
for n =0 to 2: for n =0 to 2:
‘T;,n = Zttj:l x;,n (Z] - (Z - 1)]) Lin = Ti-1,n + m;,n
Yin = 2jmr Ui (7 — (i = 1)7) Yin = Yi-1n + Yip
return SK| = ({«} ,,, Y}, Jo<n<2) return SK; = ({Tin, Yin}o<n<2)
Ep(i, M) Dy, (i, (u, v, w, €))):
zi =1y (2F) 5 G= I _y(c5)’ a:= H(i,u,v,w)
d; == H;ZO(d;‘-)i] if u®i T 2ayYitYiza oL ¢
T4 ZLyq return L
C:=(g",h", 2] M, (c;d¥)"), else M := w/u®i0¢p¥%:.0
where o & H(i,g",h", 2T M) return M
return (i, C')

Figure 2: Chosen-ciphertext-secure key-updating encryption scheme based on DDH.

We briefly review the “basic” Cramer-Shoup scheme (in part to conform to the notation used
in Figure 2). Given generators g, h of group G (as described in the previous section), secret keys
{%n,Yn}o<n<2 are chosen randomly from Z,. Then, public-key components z = g“°h*°, ¢ = g“* h¥!,
and d = ¢g¥2h¥? are computed. In addition, a function H is randomly chosen from a family of
universal one-way hash functions (UOWHE’s). The public key is (g, h, q,z,¢,d, H).

12

To encrypt a message M € G, a random element r € Z, is chosen and the ciphertext is:
(g",h", 2" M, (cd*)"), where o« = H(g",h",2"M). To decrypt a ciphertext (u,v,w,e), we first check
whether u1T220p¥1+920 — ¢ [f not, we output L. Otherwise, we output M = w/u*°v%.

In our extended scheme (cf. Figure 2), we choose six random, degree-t polynomials (over Zg) fz,
fyos fars Jyrs faps and fy,, where fo, (1) © Z;:O m;,nTj and fy, (1) © Z;:O y;,nTj for 0 <n < 2.
The user stores the constant term of each of these polynomials, and the remaining coefficients are
stored by the physically-secure device. The public key consists of g, h, H, and Pedersen commit-
ments to the coefficients of these polynomials. Here, H is chosen from a family of collision-resistant
hash functions (CRHF’s). For such a function H, it is infeasible to find two distinct inputs m; and
mg such that H(mq) = H(mz).

To encrypt during period 7, a user first computes z;,c;, and d; by evaluating the polynomials
“in the exponent” (see Figure 2). Then, similar to the basic scheme, encryption of M is performed
by choosing random r € Z, and computing (i, (9", h", 2] M, (¢;d$*)")), where « def H(i,g",h", 2] M).
Note that we now include the period ¢ in the hash function; this will be important in the analysis.
Also notice that z; = gleoOpfw®) ¢ = glaiOpfui() and d; = gf>Opfe2(), Thus, the user can
decrypt (just as in the basic scheme) as long as he has f;, (i), fy, (¢) for 0 < n < 2. The period
secret key SK; contains exactly these values.

Theorem 4 Under the DDH assumption, the encryption scheme of Figure 2 is strongly (t,N)-
key-insulated under chosen-ciphertext attacks. Furthermore, the scheme has secure key updates and
supports random-access key updates.

Proof: That the scheme has secure key updates is trivial, since SK; may be computed from
SK; 1 and SK;. Random-access key updates are done analogously to the scheme of the previous
section. We now show the key-insulated security of the scheme (cf. Definition 2). A standard hybrid
argument [4] shows that it is sufficient to consider an adversary A who makes only a single request
to its left-or-right oracle (for time period 7 of the adversary’s choice) and must guess the value b;.
We stress that polynomially-many calls to the decryption oracle are allowed.

Assume A makes a single query to the LR oracle during period ¢ for which it did not make a key
exposure request. In the original experiment (cf. Figure 2), the output of LRPKJ—;(i, My, M) is as
follows: choose r <— Z4 and output (3, (¢", k", 2{ My, , (c;d")")), where o is as above. As in the proof
of Theorem 3, we now modify the experiment. Given a tuple (g, h, u,v) which is either a DDH tuple

or a random tuple, we define the output of LR, . +(i, Mo, M1) to be (i, (u, v, 0 = u®0v¥0 M, € =

uPil 20 Yi 1Y 20)) - where def H(i,u,v,w). Note that if (g, h,u,v) is a DDH tuple, then this
results in a perfect simulation of the LR oracle from the original experiment. On the other hand, if
(g, h,u,v) is a random tuple, then, under the DDH assumption, the success of any PPT adversary
cannot differ by a non-negligible amount from its success in the original experiment. As in the
proof of Theorem 3, note that, in running the experiment, we can answer all of A’s key exposure
queries. Thus, the proof handles an adaptive adversary whose key exposure requests may be made
based on all information seen up to that point.

Assume now that (g, h,u,v) is a random tuple and log, h # log, v (this happens with all but
negligible probability). We show that, with all but negligible probability, the adversary’s view in
the modified experiment is independent of b. The proof parallels [12, Lemma 2]. Say a ciphertext
(i, (u', 0", ', €)) is invalid if log, u' # logy, v'. Then:

Claim: If the decryption oracle outputs L for all invalid ciphertexts during the adversary’s attack,
then the value of b; (and hence b) is independent of the adversary’s view.

13

The adversary knows at most ¢ values of f,(-) and f,(-) (at points other than 4). Since f,(-)
and fy,(-) are random polynomials of degree ¢, the values x;0,vi0 (= fa, (%), fyo (¢)) are uniformly
distributed subject only to the constraint given by the public key:

log, zi = i + yiplogg h. (3)

Furthermore, when the decryption oracle decrypts valid ciphertexts (i, (u',v',w’, €')), the adversary
only obtains linearly-dependent relations r’ log,zi = r'zio + r'yio log, h (where pr log, u').
Similarly, decryptions of valid ciphertexts at other time periods do not further constrain z; o, ;0.
Now consider the third component u®-0v¥%:0 M, of the encryption oracle (the only one which depends
on b;). Specifically, consider the discrete log of the “one-time pad” u®*i0v¥%:.0;

log, (u"*°v¥:0) = x; o + y; 0 log, v. (4)

Since we assumed that log, v # log, h, (3) and (4) are linearly independent and the distribution of
u®0p¥.0 (conditioned on b; and the adversary’s view) is uniform. Thus, u%0v%.0 acts as a perfect
“one-time pad” and the adversary’s view is independent of b;. The following claim now completes
the proof of key-insulated security:

Claim: With all but negligible probability, the decryption oracle will output L for all invalid
ciphertexts.

Consider an invalid ciphertext (j, (u',v',w',¢e')), where j represents a period during which a key
exposure request was not made, and let o = H(j,4',v',w"). We show that, with all but negligible
probability, this ciphertext is rejected if it is invalid. There are two cases to counsider: (1) j =1
(recall that i is the period during which the call to the LR oracle is made) and (2) j # i.

When j = 4, the proof of the claim follows the proof of [12, Claim 2] exactly. The adversary
knows at most ¢ values of fy, (-), fy, (), fz, (), and fy,(-) (at points other than %). Since these are
all random polynomials of degree ¢, the values (z;1,¥i.1, %; 2, ¥;2) are uniformly distributed subject
only to:

logg ¢ = Ti1+Yil logg h (5)
logg d; = Ti2 + Yi2 logg h (6)
log, € = =1+ aziz+ (log,v)yi1 + (log, v) ay; 2, (7)

where (5) and (6) come from the public key and (7) comes from the output of the encryption
oracle. If the submitted ciphertext (i, (u',v',w', e')) is invalid and (u',v',w', €') # (u,v,d, €), there
are three possibilities:

Case 1. (v/,v',w') = (u,v,w). In this case, ¢ # € ensures that the decryption oracle will reject.
Case 2. (u/,v',w') # (u,v,w) but H(i,u,v',w') = H(i,u,v,w). This immediately violates the
collision-resistance of our hash function and hence cannot occur with non-negligible probability.

Case 3. H(i,u',v',w') # H(i,u,v,w), i.e. @ # &. The decryption oracle will reject unless:
log, € =1+ w9+ (log, v') yi1 + (log, v') & y; 2. (8)

But (5)-(8) are all linearly independent when « # o', log, h # log, v and log,h # log,, v' (the
ciphertext is invalid), from which it follows that the decryption oracle rejects except with probability
1/g. (As in [12], each rejection further constrains the values (z;1,¥i1,%i2,Yi2); however, the k'
query will be rejected except with probability at most 1/(q — k + 1).)

14

When j # i, the proof is a bit more involved. The 8-tuple (x; 1,¥i 1, %i2, Yi,2, j 1, Yj,1, Tj,25 Yj,2)
is uniformly distributed subject to several constraints. First, we have the three constraints (5)—(7).
Next, we have the following two constraints arising from the public key:

logg ¢ = i1+t Y1 logg h (9)
log,dj = 2+ yjz2log,h. (10)

Furthermore, since the adversary could have made up to ¢t key exposure requests (at periods other
than 4 and j), it may now know ¢ values of each of f; , fz., fy1, fy,- This means than it knows
a linear relation between each pair (z;1,2;,1), (zi2,%j2), (¥i,1,91), (¥i,2,y;2). Specifically, these
relations are of the form:

i1+ Arj1 = st (11)
Ti2 +Axjo = 82 (12)
Yig + Ay = 83 (13)
Yig + A\Yj2 = S84, (14)

where A is the corresponding Lagrange coefficient A = (i —41)--- (¢ —4;)/(j —@1) - - - (j — @¢). Notice
that the same A appears in all four constraints. On first glance, it appears we have more constraints
than unknowns. However, it is easy to see that (13) is linearly dependent on (5), (9), and (11)
while (14) is linearly dependent on (6), (10), and (12). Hence, we only have 7 linearly independent
constraints and 8 unknowns.

If the ciphertext (j, (u',v',w',€')) submitted by the adversary is invalid, the decryption oracle
will reject unless:

log, € =zj1+ d'zj2+ (log, v') yj1 + (log, v') & yj2. (15)

Now, looking at all 8 equations (5)—(7), (9)-(12), (15), we see that they are linearly independent
precisely when the following three conditions hold:

1. log, h # log, v. This is true with overwhelming probability since (g, b, u,v) is a random tuple.
2. log, h # log,, v'. This is true since the ciphertext (j, (u',v",w’, €')) is invalid.

3. a#d,ie H(i,u,v,w) # H(j,u',v',w'). This is true since we assumed that 7 # j and H
is chosen from a family of collision resistant functions. Here we require collision resistance of
H since the adversary’s choice of 4,7 is not known in advance.

Thus, (15) is linearly independent from all previous constraints and thus the ciphertext is rejected
except with negligible probability at most 1/¢ (again, the ™ such query is rejected except with
probability at most 1/(¢ — k + 1)).

This completes the proof of (¢, N)-key-insulated security. The proof of strong key-insulated

security follows exactly the same arguments given above except the constraints (11)-(14) now have
A = —1, as the adversary knows (z;1 — 1), etc. from SK*. [|

CRHF’s vs. UOWHF’s. In the proof we use the fact that H is collision resistant, while in
the basic Cramer-Shoup scheme [12], a universal one-way hash function suffices. We note that this
does not introduce an extra assumption as collision-resistant hash families can be constructed based
on the DDH assumption [34, 36] (in fact, the discrete logarithm assumption is enough). Second,

15

UOWHLEF'’s suffice for our construction as long as the maximum number of periods NV is polynomial
in the security parameter (since a factor of 1/N is lost by “guessing” the period ¢ for which the
adversary will submit its encryption oracle request). Third, if the adversary only makes (¢ — 1) key
exposure requests and we do not require strong security, we no longer have to include the period ¢
inside H and UOWHEF’s suffice again. Having said this, using a collision-resistant H seems a small
price to pay for the simplicity and additional security of our scheme.

Acknowledgment: Shouhuai Xu was partially supported by an NSF grant to the Laboratory for
Information Security Technology at George Mason University.

References

[1] M. Abdalla and L. Reyzin. A New Forward-Secure Digital Signature Scheme. Asiacrypt 00.

[2] M. Abe and M. Kanda. A Key Escrow Scheme with Time-Limited Monitoring for One-Way
Communication. ACISP ’00.

[3] R. Anderson. Invited lecture. ACM CCCS 97.

[4] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment of Sym-
metric Encryption: Analysis of the DES Modes of Operation. FOCS ’97.

[5] M. Bellare and S.K. Miner. A Forward-Secure Digital Signature Scheme. Crypto ’99.

[6] M. Bellare and A. Palacio. Protecting against Key Exposure: Strongly Key-Insulated En-
cryption with Optimal Threshold. Available at http://eprint.iacr.org/2002/064/.

[7] G. Blakley and C. Meadows. Security of Ramp Schemes. Crypto '84.
[8] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Crypto ’01.

[9] V. Boyko. On the Security Properties of the OAEP as an All-or-Nothing Transform. Crypto
’99.

[10] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-Resilient Functions
and All-Or-Nothing-Transforms. Eurocrypt ’00.

[11] B. Chor, A. Fiat, and M. Naor. Tracing Traitors. Crypto '94.

[12] R. Cramer and V. Shoup. A Practical Public-Key Cryptosystem Provably Secure against
Adaptive Chosen-Ciphertext Attacks. Crypto '98.

[13] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to Share a Function Securely.
STOC '94.

[14] Y. Desmedt and Y. Frankel. Threshold cryptosystems. Crypto ’89.

[15] W. Diffie, P. van Oorschot and M. Wiener. Authentication and Authenticated Key Exchanges.
Designs, Codes and Cryptography, 2:107-125, 1992.

[16] Y. Dodis, J. Katz, S. Xu and M. Yung. Strong Key-Insulated Signature Schemes. Manuscript,
2002.

16

[17]

[18]

[19]

[20]
[21]

[22]

23]

[24]

[25]
[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]
[34]

[35]
[36]

A. Dyachkov and V. Rykov. A Survey of Superimposed Code Theory. In Problems of Control
and Information Theory, vol. 12, no. 4, 1983.

T. El Gamal. A Public-Key Cryptosystem and a Signature Scheme Based on the Discrete
Logarithm. IEEE Transactions of Information Theory, 31(4): 469-472, 1985.

P. Erdos, P. Frankl, and Z. Furedi. Families of Finite Sets in which no Set is Covered by the
Union of r Others. In Israel J. Math., 51(1-2): 79-89, 1985.

M. Franklin, M. Yung. Communication Complexity of Secure Computation. STOC ’92.

E. Gafni, J. Staddon, and Y. L. Yin. Efficient Methods for Integrating Traceability and
Broadcast Encryption. Crypto ’99.

M. Girault. Relaxing Tamper-Resistance Requirements for Smart Cards Using (Auto)-Proxy
Signatures. CARDIS ’98.

O. Goldreich, B. Pfitzmann, and R.L. Rivest. Self-Delegation with Controlled Propagation
— or — What if You Lose Your Laptop? Crypto ’98.

S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against Adap-
tive Chosen-Message Attacks. SIAM J. Computing 17(2): 281-308 (1988).

P. Indyk. Personal communication.

G. Itkis and L. Reyzin. Forward-Secure Signatures with Optimal Signing and Verifying.
Crypto '01.

S. Jarecki and A. Lysyanskaya. Concurrent and Erasure-Free Models in Adaptively-Secure
Threshold Cryptography. Eurocrypt ’00.

H. Krawczyk. Secret Sharing Made Short. Crypto "93.

H. Krawczyk. Simple Forward-Secure Signatures From any Signature Scheme. ACM CCCS
’00.

R. Kumar, S. Rajagopalan, and A. Sahai. Coding Constructions for Blacklisting Problems
without Computational Assumptions. Crypto ’99.

C.-F. Lu and S.W. Shieh. Secure Key-Evolving Protocols for Discrete Logarithm Schemes.
RSA 2002, to appear.

T. Malkin, D. Micciancio, and S. Miner. Efficient Generic Forward-Secure Signatures With
an Unbounded Number of Time Periods. Eurocrypt 02, to appear.

R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. PODC ’91.

T. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
Crypto "91.

R. Rivest. All-or-Nothing Encryption and the Package Transform. FSE 97.

A. Russell. Necessary and Sufficient Conditions for Collision-Free Hashing. Journal of Cryp-
tology 8(2): 87-100 (1995).

17

[37] A. Shamir. How to share a secret. Comm. ACM, 22(11):612-613, 1979.
[38] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. Crypto '84.

[39] W.-G. Tzeng and Z.-J. Tzeng. Robust Key-Evolving Public-Key Encryption Schemes. Avail-
able at http://eprint.iacr.org/2001/009/.

18

