New Imperfect Random Source with Applications to Coin-piinm

Yevgeniy Dodis
MIT*

December 4, 2000

Abstract

We introduce a nevimperfect random sourcthat realistically generalizes the SV-source of Santhd an
Vazirani [SV86] and the bit-fixing source of Lichtensteiniplal and Saks [LLS89]. Our source is expected
to generate a known sequence of (possibly dependent) ramdoables (for example, a stream of unbiased
random bits). However, the realizations/observationse$¢ variables could be imperfectin the following two
ways: (1) inevitablyeachof the observations could tsfightly biased (due to noise, small measurements errors,
imperfections of the source, etc.), which is characteriaethe “statistical noise” parametére [0, %], and (2)
fewof the observations could lmpletelyincorrect (due to very poor measurement, improper setuikealy
but certain internal correlations, etc.), which is chagdeed by the “number of errors” parameber 0. While
the SV-source considered only scenario (1), and the bitdixdource — only scenario (2), we believe that
our combined source is more realistic in modeling the probdd extracting quasi-random bits from physical
sources. Unfortunately, we show that dealing with teenbinationof scenarios (1) and (2) is dramatically
more difficult (at least from the point of randomness extatthan dealing with each scenario individually.
For example, ifbd = w(1), the adversary controlling our source can force the outcofray bit extraction
procedure to a constant with probability- o(1), irrespective of the random variables, their correlatiod the
number of observations.

We also apply our source to the question of produgifgjayer collective coin-flipping protocols secure
againstadaptiveadversaries. While the optimal non-adaptive adversdriakhold for such protocols is known
to ben /2 [BNOQ], the optimal adaptive thresholddsnjecturecy Ben-Or and Linial [BL90] to be onl@(y/n).

We give some evidence towards this conjecture by showirtdhiikee exists nblack-box transformatiofrom a
non-adaptivelysecure coin-flipping protocol (with arbitrary conceivapbrameters) resulting in @adaptively
secure protocol tolerating(/n) faulty players.

*Laboratory for Computer Science, Massachusetts Instithiiiechnology, 545 Technology Square, Cambridge, MA 021Bfhail:
yevgen@heory.lcs.mt. edu.



1 Imperfect Random Sources

Imperfect Random Sources. Randomization has proved to be extremely useful and fundehi@ may areas of
computer science, such as approximation algorithms, sawuptoblems, distributed computing, primality testing,
cryptographic protocols and many others. The common attgtnaused to introduce randomness into computation
is that the underlying algorithm has access to a stream oplaiety unbiased and independent random bits. This
abstraction allows one to use randomness in a clean wayrasieygaout the issue of actually generating such
“strong” random bits. Unfortunately, in reality we do nowkaources that emit perfectly uniform and independent
random bits. However, there are many sources (e.g., physicaces like Geiger counters or various computer
statistics like disk access times) whose outputs (whicld met be bits) are believed to be “somewhat random”.
Such sources are call@aiperfect random source# large amount of research (which we survey in a second) has
been devoted to filling in the gap between such realistic ifiepe sources and the ideal sources of randomness
(that are actually used in designing various algorithms @notiocols). Very roughly, we can separate two major
and quite different questions addressed when studyingriegigandom sources:

e Simulation:can we efficiently simulate a probabilistiBRP) algorithm with our source?
e Extraction: can we extract almost (or slightly) perfect randomness foomsource?

Simulation has been successfully done for more and morerfeqte€so called “weak”) random sources [VV85,
V86, CG88, CW89, 296, ACR99], culminating in using extremely weak sources [ACIR)]. These works take
advantage of the fact that even though it is impossible tegega almost random bits from the corresponding weak
sources, it is possible to generate random strings thatl dabhing into the negligibly small set of “bad” strings.
Randomness extraction, which is also the objective of thfgep would provide a more direct and clean way to
use an imperfect random source in place of ideal randomoesdniost any application (including simulation and
many others). Thus, extraction from the source is a veryaelsi property to have. Unfortunately, it is also much
harder to achieve than simulation, even for relativelycitieed imperfect random sources.

Extraction from Imperfect Sources. Most initial works in imperfect random sources [vN51, B86/8S,
LLS89, CG88] considered what we calreamingsources. These sources outputoagiered streanof bits,! but
these bits could be somewhat biased and/or correlatedt(details depend on the streaming source considered).
Since these sources are studied in this paper, we surveyith@ore detail a bit later.

A lot of work has also been done on sources that produce (a&)anstring ofn bits, some of which (say,

b) are adversarially fixed, but the othetr — b) are truly random. The goal of extraction for such sources is t
design a function (called mesilientfunction) whose output is “close” to random no matter whidhput bits are
fixed. It turns out that there is a huge difference dependimg/loether the “fixed” bits get set before or after the
(n — b) random bits are chosen. In the first scenario (studied by [\¢#G"85, BBR88, F92, KJS97, DSS00])
quite positive almost optimal results are known for exiracmanybits (one bit is trivially extracted by the parity).
In the second scenario {ixed bits are seafter the random bitg), even one bit is hard to extract: the optinhdbr
this task lies somewhere betwe@n/ log? n) [AL93] and O(n/ logn) [KKL89].

Originated by Chor and Goldreich [CG88], much subsequesgaieh has been dedicated to various flavors of
the so calledveakrandom sources, where no string has a very high probabflisgaurring® While such sources
are very general (and, as we mentioned, can still be usedidaieBPP algorithms), they are also too broad for
any kind of randomness extraction [CG88lnless we make some relaxations. For example, Trevisan atd V
han [TV0OQ] consider the problem of extraction frafiiciently samplablélistributions with a given min-entropy.

In another major development (introduced by Nisan and Zucka [NZ96]), the randomness extractor is allowed
to use a small number ¢fuly random bitsn addition to the output of a given weak source. This line ofkypro-
duced an immense amount of research and found many apptisgBee [NT99, T99, RSWO00] and the references

"More generally, we can talk about a stream of random varabler larger domains. We deal with such generalized strepatiurces
in Section 5, and stick to bits for the purposes of exposition

23uch resilient functions are equivalentltsound/-bit collective coin-flippingprotocols [BL90] discussed in Section 4.

3Specifically, a weak source is said to hamim-entropym if probability of every sample is at mogt™.

“For example, every deterministic boolean function frdhbits can be fixed to a constant by a source of (huge) min-enip— 1).



therein). Finally, we mention a series of other works [SV887, CG88, TV00] which (quite successfully) try to
extract randomness from severadlependenimperfect sources, which is quite a strong assumption.

Streaming Sources. We now come back to the streaming sources. Recall, our ahistraf randomness assumes
the presence of a source that emits an ordered sequencsa(fi$jrof unbiased and independent random bits.
Similarly, streaming sources emit an ordered sequencetsf it these bits could be somewhat biased and/or
correlated. In other words, any streaming source has the Ssyntax” as the ideal source, but the bias of each
subsequent bit could depend in some way (how exactly deemithe streaming source considered) on the “state of
the source” so far. Streaming sources model (quite rezdibt) any process that produces “imperfect randomness”
incrementally over time (for example, most of the physicairses of randomness). While such sources are usually
less general than the weak random sources, the perspettveaessful extraction looks much brighter for many
of such sources. The study of such sources is also usefulémadether regards. Firstly, such sources are quite
realistic for many situations, and yet correspond moreatjom the ideal sources of randomness. Secondly, they
relate to the study of “discrete control processes” [LLS@8t examine how much “control” or “influence” over

a given discrete process is heeded in order to force somedesient). Thirdly, they allow us to distill and study
the effects of several specific complications arising whealidg with physical sources. For example, (limited)
bias of the coins, measurement errors, noise, or possitdmad correlations between various samples produced.
And finally, various streaming sources can arise in othematas, like collective coin-flipping (see [LLS89] and
Section 4).

Prior Streaming Sources. Perhaps the first streaming source goes all the way back thigaman [vN51] who
showed how to extract perfect random bits from a sequenoeependentoin tosses of theamebiased coin (of
unknown bias). Elias [E72] showed how to improve this reanll extract perfect random bits at the optimal rate.
Blum [B86] relaxed the independence requirement on thecsolly considering streaming sources generated by
finite-state Markov chains (afnknownstructure), and showed how to generalize von Newman'’s itthgorto still
extractperfectbits from such a source (provided the Markov chain has eneuagiopy).

The next important development was made by Santha andaviafBV86] who considered a more general
streaming source, called semi-random sourcéor an SV-sourcg In this source each subsequent bit can be
arbitrarily correlated wittall the previous bits, as long as it has some uncertainty. Mageifsgally, the source is
specified by the “noise” parameter< § < % and can produce an arbitrary sequence ofhjitg, ... aslong as
Pr(z; =1 |z ...2;1) € [$—0, 1+4]. This source tries to model the fact that physical sourcesieser produce
completelyperfect bits (anyway, our observation of such sources isthéo introduce some noise). Alternatively,
the stream of bits could be produced by a distributive coppiihg protocol [BL90], where few malicious players
can slightly bias each of the bits. Additionally, in both bétabove examples the bits can be correlated in a very
non-trivial way, so we are better off without making any amptions about the nature of these correlations (except
that no bit can be completely determined from the previots kihich is also one of the main limitations of this
source).

In a parallel development, Lichtinstein, Linial and Sak&$89] considered another streaming source, called
the (adaptive)pit-fixing source. In this source (characterized by the “number of€rmarameteb) each next bit,
depending on the previous bits, can be either perfectlyaan@vhich is one of the main limitations of this source)
or completely fixed t® or 1. The only constraint is that at masbf the bits are fixed. This source tries to model
the situation that some of the bits generated by a physicateaould beleterminedrom the previous bits, even
though we assume that this does not happen very frequentlyo&tb times). Alternatively, it relates to the study
of “discrete control processes” that we mentioned eawdigkyell as to the problem of adaptive coin-flipping where
each player sends at most one bit (see Section 4).

We will discuss what is known about the above two sources afteintroduce our source and develop some
appropriate notation.

Our Goal and Organization. In this paper we study a new streaming source that examiedsblications of
havingboththe problems of “constant small noise” and “rare total extanaturally generalizing random sources
of [SV86, LLS89]. The paper is organized as follows. In Smt2 we introduce the “bit version” of our source.



This initial restriction to bits is done for several good seas: clarity of presentation, closer relationship with
previous work, slightly tighter results than for the gemhease, and, finally, technically simpler (but conceptually
representative) proofs. In particular, we completely ahterize the possibility of bit extraction from our source.
Unfortunately, for most interesting settings of paramsetein reasonable bit extraction turns out to be possible.
Next, in Section 3 we take an alternative view of our sourca asscrete control process. In other words, we
examine if our source has enough “power” (or imperfectianfotce the (ideally random) output stream to satisfy
some desired property. In particular, we derive tight bauod how “influential” our source is in this regard. In
Section 4 we have our main application to collective coipgilng: impossibility ofblack-box transformations
from statically to good adaptively secure protocols. Hinah Section 5 we discuss our general source (which can
model an arbitrary “stochastic process” and not just a segpief unbiased bits). We show that all the “bit-results”
can be extended to the general source, and discuss someditiguis of that.

2 Bit Version of Our Source
Motivation. Recall that Santha and Vazirani [SV86] tried to model thabjgm that each of the bits produced by a
streaming source is unlikely to be perfectly randatight errors (due to noise, measurement errors, imperfections
of the source) armevitable However, the weakness of their approach is that no bit caobwletely determined
from the previous bits. On the other hand, Lichtensteinjdliand Saks [LLS89] considered the problem that
some (and hopefulljew) of the bits could have non-trivial dependencies on the iptsvbits (due to internal
correlations, poor measurement or improper setup), to ¢t pf beingcompletely determinelly them. The
weakness of their approach is the assumption that the oitisearbperfect

While studying the above two imperfectiomgdividually has its advantages, we believe that ttemmbina-
tion provides a more realistic view in modeling the extractionljem from physical sources. Additionally, we
will see that our source relates to discrete control pragsand comes up naturally in the studybtdck-box
transformationfrom non-adaptively to adaptively secure coin-flippingaatly, it is very interesting to see if both
imperfections (inevitable small noise and rare total exyare sufficiently more difficult to deal with than any of
them individually. Interestingly, we will show that the aver to this question is indeed positive.

Defining the Source. Our source is characterized by the “noise” paraméter|0, %] and the “number of errors”
parameteh > 0. It is also convenient to fix the number of bit¥,, emitted by the source. Hence, our source
generatesV bitsz; ...z y, wherefori = 1... N, the value ofz; can depend om; ... z; ; in one of the following
two ways: (A)z; could determined by ...z;_; (but this can happen for at mdsbits z;), or (B) Pr(z; = 1 |
T1...Ti—1) € [% -0, %+6]. We call our sourc8ias-Control Limitedor simply BCL). Clearlyp = 0 corresponds
to the SV-sourcej = 0 yields the bit-fixing source, angd= § = 0 gives the perfect randomness.

In fact, since a good extraction function for (or any otheagesof) our source should work fany (4, b, N)-
BCL source, it is more convenient to view our source as anivaantity” A, usually seen as aadversary
Namely, in theideal scenario the source would emit truly random bits. However, thiadversary A (which
defines a particulafd, b, N)-BCL source) can partialljnfluencethis ideal behavior. More specifically, given the
outcomes of the firsti — 1) bits z; ... z;_1, A can influence the value af; using one of the following rules
allowed:

(A) Fix z; to a constant. This rule is called antervention and can be used at mdstimes.

(B) Biasz; by any value< §. More specifically, set; = 1 with any probability inside{% — 9, % + 6.5
Now we can quantitatively measure the “goodness” of ourc®tor the problem of bit extraction.
Definition 1 Let.A be somédd, b, N)-BCL source, and : {0,1}" — {0,1} be a function. Define

e ¢(0,b, N, f, A) be the bias of the coiffi(z), wherex = z; ...z, was produced byl.
e ¢(0,b, N, f) = max4q(d,b, N, f, A) (taken over all(é, b, N)-BCL sources4).

e ¢(6,b,N) = miny q(6,b, N, f) (taken over allf : {0, 1}V — {0, 1}).

®Recall, abiasof a bitc is defined to b¢ Pr(c = 1) — 1|.




Thus,q(6,b, N) is the smallest bias of a coin that can be extracted from(any, V)-BCL source.

We remark that in applicationg, b and N will usually be functions of some other implicit parameteleér
from the context). For such sources we can use asymptotdioot(in this implicit parameter). In particular, we
will say that one can extract aimostperfect bit from &4, b, N)-BCL source, ifg(d, b, N) = o(1), and aslightly
random bit if¢(d,b, N) < % — Q(1). We will now survey the known results about the SV-sourcethadit-fixing
source, and then parallel them with our results.

Extraction from the Bit-Fixing Source. Recall, the bit-fixing source of [LLS89] corresponds to imavb in-
terventions and = 0. Notice, that if we letf to be the majority function, we can tolerdie= O(v/N) since
anycyv/N bits (for small enough constant do not influence the resulting (almost random) value of migjovith
probability 1 — o(1). Remarkably enough, Lichtinstein, Linial and Saks [LLS86{ually showed that this is the
best bit extraction possible. In fact,

Theorem 1 ([LLS89]) For anyb, majority is the best bit extraction function for the bititfig source. In particular,
q(0,¢1v/N, N) = o(1), while ¢(0, co/N, N) = = o(1) (for somec; < cy).

As a side note, andomfunction f : {0,1} — {0,1} is a terrible bit extraction function for the bit-fixing
source even fob = w(1). Indeed, with high probability the firgtvV — b) bits do not fixf, so.A can use the lagt
interventions to fixf. Another terrible function (even fdr= 1) is any parity function: it can be fixed by fixing the
last emitted bit. To summarize, we can tolerate G)(\/N), and the majority is the best bit extraction function.
However, a random function (and any parity function) is “beden if b = w(1).

Extraction from the SV-source. Recall, the SV-source [SV86] corresponds to havirg 0, and wheréPr(z; =
1| @...2;1) € [3 — 0,1 + 6]. On a negative side, Santha and Vazirani showed that ometartract a bit
whose bias is less than In other words, many samples (i.e., laly¢ from the source do not help: outputting
is as good as we can get! Notationally,

Theorem 2 ([SV86]) ¢(5,0, N) = 6. Thus, one can extract an almost perfect bitjif= o(1), and a slightly
random bit iff§ = 1 — Q(1),

Clearly, there are many (optimal) functions that extragttaased coin from any SV-source: for example, any
parity function will do. In fact, Boppanna and Narayanan f8} (extending the ideas of [AR89]) show that a
vast majority of boolean functions frolN bits extract a slighly random bit (provided, of courgex % - Q(1)).
Unfortunately, majority is not one of these functions (sslé < 1/+/N, which will turn out to be important
soon). Indeed, if our source always sets thgrobability of the next bit to bé + 4, the resulting bit will bel with
probability 1 — o(1). In fact, Alon and Rabin [AR89] showed thatajority is the worsbit extracting function.
Namely, ¢(d, 0, N, majority) > q(6,0, N, f), for any f. To summarize, any parity function is an optimal bit
extractor, a random function does quite well, while the migjas the worst.

Extraction from Our Source. Looking at the extreme cases of our sourée< 0 andb = 0), we notice that
somewhat reasonable bit extraction (at least of slighlilydom bits) is possible for both of them. However, the
extraction functions are diametrically opposite. For thdiking source the best function was the majority, and a
random function (or any parity function) was terrible, vehibr the SV-source a random function was good (and
any parity function is optimal), and the majority was the storHence, the best bit extractor becomes the worst
and vice versa! One may wonder if some extraction functianwark reasonably well for both of these extreme
cases, and hopefully provide a good extraction for our cagtbsource as well. Unfortunately, we show that such
a magic function does not exist for (any “interesting” sgjtof) our combined source. The following theorem is
proved in Section 3:

Theorem 3 If b6 = w(1), then it is impossible to extract a slightly random bit fron{&b, V)-BCL source,
irrespective of the value d¥! More precicely,
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In particular, while fors = 0 we could toleraté = O(v/N) (and even extract ammostperfect coin), and for
b = 0 could deal with) < % — (1), now we cannot toleratie — oo for any (constanty > 0, no matter how large
N is. Also notice that the worst-case bias of any extracted exponentiallyapproaches té asb grows.

Tightness. To see the tightness of our result, we would like to providmeadntuition of why the expression
bd is important for our source. We look again at the majorityction on N bits. Assume we are givelnand §
(both functions of some other parameter). Under which dem on N will the majority on NV bits be a good
bit extraction for(d, b, N)-BCL source? A moment look at the binomial distribution r@gethat if N < b2, b
interventions allow the adversary to almost control thexc@n the other hand, iV >> 1/62, then thes-bias at
every step again allows the adversary to almost control ¢ive Hence, ift? > 1/62, i.e. b§ > 1, then noN
will make the majority “good”. This is not surprising in liglof Theorem 3, but the converse statement is more
interesting. It is easy to show thatlif < 1/6%, i.e. b§ < 1, any N such that? < N < 1/6% will result in
the majority being a good extractor (in fad¥, ~ b/J is the best). But what ifV > 1/§2? Of course, we know
that the majority does not work then. However, we can cahtsgtilally extract an almost random bit by simply
ignoring some (say, the first or the lagf) — O(1/462) bits and taking the majority of the remainiig(1/62) bits!
Collecting these simple observations in a careful way, vie ge

Lemma 1 If b = O(1), b = O(v/N) (for small enough constanfsindd = o(1), then one can extract an almost
random bit from &0, b, N)-BCL source:q(d,b, N) = o(1). In particular, such extraction can be done by applying
the majority function to anynin(N, O(1/42)) bits of the source.

The above Lemma shows the tightness of Theorem 3. Namely fage range of parameters we have: if
bo = O(1), thenalmostrandom bit can be extracted, whilebd = w(1), not even aslightly random bit can be
extracted (by Theorem 3). It is also curious to apply the aboemma to the SV-sourcé & 0), in particular
because [AR89] showed that majority af N bits is theworstextraction function. Well, it = O(1/v/'N), the
majority (while far fromoptima) still extracts an almost random bit from the SV-sourcé(f/v/N) < § < o(1),
global majority is bad, but the majority @(1/6%) bits still works. In fact, even if2(1) < § < 3+ — Q(1), the
above majority extracts a slightly random bit (notice, iis ttase amlmostperfect bit is impossible by Theorem 2,
sinced = 2(1)).

Complete Picture. We also notice that Theorem 3 does not imply Theorems 1 andhizhvstudy the extreme
cases of our source. However, tymbiningall three results with the previous discussion (in paragulemma 1),
we get a complete characterization of the of bit extractimtupe from any(é, b, N)-BCL source (at least from
the perspective of extracting almost and slightly randots) bNamely, the following list covers all the significant
cases:

1. Ifb=Q(/N)ors = T —o(1) orbd = w(1), itis impossible to extract even a slightly random bit. Thes
results follow from Theorem 1 (even fér= 0), Theorem 2 (even fa¥ = 0) and Theorem 3 respectively.

2. 1fQ(1) <6 < 1—-9Q(1) andb = O(1), then one can extract a slightly random bit, but cannot ekaa
almost random bit (the lower bound follows from Theorem 2).

3. Ifb = O(V/N) andbs = O(1) andé = o(1), then one can extract an almost random bit from our source.
This is exactly Lemma 1.

To have yet another insight on these results, we cam Etmax(d, O(1/v/N)) to be the “effective noise” of our
source. In other words, if < 1/v/N, increasing’ to 1/+/N does not change the behavior of the source much.
Then we can restate our main result as follows: wher- w(1), no good extraction is possible, andif = O(1),
good extraction becomes possible.

Expected Number of Interventions to Fix the Outcome. We also study another bit extraction measure of our
source: theexpectechumber of interventions talwaysfix the extracted coin (t0 or 1). Due to space limitations,
this is discussed in Appendix A, where we show gl /) expected interventions suffice irrespectiveNof

®To avoid verbosity in the future discussion, the statersert O(5) should be read as < ¢f for a small enough (rather than any)
constant whose value is not important for the discussion”, and sirlyileor a = Q(3).
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3 Our Source as a Discrete Control Process

Alternative View of Our Source. Recall that we view our source as an adversamyho caninfluencethe ideal
behavior of the source by applying rules (A) and (B). So farcessidered the task o4 to be preventing good
bit extraction. However, an equally (if not more) naturalkt&or .4 would be to try to force some particulavent
i.e. to force the string: = x; ...z to satisfy some particular property. For examplemay try to make the
source emit moré’s than0’s (i.e., force the majority function to true). To formalitiis, let& be an event (or
property) on{0, 1}". Equivalently,£ can be viewed as a boolean functien{0,1}" — {0,1}, or as danguage
L=e1(1) C{0,1}", via“E happened<= ¢(z) =1 < x € L".

We can define theatural probabilityp of £ to be the probability thaf happened for tha&leal source (in our
case, emittingV perfect unbiased bits), i.e» = |L|/2Y. We then say thaf is p-sparse Now we want to see if
our adversary4d has enough power to significantly influence the occurrencg (@k., to maker € L). SuchA
can be viewed as a “controller”: it takes “no effort” fgr to slightly influence eack; (i.e., apply rule (B)), and it
takes “significant effort” tawontrol z; (i.e., apply rule (A)). Now, two dual questions naturallyre® up for a given
0, N and& (with natural probabilityp):

1. For a given number of interventiohswhat is the largest probability of “success” thatcan achieve? In
particular, under what conditions can it be arbitrarilysgdo1? Can the answer(s) dependmbut not on
other specifics of ?

2. Assume we want tguaranteesuccess{ always happens), by allowing possibly unbounded number of
interventions. What is the smallestpectechumber of interventions needed? Can the bound depend on
but not on other specifics &f?

We define two natural measuress that allow us to study thetitjparaddressed in the above questions. For the first
guestion, it is actually more convenient to study the comglet notion of “smallest probability of failure” (i.e.,

to minimizePr(e(x) = 0)). Sinced is never going to change in our discussion, we omit it frorttal notation
below (even though all the bounds dependihn

Definition 2 Define
e F(p,N,b) = maxe ming Pr(e(z) = 0), taken over alp-sparsef, and all (4, b, N)-BCL A.
e B(p, N) = maxg minyg E[b], taken over allp-sparse€ and all N-bit sourcesA (with noised) necessar-

ily producing z satisfyingE. Here E[b] stands for the expected number of interventions used lfthe
expectation is over the usage of rule (B)).

Thus, F(p, N, b) is the worst (largest) probability ofl’s failure over allp-sparse events, anB(p, N) is the
smallest expected number of interventiohsieeds to always force apysparseS. Notice, both quantities take
the worst case w.r.p-sparsef.

Bounding the Probability of Failure. We start with a tight bound of'(p, N, b).

Theorem 4 1 1 _
F(p.N.b) < —— — 9log(1/p)—©(db)
(» ’b)_p-(1+25)b

In particular, if 6b = w(log(1/p)), A can force any-sparse with probability 1 — o(1).

(2)

We notice thatV does not enter the equation. We also notice that Theorem 4dhately implies Theorem 3.
Indeed, for any bit extraction functiofy, the optimal way to bias the extracted coin is to try to fof¢e) = 0 or
f(x) = 1. Since one of these events has natural probahility1/2, the bound of Theorem 3 follows. Finally, the
bound is almost tight, at least in several significant caBesexample, fop = % we argued earlier thad cannot
almost certainly force on the majority ofmin(V, 1/62) bits whenéb = O(1). On the other hand, i is the
function that isl on the firstp2” values ofz (in the lexicographic order)4 has to intervene at lea€(log(1/p))
times in order to force(z) = 1 with probability more thar + 4.



Proof: The statement is true fér= 0 or b = 0, sinceF'(-,-,-) < 1 < 1/p, so assumé > 0 andb > 1. Define
9(p,b) = sy We need to show thaf (p, N,b) < g(p,b) foranyN > 1,1 <b < Nand0 < p < 1. We
prove this by induction oV. ForN = 1, F(0,1,b) =1 < oo = g(0,b), andF(p,1,b) = 0 < g(p,b) forp > 0
(here we used > 1). Assume now the claim is true f¢/N — 1) and we want to show it folV.

Take anyp-sparsef given by a functiore. Leteg : {0,1}¥~! — {0,1} be the restriction ot whenz; =
0. Similarly for e;. This defines a-sparse evenf; and ap;-sparse evenf; satisfying %(po + p1) = p.
Without loss of generality assumg > p > p;. Given suché, our particular adversarnyl will consider two
options and pick the best (using his unbounded computdtiesaurces): either he will use an intervention (he
can do it since we assuméd> 1) and fixxz; = 0, reducing the question to that of analyzing thesparse
event&, on (N — 1) variables and also reducirgby 1, or he will use rule (B) making thé-probability of
1 equal to% + ¢ and leaving the sami By the definition of function¥'(p, N, b), we know that in the first
case the failure probability oft will be at mostF'(py, N — 1,b — 1), and in the second case it will be at most
(3 = 0)F(p1,N — 1,b) + (3 + §)F(po, N — 1,b). Since the choice qfy > p; (i.e., how€ splits into&, andé;)
such thaipg + p1 = 2p is outside of our control, we will take the maximum over altlsichoices and obtain the
following recurrence.

F(p,N,b) < max  min [F(pmN - 1,b—-1), (% - 5) -F(p1,N —1,b) + (% +5> - F(po, N — 1,b)]
PotpL=2p

Letpy = p(1 + B) andp, = p(1 — ), where0 < 5 < 1 (sincepy > p > p1). Using our inductive assumption,

Plp.N) < g i (9001 + 90 - 1, (5 -6) a0 = 9.0+ (5+0) o014 9,0} £ 90,0

Recalling the definition of, it thus suffices to show that

max min 1 % —9 + % +9 < 1
. _
0<B<1 p(L+B)(1+20)1 7 p(l=p)(1+20)"  p(1+pB)(1+20)° p(L+26)
s i | L2 %—6+%+5 .
< X
0<B<1 1+8 > 1—-p8 1+8) —

We see that the expressions under the minimum are equal fvkej. We consider two cases.

T iLb20 ; . 26 i
° Cas_e 1. Assumg > 26. Then the minimum above % and it suffices to show thalﬁ—ﬁ < 1, which is
equivalent to our assumption ¢gh

1 1
e Case 2. Assumg < 26. Then the minimum above equals fgg + fT+g and it suffices to show that
1 1
‘ffg + f:g < 1. But this is again equivalent to our assumptionfn -

Bounding Expected Number of Interventions. We also show a tight bound dB(p, N). Namely,B(p, N) =
O(% log(1/p)) (in particular, this bound is independent 8f). Due to space limitations, the discussion and the
proof appear in Appendix B.

4 Our Source and Collective Coin-Flipping

The Setting. Collective Coin-Flippingn the full-information model was introduced by Ben-Or aridial [BL9O].

In this modeln computationally unbounded processors are trying to gémareandom bit in a setting where only
a single broadcast channé$ available for communication. As usual, we assume thatesofithe players (at
mostb out of n, though) can béaulty or malicious, and in fact is controlled by a central adversdr(which is
called b-bounded). In each round of the protocol every player caadrast a message to the other players. A
crucial complication is that the networkasynchronous within a roundror example, players cannot flip a coin by
broadcasting a random bit and taking their exclusive ORlakieplayer to talk can completely control the output.
Again taking the worst case scenario, we assume that in eactd ffirst.A receives all the messages broadcast by
the honest players, and only then decides which messageadas behalf of the bad players. The output of the
protocol is some pre-agreed deterministic function of tlessages exchanged over the broadcast channel.
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The Goal. As we said, the objective of collective coin-flipping (paterized by the number of players) is
for the players to agree on a “random” bit, even in the presearfi@n adversary. Of course, the adversdrwill
introduce some bias into the coin. We I&f,(b) be the largest bias achieved by-dhounded adversary against
protocolIl. Then, a coin-flipping protocdl is said to bgweakly)b(n)-resilientif IT produces a&lightly random
coin: Ay (b(n)) < 1 — (1), where the constant isdependentf n. Similarly, I is said to bestrongly b(n)-
resilient if II produces aralmostrandom coin: A;(b(n)) = o(1). Traditionally, the “standard” definition of
resilience for coin-flipping is that of weak resilience, bistis the notion that we will usé.

Type of Adversary. So far we have been very vague about the type of adversarythative. Perhaps most
importantly, we have not talked about how and when the ptajpecomes faulty. Most of the papers in the full-
information model assume arducially usethe fact that the adversayy is static (or non-adaptive), i.e. it decides
on whichb parties to corrupbefore the protocol startsThe honest players do not know whiéiplayers were
selected byA, but the resulting coin has to be slightly random for éimgdset ofb players. A somewhat more
realistic and much more powerful type of an adversary iadaptiveadversary. This adversary can listen to all
the communication and corrupt upiglayers anywhera the course of the execution

Coin-Flipping with Static Adversaries. The optimal resilient threshold for static adversaries j@: anyn/2
players can always fix the coin [S89, BN0O], while there e@t— e)-resilient protocols (even constructive and
efficient ones) for any > 0 [BNOO, ORV94, RZ98, F99]. We also point out a very simple defence of the
optimal biasA(b) (defined to be the smallest bias achieved by a coin-flippirgoppl: min;; A (b)) on the
number of playersA(b) = ©(b/n). The lower bound (which we will use in a second) was elegastilywn by
Ben-Or and Linial [BL90], while the upper bound eventualblidwed from the series of works of [BL90, AL93,
AN93] (for larger and largeb). Finally, we point out thatll the best statically secure coin-flipping protocols
are not everl-resilient against adaptive adversarieghis is due to a historical feature that all such protocols
first elect a single (hopefully, not faulty) representatplayer (called deadel), who then flips the final coin by
itself. Corrupting such a leader at the end clearly contiteéscoin. More generally, the whole philosophy of most
statically secure protocols seems to be not applicabledrattaptive world, as these protocols try to aggressively
“eliminate” players (since a “patient” adaptive adverseay corrupt the few remaining players).

Coin-Flipping with Adaptive Adversaries. Adaptive adversaries were already considered in the @aligiaper

of Ben-Or and Linial [BL90]. In particular, it was observduete that the “majority” protocol (each player sends
a random bit, and the final coin is their majority) achieveapive ©(,/n)-resilience. Surprisingly enough, this
simple protocol is thédest knowradaptively secure coin-flipping protocol! In fact, Ben-OralLinial [BL90]
conjectured that this protocol to be optimal!

Conjecture 1 ([BL90]) Maijority is the optimal coin-flipping protocol against adag adversaries. In particular,
the maximum threshold that can be toleratedis,/n).

This conjecture, if true, would imply that adaptive adveiesaare much more powerful than static adversaries
for the problem of collective coin-flipping (which can tadée up ton/2 faulty players). Interestingly enough,
the only result that in support of this conjecture comes ftbmbit-fixing source of [LLS89]. Namely, it is easy
to see than when each player sends dnhit in the entire protocol, the optimal behavior of the adeey is
exactly the same as in the bit-fixing source witinterventions! Since the majority was the best bit extracti
function for the bit-fixing source, we get that Conjecturd friie if each player is restricted to send orilypit.
This result is interesting since is already illustrates gbever of adaptivity. Namely, in the static case one can
achieve()(n/ log® n)-resilience [AL93] when players send onlybit, even in one round. However, the above
result supports Conjecture 1 much less than it seems toedhdestricting each player to send at mbbit seems
like a huge limitation. For example, we saw that it was vemyiting even for statically secure protoco{eecall,
no function can be more than(n/ log n)-resilient by the result of [KKL89], and there are genet#R-resilient
statistically secure protocols [BN0OO, ORV94, RZ98, FO®r adaptively secure protocols, the limitation seems
to be even more severe (even though it would not be if Conjedtwas true).

’In fact, since our main result for coin-flipping is an impdsiy result, it will become only stronger with strong risice.
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To summarize, adaptively secure coin-flipping is much lestetstood than its static counter-part, there seems
to be some indication that adaptive adversaries are much pwwerful than static adversaries, but there is little
formal evidence supporting this claim.

Our Approach and Impossibility Result. Due to space limitations, we leave the formal treatment efréx
mainder of this section to Appendix C, and instead providerinal (but informative) intuition of our approach.
We give another partial support to Conjecture 1 by lookinthatproblem of adaptivity from an entirely different
angle: we examine the question of whether it is possible taiolan adaptively secure coin-flipping protocols “for
free”? More specifically, can we transform some good stifficgcure protocoll so as to obtain a reasonable
adaptively secure protocol, where the proof of adaptivesiycshould only depend only on the knowledge that

is statically secure (and not on any other specifics ab@t While a positive answer to such kind of a question
would seem astonishing (and, indeed, our answer will be Ijnaiegative), we formulate the question in such a
way that (at least from the first look) the negative answeisatbvious at all (in fact, wavill be able to achieve
O(+/n)-resilience, which is believed to be optimal, but show that @pproach does not allow us to break this
barrier).

We will try to sequentially rurll many (say,/V) times against an adaptive adversatywho can corrupt up
to b players. These runs produce coins...zy. Of course, since we run a static protocol against an adaptiv
adversary, some of thg’s might be very biased. Howeve#, can corrupt at mogtplayers! Thus, at lea$tV — b)
of the subprotocols were effectively run againstaicadversary, and therefore produced somewhat random coins.
Let us say that the bias of these coins is at Iégsthich depends oh and the properties dil). But then, even
if the otherd runs produced:; which were completely fixed byl,2 we can view the resulting = z; ...z as
being produced by &, b, N)-BCL source!

Notice also thab and¢é depend on the properties of IT and our objective (how good of an adaptive protocol
we want), and hence could be viewed as fixed. However, we levpdwer to makeV arbitrarily huge, which
seems to give us a considerable advantage. Unfortunaleysttong negative result of Theorem 3 shows that
this advantage is, actually, an illusion. Namely, recalhirour results that for knowh ando, the possibility of
bit extraction from(d, b, N)-BCL source depends on whethier = O(1) or bd = w(1), i.e. a large number of
repetitionsN doesnot help. Nevertheless, wheng = O(1)? Notice that the bestwe could hope for (without
looking at the specifics dfl), while definitely nomorethanA(b), can not be muckessthanA(b) = ©(b/n) as
well. For example, at the very beginningicould corruptb/2 players that can achieve> A(b/2) = O(A(b)),
and still haveb/2 arbitrary corruptions left. Hence, our “black-box” appcbacan work (and actuallgan be made
to work) only if b - ©(b/n) = O(1), i.e. b = O(y/n). Since suchb can be trivially achieved by the majority
protocol, we cannot achieve adaptive security (beyond vghatown) “for free”.

Discussion. We are not claiming that black-box transformations are tlestmatural way to approach adaptive
security. They are certainly not (in particular, Conjeetdr reminds widely open). However, we feel that this
approach is something that had to be tried, and, at leasteofirit look, our approach did seem quite promising
(e.g., we could makeV arbitrary large and hope to circumven N interventions). In fact, the proof that the
approach fails is not trivial, and the “breaking point” isaesly (believed to be optimal) = ©(v/N). The latter
“coincidence” does give some further evidence to ConjecturFinally, the above connection to coin-flipping is a
surprising application of our new source.

5 Our General Source

Modeling Any Stochastic Process. We finally introduce the general version of our source. Seviaexamined

of question of how much various imperfections can affectidedl” stream ofunbiased random bitsWhile this

is an extremely natural ideal stream to consider, a lot osmay (and other) streaming sources of randomness do

8The “worst-case” assumption that corrupting even one playE will allow an adaptiveA to control the coin might appear problem-
atic. We point out three answers for that: (1) we are lookinglack-boxtransformations; (2) all the best known static protocoks raot
adaptivelyl-resilient, and (3) even some relaxed assumptions (e.gug@n of ¢ players can control the coin) will allow us to get weaker
but non-trivial bounds.



not (even in the “ideal” scenario) produce a stream of bitg] what they produce need not be uncorrelated as
well. In a much more general scenario, we can consider atrampiideal” stochastic proces® that produces

a sequence of random variabl&s, X,,.... The (known) ideal distribution (and even the domain!) Xgf can
arbitrarily depend on the realizations &f, ... X;_; = z;...z;,_1. We denote this conditional distribution by
D; = D;(z; ...z;—1). Now, similarly to the “bit-case”, we can study the effectsveo imperfections on this ideal
source: inevitable small statistical deviation of ed¢hfrom D;, and rare complete errors in the process. In fact,
almost all the notions from the bit-case can be naturallgrid, as long as we replace the notion of bias by a
more general notion of statistical distancé In particular, we can view our gener@l, b, N)-BCL source (W.r.t.

to a particular stochastic proceBsin mind) as an adversatyl who, fori = 1... N and givenz; ... z; 1, can
influence the ideal sample &f; using one of the following rules:

(A) Fix X; to any constant in the support 8f;. This rule can be used at mdstimes, however.
(B) SampleX; from any distributionD; (on the same support set) of statistical distance at mfssm D;.

Power of Our Source. In particular, we can study our genefalb, N)-BCL source in relation to discrete control
processes. For any evefit we can define th@atural probability p of £ (w.r.t. P), and in the same manner
as before talk about quantitids(p, N, b) and B(p, N) studied in Section 3. In particulag'(p, N,b) tells us
the largest probability ofd’s failure to force some-sparse event, an8(p, V) studies the expected number of
interventions needed to enforce any sdchWe obtain an (essentially) equally strong (but much moreegs)
analog of Theorems 4 and 7.

Theorem 5
® F(p,N,b) < @ _ 9log(1/p)—0(3b)

Thus,ib = w(log(%)) = A can force any-sparse event with probability — o(1).

e B(p,N) <log;_sp = O(5 - log(1/p)).
We notice the generality of this result: it holds for arhijratochastic procesB, arbitraryp-sparse events w.r.R
(both of which are not chosen b¥), and the bounds do not explicitly depend &8n The proof of the above result
is conceptually the same as what we had for the “bit-sourgeivever, the generality of the statement makes the
“algebra” and the details somewhat more challenging. Thefaran be found in Appendix D.

Sampling General Distributions. We conclude by briefly pointing another implication of Thexwr 5. First,
if 6b = Q(1), no ideal proces® yields a(d, b, N)-BCL source where one could extract even a single slightly
random bit. More generally, one can examine the questiomampsng other distributions, and get the following
impossibility result. Assumg is an extraction function that ideally extracts a randonialde Y from our source.
Assume the objective ofl is to have our source generaté with the largest statistical distance frarh For any
eventé onY of natural probabilityp, we know thatob = w(log(1/p)) implies thatA can produce” satisfying
e(Y") = 1 with probability 1 — o(1). Notice, in this casdY — Y'|| > |le(Y) — e(Y")|| = p — o(1). Hence, if we
define thefairnessy(Y") of Y19 to be the largesp < % such that some eve#thas natural probability w.r.t. Y,
Theorem 5 implies the following:
Corollary 1 Assume an extraction procedufedeally extracts a variabl&@” from a(d, b, N)-BCL source, and let
v = v(Y) be the fairness of . Then

e If 0b = w(1), thenA can produceY” satisfying||Y — Y'|| > v — o(1).

o If 6b = w(log(1/7)), thenA can produceyY” satisfying||Y — Y'|| > 1 — v —o(1) > L — o(1).
We notice that fairness & measures how good of a coin-flip we can deterministicallyaextfromY . We remark

that any natural distribution has fairne@él).!* Thus, the above result says that for any such naltrab = w(1)
implies thatA can influence” into Y’ that isstatistically farfrom Y.

°Recall, thestatistical distancéetween random variablesandi¥ over a domaimR is [|Z —W|| = & Yower | Pr(Z = ) =Pr(W =
a)|. The same notation stands for the distributions gener&iagdiV .

9 v is a bit,y(Y") is indeedmin(Pr(Y = 0), Pr(Y = 1)).

YFor exampley(Y') > £(1 — max, Pr(Y = y)). Thus,y(Y) = o(1) = Jy Pr(Y =y) = 1 — o(1), making}” “almost constant”.
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A Expected Number of Interventions to Fix the Coin

We also define another related measure for our source. Heessugne that our adversary, rather than trying to
bias the coin with a limited humber of interventions, is atijutrying to alwaysfix the coin (to0 or 1), trying to
minimize theexpected number of interventioffence, there is no absolute bound on the number of inteovent
For example, iff is the majority on/V bits, and the adversapy tries to makef (x) = 1, the optimal behavior of
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A is the following. If settingz; = 0 will ensure thatf(z) = 0 (i.e., there aréV/2 — 1 zeros inz; ... z;_1), use
the intervention and set; = 1. Otherwise, use rule (B) making the biasugftoward1 equal tod.

We letw(d, N) be the smallest expected number of interventions that suffidix the coin (ta) or 1) for any
bit extraction procedure applied to &fbit source with noise parametér We remark that this quantity does not
make sense for the SV-source, but was studied for the bitgfigxburce (corresponding o= 0). In particular,
Lichtenstein et al. [LLS89] showed tha{0, N) = ©(v/N). While the optimal function isiot the majority,
majority is “close” and requireQ(v/N) expected interventions as well. We show that

Theorem 6 v(8,N) < O (1/5) 3)

In particular, if § = Q(1), a constant expected number of interventions suffice ieespe of V!

We notice that the above result does not imply the result bSR9] thatv(0, N) = ©(v/N). However, by
combining these two results we get the “complete pictunedekd, it is easy to see that majority requités/N)
expected interventions evendf= O(1/v/N). Thus,u(§, N) = O(v/N) for § = O(1/+v/N). On the other hand,
the same argument shows that whies= 2(1/v/N), majority of O(1/4?) (which is less thanV) arbitrary bits
of our source require€(1/J) expected interventions, which is optimal (up to a constaantdr) by Theorem 6.
Recalling the definition of “effective noisef = max(s, O(1/v/N)), we get

Corollary 2 For any§ and andN, v(J, N) = O(min(1/5,v/'N)) = O(1/0).

The proof of Theorem 6 will follow from the discussion in Seat3 and Appendix B.

B Expected Number of Interventions to Force an Event

To state our bound on the number of interventions, it is more/enient to work withy e % — 6. This~ can be
viewed as the minimafairnes$? of the coin influenced by rule (B). We start from the followirgsily verified

analytical Lemma whose proof we omit.

Lemma 2 Forany0 < v < % the equation ) )
27 +1=2.27" (4)

has a unique solution, € (1,2). In addition, z, is a continuous decreasing functiomp$uch thatim., ¢ z, = 2,
1im7_>l zy =1,logy 2, = O(1 —2v),and foralll <w < z, we havew!/? +1 < 2 w'/7 1,
2

Theorem 7 By, N) < log., (1) = O (- 1os(1/)) = 0 (5 Tox(1/1)) ©)

Again, notice thatV does not enter the equation (the only dependence foiwomes implicitly fromp).
We also notice that since each bit extraction function héeeea majority ofl’s or a majority of0’s, Theorem 7
immediately implies the bound given by Theorem 6. Finahig bound is almost tight, at least in several significant
cases. The examples are the same as for Theorem 4.

Proof: The proof is very analogous to that of Theorem 4. ket z, and defineh(p) = log,(1/p). We need
to show thatB(p, N) < h(p) forany N > 1 and0 < p < 1. We prove this by induction oiN. For N = 1,
B(0,1) = 0o = h(0), andB(3,1) = 1 < log, 2 = h(3) (sincez < 2) andB(1,1) = 0 = h(1). Assume now the
claim is true for(N — 1) and we want to show it folV.

Let py, p1, &, &1 have the same meaning they had in the proof of Theorem 4. tndac adversary4d will
be the same as well! In other words, he will consider spendimgintervention to set; = 0 against saving the
intervention and making th@-probability of z; equal to% + § = 1 — v. The only difference with the setting of

?Thefairnessof a bitc is defined to benin(Pr(c = 0), Pr(c = 1)) = £ — bias(c).
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Theorem 4 is that therd could “run out” of hisb interventions and also minimized a different quanti(, IV, b),
with different initial conditions), while in our casé will always use an extra intervention if this pays off. We get
the following recurrence (recaty = 3 — 6,1 — v = 1 +§):

B(va) < Hl>84X mln[B(povN_1)+177B(plvN_1)+(1_7)B(povN_l)] (6)
Po>P1
po+p1=2p

= max (B(po, N —=1)+min[1, v-{B(p1,N —1) — B(po, N — 1)} ] ) @)
potpi=2p

Substituting as beforgy = p(1 + 3) andp; = p(1 — 3), where0 < < min(1,1/p — 1) < 1 and using our
inductive assumption oflvV — 1), we get

?

B(p,N) < max (h(p(1+F)) +min[1, - {h(p(l = §)) = (p(1+F)}] ) < h(p) (8

Recalling the definition of, it thus suffices to show that

1 _ 148 1
log, ——— 1, vy-log, — < log, -
e =

It will now be convenient to make a change of variable angilet %} for somec > 1 (this is always possible

becaus® < g < 1). Noticing thatlog, (1/p) cancels]l — 5 =2/(c+1),1+8 =2¢/(c+1), (1+6)/(1-8) =¢
and1l = log, z, we get that it suffices to show that

1
max(logzi—i—min[logzz,fy-logzc]> < 0 =
c>1 2¢

1
max (C+ -min[z,c”]) <1
e>1 2c

We now make the final change of variable, letting: w/7. Then it suffices to show that

w1
r;llg)lc < v min[z,w] | <1 9

To show the last equation, we consider two cases.

e Case 1. Assume < z. Thenmin[z, w] = w and it suffices to show /7 + 1 < 2w!/7~1, which follows
from Lemma 2 sincéd < w < z by our assumption.

e Case 2. Assume > z. Thenmin[z, w] = z and it suffices to show'/7 +1)z < 2w'/7, which is the same
asw'/7 > z/(2—z). Butsincez = z, is the solution to Equation (4), it is easy to see #4R — z) = z'/7,
so it suffices to show!/7 > 21/7, which is the same as our assumptior> z. -

C Impossibility of Black-Box Transformations

In this section we formally define “black-box transformatt from statically to adaptively secure coin-flipping
protocols, relate them to our imperfect source, and shotvtths approach does not allow us to break the:
O(+4/n) barrier for adaptive protocols.
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Black-Box Transformations. Assume we are given a protoddlwhich is known be “very good” againstatic
adversaries. We ask the question if it is possible to tramsid in a “black-box” way so as to obtain a “somewhat
good” adaptively securprotocol®. To capture the intuition that we are really obtainiadrom IT, we do not allow
the player to send any messages outside those they s&hdirt allow them to rurdl sequentially as many times
as they wish. Of course, one might try to let the players runessub-protocols in between runnibig but then it

is very hard to say that we are really usifigand do not, say, run a brand new protocol in the middle andré@gno
everything that happens in. Thus,® can runlIl any number of times time#&/, get some coing = z; ...z,
and then can apply any deterministic functipn {0, 1} — {0, 1} to extract the final coin. This leads us to the
following natural definition.

Definition 3 Let N be any integer ang : {0,1}" — {0,1} be any function. We leb(N, f,1I) (often we omit
IT) be the protocol where players sequentially riyhtimes the protocoll, obtain coinsz; ...z, and output
f(z1...7N) as the resulting coin. The clag® (N, f,1I) | N > 1,f : {0,1}¥ — {0,1}} is called the class of
black-box transformationef I1.

The (False) Hope. The intuitive reason why black-box transformations lookyvpromising is the following.
Assume thatfl is b(n)-resilient and we wish to construct an adaptivé{y)-resilient ® (N, f,II). Ignoring the
question of efficiency, we can make arbitrarily large compared t(n) andn (e.g.,22" if we so wish). Assume
now A can adaptively corrupt up tgn) players. Let us take the worst case, and assume that wheA@@@rupts
even a single player in the middle 0f (thei-th run ofII), he controlsz;. But this can happen at mostn) < N
times.And if A does not corrupt a player in the middleldf we know from the static security of that the coin is
at least slightly random. Thus, at més& N of thez;’s are really biased, the remainifgy — b) of thez;’s are
at least slightly random (maybe even almost random). S@insdike there should not be a big problem to design
a function f that would be able to “ignore” this “tiny” number of “fixed” bits, and extract just a good random
bit from the remainingd N — b) “good” bits. Of course, we just asked the question if a godatén be extracted
from (6, b, N)-BCL source is possible (wheedepends on the properties [j! Unfortunately, we showed in
Theorem 3 some strong negative results concerning thetioétatdon from our source. In particular, we will show
that one cannot beat the simple majority protocol using buve approach.

Adaptive Adversary for a Black-Box Transformation. The definition of a black-box transformation views the
protocolll as “one piece” that is simply being run several times. Evengh given a particulall (and N and f),
we will end up with a particular protocdt(N, f,II) and can talk about it being adaptiveéif)-resilient, it is more
natural to let the adaptive adversadyfor ® perform “meta-operations” on the entire run of edtlconsistent
with the static security ofT). Namely, (1).4 can decide not to corrupt any players during the ruflpénd then
the bias of the resulting coin is what is achieved by the s$gcof I1, or (2) A can decide to corrupt one or more
player during the run ofI, and then we do not know anything about the resulting coid, #rerefore, have to
assume the worst (i.e4 can fix the coin). We make this more formal.

Assume that given a fixed sét of faulty players,II produces a at most A (B)-biased coin for any static
adversary who corrupt8 at the beginning, and lek,, (b) = maxg—, Aj;(B) be the best bias thattabounded
static adversary can achieve. Let us denotdlbyhe i-th run of IT, and byz; the resulting coin. As befored
is calledb-bounded if he corrupts at mokiplayers overall. However, now we assume tHafthe adversary for
O (N, f,11)) has the following capabilities:

(A) If A decides to corrupt at least one new player during the exatofill;, he can set the resulting cain to
any value.

(B) If at the beginning oll; the set of corrupted players I$ and.A decides not to corrupt new players during
11, the resulting coirx; is at mostA ;(B)-biased, butd can set the probability of; = 0 anywhere in the
interval[3 — A (B), 3 + Ap(B)].
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We justify assumptions (A) and (B) in two ways. First of all are talking aboutlack-box reductionsin other
words, we do not know and do not want to assume anything mangt bthan what is given to us by the function
Ay (B). Thus, if.A does not corrupt new players insitle, we know thatPr(z; = 0) € [3 — Ay(B), 3+ Ay (B)],
but we cannot assume anything more, so we assumeltbah sefPr(z; = 0) anywhere in this interval. Similarly,
onceA corrupts a player insidH;, nothing can be said about the behavior of the resulting, smnve again have
to assume the worst case.

The other justification comes from the fact that all best adaptively secure coin-flipping protocols (e.qg.,
[AN93, ORV94, RZ98, F99]) essentially satisfy both of thessumption$® Assumption (A) because they always
elect the leader, so corrupting the leader allows the admet® control the coin. And assumption (B) because
these protocols are actually symmetriddiand1 and by making faulty players be “less and less faulty”, thay c
indeed achieve essentially any probability inside the ifipeldnterval.

Main Result. Our main result in coin-flipping is the following theorem, iath states that using black-box reduc-
tions one cannot significantly beat the simple majority g@eot, giving further support to Conjecture 1.

Theorem 8 For any family of coin-flipping protocol$I, there is no black-box transformation resulting in an
adaptivelyw(y/n)-resilient family of protocolgpb (N, f, I1).

Reduction to Imperfect Random Sources. We reduce the proof of Theorem 8 to the analysis of our Bias-
Control Limited source. Namely, assun¥é N, f,1I) is adaptively2b(n)-resilient. We construct the following
2b(n)-bounded adversary fab satisfying properties (A) and (B). Lét= b(n), § = A (b) and letB be the set
of players of cardinalityp achievingA,(B) = A (b) = 6. Beforell, starts, A corrupts all the players .
Therefore, from now on in each of thé invocations oflI, .4 can set thé@-probability of z; anywhere in at least
the interval[% -0, % + d]. As. A will later corrupt more players, this interval can only emgabut our particulad
will not use it. If A decides to follow rule (A), he will corrupt a single playerdaset the corresponding hit to
the value he wants. Therefore, singeclaims to be2b-resilient, A can use rule (A) exactly times. Hence, now
we exactly reduced the possible behaviotbfo an arbitrary (6, b, N)-BCL source

Tracing back to the adaptive coin-flipping, once we decideddhieve adaptiv@b(n)-resilience, there is
fundamental limitation on how fair we can make the resulign, irrespective of how many times we run the
black-box protocoll. In other words, our informal intuition was wrong, when wainled that we should be able
to “overcome” any number of completely biased bits when having an overwhelming nigjof (N — b) slightly
random bits.

We can now apply Theorem 3 to establish the impossibilitatlk-box reductions given by Theorem 8. Recall
that we concluded that it is impossible to obtain a weaklypéidaly 2b-resilient® (b, N, II) if it is impossible to
extract a slightly random bit fronis, b, N)-BCL source, wheré = A, (b). From the upper bound of Ben-Or
and Linial [BL90] that we mentioned in Section 4, we know they(b) > Q(b/n). Thusbs = Q(b*/n). By
Theorem 3, it is impossible to extract a slightly random Hieweven? /n = w(1), i.e. b = w(y/n), establishing
Theorem 8%

D Proof of Theorem 5

Both statements are proven by induction®nn a very similar manner. After establishing the baée= 1, we
consider a recursive adversary who will either use an ietgtign onX; to force the most desirable value on the
X, (but loose an intervention) and then behaves optimally, ibhtmy to bias X, by § towards the outcome that it
prefers (without loosing an intervention) and then behamsnally. By choosing the best of the above options
and using the inductive assumption (since we redu¢ed both cases), we will be able to complete the induction.

BIn fact, it is easy to check that our main Theorem 8 holds orpactete level” if we replacél with any of these protocols.
141f we want to extracalmostrandom bit, it is impossible to do it if = Q(v/n).
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We illustrate this first fot'(p, IV, b). The statement is true far= 0 or b = 0, sinceF(-,-,-) <1 < 1/p, so
assume > 0 andb > 1. Defineg(p,b) = (1 — 6)°/p. We need to show tha(p, N, b) < g(p,b) forany N > 1,

1 <b< Nand0 < p < 1. We prove this by induction oiV. ForN = 1, F'(0,1,b) = 1 < oo = ¢(0,b), and
F(p,1,b) =0 < g(p,b) for p > 0 (here we used > 1). Assume now the claim is true f¢&N — 1) and we want
to show it for V.

Let D; = {ai ...} be the distribution onX; (thus,) . «; = 1), which we can assume is the supported
on the set{1...t}. And let us take any-sparsef given by a functiore. Forl < i < ¢, lete;(Xo,... , X,)
be the restriction ot when X; = i. Eache; defines a;-sparse evenf;, which satisfy) . a;p; = p. Without
loss of generality assumg > ... > p; (i.e., rename they;’s to satisfy this). First, ite; > 1 — ¢ (in particular,
whent = 1), then we are done. Indeed, in this case our adversary cafy fix 1 without using an intervention,
reducing the analysis to that opa-sparse ever; with the samé. Sincep; > p and using the induction, we get
F(p,N,b) < F(py,N —1,b) < (1 —6)"/p1 < (1 —10)?/p. Thus, assume; < 1 — 6. Then there exists an index
k > 1such thaty, + ... + oy > 6 butagii + ... + o < 6. Then a particular distributio®] = (¢ ... ) of
statistical distancé from D, is given by:of = a1 + 6, of = o for2 <i < k, o}, = o4, + ... + o — 6 and
o) = 0fori > k. In other words, we increase the “most desirable” (for theeaghry) probability ofX; = 1 by 4,
an decreased the “least desirable” probabilitigs. . «; by ¢ (overall).

Now, our particular adversaryl will consider two options and pick the best (using his untimthcomputa-
tional resources): either he will use an intervention (hedmit since we assumeéd> 1) and fixX; = 1, reducing
the question to that of analyzing the-sparse everf; on (N — 1) variables and also reducirigby 1, or he will
use rule (B) with the probability distributio®] instead ofD; (leaving the samé). Since.A will pick the best of
the two events, and using the inductive assumption, we get

F(p,N,b) < min < g(p,b)

F(p17 7 ZQF Pu - 7b)] S min [g(plvb_ 1)720429(%7[7)
7

Thus, it suffices to show the last inequality. Lgt= g;p, whereg, > ... > 5, > 0. Thus,ZfZ1 o8 = 1.
Recalling now the definition of(p, b) = (1 — 6)®/p, we need to show:

fa=et K, 1= 2 -0 .
mln[ Bip ) - Q; - Bip < » <= min {1 _5 Z 5,

Now, we would be done if; > 1/(1 — d), so let us assume thgf < 1/(1 — ¢). With this in mind, we have
to show thathZl o} /B < 1. Unfortunately, we have very little control ovef and/;. But we do know several
things. First,c/ form a distribution, and thuEf:1 o) = 1. Also, sincea)] = aq + ¢, we haver| > §. Second,
recalling the definition of o/} from {a;}, and using the fact thaijgzl a;f; = 1, we get thath:1 alf =
Zle a;Bi +0(B1 — Br) = 1+ (81 — Bk). Finally, we know thatl /(1 — ) > 81 > ... > B > 0. Thus, to
complete the induction it suffices to show the following teichl lemma, which we prove separately:

?
<1

Lemma3 Foranyk > 2, anyl/(1 —4d) > 1 > ... > B > 0,anye) > ¢, anya,... ,a), > 0 satisfying:
Yoo =1land) o8 =1+ (61 — Pk), we have
o
2.5 <1 (10

Proof: As a sanity check, we notice that we cannot hdye= 0 (making the sum on the left equal to infinity).
Indeed,1 + (81 — Br) =D i < fr->.al =01 <1+66;1 (@spy < 1/(1 —4)), implying 85 > 0. Thus, all
the g;’s are strictly positive. Now we show Equation (10) by indaotonk.

The base cask = 2 is the most technical one to show. We know that+ o}, = 1 and /|81 + B2 =
1+ 6(B1 — B2), wherep; > (2. This system of equations above has a unique solutiom/fcaind of,, unless

we have; = f». However, in the latter case the system is solvable onl§, if= 3, = 1, in which case
o) /B + dh/B2 = o) + o, = 1, and we are done. Thus, assufe > 3. We then get a unique solution
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oy =0+ (1—P2)/(B1 — P2), andal, = —d + (1 — 1)/(B1 — P2). We notice that since we know that > ¢,
we gets, < 1. Using some simple algebra, we get

oy +042 B+ B2 —1—=0(B1 — B2) 14 (Br = 1)(1 = p2) — 6(B1 — B2) 2
Br P B2 B152 -

Letz =1 — L,y=1—02.As1/(1 =6) > 1 > 1> 2 >0, we get thatr € |0, %_(5] andy € [0, 1]. To show
Equation (11), we need to sha@; — 1)(1 — 82) < 0 - (1 — f2). Noticing thatz + y = 81 — (s, it remains to
show thatry < §(z + y), ord/z + ¢/y > 1 (in the latter part we used thaty > 0). But using our upper bounds
x <6/(1=¢)andy < 1,weindeed get/x +d/y > (1 —6)+d = 1.

We can now establish the inductive step. Assume 3 and the statement is true fok — 1). Take any
1 < i < k (for examplei: = k£ — 1). We will now define a distributior{«/, ... , o} ;) on (k — 1) elements.
This will be done by “removmg” » from our original distributiona, ... , o, and distributing its mass to the
“neighbors”«;_, and«;, ;. Since the are many way to distributé, we will choose a way that leaves the same
5's (so that we do not violate any constraints on ffi® and can use induction) More precisely, we gt =
Bis---,Bi_1 = Bi—1, Bj = Bit1,--- 01 = Bk (i.e., “remove”;), andof = of,... o 4 =} o, o | =
o1+, of = g1 +y, o = qigo,... o) = o, where we will choose: > 0 andy > 0 satisfying the
following two conditions:

(11)

{ z+y=d
T Bic1+yPiv1=a;- B
We will elaborate on assigning sughandy in a second, but now we notice that the first condition above
implies thatz - of =30+ (T +y)= E;?:l a;; = 1, while the second condition implies
- i—2 k
Z B = D i+ (i +2)Bici + (0 T Y)Bi + Y B
Jj=1 j=1

j=i+2

k
- Zagﬂj‘f‘xﬁi—l—i-yﬁiﬂ = Za;ﬂj = 14+6(B1 — Br)
j=1

JFi
= 1468 — Br_1)
Also, since we will assign: > 0, we will get (even wheni = 2) thata! > of > 0. Thus,of,... ,aj_, and
By, .- ,ﬂk L will satlsfy all the preconditions of our statement {dér — 1) and hence our |nduct|ve assumption

will tell us that Z] 1 a”/ﬁ’ < 1. To complete the induction, we need to show two things: (ay tmassign
the needed: andy, and (b)Z] /By < E] 1 a”/B;- (and we know that the latter is at magt From the
definition ofo/’ andf’, itis easy to see that the latter inequality is equivalent to
!/
T y 2o
+ >t 12
Bicv By ~ Bi (12)
We now consider two cases. Firstdf ; = §;11, then we in fact havé; | = 8; = B;11 = . In this case
the above system far andy has infinitely many solutions andy (as long as + y = ). Take any such solution
wherez > 0 andy > 0. To see that Equation (12) indeed holds, we seetthdt | +vy/fiv1 = (z+y)/B = &/ Bi.
Now, we consider the interesting cg$e; > f;+1. Then the above system armandy has a unique solution

{ = (Bi — Biy1)/(Bi-1 — Biv1)
y=a} (Bi=1 — Bi)/(Bi=1 — Bi+1)

Notice, we indeed have, y > 0. Then the needed Equation (12) becomes

a;’ . /81 - Bi+1 /81 1— /81 ? 04_;
Bi—1 — Bit+1 [ Bi—1 Bi+1 = Bi =
Bi+1 n Bz' /Bz 12 Bit1 n Bi—1 n Bi

Bi  Bi- /81+1 - Bia Bi  Bit1
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However, the latter equation is easily seen to be true formany > 5; > £;1.1 > 0 (for example, multiplying both
sides byg;_16:;68;+1 > 0 makes it equivalent t05;,_1 — 5;)(8; — Bi+1)(Bi—1 — Bi+1) > 0, which is true). This
established Equation (12) and completes the proof of theteal lemma. [ |

We now establish the bound d(p, N) in a similar manner to that foF'(p, IV, b) above. Luckily, a lot of
technical machinery and notation has been developed glread

Letz = 1/(1 — §) and assumé > 0 (otherwise there is noting to prove), so that> 1. Defineh(p) =
log,(1/p). We need to show thas(p, N) < h(p) forany N > 1 and0 < p < 1. We prove this by induction on
N. ForN =1, we have:B(0,1) = oo = h(0);if 0 <p <1-4,thenB(p,1) =1 <log,(1/p) = h(p); and if
1—-0<p<1,thenB(p,1) =0 < h(p) (since then we can force by applying rule (B)). Assume now the claim
is true for(N — 1) and we want to show it foN .

We assume aiulentical notation with the previous proof far'(p, IV, b). Namely, denote by); = {«; ... oy}
be the distribution otX;, take anyp-sparsef, definep;-sparse “projection” events;, which satisfy) -, a;p; = p,
assume (without loss of generality) that > ... > p;. As before, ifa; > 1 — 4 (in particular, whert = 1),
then we are done. Indeed, in this case our adversary caXyfix 1 without using an intervention, reducing the
analysis to that of @,-sparse everf,;. Sincep; > p and using the induction, we g&(p, N) < B(p;, N — 1) <
log,(1/p1) < log,(1/p). Thus, assume; < 1 — 4. As before, take index > 1 such thatoy, + ... + o > 0
butagi1 + ...+ a < d, and define the distributio®] = (¢} ... «}) of statistical distancé from D, as before:
ol =ar+0, a0, =a;for2 <i<k,a, =oa+...+o—0danda; = 0fori > k. Again, our particular adversary
A will consider two options and pick the best (using his unlsmthcomputational resources): either he will use
an intervention and fi¥X; = 1, reducing the question to that of analyzing thesparse everf; on (N — 1), or he
will use rule (B) (and save an intervention) with the profigbdistribution D] instead ofD;. Since A will pick
the best of the two events, and using the inductive assumptie get

k

1+B@bN—1%§:%B@”N—D]§mm
=1

B(p,N) < min ; h(p)

1+h@07§:%h@0

Thus, it suffices to show the last inequality. Following agdie same notation as before, jgt= g3;p, where
br>...> 0 >0. Thus,zﬁz1 a;3; = 1. Recalling now the definition df(p) = log,(1/p), we need to show:

k k
1 1 ? 1 1 2
i=1 ¢ i=1 !

(in the last equivalence we us@f:1 af = 1). Now, if we convert the weighted sum tfg’s into alog of a
product of exponents, writé = log, 1, and then get rid ofog,,, we only need to show (recalt,= 1/(1 — 9)):

(D)

1=1

min

?

<1

Now, we would be done if; > 1/(1 — 6), so let us assume that < 1/(1 — d). With this in mind, we have
to show thaf [¥_, (1/8;)* < 1. However, by Cauchy-Schwartz inequality and siicé , o/ = 1, we have

k a’. Zi'c:l Oé:; k
H(g) L (Efkla;/ﬂi) _ oy
i1 \Pi D1 = B

Hence, it suffices to show that¥ % < 1. But this is exactly the statement of Lemma 3! Indeed, we used
the same notation far, andg; and have the samdenticalset on constraints on them. Hence, another application
of Lemma 3 completes the induction and the overall proof @drem 5.

19



