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Abstract. Exposure of secret keys seems to be inevitable, and may
in practice represent the most likely point of failure in a cryptographic
system. Recently, the notion of intrusion-resilience [17] (which extends
both the notions of forward security [3,5] and key insulation [11]) was
proposed as a means of mitigating the harmful effects that key expo-
sure can have. In this model, time is divided into distinct periods; the
public key remains fixed throughout the lifetime of the protocol but the
secret key is periodically updated. Secret information is stored by both
a user and a base; the user performs all cryptographic operations during
a given time period, while the base helps the user periodically update
his key. Intrusion-resilient schemes remain secure in the face of multi-
ple compromises of both the user and the base, as long as they are not
both compromised simultaneously. Furthermore, in case the user and
base are compromised simultaneously, prior time periods remain secure
(as in forward-secure schemes).

Intrusion-resilient signature schemes have been previously constructed
[17,15]. Here, we give the first construction of an intrusion-resilient public-
key encryption scheme, based on the recently-constructed forward-secure
encryption scheme of [8]. We also consider generic transformations for
securing intrusion-resilient encryption schemes against chosen-ciphertext
attacks.

1 Introduction

Exposure of secret keys is perhaps the most debilitating attack on a
cryptosystem since it typically implies that all security guarantees are
lost. This problem is emerging as an ever-greater threat as cryptographic
primitives are deployed on inexpensive, lightweight, and mobile devices;
in these cases, it is typically much easier for an adversary to break into
the device and obtain the secret keys than to crack the computational



assumptions on which the system is based. Clearly, concerns about key
exposure must be addressed in a satisfactory manner by the research
community.

Recognizing the need to address these concerns, a long line of research
has focused on dealing with the threat of key exposure. Methods to pre-
vent key exposure entirely (e.g., by using tamper-resistant devices) seem
cost-prohibitive and impractical for most common applications. Thus, re-
search has focused on making key exposures more difficult, or, alternately,
minimizing the damage when (partial) key exposure occurs. As an exam-
ple, threshold cryptography [10, 9] distributes secrets among n devices so
that exposure of secrets from, say, ¢ of these devices will not allow an
adversary to “break” the scheme. On the other hand, this requires that
at least ¢t + 1 devices participate every time a cryptographic operation
must be performed. While this may be acceptable in some scenarios, this
does not seem appropriate for mobile users and in other settings where
the risk of key exposure is high but users need the ability to perform
cryptographic computations on their own.

Alternative approaches to this problem have been proposed whereby
the key required for cryptographic computations always resides on a single
device. In such proposals, time is divided into distinct periods 1,..., N
and secret keys evolve over time (public keys, however, are fixed for the
lifetime of the scheme). The goal here is to contain — as much as possible
— damage from key exposures that occur. Forward-secure cryptosystems
[3,5] were the first solutions in this vein. In forward-secure schemes, the
secret key is stored by a single user and this key is updated by the user at
the beginning of every time period. An adversary who exposes a key for
period ¢ can perform cryptographic operations (signing, decrypting, etc.)
for periods t' > ¢ but cannot break the scheme (in the appropriate sense)
for any prior time periods t' < t. The effect of key exposure is thereby
contained as much as possible given that a single user stores all secret
keying information.

To address the issue of obtaining security for time periods follow-
ing key exposure, the notion of key-insulation [11,12] was proposed. This
model had the distinguishing feature of assuming (a limited amount of) se-
cure storage on a server with which the user periodically interacts. (Here,
one can imagine the “user” as a mobile device and the “server” as a
desktop PC in the user’s home.) The user can perform all cryptographic
operations during any particular time period on his own and can also up-
date his keys — with the help of the server — at discrete time intervals as
above. Because a limited amount of secure storage is assumed, the security



obtainable here is better than in the forward-secure case; in particular,
schemes can be designed such that an adversary who exposes keys stored
by the user multiple times (i.e., at time periods T' = {¢1,...,¢;}) cannot
“break” the scheme for any other time period either in the past or in the
future (i.e., for any time periods t € T'). In strong key-insulated schemes,
exposing only the secret keys stored on the server does not permit an
adversary to “break” the scheme at all.

Recently, these models were synthesized into the most powerful notion
set forth to date: intrusion-resilience [17]. As in the key-insulated model,
this model assumes a user who performs all cryptographic operations and
a server with which the user interacts to update his keys at discrete time
intervals. Now, however, it is no longer assumed that the server is secure.
Since key exposures at the server are now assumed to occur frequently,
the user and server have the option of “refreshing” their secrets (this
is reminiscent of proactivation [23]). Here (informally speaking; see the
formal definition in Section 2), schemes can be designed such that an
adversary who exposes keys stored at both the user and the server on
multiple occasions — but never at the same time — cannot “break” the
scheme for any time periods other than those for which keys were exposed
at the user. Furthermore, in case the keys of the user and server are
both exposed at some time ¢ (and no refresh was performed in between
these exposures), the scheme remains forward-secure so that the adversary
cannot “break” the scheme at any prior time periods ¢’ < t.

We note that each of these models may be appropriate in different en-
vironments. Forward-secure schemes are advantageous in that the user
is self-sufficient and need not interact with any other device. On the
other hand, the security provided by key-insulated and intrusion-resilient
schemes is better and these schemes might therefore be used when in-
teracting with a server is feasible and does not represent a serious draw-
back. Finally, although the intrusion-resilient model offers stronger secu-
rity guarantees than the key-insulated model, we note that solutions for
the latter are (thus far) much more efficient. The choice of which type
of scheme to use therefore depends heavily on an assumption about the
(physical) security of the server.

1.1 Owur Contributions

Much work has focused on the design and analysis of forward-secure
signature schemes [5,20,2,16,21] and, more recently, a forward-secure
public-key encryption scheme has been constructed [8]. Key insulated
public-key encryption schemes [11,7,6] and signature schemes [12] are



also known. Thus far, however, only constructions of intrusion-resilient
signature schemes [17, 15] have been proposed.! Here, we give the first def-
initions of intrusion-resilient public-key encryption and the first construc-
tion of an intrusion-resilient public-key encryption scheme. Our scheme is
based on the recent forward-secure encryption scheme of [8], and the
security of our scheme is therefore based on the BDH assumption in
the random oracle model. As in [8], we may modify our scheme so as
to achieve semantic security in the standard model under the decisional
BDH assumption.

We also consider generic transformations for securing intrusion-resilient
public-key encryption schemes against adaptive chosen-ciphertext attacks
(in the random oracle model). We show that any such transformation
that works for “standard” public-key encryption schemes also works for
intrusion-resilient public-key encryption schemes.? In particular, then, we
may apply known conversions (e.g., those of [13,22]) to our scheme so as
to obtain the first intrusion-resilient public-key encryption scheme secure
against chosen-ciphertext attacks.

2 Definitions and Preliminaries

The definitions given here are the first to appear for the case of intrusion-
resilient encryption; they exactly parallel those appearing in [17] for the
case of intrusion-resilient signatures.

In our model time is divided into distinct periods labeled 1,..., N. We
have a base and a user who (jointly) establish a public key which remains
fixed for the duration of the protocol. Encryption of a message depends
on the current time period; thus, ciphertexts have the form (¢, C') where
t indicates the time period during which encryption was performed. The
base and the user each store secret keying information: at time period
t, the user stores sufficient information to decrypt messages sent during
time ¢ (so, to decrypt, the user does not need to contact the base). At the
beginning of time period ¢ + 1, the base updates its keys and sends an
update message to the user; this update message, in particular, will con-
tain information enabling the user to compute the key needed to decrypt
during period ¢+ 1. Finally, the base can also send refresh messages to the

! As mentioned by [17], forward-secure public-key encryption is necessary in order to
build intrusion-resilient public-key encryption. At that time, however, no non-trivial
forward-secure public-key encryption schemes were known.

2 As pointed out in [8], this does not seem to be the case for forward-secure encryption
schemes.



user at any point in time; if a refresh is executed between compromises
of the user and the base, the system remains secure (refreshes thus serve
a similar purpose to proactivation [23]).

As in [17], the adversary in our model can obtain secrets from the base
and the user for multiple, adaptively-chosen time periods. The adversary
can also intercept update and refresh messages sent by the base. Infor-
mally speaking (a precise definition is given below), if the adversary only
compromises the base, the encryption scheme remains secure. If the ad-
versary compromises the user repeatedly, the encryption scheme remains
secure except for periods whose secrets were obtained (either directly or
by combination of compromise and interception of update/refresh mes-
sages). Finally, even if the base and the user are compromised during the
same time period (and no refresh was sent in the interim), the encryption
scheme remains secure for prior time periods.

2.1 Functional Specification

We first define correct operation of the scheme, and defer a definition of
security to the next section. The notation SKj, (respectively, SKB;.,)
denotes the user’s (respectively, base’s) secret key for time period ¢ follow-
ing r refreshes. We say t.r = t'.r' if t = t' and r = /. We say t.r < t'.r'
ift <t orift =1t andr < r'. As in prior work, we assume for con-
venience that a key update occurs immediately after key generation to
obtain keys for ¢ = 1, and that a key refresh occurs immediately after
every key update to obtain keys for r = 1.

Definition 1. A key-updating public-key encryption scheme II consists
of the following PPT algorithms:

— Gen, the key generation algorithm, takes as input security parameter
1% and the total number of time periods N. It outputs the initial user
key SKy., the initial base key SK By, and the public key PK.

— Enc, the encryption algorithm, tekes as input the public key PK, a
time period t, and a message m. It outputs ciphertext (t,C). (Note
that refreshes are transparent to the sender, but updates are not since
they occur at well-defined intervals.)

— Dec, the decryption algorithm, takes as input the current user key
SK;, and a ciphertext (t,C). It outputs a message m. (As usual, we
require that, for any r, we have Dec(SKy,,Enc(PK,t,m)) =m.)

— UpdBase, the base key update algorithm, takes as input the current
base key SK By . It outputs a new base key SK By for the next
time period as well as key update message SKUy.



— UpdUser, the user key update algorithm, takes as input the current
user key SKy, and a key update message SKU;. It outputs the new
user key SKyi1.0 for the next time period.

— RefBase, the base key refresh algorithm, takes as input the current base
key SK By . It outputs a new base key SK By ;1 as well as key refresh
message SK Ry

— RefUser, the user key refresh algorithm, takes as input the current user
key SKy, and a key refresh message SK Ry,.. It outputs a new user
key SKypi1-

2.2 Definition of Security

To aid our definition of security, we let RN (t) denote the number of
refreshes that occur in time period ¢. Recall that each update is assumed
to be followed by an immediate refresh, so keys with » = 0 are never
actually used. RN is for notational convenience only; it need not be known
in advance.

Consider the following “thought experiment” which generates all key-
ing information for the entire lifetime of the scheme:

Experiment Generate-Keys(k, N, RN)

t:=0,r:=0
(SKo.0, SK By, PK) <+ Gen(1* N)
fort=1to N

(SKByo, SKU; 1) < UpdBase(SKB(;_1).,)
SKy.o + UpdUser(SK(;_1),, SKU_1)
for r =1 to RN(t)
(SKB“«, SKRt( )) — RefBase(SKBt (r— 1))
SKi, < Rerser(SKt_(r,l),SKRt_(T,l))

Let SK*,SKB*,SKU*, and SK R* denote the sets of user keys, base
keys, update messages, and refresh messages generated in the course of
the above experiment. We now define the following oracles available to
the adversary:

— LR, the left-or-right encryption oracle. On input (¢, mg,m1) the oracle
chooses a random bit b and returns Enc(PK, t,my). This oracle may
be queried only once® by the adversary, and allows us to define a
notion of security.

% A hybrid argument (as in [4]) shows that security under a single access to LR is

equivalent to security under polynomially-many accesses to LR. We thus use the
simpler definition for convenience.



— Osec, the key exposure oracle (based on the sets SK*, SKB*, SKU*,
and SK R*) which:
1. On input (“s”, t.r) outputs SKy,;
2. On input (“b”, t.r) outputs SK By ,;
3. On input (“u”, t) outputs SKU; and SK R(;11).0;
4. On input (“r”, t.r) outputs SK Ry .
Queries to this oracle correspond to compromise of the user or base, or
to intercepting update or refresh messages. (We assume that queries
to this oracle always have ¢,r within the appropriate bounds.)

For any set @ of key exposure queries, we say that SK;, is Q-exposed
if at least one of the following is true:

— (%7, tr) €Q
- r>1 (%", t.(r—1)) € Q, and SK; (,_) is Q-exposed
—r=1(0"t—-1) € Q, and SK_1) pn(—1) is Q-exposed

A completely analogous definition may be given for ()-exposure of a base
key SKBLT

Clearly, if SK;, is Q-exposed then the adversary can decrypt messages
encrypted during time period t. Similarly, if SK;, and SK B, are both Q-
exposed (for some ¢,r) then the adversary can run the update algorithms
itself and thereby decrypt messages encrypted during any time period
t' > t. Thus, we say the scheme is (¢, Q)-compromised if either SK;, is
Q-exposed (for some r) or if both SKy . and SK By , are Q-exposed (for
some 7 and t' < t).

We say the adversary succeeds if it can determine the bit b used by the
LR oracle, where this oracle was queried on a time period ¢ for which the
scheme was not (¢, )-compromised. More formally, consider the following
experiment executed with some algorithm A:

Experiment Run-Adversary(A, k, N, RN)
Generate-Keys(k, N, RN)
b <« ALROsec(1k N PK, RN)
Let @ be the set of queries made by A to Osec
Let (t,mg, m1) be the query made to LR
Let b be the bit used by LR in responding to the query
if b# b or the scheme is (¢, Q)-compromised
return 0
else return 1

We define A’s probability of success as the probability that 1 is output in
the above experiment. The advantage of adversary A in attacking scheme



IT (where N and RN(-) are assumed to be clear from context, and are
always at most polynomial in k) is defined as twice A’s probability of
success, minus 1. We denote this advantage by Adva j7(k). We may now
define security of an intrusion-resilient scheme.

Definition 2. A key-updating public-key encryption scheme Il is said to
be an intrusion-resilient scheme achieving semantic security if, for all PPT
adversaries A and all N, RN(-) polynomial in k, we have Adva (k) <
e(k) for some negligible function e(-).

A definition appropriate for describing the concrete security of II may be
easily derived from the above. A definition of security against adaptive
chosen-ciphertext attacks is also evident, and we defer such a definition
to the full version of this paper.

2.3 Cryptographic Assumptions

The security of our scheme is based on the difficulty of the bilinear Diffie-
Hellman (BDH) problem as recently formalized by Boneh and Franklin
[7] (see also [19,18]). We review the relevant definitions as they appear
in [7]. Let G; and Gy be two cyclic groups of prime order ¢, where G;
is represented additively and Go is represented multiplicatively. We use a
map é: Gy X G; — Gy for which the following hold:

1. The map é is bilinear; that is, for all Py, P; € Gy and all z,y € Z, we
have é(z Py, yP1) = é(yPo, xP1) = é(Py, P1)*™Y.

2. There is an efficient algorithm to compute é(Py, P;) for any Py, P, €
Gy .

A BDH parameter generator G is a randomized algorithm that takes
a security parameter 1%, runs in polynomial time, and outputs the descrip-
tion of two groups Gi,Gy and a map é satisfying the above conditions.
We define the BDH problem with respect to 7G as the following: given
(G1,Gg, é) output by ZG along with random P, aP, bP, cP € Gy, compute
é(P, P)*c. We say that ZG satisfies the BDH assumption if the following
is negligible (in k) for all PPT algorithms A:

Pr[(Gy, Gy, €) + ZG(1%); P < Gy;a,b,¢c + Z; :

A(Gy, Gy, é, P,aP,bP,cP) = é(P, P)*).
We note that BDH parameter generators for which the BDH assumption
is believed to hold can be constructed from Weil and Tate pairings associ-
ated with supersingular elliptic curves or abelian varieties. As our results

do not depend on any specific instantiation, we refer the interested reader
to [7] for details.



3 Construction

Our construction builds on the forward-secure encryption scheme of [§],
which is based on previous work of [14] (both of which were enabled by
the identity-based encryption scheme of [7]). We assume here that the
reader is familiar with the scheme of [8]; in fact, many elements of their
scheme are used directly here.

3.1 Scheme Intuition

Assume for simplicity that the total number of time periods N is a power
of 2; that is, N = 2¢. We imagine a full binary tree of height # in which the
root is labeled with e (representing the empty string) and furthermore if
a node at depth less than / is labeled with w then its left child is labeled
with w0 and its right child is labeled with wl. Let (t) denote the £-bit
representation of integer ¢ (where 0 < ¢ < 2¢ — 1). The leaves of the tree
(which are labeled with strings of length £) correspond to successive time
periods in the obvious way; i.e., time period ¢ is associated with the leaf
labeled by (t). For simplicity, we refer to the node labeled by w as simply
“node w”. Every node w = w; ---w; in the tree will have an associated
“secret point” S, € (G and all interior nodes also have an associated
“translation point” @Q,, € Gy. For all nodes we then have the “local secret
key” sky = (Sw, Qu), where Qy = (Quy, -+, Qu,--w,;_;). We remark that
while the translation points are needed for efficient decryption, they do
not need to be kept secret.
The properties of these keys will be as follows:

1. To decrypt a message encrypted using PK during period ¢, only key
sk 1s needed.

2. Given key sk, it is possible to efficiently derive keys sk,o and sky;.

3. Given PK and t, and without sk, for all prefixes w of (¢}, it is in-
feasible to derive sk and furthermore infeasible to decrypt messages
encrypted during period ¢.

Once we have a scheme satisfying the above requirements, we utilize the
following method. For a given period t, let totq - - -ty = (t), where g = €.
The “global secret key” gsk; for this period will consist of (1) sk, and also
(2) {sktoty..t;_,1} for all 1 < j < £ such that t; = 0. We denote the latter
keys (i.e., the “local secret keys” for all right siblings of nodes on the path
from (t) to the root) by p(t). We refer to the right sibling corresponding
to swapping the “last” 0 of () to 1 as the deepest sibling. Also, we let
Secy = ({Sw | w € p(t)}) be the set of secret points corresponding to



nodes in p(t). Since there is some redundant information stored as part
of gsk; (in particular, the translation points do not need to be stored
multiple times as part of each local secret key), we may note that gsk;
actually consists of Sy, Secyyy, and Q.

We may notice that gst; enables derivation of all the local secret keys
for periods t through N (indeed, one can easily derive gsk;y; from gsk;),
but none of the local secret keys for periods ¢ < t. This will allow us to
achieve forward security, as in [8]. However, in our model we also need
to proactively split gsk; between the user and the base, so that we can
derive the sharing for period ¢ + 1 from that of period ¢. To achieve this,
we let the user store sk — to enable decryption within the current
time period — but additively share each secret point in Sec(; between
the user and the base. Intuitively, skyy by itself only allows the user to
decrypt at period ¢, and the fact that the rest of the global key Sec
is split ensures that exposure of the user cannot compromise any of the
future periods. Security against compromises of the base is similar (and
even simpler since the base does not even store Q(t>), except that here,
even the current period is secure. Proactivation is simple as well: the
base simply randomly refreshes the 2-sharing of Secy. This gives us full
intrusion-resilience.

The only issue to resolve is how to update (the sharing of) gsk; to
(the sharing of) gskyy; without compromising security. We notice that
this procedure requires choosing several new secret points and translation
points. We cannot let the user or the base generate these on their own,
since this will compromise the security of the scheme if the corresponding
player is corrupted during this phase. Instead, we will have the user and
base generate these points jointly. The challenge is to do it via a single
message from the base to the user. We give a high level description of the
main step for doing so. For any node w, if we let (), = s, P for some s,
(where P is some fixed public point) we will have Sy,0 = Sy + S Hi (w0)
and Sy1 = Sy + swHi(wl) (here, Hy is a hash function defined as part
of the scheme). Assume the user and base already have a random sharing
Sw = S, + S, and wish to generate @, and a random sharing of Sy

w?
and Sy,1. The base chooses a random s, sets Q), = s, P, S, , = S;, +
st,H1(w0), and S!; = S! +s!,H;(wl), and sends @, to the user. The user
chooses a random s/, sets Q,, = @), + 5. P (implicitly, Q., = (sl, +sl) P,
SO Sy = Sh,+sh), Suo = S+ s Hy (w0), and Sy = Sil + s Hy(wl). This
step is immediately followed by a random refresh, which ensures that no
single party has enough control to cause any security concerns.



3.2 Formal Description

We assume that hash functions H; : {0,1}* — G; and Hy : Gy — {0,1}"
are defined, either by Gen or else as part of the specification of the scheme.
These hash functions will be treated as random oracles in the analysis.

Gen(1%, N = 2%) does the following;

Ot W=

TG(1%) is run to generate group Gy, Gy (of order ¢) and é.

P+ Gy; s; < Zg. Set ) = s.P.

The public key is PK = (G, Gy, ¢, P, Q).

Set Sy = scH1(0) and S7 = scH1(1).

Forj=1,...,/—1:

(a) sgi < Zg. Set Quj = sq; P.

(b) Set Spig = Spi + 80i H1(070) and Syiq = Sy + sqi H1(071).

(Note that we have Q<0> ={Qo,...,Qp-1}, 8/€<0> = (S(0>, Q(0>), and
Sec<0> = (Sl, ce ,Soé—ll).)

Pick random Sec'<0> and Sec’<'0> such that Sec(g) = Sec’<0> + Sec'<'0> (i.e.,
for each w € p({0)) we have S, = S!, + S). Set SKBy = Sec'<0>,
SKU.O = (Sk(m, Sec'('0>).

Output PK,SKjy, and SK By and erase all other information.

UpdBase(SK By ) does the following:

1.

Parse (t) as toty - - -ty where ty = € for convenience. Parse SK By, as
Secl(t> = {Séo---tj_ll | t] = 0}
If ty = 0, erase SZt} and set Sec

!
t+1
that S, 41y Is available, since it< was stored as part of Sec.
Otherwise, let ¢ be the largest value such that ¢; = 0. Denote by
w = tg---t;_11 the “deepest sibling” of t. For j =0,...,—i—1:
(a) si,0i < Zg- Set Qi = Si,0i Ly Siygio = Supoi T s! o H1(w070), and
L oi1 = St o st o H1(w071),
Erase share S, and replace it by the resulting (¢ — i) shares {S
above, thus obtaining the new vector SKBy19 = Sec'<t+1>.

Set SKU; = (Sth),QQU, wos -+ Q) ge—i—1)- (Note that when ¢, = 0
only Sgt+1) is sent.)
Output SKByy1.9, SKU;.

) equal to the remaining keys. Note

070

0j1}




UpdUser(SK;,, SKU;) does the following:

1. Parse (t) as toty---t; where tyg = € for convenience. Parse SK;, as
(Stty» Quuy» Sectyy), where Seclyy = {Sy ., 1 | t; = 0}. Erase Sy.

2. If t, = 0, erase S&i and set Sec'<'t +1) equal to the remaining keys. Note
that S 11y is available, since it was stored as part of Sec.

3. Otherwise, let ¢ be the largest value such that ¢; = 0. Denote
by w = tp---t;_11 the “deepest sibling” of ¢. Parse SKU; as
(SZtH)’ Q> Qo> -+ > QL ge—iza)- For j=0,... £ —i—1:

(@) sig  Zg Set Quoi = Qi + Syl Shoi
st o Hi(w0’0), and S7 .\ = SV, + sl o Hy (w0’ 1).

4. Erase share Sy, and replace it by the resulting (¢ — i) shares {S! ;. },
thus obtaining the new vector Sec'<'t_|_1>. For j =0,...,/ —i—1, erase
Qto-t;_,015 and replace it by Q4 ..., _,10s- Thus, we obtain the the new
vector Q1.

5. Set S<t_|_1> = Szt+1> + Sg;Jrl).
"

6. Output SKy11.0 = (Si41)5 Qe+1)s SeClsry)-

SII

w0J

RefBase(SK By, ) does the following:

1. Parse SK By, as Secy, = ({S}, | w € p(t)}). For each w € p(t), pick
random R, € G; and reset each S}, := S}, + Ry.

2. Output resulting SK By, 41 and SKR;, = ({Ry | w € p(t)}).

RefUser(SK;,, SKR;,) does the following:

1. Parse SK;, as (sk<t>,Sec'<'t>), where Sec'<'t> = ({S], | w € p(t)}). Parse
SKRy, as ({Ry | w € p(t)}). For each w € p(t), reset Sl := S/ — Ry,.

2. Output resulting SKy 1.

Encpk (t, M) (where M € {0,1}") does the following:
1. Let ¢ ---ty = (t). Select random r < Z,.
2. Output (t,C) where:

C = (TP,?”Hl(tltg), e ,THl(tl T -t[),M@ HQ(é(Q,Hl(tl))r)) .




Decsk, , ((t,C)) does the following:
1. Parse (t) as t;---ty. Parse SKy, as (skyy,...) and sk as (Sqy, Quy)
where Q= (Q¢,,- -+, Qty..t,_, ). Parse C as (Uo,Us, ..., Up, V).

2. Compute
e(Uo, S
M:V@H2< . o, S) )
Hj:Q e(Qtl"'tj—l’Uj)

We now verify that decryption is performed correctly. When encrypt-
ing, we have é(Q, H1(t1))" = é(P, H1(t1))"*s. When decrypting, we have
Uo = TP, U2 = THl(tltg), ey Ug = THl(tl N 'tg) so that

&(Uo, Sip) é (TP, seHy(t) + 00y styeet,  Hilty - tj))
H;:Q é(Qtl...tjfu U]) H?:Z é (Stl...tjilp, rH; (tl - tj))
_ e(P, Hy(t))"™ - H?:z e (P, Hy(ty---t;)) " rti-1

H§:2 é (P, Hl(tl . tj))rstl"'tj—l

= é(P, H1 (tl))rsa

and thus decryption succeeds.

3.3 Efficiency

Our scheme enjoys the same parameters as the forward-secure scheme of
[8]. In fact, our scheme is exactly the “intrusion-resilient” extension of
their forward-secure scheme. In particular, our scheme has public key of
size O(1), and all other parameters are O(logN) including: key genera-
tion time, encryption/decryption time, ciphertext length, key update time
and message length, key refresh time and message length, and user/base
storage.

3.4 Extensions

The full version of [8] gives a number of extensions of their original
forward-secure scheme. In particular, they show (1) a modification of the
scheme which can be proven secure in the standard model under the de-
cisional BDH assumption; and (2) efficiency improvements which achieve
key generation time and key update time O(1). Both of these results may
be carried over to our setting, via appropriate (small) modifications of
the scheme presented above.



3.5 Security of Our Scheme
We now provide a sketch of the proof of security for the above scheme.

Theorem 1. Under the computational BDH assumption (and in the ran-
dom oracle model), the scheme described above is an intrusion-resilient
public-key encryption scheme achieving semantic security.

Proof. We convert any adversary A which successfully attacks the en-
cryption scheme into an algorithm A’ which breaks the BDH assumption.
On a high level, A" will try to simulate the view of A in the following
way: A’ will guess the time period t* for which A will ask its query to
the LR oracle. If this guess turns out to be incorrect — in particular,
as soon as A asks a query to LR which is not for time t* or as soon as
the scheme becomes (t*, ))-compromised — A’ aborts the simulation and
fails. On the other hand, if A’ is correct in its guess (which occurs with
probability 1/N), then A’ will be able to perfectly simulate the view of A
in attacking the scheme. As in [8], this will enable A" to break the BDH
assumption with probability O(Adva(k)/Nqm,), where g, is the number
of hash queries A makes to Hs.

In more detail, adversary A’ is given (G, Gy, €) as output by ZG(1¥),
and is additionally given random elements P,Q = s.P,P’ = bP, and
Uy = cP. The goal of A’ is to output é(P, P)%. A" will simulate an
instance of the encryption scheme for adversary A. First, A’ sets PK =
(G1,Gy, 6, P,Q) and gives PK to A. Next, A’ guesses a random index
t* €{0,..., N — 1} (this represents a guess of the period for which A will
query LR). Let (t*) =t]---t; and ¢ = €.

To answer the hash queries of A, algorithm A’ maintains lists H!!
and HL'. To begin, HY*' will be empty. H!**! is prepared by first having
A’ select random x,...,2¢ € Z, and then storing the tuples (¢, P'),
(tits, o P), ..., (&7 -1}, zP) in HU5! Next, A’ proceeds as follows:

1. Choose random y; € Z4 and store (tf,71 P) in H{ist.
2. For 2 < k < £, choose random y, s; € Z, and then store the value
(tr--tr_ tp, yuP — s ' P') in HJ".

A" will respond to hash queries of A in the obvious way. If A queries
Hy(X), then A" checks whether there is a tuple of the form (X,Y) in
H ém. If so, the value Y is returned. Otherwise, A’ chooses random Y
from the appropriate range, stores (X,Y) in H, ,im, and returns Y.

We point out that fixing the output of the random oracle as above
will allow A’ to simulate the “local secret keys” for all nodes in the tree
(as in [14, 8]) except those nodes on the path p from the root to leaf ¢*.



In particular, fixing the output as above will allow A’ to simulate local
secret keys for all nodes whose parent is on path p; A’ can then generate
“real” local secret keys for the remaining nodes by following the legal
description of the scheme.

Since all other values stored by the user and by the base are (indi-
vidually) random, it should be clear that A’ can simulate all queries of A
to Osec ezcept those for which the scheme becomes (t*, QQ)-compromised
(where ) now represents the queries of A to Osec up to and including
that point in time). When a query to Osec results in the scheme’s becom-
ing (t*, Q)-compromised, A’ simply aborts as its guess of t* was incorrect;
this will occur exactly with probability (N —1)/N. Assuming the scheme
is never (t*, Q)-compromised, A" can simulate the LR oracle as in [14, 8].
Specifically, A" will return the value (Uy, 22Uy, ..., z,Uy, V), where V is
a random element from {0,1}". Overall, with probability 1/N, A" will
be able to simulate the entire view of A. It is easy to see that the only
way for A to get any advantage in the above simulation is to ask the ran-
dom oracle Hy the value é(P, P)*"¢, as otherwise the encrypted message
is information-theoretically hidden from A. Thus, outputting a random
input element from the H.*' will have non-negligible probability of being
the value A’ needs to break the BDH assumption.

3.6 Security Against Adaptive Chosen-Ciphertext Attacks

We briefly state our main results, and defer the details until the final
version of our paper. To benefit from a modular approach (i.e., to avoid
having to re-prove security every time a new scheme is constructed), we
would like to have a generic transformation for securing intrusion-resilient
public-key encryption schemes against adaptive chosen-ciphertext attacks.
Such a transformation would take any intrusion-resilient public-key en-
cryption scheme achieving semantic security and convert it to an intrusion-
resilient public-key encryption scheme secure against adaptive chosen-
ciphertext attacks. We call such a transformation a CCA 2-transformation.

Much work along these lines has been done for the case of “stan-
dard” public-key encryption (e.g., [13,22] and others), and many CCA2-
transformations for “standard” public-key encryption schemes are known.
The next theorem shows that we may leverage off this work for the case
of intrusion-resilient encryption. Namely:

Theorem 2. Any CCAZ2-transformation for “standard” public-key en-
cryption schemes is also a CCA2-transformation for intrusion-resilient
public-key encryption schemes.



We note that this is different from the case of forward-secure public-key
encryption, where such a result does not seem to hold [8].

Applying, e.g., the CCA2-transformation of [13,22] to our scheme

above, we obtain an intrusion-resilient public-key encryption scheme se-
cure against adaptive chosen-ciphertext attacks.
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