
Intrusion-Resilient Publi
-Key En
ryptionYevgeniy Dodis1, Matt Franklin2, Jonathan Katz3, Atsuko Miyaji2;4,and Moti Yung51 Department of Computer S
ien
e, New York University. dodis�
s.nyu.edu2 Department of Computer S
ien
e, University of California, Davis.fmiyaji,frankling�
s.u
davis.edu3 Department of Computer S
ien
e, University of Maryland, College Park.jkatz�
s.umd.edu4 Japan Advan
ed Institute of S
ien
e and Te
hnology. miyaji�jaist.a
.jp5 Department of Computer S
ien
e, Columbia University. moti�
s.
olumbia.eduAbstra
t. Exposure of se
ret keys seems to be inevitable, and mayin pra
ti
e represent the most likely point of failure in a
ryptographi
system. Re
ently, the notion of intrusion-resilien
e [17℄ (whi
h extendsboth the notions of forward se
urity [3, 5℄ and key insulation [11℄) wasproposed as a means of mitigating the harmful e�e
ts that key expo-sure
an have. In this model, time is divided into distin
t periods; thepubli
 key remains �xed throughout the lifetime of the proto
ol but these
ret key is periodi
ally updated. Se
ret information is stored by botha user and a base; the user performs all
ryptographi
 operations duringa given time period, while the base helps the user periodi
ally updatehis key. Intrusion-resilient s
hemes remain se
ure in the fa
e of multi-ple
ompromises of both the user and the base, as long as they are notboth
ompromised simultaneously. Furthermore, in
ase the user andbase are
ompromised simultaneously, prior time periods remain se
ure(as in forward-se
ure s
hemes).Intrusion-resilient signature s
hemes have been previously
onstru
ted[17, 15℄. Here, we give the �rst
onstru
tion of an intrusion-resilient publi
-key en
ryption s
heme, based on the re
ently-
onstru
ted forward-se
ureen
ryption s
heme of [8℄. We also
onsider generi
 transformations forse
uring intrusion-resilient en
ryption s
hemes against
hosen-
iphertextatta
ks.1 Introdu
tionExposure of se
ret keys is perhaps the most debilitating atta
k on a
ryptosystem sin
e it typi
ally implies that all se
urity guarantees arelost. This problem is emerging as an ever-greater threat as
ryptographi
primitives are deployed on inexpensive, lightweight, and mobile devi
es;in these
ases, it is typi
ally mu
h easier for an adversary to break intothe devi
e and obtain the se
ret keys than to
ra
k the
omputational

assumptions on whi
h the system is based. Clearly,
on
erns about keyexposure must be addressed in a satisfa
tory manner by the resear
h
ommunity.Re
ognizing the need to address these
on
erns, a long line of resear
hhas fo
used on dealing with the threat of key exposure. Methods to pre-vent key exposure entirely (e.g., by using tamper-resistant devi
es) seem
ost-prohibitive and impra
ti
al for most
ommon appli
ations. Thus, re-sear
h has fo
used on making key exposures more diÆ
ult, or, alternately,minimizing the damage when (partial) key exposure o

urs. As an exam-ple, threshold
ryptography [10, 9℄ distributes se
rets among n devi
es sothat exposure of se
rets from, say, t of these devi
es will not allow anadversary to \break" the s
heme. On the other hand, this requires thatat least t + 1 devi
es parti
ipate every time a
ryptographi
 operationmust be performed. While this may be a

eptable in some s
enarios, thisdoes not seem appropriate for mobile users and in other settings wherethe risk of key exposure is high but users need the ability to perform
ryptographi

omputations on their own.Alternative approa
hes to this problem have been proposed wherebythe key required for
ryptographi

omputations always resides on a singledevi
e. In su
h proposals, time is divided into distin
t periods 1; : : : ; Nand se
ret keys evolve over time (publi
 keys, however, are �xed for thelifetime of the s
heme). The goal here is to
ontain | as mu
h as possible| damage from key exposures that o

ur. Forward-se
ure
ryptosystems[3, 5℄ were the �rst solutions in this vein. In forward-se
ure s
hemes, these
ret key is stored by a single user and this key is updated by the user atthe beginning of every time period. An adversary who exposes a key forperiod t
an perform
ryptographi
 operations (signing, de
rypting, et
.)for periods t0 � t but
annot break the s
heme (in the appropriate sense)for any prior time periods t0 < t. The e�e
t of key exposure is thereby
ontained as mu
h as possible given that a single user stores all se
retkeying information.To address the issue of obtaining se
urity for time periods follow-ing key exposure, the notion of key-insulation [11, 12℄ was proposed. Thismodel had the distinguishing feature of assuming (a limited amount of) se-
ure storage on a server with whi
h the user periodi
ally intera
ts. (Here,one
an imagine the \user" as a mobile devi
e and the \server" as adesktop PC in the user's home.) The user
an perform all
ryptographi
operations during any parti
ular time period on his own and
an also up-date his keys | with the help of the server | at dis
rete time intervals asabove. Be
ause a limited amount of se
ure storage is assumed, the se
urity

obtainable here is better than in the forward-se
ure
ase; in parti
ular,s
hemes
an be designed su
h that an adversary who exposes keys storedby the user multiple times (i.e., at time periods T = ft1; : : : ; t`g)
annot\break" the s
heme for any other time period either in the past or in thefuture (i.e., for any time periods t 62 T). In strong key-insulated s
hemes,exposing only the se
ret keys stored on the server does not permit anadversary to \break" the s
heme at all.Re
ently, these models were synthesized into the most powerful notionset forth to date: intrusion-resilien
e [17℄. As in the key-insulated model,this model assumes a user who performs all
ryptographi
 operations anda server with whi
h the user intera
ts to update his keys at dis
rete timeintervals. Now, however, it is no longer assumed that the server is se
ure.Sin
e key exposures at the server are now assumed to o

ur frequently,the user and server have the option of \refreshing" their se
rets (thisis reminis
ent of proa
tivation [23℄). Here (informally speaking; see theformal de�nition in Se
tion 2), s
hemes
an be designed su
h that anadversary who exposes keys stored at both the user and the server onmultiple o

asions | but never at the same time |
annot \break" thes
heme for any time periods other than those for whi
h keys were exposedat the user. Furthermore, in
ase the keys of the user and server areboth exposed at some time t (and no refresh was performed in betweenthese exposures), the s
heme remains forward-se
ure so that the adversary
annot \break" the s
heme at any prior time periods t0 < t.We note that ea
h of these models may be appropriate in di�erent en-vironments. Forward-se
ure s
hemes are advantageous in that the useris self-suÆ
ient and need not intera
t with any other devi
e. On theother hand, the se
urity provided by key-insulated and intrusion-resilients
hemes is better and these s
hemes might therefore be used when in-tera
ting with a server is feasible and does not represent a serious draw-ba
k. Finally, although the intrusion-resilient model o�ers stronger se
u-rity guarantees than the key-insulated model, we note that solutions forthe latter are (thus far) mu
h more eÆ
ient. The
hoi
e of whi
h typeof s
heme to use therefore depends heavily on an assumption about the(physi
al) se
urity of the server.1.1 Our ContributionsMu
h work has fo
used on the design and analysis of forward-se
uresignature s
hemes [5, 20, 2, 16, 21℄ and, more re
ently, a forward-se
urepubli
-key en
ryption s
heme has been
onstru
ted [8℄. Key insulatedpubli
-key en
ryption s
hemes [11, 7, 6℄ and signature s
hemes [12℄ are

also known. Thus far, however, only
onstru
tions of intrusion-resilientsignature s
hemes [17, 15℄ have been proposed.1 Here, we give the �rst def-initions of intrusion-resilient publi
-key en
ryption and the �rst
onstru
-tion of an intrusion-resilient publi
-key en
ryption s
heme. Our s
heme isbased on the re
ent forward-se
ure en
ryption s
heme of [8℄, and these
urity of our s
heme is therefore based on the BDH assumption inthe random ora
le model. As in [8℄, we may modify our s
heme so asto a
hieve semanti
 se
urity in the standard model under the de
isionalBDH assumption.We also
onsider generi
 transformations for se
uring intrusion-resilientpubli
-key en
ryption s
hemes against adaptive
hosen-
iphertext atta
ks(in the random ora
le model). We show that any su
h transformationthat works for \standard" publi
-key en
ryption s
hemes also works forintrusion-resilient publi
-key en
ryption s
hemes.2 In parti
ular, then, wemay apply known
onversions (e.g., those of [13, 22℄) to our s
heme so asto obtain the �rst intrusion-resilient publi
-key en
ryption s
heme se
ureagainst
hosen-
iphertext atta
ks.2 De�nitions and PreliminariesThe de�nitions given here are the �rst to appear for the
ase of intrusion-resilient en
ryption; they exa
tly parallel those appearing in [17℄ for the
ase of intrusion-resilient signatures.In our model time is divided into distin
t periods labeled 1; : : : ; N . Wehave a base and a user who (jointly) establish a publi
 key whi
h remains�xed for the duration of the proto
ol. En
ryption of a message dependson the
urrent time period; thus,
iphertexts have the form ht; Ci wheret indi
ates the time period during whi
h en
ryption was performed. Thebase and the user ea
h store se
ret keying information: at time periodt, the user stores suÆ
ient information to de
rypt messages sent duringtime t (so, to de
rypt, the user does not need to
onta
t the base). At thebeginning of time period t + 1, the base updates its keys and sends anupdate message to the user; this update message, in parti
ular, will
on-tain information enabling the user to
ompute the key needed to de
ryptduring period t+1. Finally, the base
an also send refresh messages to the1 As mentioned by [17℄, forward-se
ure publi
-key en
ryption is ne
essary in order tobuild intrusion-resilient publi
-key en
ryption. At that time, however, no non-trivialforward-se
ure publi
-key en
ryption s
hemes were known.2 As pointed out in [8℄, this does not seem to be the
ase for forward-se
ure en
ryptions
hemes.

user at any point in time; if a refresh is exe
uted between
ompromisesof the user and the base, the system remains se
ure (refreshes thus servea similar purpose to proa
tivation [23℄).As in [17℄, the adversary in our model
an obtain se
rets from the baseand the user for multiple, adaptively-
hosen time periods. The adversary
an also inter
ept update and refresh messages sent by the base. Infor-mally speaking (a pre
ise de�nition is given below), if the adversary only
ompromises the base, the en
ryption s
heme remains se
ure. If the ad-versary
ompromises the user repeatedly, the en
ryption s
heme remainsse
ure ex
ept for periods whose se
rets were obtained (either dire
tly orby
ombination of
ompromise and inter
eption of update/refresh mes-sages). Finally, even if the base and the user are
ompromised during thesame time period (and no refresh was sent in the interim), the en
ryptions
heme remains se
ure for prior time periods.2.1 Fun
tional Spe
i�
ationWe �rst de�ne
orre
t operation of the s
heme, and defer a de�nition ofse
urity to the next se
tion. The notation SKt;r (respe
tively, SKBt:r)denotes the user's (respe
tively, base's) se
ret key for time period t follow-ing r refreshes. We say t:r = t0:r0 if t = t0 and r = r0. We say t:r < t0:r0if t < t0 or if t = t0 and r < r0. As in prior work, we assume for
on-venien
e that a key update o

urs immediately after key generation toobtain keys for t = 1, and that a key refresh o

urs immediately afterevery key update to obtain keys for r = 1.De�nition 1. A key-updating publi
-key en
ryption s
heme �
onsistsof the following ppt algorithms:{ Gen, the key generation algorithm, takes as input se
urity parameter1k and the total number of time periods N . It outputs the initial userkey SK0:0, the initial base key SKB0:0, and the publi
 key PK.{ En
, the en
ryption algorithm, takes as input the publi
 key PK, atime period t, and a message m. It outputs
iphertext ht; Ci. (Notethat refreshes are transparent to the sender, but updates are not sin
ethey o

ur at well-de�ned intervals.){ De
, the de
ryption algorithm, takes as input the
urrent user keySKt:r and a
iphertext ht; Ci. It outputs a message m. (As usual, werequire that, for any r, we have De
(SKt:r;En
(PK; t;m)) = m.){ UpdBase, the base key update algorithm, takes as input the
urrentbase key SKBt:r. It outputs a new base key SKBt+1:0 for the nexttime period as well as key update message SKUt.

{ UpdUser, the user key update algorithm, takes as input the
urrentuser key SKt:r and a key update message SKUt. It outputs the newuser key SKt+1:0 for the next time period.{ RefBase, the base key refresh algorithm, takes as input the
urrent basekey SKBt:r. It outputs a new base key SKBt:r+1 as well as key refreshmessage SKRt:r.{ RefUser, the user key refresh algorithm, takes as input the
urrent userkey SKt:r and a key refresh message SKRt:r. It outputs a new userkey SKt:r+1.2.2 De�nition of Se
urityTo aid our de�nition of se
urity, we let RN(t) denote the number ofrefreshes that o

ur in time period t. Re
all that ea
h update is assumedto be followed by an immediate refresh, so keys with r = 0 are nevera
tually used.RN is for notational
onvenien
e only; it need not be knownin advan
e.Consider the following \thought experiment" whi
h generates all key-ing information for the entire lifetime of the s
heme:Experiment Generate-Keys(k;N;RN)t := 0; r := 0(SK0:0; SKB0:0; PK) Gen(1k; N)for t = 1 to N(SKBt:0; SKUt�1) UpdBase(SKB(t�1):r)SKt:0 UpdUser(SK(t�1):r ; SKUt�1)for r = 1 to RN(t)(SKBt:r; SKRt:(r�1)) RefBase(SKBt:(r�1))SKt:r RefUser(SKt:(r�1); SKRt:(r�1))Let SK�; SKB�; SKU�, and SKR� denote the sets of user keys, basekeys, update messages, and refresh messages generated in the
ourse ofthe above experiment. We now de�ne the following ora
les available tothe adversary:{ LR, the left-or-right en
ryption ora
le. On input (t;m0;m1) the ora
le
hooses a random bit b and returns En
(PK; t;mb). This ora
le maybe queried only on
e3 by the adversary, and allows us to de�ne anotion of se
urity.3 A hybrid argument (as in [4℄) shows that se
urity under a single a

ess to LR isequivalent to se
urity under polynomially-many a

esses to LR. We thus use thesimpler de�nition for
onvenien
e.

{ Ose
, the key exposure ora
le (based on the sets SK�; SKB�; SKU�;and SKR�) whi
h:1. On input (\s", t:r) outputs SKt:r;2. On input (\b", t:r) outputs SKBt:r;3. On input (\u", t) outputs SKUt and SKR(t+1):0;4. On input (\r", t:r) outputs SKRt:r.Queries to this ora
le
orrespond to
ompromise of the user or base, orto inter
epting update or refresh messages. (We assume that queriesto this ora
le always have t; r within the appropriate bounds.)For any set Q of key exposure queries, we say that SKt:r is Q-exposedif at least one of the following is true:{ (\s", t:r) 2 Q{ r > 1, (\r", t:(r � 1)) 2 Q, and SKt:(r�1) is Q-exposed{ r = 1, (\u",t� 1) 2 Q, and SK(t�1):RN(t�1) is Q-exposedA
ompletely analogous de�nition may be given for Q-exposure of a basekey SKBt:rClearly, if SKt:r isQ-exposed then the adversary
an de
rypt messagesen
rypted during time period t. Similarly, if SKt:r and SKBt:r are bothQ-exposed (for some t; r) then the adversary
an run the update algorithmsitself and thereby de
rypt messages en
rypted during any time periodt0 � t. Thus, we say the s
heme is (t;Q)-
ompromised if either SKt:r isQ-exposed (for some r) or if both SKt0:r and SKBt0:r are Q-exposed (forsome r and t0 < t).We say the adversary su

eeds if it
an determine the bit b used by theLR ora
le, where this ora
le was queried on a time period t for whi
h thes
heme was not (t;Q)-
ompromised. More formally,
onsider the followingexperiment exe
uted with some algorithm A:Experiment Run-Adversary(A; k;N;RN)Generate-Keys(k;N;RN)b0 ALR;Ose
(1k; N; PK;RN)Let Q be the set of queries made by A to Ose
Let (t;m0;m1) be the query made to LRLet b be the bit used by LR in responding to the queryif b 6= b0 or the s
heme is (t;Q)-
ompromisedreturn 0else return 1We de�ne A's probability of su

ess as the probability that 1 is output inthe above experiment. The advantage of adversary A in atta
king s
heme

� (where N and RN(�) are assumed to be
lear from
ontext, and arealways at most polynomial in k) is de�ned as twi
e A's probability ofsu

ess, minus 1. We denote this advantage by AdvA;�(k). We may nowde�ne se
urity of an intrusion-resilient s
heme.De�nition 2. A key-updating publi
-key en
ryption s
heme � is said tobe an intrusion-resilient s
heme a
hieving semanti
 se
urity if, for all pptadversaries A and all N;RN(�) polynomial in k, we have AdvA;�(k) <"(k) for some negligible fun
tion "(�).A de�nition appropriate for des
ribing the
on
rete se
urity of � may beeasily derived from the above. A de�nition of se
urity against adaptive
hosen-
iphertext atta
ks is also evident, and we defer su
h a de�nitionto the full version of this paper.2.3 Cryptographi
 AssumptionsThe se
urity of our s
heme is based on the diÆ
ulty of the bilinear DiÆe-Hellman (BDH) problem as re
ently formalized by Boneh and Franklin[7℄ (see also [19, 18℄). We review the relevant de�nitions as they appearin [7℄. Let G 1 and G 2 be two
y
li
 groups of prime order q, where G 1is represented additively and G 2 is represented multipli
atively. We use amap ê : G 1 � G 1 ! G 2 for whi
h the following hold:1. The map ê is bilinear ; that is, for all P0; P1 2 G 1 and all x; y 2 Zq wehave ê(xP0; yP1) = ê(yP0; xP1) = ê(P0; P1)xy.2. There is an eÆ
ient algorithm to
ompute ê(P0; P1) for any P0; P1 2G 1 .A BDH parameter generator IG is a randomized algorithm that takesa se
urity parameter 1k, runs in polynomial time, and outputs the des
rip-tion of two groups G 1 ; G 2 and a map ê satisfying the above
onditions.We de�ne the BDH problem with respe
t to IG as the following: given(G 1 ; G 2 ; ê) output by IG along with random P; aP; bP;
P 2 G 1 ,
omputeê(P; P)ab
. We say that IG satis�es the BDH assumption if the followingis negligible (in k) for all ppt algorithms A:Pr[(G 1 ; G 2 ; ê) IG(1k);P G 1 ; a; b;
 Zq :A(G 1 ; G 2 ; ê; P; aP; bP;
P) = ê(P; P)ab
℄:We note that BDH parameter generators for whi
h the BDH assumptionis believed to hold
an be
onstru
ted from Weil and Tate pairings asso
i-ated with supersingular ellipti

urves or abelian varieties. As our resultsdo not depend on any spe
i�
 instantiation, we refer the interested readerto [7℄ for details.

3 Constru
tionOur
onstru
tion builds on the forward-se
ure en
ryption s
heme of [8℄,whi
h is based on previous work of [14℄ (both of whi
h were enabled bythe identity-based en
ryption s
heme of [7℄). We assume here that thereader is familiar with the s
heme of [8℄; in fa
t, many elements of theirs
heme are used dire
tly here.3.1 S
heme IntuitionAssume for simpli
ity that the total number of time periods N is a powerof 2; that is, N = 2`. We imagine a full binary tree of height ` in whi
h theroot is labeled with " (representing the empty string) and furthermore ifa node at depth less than ` is labeled with w then its left
hild is labeledwith w0 and its right
hild is labeled with w1. Let hti denote the `-bitrepresentation of integer t (where 0 � t � 2` � 1). The leaves of the tree(whi
h are labeled with strings of length `)
orrespond to su

essive timeperiods in the obvious way; i.e., time period t is asso
iated with the leaflabeled by hti. For simpli
ity, we refer to the node labeled by w as simply\node w". Every node w = w1 � � �wj in the tree will have an asso
iated\se
ret point" Sw 2 G 1 and all interior nodes also have an asso
iated\translation point" Qw 2 G 1 . For all nodes we then have the \lo
al se
retkey" skw = (Sw;Qw), where Qw = (Qw1 ; : : : ; Qw1���wj�1). We remark thatwhile the translation points are needed for eÆ
ient de
ryption, they donot need to be kept se
ret.The properties of these keys will be as follows:1. To de
rypt a message en
rypted using PK during period t, only keyskhti is needed.2. Given key skw, it is possible to eÆ
iently derive keys skw0 and skw1.3. Given PK and t, and without skw for all pre�xes w of hti, it is in-feasible to derive skhti and furthermore infeasible to de
rypt messagesen
rypted during period t.On
e we have a s
heme satisfying the above requirements, we utilize thefollowing method. For a given period t, let t0t1 � � � t` = hti, where t0 = �.The \global se
ret key" gskt for this period will
onsist of (1) skhti and also(2) fskt0t1���tj�11g for all 1 � j � ` su
h that tj = 0. We denote the latterkeys (i.e., the \lo
al se
ret keys" for all right siblings of nodes on the pathfrom hti to the root) by �(t). We refer to the right sibling
orrespondingto swapping the \last" 0 of hti to 1 as the deepest sibling. Also, we letSe
hti = (fSw j w 2 �(t)g) be the set of se
ret points
orresponding to

nodes in �(t). Sin
e there is some redundant information stored as partof gskt (in parti
ular, the translation points do not need to be storedmultiple times as part of ea
h lo
al se
ret key), we may note that gskta
tually
onsists of Shti, Se
hti, and Qhti.We may noti
e that gstt enables derivation of all the lo
al se
ret keysfor periods t through N (indeed, one
an easily derive gskt+1 from gskt),but none of the lo
al se
ret keys for periods t0 < t. This will allow us toa
hieve forward se
urity, as in [8℄. However, in our model we also needto proa
tively split gskt between the user and the base, so that we
anderive the sharing for period t+ 1 from that of period t. To a
hieve this,we let the user store skhti | to enable de
ryption within the
urrenttime period | but additively share ea
h se
ret point in Se
hti betweenthe user and the base. Intuitively, skhti by itself only allows the user tode
rypt at period t, and the fa
t that the rest of the global key Se
htiis split ensures that exposure of the user
annot
ompromise any of thefuture periods. Se
urity against
ompromises of the base is similar (andeven simpler sin
e the base does not even store Qhti), ex
ept that here,even the
urrent period is se
ure. Proa
tivation is simple as well: thebase simply randomly refreshes the 2-sharing of Se
hti. This gives us fullintrusion-resilien
e.The only issue to resolve is how to update (the sharing of) gskt to(the sharing of) gskt+1 without
ompromising se
urity. We noti
e thatthis pro
edure requires
hoosing several new se
ret points and translationpoints. We
annot let the user or the base generate these on their own,sin
e this will
ompromise the se
urity of the s
heme if the
orrespondingplayer is
orrupted during this phase. Instead, we will have the user andbase generate these points jointly. The
hallenge is to do it via a singlemessage from the base to the user. We give a high level des
ription of themain step for doing so. For any node w, if we let Qw = swP for some sw(where P is some �xed publi
 point) we will have Sw0 = Sw + swH1(w0)and Sw1 = Sw + swH1(w1) (here, H1 is a hash fun
tion de�ned as partof the s
heme). Assume the user and base already have a random sharingSw = S0w + S00w, and wish to generate Qw and a random sharing of Sw0and Sw1. The base
hooses a random s0w, sets Q0w = s0wP , S0w0 = S0w +s0wH1(w0), and S0w1 = S0w+s0wH1(w1), and sends Q0w to the user. The user
hooses a random s00w, sets Qw = Q0w+s00wP (impli
itly, Qw = (s0w+s00w)P ,so sw = s0w+s00w), S00w0 = S00w+s00wH1(w0), and S00w0 = S00w+s00wH1(w1). Thisstep is immediately followed by a random refresh, whi
h ensures that nosingle party has enough
ontrol to
ause any se
urity
on
erns.

3.2 Formal Des
riptionWe assume that hash fun
tions H1 : f0; 1g� ! G 1 and H2 : G 2 ! f0; 1gnare de�ned, either by Gen or else as part of the spe
i�
ation of the s
heme.These hash fun
tions will be treated as random ora
les in the analysis.Gen(1k; N = 2`) does the following:1. IG(1k) is run to generate group G 1 ; G 2 (of order q) and ê.2. P G 1 ; s" Zq. Set Q = s"P .3. The publi
 key is PK = (G 1 ; G 2 ; ê; P;Q).4. Set S0 = s"H1(0) and S1 = s"H1(1).5. For j = 1; : : : ; `� 1:(a) s0j Zq. Set Q0j = s0jP .(b) Set S0j0 = S0j + s0jH1(0j0) and S0j1 = S0j + s0jH1(0j1).6. (Note that we have Qh0i = fQ0; : : : ; Q0`�1g, skh0i = (Sh0i;Qh0i), andSe
h0i = (S1; : : : ; S0`�11).)7. Pi
k random Se
0h0i and Se
00h0i su
h that Se
h0i = Se
0h0i + Se
00h0i (i.e.,for ea
h w 2 �(h0i) we have Sw = S0w + S00w). Set SKB0:0 = Se
0h0i,SK0:0 = (skh0i;Se
00h0i).8. Output PK;SK0:0, and SKB0:0 and erase all other information.UpdBase(SKBt:r) does the following:1. Parse hti as t0t1 � � � t` where t0 = " for
onvenien
e. Parse SKBt:r asSe
0hti = fS0t0���tj�11 j tj = 0g.2. If t` = 0, erase S0hti and set Se
0ht+1i equal to the remaining keys. Notethat S0ht+1i is available, sin
e it was stored as part of Se
hti.3. Otherwise, let i be the largest value su
h that ti = 0. Denote byw = t0 � � � ti�11 the \deepest sibling" of t. For j = 0; : : : ; `� i� 1:(a) s0w0j Zq. Set Q0w0j = s0w0jP , S0w0j0 = S0w0j + s0w0jH1(w0j0), andS0w0j1 = S0w0j + s0w0jH1(w0j1).4. Erase share S0w and repla
e it by the resulting (`� i) shares fS0w0j1gabove, thus obtaining the new ve
tor SKBt+1:0 = Se
0ht+1i.5. Set SKUt = (S0ht+1i; Q0w; Q0w0; : : : ; Q0w0`�i�1). (Note that when t` = 0only S0ht+1i is sent.)6. Output SKBt+1:0, SKUt.

UpdUser(SKt:r; SKUt) does the following:1. Parse hti as t0t1 � � � t` where t0 = " for
onvenien
e. Parse SKt:r as(Shti;Qhti;Se
00hti), where Se
00hti = fS00t0���tj�11 j tj = 0g. Erase Shti.2. If t` = 0, erase S00hti and set Se
00ht+1i equal to the remaining keys. Notethat Sht+1i is available, sin
e it was stored as part of Se
hti.3. Otherwise, let i be the largest value su
h that ti = 0. Denoteby w = t0 � � � ti�11 the \deepest sibling" of t. Parse SKUt as(S0ht+1i; Q0w; Q0w0; : : : ; Q0w0`�i�1). For j = 0; : : : ; `� i� 1:(a) s00w0j Zq. Set Qw0j = Q0w0j + s00w0jP , S00w0j0 = S00w0j +s00w0jH1(w0j0), and S00w0j1 = S00w0j + s00w0jH1(w0j1).4. Erase share S00w and repla
e it by the resulting (`� i) shares fS00w0j1g,thus obtaining the new ve
tor Se
00ht+1i. For j = 0; : : : ; `� i� 1, eraseQt0���ti�101j and repla
e it by Qt0���ti�110j . Thus, we obtain the the newve
tor Qht+1i.5. Set Sht+1i = S0ht+1i + S00ht+1i.6. Output SKt+1:0 = (Sht+1i;Qht+1i;Se
00ht+1i).RefBase(SKBt:r) does the following:1. Parse SKBt:r as Se
0hti = (fS0w j w 2 �(t)g). For ea
h w 2 �(t), pi
krandom Rw 2 G 1 and reset ea
h S0w := S0w +Rw.2. Output resulting SKBt:r+1 and SKRt:r = (fRw j w 2 �(t)g).RefUser(SKt:r; SKRt:r) does the following:1. Parse SKt:r as (skhti;Se
00hti), where Se
00hti = (fS00w j w 2 �(t)g). ParseSKRt:r as (fRw j w 2 �(t)g). For ea
h w 2 �(t), reset S00w := S00w�Rw.2. Output resulting SKt:r+1.En
PK(t;M) (where M 2 f0; 1gn) does the following:1. Let t1 � � � t` = hti. Sele
t random r Zq.2. Output ht; Ci where:C = (rP; rH1(t1t2); : : : ; rH1(t1 � � � t`);M �H2(ê(Q;H1(t1))r)) :

De
SKt:r(ht; Ci) does the following:1. Parse hti as t1 � � � t`. Parse SKt:r as (skhti; : : :) and skhti as (Shti;Qhti)where Qhti = (Qt1 ; : : : ; Qt1���t`�1). Parse C as (U0; U2; : : : ; U`; V).2. Compute M = V �H2 ê(U0; Shti)Qj̀=2 ê(Qt1���tj�1 ; Uj)! :We now verify that de
ryption is performed
orre
tly. When en
rypt-ing, we have ê(Q;H1(t1))r = ê(P;H1(t1))rs" . When de
rypting, we haveU0 = rP , U2 = rH1(t1t2); : : : ; U` = rH1(t1 � � � t`) so thatê(U0; Shti)Qj̀=2 ê(Qt1���tj�1 ; Uj) = ê�rP; s"H1(t1) +Pj̀=2 st1���tj�1H1(t1 � � � tj)�Qj̀=2 ê �st1���tj�1P; rH1(t1 � � � tj)�= ê(P;H1(t1))rs" �Qj̀=2 ê (P;H1(t1 � � � tj))rst1���tj�1Qj̀=2 ê (P;H1(t1 � � � tj))rst1���tj�1= ê(P;H1(t1))rs"and thus de
ryption su

eeds.3.3 EÆ
ien
yOur s
heme enjoys the same parameters as the forward-se
ure s
heme of[8℄. In fa
t, our s
heme is exa
tly the \intrusion-resilient" extension oftheir forward-se
ure s
heme. In parti
ular, our s
heme has publi
 key ofsize O(1), and all other parameters are O(logN) in
luding: key genera-tion time, en
ryption/de
ryption time,
iphertext length, key update timeand message length, key refresh time and message length, and user/basestorage.3.4 ExtensionsThe full version of [8℄ gives a number of extensions of their originalforward-se
ure s
heme. In parti
ular, they show (1) a modi�
ation of thes
heme whi
h
an be proven se
ure in the standard model under the de-
isional BDH assumption; and (2) eÆ
ien
y improvements whi
h a
hievekey generation time and key update time O(1). Both of these results maybe
arried over to our setting, via appropriate (small) modi�
ations ofthe s
heme presented above.

3.5 Se
urity of Our S
hemeWe now provide a sket
h of the proof of se
urity for the above s
heme.Theorem 1. Under the
omputational BDH assumption (and in the ran-dom ora
le model), the s
heme des
ribed above is an intrusion-resilientpubli
-key en
ryption s
heme a
hieving semanti
 se
urity.Proof. We
onvert any adversary A whi
h su

essfully atta
ks the en-
ryption s
heme into an algorithm A0 whi
h breaks the BDH assumption.On a high level, A0 will try to simulate the view of A in the followingway: A0 will guess the time period t� for whi
h A will ask its query tothe LR ora
le. If this guess turns out to be in
orre
t | in parti
ular,as soon as A asks a query to LR whi
h is not for time t� or as soon asthe s
heme be
omes (t�; Q)-
ompromised | A0 aborts the simulation andfails. On the other hand, if A0 is
orre
t in its guess (whi
h o

urs withprobability 1=N), then A0 will be able to perfe
tly simulate the view of Ain atta
king the s
heme. As in [8℄, this will enable A0 to break the BDHassumption with probability O(AdvA(k)=NqH2), where qH2 is the numberof hash queries A makes to H2.In more detail, adversary A0 is given (G 1 ; G 2 ; ê) as output by IG(1k),and is additionally given random elements P;Q = s�P; P 0 = bP , andU0 =
P . The goal of A0 is to output ê(P; P)s�b
. A0 will simulate aninstan
e of the en
ryption s
heme for adversary A. First, A0 sets PK =(G 1 ; G 2 ; ê; P;Q) and gives PK to A. Next, A0 guesses a random indext� 2 f0; : : : ; N � 1g (this represents a guess of the period for whi
h A willquery LR). Let ht�i = t�1 � � � t�̀ and t�0 = �.To answer the hash queries of A, algorithm A0 maintains lists H list1and H list2 . To begin, H list2 will be empty. H list1 is prepared by �rst havingA0 sele
t random x2; : : : ; x` 2 Zq and then storing the tuples (t�1; P 0),(t�1t�2; x2P); : : : ; (t�1 � � � t�̀; x`P) in H list1 . Next, A0 pro
eeds as follows:1. Choose random y1 2 Zq and store (t�1; y1P) in H list1 .2. For 2 � k � `,
hoose random yk; sk 2 Zq and then store the value�t�1 � � � t�k�1t�k; ykP � s�1k P 0� in H list1 .A0 will respond to hash queries of A in the obvious way. If A queriesHb(X), then A0
he
ks whether there is a tuple of the form (X;Y) inH listb . If so, the value Y is returned. Otherwise, A0
hooses random Yfrom the appropriate range, stores (X;Y) in H listb , and returns Y .We point out that �xing the output of the random ora
le as abovewill allow A0 to simulate the \lo
al se
ret keys" for all nodes in the tree(as in [14, 8℄) ex
ept those nodes on the path � from the root to leaf t�.

In parti
ular, �xing the output as above will allow A0 to simulate lo
alse
ret keys for all nodes whose parent is on path �; A0
an then generate\real" lo
al se
ret keys for the remaining nodes by following the legaldes
ription of the s
heme.Sin
e all other values stored by the user and by the base are (indi-vidually) random, it should be
lear that A0
an simulate all queries of Ato Ose
 ex
ept those for whi
h the s
heme be
omes (t�; Q)-
ompromised(where Q now represents the queries of A to Ose
 up to and in
ludingthat point in time). When a query to Ose
 results in the s
heme's be
om-ing (t�; Q)-
ompromised, A0 simply aborts as its guess of t� was in
orre
t;this will o

ur exa
tly with probability (N � 1)=N . Assuming the s
hemeis never (t�; Q)-
ompromised, A0
an simulate the LR ora
le as in [14, 8℄.Spe
i�
ally, A0 will return the value (U0; x2U0; : : : ; x`U0; V), where V isa random element from f0; 1gn. Overall, with probability 1=N , A0 willbe able to simulate the entire view of A. It is easy to see that the onlyway for A to get any advantage in the above simulation is to ask the ran-dom ora
le H2 the value ê(P; P)s�b
, as otherwise the en
rypted messageis information-theoreti
ally hidden from A. Thus, outputting a randominput element from the H list2 will have non-negligible probability of beingthe value A0 needs to break the BDH assumption.3.6 Se
urity Against Adaptive Chosen-Ciphertext Atta
ksWe brie
y state our main results, and defer the details until the �nalversion of our paper. To bene�t from a modular approa
h (i.e., to avoidhaving to re-prove se
urity every time a new s
heme is
onstru
ted), wewould like to have a generi
 transformation for se
uring intrusion-resilientpubli
-key en
ryption s
hemes against adaptive
hosen-
iphertext atta
ks.Su
h a transformation would take any intrusion-resilient publi
-key en-
ryption s
heme a
hieving semanti
 se
urity and
onvert it to an intrusion-resilient publi
-key en
ryption s
heme se
ure against adaptive
hosen-
iphertext atta
ks. We
all su
h a transformation a CCA2-transformation.Mu
h work along these lines has been done for the
ase of \stan-dard" publi
-key en
ryption (e.g., [13, 22℄ and others), and many CCA2-transformations for \standard" publi
-key en
ryption s
hemes are known.The next theorem shows that we may leverage o� this work for the
aseof intrusion-resilient en
ryption. Namely:Theorem 2. Any CCA2-transformation for \standard" publi
-key en-
ryption s
hemes is also a CCA2-transformation for intrusion-resilientpubli
-key en
ryption s
hemes.

We note that this is di�erent from the
ase of forward-se
ure publi
-keyen
ryption, where su
h a result does not seem to hold [8℄.Applying, e.g., the CCA2-transformation of [13, 22℄ to our s
hemeabove, we obtain an intrusion-resilient publi
-key en
ryption s
heme se-
ure against adaptive
hosen-
iphertext atta
ks.Referen
es1. M. Abdalla, S. Miner, and C. Namprempre. Forward-Se
ure Threshold SignatureS
hemes. RSA 2001.2. M. Abdalla and L. Reyzin. A New Forward-Se
ure Digital Signature S
heme. Asi-a
rypt 2000.3. R. Anderson. Two Remarks on Publi
-Key Cryptology. Invited le
ture, CCCS '97.Available at http://www.
l.
am.a
.uk/users/rja14/.4. M. Bellare, A Desai, E. Jokipii, and P. Rogaway. A Con
rete Se
urity Treatmentof Symmetri
 En
ryption. FOCS '97.5. M. Bellare and S. Miner. A Forward-Se
ure Digital Signature S
heme. Crypto '99.6. M. Bellare and A. Pala
io. Prote
ting against Key Exposure: StronglyKey-Insulated En
ryption with Optimal Threshold. Available athttp://eprint.ia
r.org.7. D. Boneh and M. Franklin. Identity-Based En
ryption from the Weil Pairing.Crypto 2001. Full version to appear in SIAM J. Computing and available athttp://eprint.ia
r.org/2001/090/.8. R. Canetti, S. Halevi, and J. Katz. A Forward-Se
ure Publi
-Key En
ryptionS
heme. Preliminary version available at http://eprint.ia
r.org/2002/060/.9. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to Share a Fun
tionSe
urely. STOC '94.10. Y. Desmedt and Y. Frankel. Threshold Cryptosystems. Crypto '89.11. Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-Insulated Publi
-Key Cryptosystems.Euro
rypt 2002.12. Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated Signature S
hemes.PKC 2003.13. E. Fujisaki and T. Okamoto. Se
ure Integration of Asymmetri
 and Symmetri
En
ryption S
hemes. Crypto '99.14. C. Gentry and A. Silverberg. Hierar
hi
al ID-Based Cryptography. Asia
rypt 2002.15. G. Itkis. Intrusion-Resilient Signatures: Generi
 Constru
tions, or Defeating aStrong Adversary with Minimal Assumptions. SCN 2002.16. G. Itkis and L. Reyzin. Forward-Se
ure Signatures with Optimal Signing and Ver-ifying. Crypto 2001.17. G. Itkis and L. Reyzin. SiBIR: Signer-Base Intrusion-Resilient Signatures. Crypto2002.18. A. Joux. The Weil and Tate Pairing as Building Blo
ks for Publi
-Key Cryptosys-tems. ANTS 2002.19. A. Joux and K. Nguyen. Separating De
ision DiÆe-Hellman from DiÆe-Hellman in Cryptographi
 Groups. Manus
ript, Jan. 2001. Available athttp://eprint.ia
r.org.20. H. Kraw
zyk. Simple Forward-Se
ure Signatures From any Signature S
heme.CCCS 2000.

21. T. Malkin, D. Mi

ian
io, and S. Miner. EÆ
ient Generi
 Forward-Se
ure Signa-tures with an Unbounded Number of Time Periods. Euro
rypt 2002.22. T. Okamoto and D. Point
heval. REACT: Rapid Enhan
ed-Se
urity Asymmetri
Cryptosystem Transform. CT-RSA 2001.23. R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Atta
ks. PODC '91.

