
Exposure-Resilience for Free:
The Hierarchical ID-based Encryption Case

Yevgeniy Dodis
Department of Computer Science

New York University
Email: dodis@cs.nyu.edu

Moti Yung
Department of Computer Science

Columbia University
Email: moti@cs.columbia.edu

Abstract

In the problem ofgradual key exposure[7] (which
is very closely related to the problem ofproactive se-
curity [27]), the secret key is assumed to be slowly
compromised over time, so that more and more infor-
mation about a secret key is eventually leaked. This
models the general situation in the real world where
memory, storage systems and devices cannot perfectly
hide all information for long time (due to physical and
operational leakages). In this setting, in order to pro-
tect against exposure threats, the secret key is repre-
sented in an “exposure-resilient” form, which is pe-
riodically refreshed with the following guarantee: as
long as the adversary does not learn “too much” in-
formation about the current representation of the se-
cret between successive refreshes, the system should
remain secure.

To measure the efficiency of a given solution, one
considers the “natural” secret key representationA,
the “exposure-resilient” representationB, and ex-
amines the following three measures: (1)space loss
which is the extra space required byB over A; (2)
time losswhich is the operation slowdown whenB is
used in place ofA; and (3)exposure-resiliencewhich
is the fraction ofB which can be “safely leaked”.
All the current solutions to the problem — includ-
ing proactive secret sharing [27], all-or-nothing trans-
forms and exposure-resilient functions [7] — always
suffered from non-trivial losses in both space and
time in order to achieve varying levels of exposure-
resilience. It was, therefore, informally believed that
these losses are inevitable in every reasonable appli-

cation, since a “natural” representationA is unlikely
to offer any exposure-resilience. Perhaps surprisingly,
we show this belief is false for the elegant “hierarchi-
cal identity-based encryption” (HIBE) of Gentry and
Silverberg [16], which is theonly known fully func-
tional HIBE up to date. Specifically, we show that the
natural secret key representation for theHIBE of [16]
admits a simple and efficient refresh operation, which
offers very high level of exposure-resilience, while in-
curring absolutely no space or time losses for decryp-
tion. We argue that this simple fact is quite powerful
from a key storage security perspective, is highly appli-
cable for such tasks as threshold decryption, and that
it further makesHIBE a much more attractive alterna-
tive in various real life scenarios. On a philosophical
level, while previous techniques [7] protected against
gradual key exposure in a generic way, oblivious to
the application, we show that in certain situations one
might achieve much better parameters by concentrat-
ing on the application at hand.

Keywords: cryptographic key storage, key storage
protection, gradual key exposure, exposure resilience,
key redundancy, hierarchical id-based encryption, bi-
linear Diffie-Hellman.

1 Introduction

A great deal of cryptography can be seen as finding
ways to leverage the possession of a small but totally
secret piece of knowledge (a key) into the ability to
perform many useful and complex actions: from en-
cryption and decryption to identification and message

authentication. But what happens if our mostbasicas-
sumption breaks down — that is, if the secrecy of our
key becomes partially compromised?

Indeed, exposure of secret keys is perhaps the most
debilitating attack on a cryptosystem since it typ-
ically implies that all security guarantees are lost.
This problem is emerging as an ever-greater threat as
cryptographic primitives are deployed on inexpensive,
lightweight, and mobile devices; in these cases, it is
typically much easier for an adversary to break into
the device and obtain the secret keys than to crack
the computational assumptions on which the system
is based. Clearly, concerns about key exposure must
be addressed in a satisfactory manner by the research
community.

Recognizing the need to address these concerns, a
long line of research has focused on dealing with the
threat of key exposure. Methods to prevent key expo-
sure entirely (e.g., by using tamper-resistant devices)
seem cost-prohibitive and impractical for most com-
mon applications. Thus, much research has focused on
making key exposures more difficult, or, alternately,
minimizing the damage when (partial) key exposure
occurs while utilizing regular computing devices and
memory modules of servers that hold keys.

Two classes of methods exist to deal with this prob-
lem: those based on some form ofkey evolution, and
those based on some form ofsecret sharing(and the
combination of the two). The approach of key evolu-
tion [2] assumes that the timeline is divided into dif-
ferent periods, and adifferentsecret key is used from
one period to the next. This somewhat recent ap-
proach has already led to many useful notions, includ-
ing those of forward-secure [3, 24, 1, 20, 26, 8], key-
insulated [11, 12, 4] and intrusion-resilient [21, 13]
cryptosystems. While very powerful, the disadvantage
of this approach is the need to introduce “global time”
and the issue of what to do with documents produced
outside of the “current” period.

The last, older approach of secret sharing [28, 5, 25]
typically does not change the secret over time, but
rather stores the secret in a “redundant” form, such that
the exposure of most (but not all) of such a represen-
tation still guarantees the security of the actual, “em-
bedded” secret. We will call this property “exposure-
resilience” from now on. The secret sharing approach
has led to many applications, including the devel-

opment of threshold [10, 9], proactive [27, 17] and
exposure-resilient [7, 14] cryptography. One of the
main disadvantages of this approach, though, is the
fact that the new “exposure-resilient” representation
of the secret is typically longer than the actual secret,
and working with this “redundant” representation typ-
ically incurs a large loss of efficiency. Moreover, when
the secret is split among many servers, special dis-
tributed protocols have to be designed to jointly per-
form the needed set of operations like signing or de-
crypting. These inefficiencies are believed, and usu-
ally are, inevitable, since it is unlikely that a “nat-
ural” representation of the secret offers any level of
exposure-resilience.

1.1 Our Contribution

Surprisingly, we show that the above belief may
sometimes be false. Specifically, we show that the
only fully functional implementation ofhierarchical
identity-based encryption(HIBE), due to [16], natu-
rally offers very high level of exposure-resilience. We
recall thatHIBE is a natural and very powerful ex-
tension of a regular identity-based encryption (which
was originally formalized by Shamir [29] and recently
solved by Boneh and Franklin [6]). Intuitively,HIBE
allows to organize the users into a tree hierarchy. Each
user gets the secret key from its parent in the hierar-
chy (and all the users share a few global parameters).
Now, anybody can encrypt message to any given user
by only knowingits position in the hierarchy. In par-
ticular, no “public key” of the user is needed, only
user’s identity and the “global public key” are used
for encryption! The concept ofHIBE was recently in-
troduced by Horwitz and Lynn [18], but the only fully
functional implementation is due to Gentry and Silver-
berg [16]. In this implementation, each user at “depth”t hast pieces of secret information. We show that anyt � 1 of these pieces give no information to the ad-
versary, and therefore do not have to be carefully pro-
tected (thus reducing the requirement for secure stor-
age). Moreover, we show that each user can easily
perform (by itself) periodicrefreshesof its secret key.
Each such refresh is oblivious to the outside world, as
the new key is as functional as the old one. However,
it completely randomizes anyt � 1 out of t shares of
the user’s secret key.

Our finding is simple, yet it has several natural and
powerful applications in the area of cryptographic key
storage. First, it gives natural protection against the
gradual key exposureproblem introduced by [7]. In
this problem, the secret key is assumed to be slowly
compromised over time, so that more and more infor-
mation about a secret key is eventually leaked. As long
as the user refreshes itsHIBE key frequently enough,
no security is lost. Secondly, it shows that thesecure
storage for theHIBE of [16] is the same as in the reg-
ular IBE of [6], since all but one pieces of the secret
can be made public. Thirdly, it leads to more efficient
implementations of threshold and proactive implemen-
tations ofHIBE. Namely, rather than share allt pieces
of its secret, we show that the user can share only one
piece among some number of servers, which results
in much more efficient threshold decryption protocols.
Finally, we believe that our observation will be useful
in many more complex schemes which are based on
theHIBE of [16]. Indeed, our technique was recently
used by [13] in constructing the first intrusion-resilient
encryption scheme.

We note that from a technical point of view, the crux
of our contribution is carefully defining the adversarial
setting and proving the security of the refresh proce-
dure within this setting.

From a systems design perspective, what we show
is that the currentHIBE possesses a real advantage in
the area of “cryptographic key storage protection.” In
fact, storing its keys may require much less “secure
memory” while replacing the rest of the key storage
area with memory modules that are “safe” or “trusted”
but not necessarily concealing. This may ease the
cost and design effort of an architecture for crypto-
graphic key storage. From an engineering practice
point of view, when designing a real life cryptographic
system, we note that the issue of protection of keys
(and their memory modules) should always be con-
sidered in the design process (and should not be left
as an afterthought design). Thus, the notions of “key
exposure” and key protection in general, have to be
considered in the design. What is shown here is that
while, theoretically,HIBE may be considered a solu-
tion which requires “heavy” keying storage (and thus
dis-advantageous in many respects), it actually be-
comes a much more attractive solution when one has
to cope with potential partial key exposure by the key

storage media.

2 Cryptographic Assumptions

The security of theHIBE of [16] is based on the
difficulty of the bilinear Diffie-Hellman (BDH) prob-
lem as recently formalized by Boneh and Franklin [6]
(see also [23, 22]). We review the relevant definitions
as they appear in [6]. LetG 1 andG 2 be two cyclic
groups of prime orderq, whereG 1 is represented ad-
ditively andG 2 is represented multiplicatively. We use
a map̂e : G 1�G 1 ! G 2 for which the following hold:

1. The map̂e is bilinear; that is, for allP0; P1 2 G 1
and allx; y 2 Zq we haveê(xP0; yP1) = ê(yP0; xP1) = ê(P0; P1)xy

(1)

2. There is an efficient algorithm to computeê(P0; P1) for anyP0; P1 2 G 1 .

3. The map is non-degenerate, i.e.ê(P; P) 6= 1 for
someP 2 G 1 .

A BDH parameter generatorI is a randomized al-
gorithm that takes a security parameter1k, runs in
polynomial time, and outputs the description of two
groupsG 1 ; G 2 and a map̂e satisfying the above con-
ditions. We define theBDH problem with respect
to I as the following: given(G 1 ; G 2 ; ê) output byI along with randomP; aP; bP;
P 2 G 1 , computeê(P; P)ab
. We say thatI satisfies the BDH assump-
tion if the following is negligible (ink) for all PPT al-
gorithmsA:Pr[(G 1 ; G 2 ; ê) I(1k);P G 1 ; a; b;
 Zq :A(G 1 ; G 2 ; ê; P; aP; bP;
P) = ê(P; P)ab
 ℄
We note that BDH parameter generators for which
the BDH assumption is believed to hold can be con-
structed from Weil and Tate pairings associated with
supersingular elliptic curves or Abelian varieties. As
our results do not depend on any specific instantiation,
we refer the interested reader to [6] for details.

3 Hierarchical ID-Based Encryption

Recall,HIBE allows to organize the users into a tree
hierarchy. Each user gets the secret key from its parent

in the hierarchy (and all the users share a few global
parameters). Now, anybody can encrypt message to
any given user by only knowingits position in the hi-
erarchy. In particular, no “public key” of the user is
needed! Below we briefly describe the functionality of
generalHIBE, followed by the specificHIBE scheme
of [16].

3.1 General HIBE

Each user of the system is identified by its position
in the hierarchy,(ID1; : : : ; IDt), also referred as its
ID-tuple. This means that the user is located at levelt
and its ancestors, starting from the parent down to the
root, are(ID1; : : : ; IDt�1), : : :, (ID1), root. A HIBE
is specified by five efficient randomized algorithms de-
scribed below: Root Setup, Lower-level Setup, Extrac-
tion, Encryption and Decryption.� Root Setup: Given a security parameterK, it re-

turns the global public keyPK available to ev-
erybody, and the master secret keySK� avail-
able to the super-userroot.� Lower-level Setup: Not important for us.� Extraction: Any
user with ID-tuple(ID1; : : : ; IDt) (t = 0 cor-
responds toroot) may compute, using its secret
key, the secret key for any of its children with
ID-tuple (ID1; : : : IDt; IDt+1).� Encryption: Given the global public keyPK,
the recipient’s ID-tuple(ID1; : : : ; IDt) and a
messageM , it returns the encryptionC of M
intended for user(ID1; : : : ; IDt).� Decryption: Given the ciphertextC and its se-
cret key, the user(ID1; : : : ; IDt) can recover the
plaintextM .

As expected, the correctness property states that the
user (ID1; : : : ; IDt) should always correctly recover
messages encrypted for him.

SECURITY. Intuitively, security ofHIBE states that
only the designated user(ID1; : : : ; IDt) and its ances-
tors can decrypt messages sent to this user, while no
other user of the system can. We briefly define it more

formally, referring the reader to [16] for a more de-
tailed description. We only describe the basic semantic
security since dealing with chosen ciphertext security
presents no additional problems using the technique of
Fujisaki and Okamoto [15].

At the beginning of the game, the adversary is
given PK. At any point of the game, the adver-
sary is also given oracle access to the extraction pro-
cedure. Namely, given any ID-tuple of adversary’s
choice, the adversary will learn the secret key of this
user. At some point, the adversary chooses an ID-tuple(ID1; : : : ; IDt) and two messageM0;M1. A random
bit b is chosen and the adversary gets the hierarchical
encryptionC of Mb for user(ID1; : : : ; IDt). At the
end, the adversary has to output a guessb0. Adversary
wins if b0 = b and the adversary did not call the extrac-
tion oracle on(ID1; : : : ; IDi) for anyi � t; i.e., no an-
cestor of(ID1; : : : ; IDt) was “corrupted”. TheHIBE
is semantically secure if no PPT adversary can win
with probability non-negligibly more than1=2. Due
to the technical reason, Gentry and Silverberg [16] got
asymptotically good bounds for their scheme only for
the case of so called “non-adaptive” adversary. This
adversary is the same as the one we consider except
that it chooses its “target”(ID1; : : : ; IDt) at the be-
ginning of its run (i.e., independently of its extraction
queries). To get the same good results for our exten-
sion, we will also concentrate on such “non-adaptive”
adversary (of course, our results extend to adaptive ad-
versary, but in this case we get the same poor exact
security as [16]).

3.2 The HIBE of Gentry and Silverberg [16]

We can now describe the scheme of [16] using the
notation developed in Section 2.� Root Setup: RunsI(1K) to getG 1 ; G2; ê, picks

a randoms0 2 Zq, P0 2 G 1 , setsQ0 = s0P0,
and outputsPK = (G 1 ; G 2 ; ê; P0; Q0;H1;H2),SK� = s0. HereH1 : f0; 1g� ! G 1 , H2 :G 2 ! f0; 1gn are cryptographic hash functions,
modeled as random oracles (i.e., they output a
truly random string on every input), andn is the
length of the messages encrypted.� Extraction: Every user(ID1; : : : ; IDt) at levelt � 0 will have a secret pointSt 2 G 1 (see be-

low; we assume that the root hasS0 = 0G 1),
and (t � 1) “translation points”Q1 : : : Qt�1 2G 1 (notice, Q0 is in the public key). Recur-
sively, to assign the secret key to its childIDt+1,
the parent(ID1; : : : ; IDt) computesPt+1 =H1(ID1 : : : IDt+1) 2 G 1 , picks a randomst 2Zq, sets the child’s secret pointSt+1 = St +stPt+1, the child’s final translation pointQt =stP0, and sends to the child the valuesSt+1, Qt
together with its ownt � 1 translation pointsQ1 : : : Qt�1. Unwrapping the notation, the
child’s secret key is(St+1 = t+1Xi=1 si�1Pi; Q1 = s1P0; : : : ; Qt = stP0)� Encryption: To encrypt a messageM 2 f0; 1gn
for (ID1; : : : ; IDt) using public valueQ0, com-
putePi = H1(ID1 : : : IDi) 2 G 1 for all 1 �i � t, choose a randomr 2 Zq, set g =ê(Q0; rP1) 2 G 2 and returnC = [rP0; M �H2(g); rP2; : : : ; rPt℄ (2)

Intuitively, the first two components correspond
to the standard “ElGamal”-like encryption for
the top-level user(ID1). Unfortunately, user(ID1; : : : ; IDt) cannot quite decrypt it using its
“translated” secret pointSt+1, so additional val-
ues rP2; : : : ; rPt are given. Combining them
with secret translation pointsQ1 : : : Qt�1, the
messageM is recovered. This is described be-
low.� Decryption: To decrypt C =[U0; V; U2; : : : ; Ut℄ usingSt andQ1 : : : Qt�1, setf0 = ê(U0; St), fi = ê(Qi�1; Ui) for 2 � i � t
and outputM = V �H2� f0f2 : : : ft� (3)

To see the correctness of the decryption, notice
that f0 = ê(U0; St)

= ê(rP0; tXi=1 si�1Pi)= tYi=1 ê(rP0; si�1Pi)(1)= tYi=1 ê(si�1P0; rPi)= ê(Q0; rP1) � tYi=2 ê(Qi�1; Ui)= g � f2 � � � ft
4 Exposure-Resilience For Free

Notice, the secret key of a user at levelt is of the
formSt = tXi=1 si�1Pi; Q1 = s1P0; : : : ; Qt�1 = st�1P0;
whereP0; P1; : : : Pt 2 G 1 are all random (the latter
sinceH1 is a random oracle), and so ares0 : : : st�1 2Zq. Among these last values, onlys0 is “fixed” by the
public keyQ0 = s0P0; the valuess1; : : : ; st�1 can be
arbitrary and the scheme will still work. This suggests
the following very simple procedure to refresh the cur-
rent secret key(St; Q1; : : : ; Qt�1).� Refresh: Pick randoms01; : : : s0t�1 2 Zq, and re-

set: St := St + tXi=2 s0i�1Pi;Qi := Qi + s0iP0; for 1 � i < t
It is easy to see that the new key is as functional

as the old one, requires no extra storage or decryption
time, but any(t� 1) out of t “old values” (resp. “new
values”)St; Q1; : : : ; Qt�1 reveal absolutely no infor-
mation about any of the “new values” (resp. “old val-
ues”) due to the fresh randomness ofs01 : : : s0t�1. Also,
we will assume that each user immediately performs a
refresh operation upon receiving his key from its par-
ent, so that any(t � 1) user’s shares are random and
completely independent from all the secret keys of its
ancestors. We then show the following result:

Theorem 1 Under theBDH assumption, ourHIBE
scheme remains semantically secure for any user at
levelt > 1, even if he leaks any(t�1) out of itst secret
values between every pair of successive refreshes.

Proof: Before proceeding, let us first extend the def-
inition of semantic security to model the repeated ex-
posure of(t � 1) out t secret shares for a given user.
In addition to his usual capabilities, the adversaryA
can pick any user(ID1; : : : ; IDt) and learn any(t� 1)
out of t pieces of its secret key, without declaring this
user “corrupted”. Moreover, the adversary can also
ask any user to refresh its secret key, after which it
is allowed to again learn any(t � 1) out of t “new”
shares of this user’s secret key. However, we already
argued that any(t � 1) old/new values reveal no in-
formation about any of the new/old values. Thus, we
can assume that each user is asked to reveal its(t� 1)
shares at most ones. Since we consider non-adaptive
adversaries, let(ID1; : : : ; IDt) be the specific user the
adversary will be targeting. In our simulation, we will
explicitly know the secret keys of all the users beside
the ancestors(ID1; : : : ; IDi) (for i � t) of the tar-
get user, so all the corruption requests for such users
will be easy to handle (see below). Thus, we will
assume without loss of generality that the adversary
wants to learn all but one share of the secret keys for
all ancestors of(ID1; : : : ; IDt). Notice, however, since
the adversaryA is not allowed to corrupt any of the
ancestors(ID1; : : : ; IDi) of (ID1; : : : ; IDt), A gets a
challenge only for the target user, and each ancestor(ID1; : : : ; IDi) immediately performed a key refresh
operation, thei�1 shares of any such ancestor are just(i�1) totally random and independent group elements.
Thus, they give no information to the adversary.

To summarize, we may reduce our game to the
following. The adversary chooses the target user(ID1; : : : ; IDt), learns some(t � 1) out of its t secret
shares, arbitrarily corrupts any users besides the ances-
tors of (ID1; : : : ; IDt) (as we said, in our simulation
this will be trivial), choosesM0 andM1, gets the chal-
lenge, and has to guess which message was encrypted
for (ID1; : : : ; IDt). So assume someA succeeds in
this game with probability1=2 + ". We constructB
which succeeds in breaking the BDH assumption with
probability roughly
("=qH2), whereqH2 is the num-
ber of hash queries asked to the random oracleH2. For

simplicity of notation, we only consider the case when
the valuesQ1 : : : Qt�1 are leaked toA (while St is se-
cure). The other case (when one of theQi’s is secure)
is completely analogous.

So assumeB is given an inputP0; s0P0; �1P0; rP0
and tries to compute the valueg = ê(P0; P0)s0r�1
(the strange choice of notation will be clear soon).B also knows the user(ID1; : : : ; IDt) that A is go-
ing to target. B will set the public keyPK =(P0; Q0 = s0P0) and give it toA. It will also
set P1 = H1(ID1) = �1P0 (where it does not
know �1), choose random�2; : : : ; �t and setPi =H1((ID1; : : : ; IDi)) = �iP0 for 2 � i � t. B also
chooses randoms1; : : : ; st�1 and sets the translation
pointsQ1 = s1P0; : : : ; Qt�1 = st�1P0, which it also
gives to the adversary as(t�1) shares of the user’s se-
cret key. Next, toH1 queries of the form(ID01), whereID01 6= ID1, B chooses a randoma and responds withaP0 (rememberinga). Notice, this ensures thatB
“knows” the secret key ofID01 (and, hence, of all its de-
scendants) ass0H1(ID01) = s0aP0 = aQ0. Next, for
inputs(ID1; : : : ; IDi�1; ID0i) toH1, whereID0i 6= IDi
(and2 � i � t + 1), B picks random valuea and re-
sponds with(aP0 � s�1i�1P1) (rememberinga; in casei = t+1, a fresh randomst is chosen as well). Notice
also that the returned value is indeed random, sincea
is random. We claim that this ensures thatB “knows”
a legal secret key of(ID1; : : : ; IDi�1; ID0i) (and thus,
of its descendants). Indeed, we can set the secret point
to S0i = asi�1Q0 + i�1Xj=2 sj�1Pj
and translation points to earlier definedQ1; : : : ; Qi�2,
followed byQ0i�1 = si�1Q0 (which is also equal tosi�1s0P0, so that the supposed coefficient issi�1s0;
this coefficient is unknown toB sinceB does not
know s0, but this is fine as long as the equation be-
low holds). Indeed, the “supposed” value of the se-
cret pointS0i corresponding to the translation pointsQ1 = s1P0; : : : ; Qi�2 = si�2P0; Q0i = si�1s0P0
should have beens0P1+ i�1Xj=2 sj�1Pj+(si�1s0)H(ID1; : : : ; IDi�1; ID0i)
Thus, we we only need to check that the part of the
secret pointasi�1Q0 is consistent with its “supposed”

value s0P1 + (si�1s0)H(ID1; : : : ; IDi�1; ID0i). But,
indeed,s0P1 + (si�1s0)H(ID1; : : : ; IDi�1; ID0i) =s0P1 + si�1s0(aP0 � s�1i�1P1) =asi�1(s0P0) =asi�1Q0
so the secret key is valid. Thus,B can easily pro-
duce valid secret keys for any ID-tuple different from
the ancestors of the target user(ID1; : : : ; IDt), which
means thatB can easily handle all the extraction
queries ofA (of course,B will return refreshed ver-
sions of the secret keys in this case since this is whatA expects; notice also that all other random oracle
queries toH1 are answered at random).

WhenA outputs messagesM0 andM1,B setU0 =rP0 (remember,r is unknown, so it takes this value
from the BDH input). For2 � i � t, B now has to
set the valueUi = rPi = r�iP0 = �iU0, which it
can easily do as it knows the�i’s. Finally, B picks
a truly randomV , and outputs challenge ciphertext[U0; V; U2; : : : ; Ut℄. Notice, V was supposed to be
equal toMb �H2(g), whereg = ê(Q0; rP1) = ê(s0P0; r�1P0) = ê(P0; P0)s0r�1
which is exactly our goal for BDH. SinceH2 is a ran-
dom oracle, the only wayA can get any advantage is
if it queriedH2 (which, by the way,B always simu-
lates by returning a random value) on inputg with non-
negligible probability (actually, probability at least").
Thus, at the end ofA’s run it suffices forB to output
a random input toH2, which makesB succeed in the
BDH problem with probability
("=qH2), as claimed.

4.1 Consequences and Implications

As a corollary, even though the user at levelt needs
to storet values, onlyoneof these values (e.g.,St) has
to be kept secret (e.g., on a smartcard); the other(t�1)
values are needed for functionality, but not for the se-
curity, and can be kept insecurely (or even publicly!).

In particular, to distribute the decryption pro-
cess, the user can secret share (using Shamir’s se-
cret sharing [28] overG 1) only the valueSt, keep-
ing Q1; : : : ; Qt�1 locally. When obtaining cipher-
text C = [U0; V; U2; : : : ; Ut℄, the user can compute

the valuesfi = ê(Qi�1; Ui) (for 2 � i � t)
locally, and only needs servers’ help in computingf0 = ê(U0; St). However, the servers can now jointly
computêe(U0; St) by simply performing standard La-
grange interpolation (using their polynomial shares
and the linearity of̂e). Thus, we get threshold decryp-
tion for the user at levelt with the same communica-
tion complexity as that for the user of level1. The
only dependence ont comes in thelocal computation
by the user. This shows that the “real” dependence on
the level in the hierarchy is very minimal when dis-
tributing theHIBE of [16].

Also, to refresh the valueSt for proactive security,
the user locally updatesQ1 : : : ; Qt�1 by adding ran-
domQ01 = s01P0; : : : ; Q0t�1 = s0t�1P0, and then se-
cret shares (again, using polynomial secret sharing)
the corresponding “added value”S0t = Pt�1i=1 s0iPi+1
among the servers. The servers then locally add the
received share ofS0t to the old share ofSt, thus obtain-
ing a fresh, totally random sharing.

Finally, we recall that the implications to the design
of protected cryptographic key storage systems are dis-
cussed at the end of Section 1.1.

References

[1] M. Abdalla and L. Reyzin. A New Forward-
Secure Digital Signature Scheme. Asiacrypt
2000.

[2] R. Anderson. Two Remarks on Public-Key
Cryptology. Invited lecture, CCCS 1997. URL:
http://www.cl.cam.ac.uk/users/rja14/.

[3] M. Bellare and S. Miner. A Forward-Secure
Digital Signature Scheme. Crypto 1999.

[4] M. Bellare and A. Pala-
cio. Protecting against Key Exposure: Strongly
Key-Insulated Encryption with Optimal Thresh-
old. URL:http://eprint.iacr.org.

[5] G. Blackley. Safeguarding Cryptographic Keys.
In Proc. of AFIPS 1979 National Computer
Conference, 1979.

[6] D. Boneh and M. Franklin. Identity-Based En-
cryption from the Weil Pairing. Crypto 2001.
Full version to appear inSIAM J. Computingand
available at
http://eprint.iacr.org/2001/090/.

[7] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz,
and A. Sahai. Exposure-Resilient Functions and
All-Or-Nothing-Transforms. Eurocrypt 2000.

[8] R. Canetti, S. Halevi, and J. Katz. A Forward-
Secure Public-Key Encryption Scheme. Prelim-
inary version available at
http://eprint.iacr.org/2002/060/.

[9] A. De Santis, Y. Desmedt, Y. Frankel, and M.
Yung. How to Share a Function Securely. STOC
1994.

[10] Y. Desmedt and Y. Frankel. Threshold Cryp-
tosystems. Crypto 1989.

[11] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-
Insulated Public-Key Cryptosystems. Eurocrypt
2002.

[12] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong
Key-Insulated Signature Schemes. PKC 2003.

[13] Y. Dodis, M. Franklin, J. Katz, A. Miajyi and M.
Yung. Intrusion-Resilient Public-Key Encryp-
tion. RSA 2003.

[14] Y. Dodis, A. Sahai and A. Smith. On Perfect and
Adaptive Security in Exposure-Resilient Cryp-
tography. EuroCrypt 2001.

[15] E. Fujisaki and T. Okamoto. Secure Integra-
tion of Asymmetric and Symmetric Encryption
Schemes. Crypto 1999.

[16] C. Gentry and A. Silverberg. Hierarchical ID-
Based Cryptography. Asiacrypt 2002.

[17] A. Herzberg, M. Jakobsson, S. Jarecki, H.
Krawczyk, and M. Yung. Proactive Public-Key
and Signature Schemes. CCCS 1997.

[18] J. Horwitz and B. Lynn. Toward Hierarchical
Identity-Based Encryption. Eurocrypt 2002.

[19] G. Itkis. Intrusion-Resilient Signatures: Generic
Constructions, or Defeating a Strong Adversary
with Minimal Assumptions. SCN 2002.

[20] G. Itkis and L. Reyzin. Forward-Secure Sig-
natures with Optimal Signing and Verifying.
Crypto 2001.

[21] G. Itkis and L. Reyzin. SiBIR: Signer-Base
Intrusion-Resilient Signatures. Crypto 2002.

[22] A. Joux. The Weil and Tate Pairing as Building
Blocks for Public-Key Cryptosystems. ANTS
2002.

[23] A. Joux and K. Nguyen. Separating Decision
Diffie-Hellman from Diffie-Hellman in Crypto-
graphic Groups. Manuscript, Jan. 2001. Avail-
able athttp://eprint.iacr.org.

[24] H. Krawczyk. Simple Forward-Secure Signa-
tures From any Signature Scheme. CCCS 2000.

[25] H. Krawczyk. Secret Sharing Made Short.
Crypto 1993.

[26] T. Malkin, D. Micciancio, and S. Miner. Effi-
cient Generic Forward-Secure Signatures with
an Unbounded Number of Time Periods. Euro-
crypt 2002.

[27] R. Ostrovsky and M. Yung. How to Withstand
Mobile Virus Attacks. PODC 1991.

[28] A. Shamir. How to share a secret. InCommunic.
of the ACM, 22:612-613, 1979.

[29] A. Shamir. Identity-Based Cryptosystems and
Signature Schemes. Crypto 1984.

