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Abstract

The Cryptographic and Game Theory worlds seem to have an intersection

in that they both deal with an interaction between mutually distrustful par-

ties which has some end result. In the cryptographic setting the multiparty

interaction takes the shape of a set of parties communicating for the purpose

of evaluating a function on their inputs, where each party receives at the end

some output of the computation. In the game theoretic setting parties inter-

act in a game which guarantees some payoff for the participants according to

their joint actions of all the parties, while the parties wish to maximize their

own payoff. In the past few years the relationship between these two areas

has been investigated with the hope of having cross fertilization and synergy.

In this chapter we describe the two areas, the similarities and differences,

and some of the new results stemming from their interaction.

The first and second section will describe the cryptographic and the game

theory settings (respectively). In the third section we contrast the two

settings, and in the last sections we detail some of the existing results.

1.1 Cryptographic Notions and Settings

Cryptography is a vast subject requiring its own book. Therefore, in the fol-

lowing we will only give a high-level overview of the problem of Multi-Party

Computation (MPC), ignoring most of the lower-level details and concen-

trating only on aspects relevant to Game Theory.

MPC deals with the following problem. There are n ≥ 2 parties P1, ..., Pn

where party Pi holds input ti, 1 ≤ i ≤ n, and they wish to compute together

a function s = f(t1, ..., tn) on their inputs. The goal is that each party will

learn the output of the function, s, yet with the restriction that Pi will not

learn any additional information about the input of the other parties aside

from what can be deduced from the pair (ti, s). Clearly it is the secrecy

restriction which adds complexity to the problem, as without it each party

could announce its input to all other parties, and each party would locally

compute the value of the function. Thus, the goal of MPC is to achieve the
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following two properties at the same time: correctness of the computation

and privacy preservation of the inputs.

Let us exemplify the problem. Assume that there are n parties which

wish to participate in an auction for some item. The party P1 is the auc-

tioneer. Parties P2, ..., Pn each have their personal bid for the item, i.e.

bidder Pi has his bid ti. For simplicity we assume that ti 6= tj , ∀i, j. They

want to figure out the highest bid and its bidder while not revealing any

additional information about the bids of the losers. Thus, they wish to

compute the function (val, i) = f(·, t2, . . . , tn) where val = max(t2, . . . , tn)

and i = argmax(t2, . . . , tn). Thus, everybody learns who the winner is, and

what is the winning bid, but no other information is leaked.

Two generalizations. The following two generalizations of the above

scenario are often useful.

(i) Probabilistic functions. Here the value of the function depends on

some random string r chosen according to some distribution: s =

f(t1, . . . , tn; r). For example, in the auction above we can solve the

case when some of the bids could be equal by choosing the winner at

random. An example of this is the coin-flipping functionality, which

takes no inputs, and outputs an unbiased random bit. Notice, it is

crucial that the value r is not controlled by any of the parties, but is

somehow jointly generated during the computation.

(ii) Multi-Output Functions. It is not mandatory that there be a single

output of the function. More generally there could be a unique output

for each party, i.e. (s1, ..., sn) = f(t1, ..., tn). In this case, only party

Pi learns the output si, and no other party learns any information

about the other parties input and outputs aside from what can be

derived from its own input and output. For example, in the auction

above there seems to be little reason to inform all the losing parties

of the winner and the winning bid. Thus, we would rather compute a

function (s1 = (val, i), 0, . . . , 0, si = 1, 0, . . . , 0) = f(·, t2...tn), where

(val, i) is defined as above. The only two parties to receive an output

are the auctioneer P1 and the party Pi who won the auction.

The Parties. One of the most interesting aspects of MPC is to reach the

objective of computing the function value, but under the assumption that

some of the parties may deviate from the protocol. In Cryptography, the

parties are usually divided into two types: honest and faulty. An honest

party follows the protocol without any deviation. Otherwise, the party is

considered to be faulty. The faulty behavior can exemplify itself in a wide
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range of possibilities. The most benign faulty behavior is where the parties

follow the protocol, yet try to learn as much as possible about the inputs

of the other parties. These parties are called honest-but-curious (or semi-

honest). At the other end of the spectrum, the parties may deviate from

the prescribed protocol in any way that they desire, with the goal of either

influencing the computed output value in some way, or of learning as much

as possible about the inputs of the other parties. These parties are called

malicious.

We envision an adversary A who controls all the faulty parties and can

coordinate their actions. Thus, in a sense we assume that the faulty parties

are working together and can exert the most knowledge and influence over

the computation out of this collusion. The adversary can corrupt any num-

ber of parties out of the n participating parties. Yet, in order to be able

to achieve a solution to the problem, in many cases we would need to limit

the number of corrupted parties. We call this limit a threshold k, indicating

that that the protocol remains secure as long as the number of corrupted

parties is at most k.

1.1.1 Security of Multiparty Computations

We are ready to formulate the idea of what it means to securely compute

a given function f . Assume that there exists a trusted party who privately

receives the inputs of all the participating parties, calculates the output

value s and then transmits this value to each one of the parties.† This pro-

cess clearly computes the correct output of f , and also does not enable the

participating parties to learn any additional information about the inputs

of others. We call this model the ideal model. The security of MPC then

states that a protocol is secure if its execution satisfies the following: 1.

the honest parties compute the same (correct) outputs as they would in the

ideal model; and 2. the protocol does not expose more information than a

comparable execution with the trusted party, in the ideal model.

Intuitively, this is explained in the following way. The adversary’s inter-

action with the parties (on a vector of inputs) in the protocol generates a

transcript. This transcript is a random variable which includes the outputs

of all the honest parties, which is needed to ensure correctness as explained

below, and the output of the adversary A. The latter output, without loss of

generality, includes all the information that the adversary learned, including

† Note, that in the case of a probabilistic function the trusted party will choose r according to
the specified distribution and use it in the computation. Similarly, for multi-output functions
the trusted party will only give each party its own output.
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its inputs, private state, all the messages sent by the honest parties to A,

and, depending on the model (see later discussion on the communication

model), maybe even include more information, such as public messages that

the honest parties exchanged. If we show that exactly the same transcript

distribution‡ can be generated when interacting with the trusted party in

the ideal model, then we are guaranteed that no information is leaked from

the computation via the execution of the protocol, as we know that the

ideal process does not expose any information about the inputs. In some

sense what is said here is that if the transcript can be generated given only

the output of the computation, then the transcript itself does not expose

any information, as anyone can generate it by themselves knowing only the

output. More formally,

Definition 1.1 Let f be a function on n inputs and let π be a protocol

which computes the function f . Given an adversary A which controls some

set of parties, we define REALA,π(t) to be the sequence of outputs of honest

parties resulting from the execution of π on input vector t under the attack

of A, in addition to the output of A. Similarly, given an adversary A′

which controls a set of parties, we define IDEALA′,f (t) to be the sequence of

outputs of honest parties computed by the trusted party in the ideal model

on input vector t, in addition to the output of A′. We say that π securely

computes f if, for every adversary A as above, there exists an adversary A′,

which controls the same parties in the ideal model, such that, on any input

vector t, we have that the distribution of REALA,π(t) is “indistinguishable”

from the distribution of IDEALA′,f (t) (where the term “indistinguishable

will be explained later).

Intuitively, the task of the ideal adversary A′ is to generate (almost) the

same output as A generates in the real execution (referred to also as the real

model). Thus, the attacker A′ is often called the simulator (of A). Also note

that the above definition guarantees correctness of the protocol. Indeed, the

transcript value generated in the ideal model, IDEALA′,f (t), also includes

the outputs of the honest parties (even though we do not give these outputs

to A′), which we know were correctly computed by the trusted party. Thus,

the real transcript REALA,π(t) should also include correct outputs of the

honest parties in the real model.

The inputs of the faulty parties. We assumed that every party Pi

has an input ti which it enters into computation. However, if Pi is faulty,

nothing stops Pi from changing ti into some t′i. Thus, the notion of “correct”

‡ The requirement that the transcript distribution be exactly the same will be relaxed later on.
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input is only defined for honest parties. However, the “effective” input of a

faulty party Pi could be defined as the value t′i that the simulator A′ (which

we assume exists for any real model A) gives to the trusted party in the

ideal model. Indeed, since the outputs of honest parties looks the same in

both models, for all effective purposes Pi must have “contributed” the same

input t′i in the real model.

Another possible misbehavior of Pi, even in the ideal model, might be a

refusal to give any input at all to the trusted party. This can be handled in

a variety of ways, ranging from aborting the entire computation to simply

assigning ti some “default value”. For concreteness, we assume that the

domain of f includes a special symbol ⊥ indicating this refusal to give the

input, so that it is well defined how f should be computed on such missing

inputs. What this requires is that in any real protocol we detect when a

party does not enter its input and deal with it exactly in the same manner

as if the party would input ⊥ in the ideal model.

Variations on Output Delivery. In the above definition of security

it is implicitly assumed that all honest parties receive the output of the

computation. This is achieved by stating that IDEALA′,f (t) includes the

outputs of all honest parties. We therefore say that our current definition

guarantees output delivery.

A more relaxed property than output delivery is fairness. If fairness is

achieved, then this means that if at least one (even faulty!) party learns its

outputs, then all (honest) parties eventually do too. A bit more formally,

we allow the ideal model adversary A′ to instruct the trusted party not

to compute any of the outputs. In this case, in the ideal model either

all the parties learn the output, or none do. Since the A’s transcript is

indistinguishable from A′’s this guarantees that the same fairness guarantee

must hold in the real model as well.

Yet, a further relaxation of the definition of security is to only provide

correctness and privacy. This means that faulty parties can learn their

outputs, and prevent the honest parties from learning theirs. Yet, at the

same time the protocol will still guarantee that: 1. if an honest party receives

an output, then this is the correct value, and 2. the privacy of the inputs

and outputs of the honest parties is preserved.

Variations on the Model. The basic security notions introduced above

are universal and model-independent. However, specific implementations

crucially depend on spelling out precisely the model where the computation

will be carried out. In particular, the following issues must be specified:
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(i) The parties. As mentioned above, the faulty parties could be honest-

but-curious or malicious, and there is usually an upper bound k on

the number of parties which the adversary can corrupt.

(ii) Computational Assumptions. We distinguish between the compu-

tational setting and the information theoretic setting. In the in-

formation theoretic model we assume that the adversary is unlim-

ited in its computing powers. In this case the term “indistinguish-

able” in Definition 1.1 is formalized by either requiring the two tran-

script distributions to be identical (so called perfect security) or, at

least, statistically close in their variation distance (so called sta-

tistical security). On the other hand, in the computational setting

we restrict the power of the adversary (as well as that of the hon-

est parties). A bit more precisely, we assume that the correspond-

ing MPC problem is parameterized by the security parameter λ, in

which case (a) all the computation and communication shall be done

in time polynomial in λ; and (b) the misbehavior strategies of the

faulty parties are also restricted to be run in time polynomial in λ.

Further, the term “indistinguishability” in Definition 1.1 is formal-

ized by computational indistinguishability: two distribution ensembles

{Xλ}λ and {Yλ}λ are said to be computationally indistinguishable,

if for any polynomial-time distinguisher D, the quantity ǫ, defined

as |Pr[D(Xλ) = 1] − Pr[D(Yλ) = 1]|, is a “negligible” function of λ.

This means that for any j > 0 and all sufficiently large λ, ǫ eventually

becomes smaller than λ−j .

This modeling of computationally bounded parties enables us to

build secure MPC protocols depending on plausible computational

assumptions, such as the hardness of factoring large integers, etc.

(iii) Communication Assumptions. The two common communication as-

sumptions are the existence of a secure channel and the existence of

a broadcast channel. Secure channels assume that every pair of par-

ties Pi and Pj are connected via a an authenticated, private channel.

A broadcast channel is a channel with the following properties: if a

party Pi (honest or faulty) broadcasts a message m, then m is cor-

rectly received by all the parties (who are also sure the message came

from Pi). In particular, if an honest party receives m, then it knows

that every other honest party also received m.

A different communication assumptions is the existence of envelopes.

An envelope (in its most general definition) guarantees the following

properties: that a value m can be stored inside the envelope, it will

be held without exposure for a given period of time and then the
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value m will be revealed without modification. A ballot box is an

enhancement of the envelope setting which also provides a random

shuffling mechanism of the envelopes.

These are of course idealized assumptions which allow for a clean

description of a protocol, as they separate the communication issues

from the computational ones. These idealized assumptions may be

realized by a physical mechanisms, but in some settings such mech-

anisms may not be available. Then it is important to address the

question if and under what circumstances we can remove a given

communication assumption. For example, we know that the assump-

tion of a secure channel can be substituted with a protocol, but under

the introduction of a computational assumption and a public key in-

frastructure. In general, the details of these substitutions are delicate

and need to be done with care.

1.1.2 Existing Results for Multiparty Computation

Since the introduction of the MPC problem in the beginning of the 80’s, the

work in this area has been extensive. We will only state, without proofs, a

few representative results from the huge literature in this area.

Theorem 1.2 Secure MPC protocols withstanding coalitions of up to k ma-

licious parties (controlled by an attacker A) exist in the following cases:

(i) assuming A is computationally bounded, secure channels, and a broad-

cast channel (and a certain cryptographic assumption, implied for ex-

ample, by the hardness of factoring, is true), then:

(a) for k < n/2 with output delivery.

(b) for k < n with correctness and privacy.

(c) additionally assuming envelopes, for k < n with fairness.

(ii) assuming A is computationally unbounded:

(a) assuming secure channels, then for k < n/3 with output delivery.

(b) assuming secure and broadcast channels, then for k < n/2 with

output delivery (but with an arbitrarily small probability of error).

(c) assuming envelopes, ballot-box and a broadcast channel, then for

k < n with output delivery.

Structure of Current MPC Protocols. A common design struc-

ture of many MPC protocols proceeds in three stages: commitment to the

inputs, computation of the function on the committed inputs, revealing of
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the output. Below we describe these stages at a high level, assuming for

simplicity that the faulty parties are honest-but-curious.

In the first stage the parties commit to their inputs, this is done by uti-

lizing the first phase of a two-phased primitive called secret sharing. The

first phase of a (k, n)-secret sharing scheme is the sharing phase. A dealer,

D, who holds some secret z, computes n shares z1, . . . , zn of z and gives the

share zi to party Pi. The second phase is the reconstruction phase, which we

describe here and utilize later. For the reconstruction the parties broadcast

their shares in order to recover z. Informally, such secret sharing schemes

satisfy the following two properties: (1) k, or fewer, shares do not reveal any

information about z; but (2) any k + 1 or more shares enable one to recover

z. Thus, up to k colluding parties learn no information about z after the

sharing stage, while the presence of at least k + 1 honest parties allows one

to recover the secret in the reconstruction phase (assuming, for now, that

no incorrect shares are given).

The classical secret sharing scheme satisfying these properties is the Shamir

secret sharing scheme. Here we assume that the value z lies in some finite

field F of cardinality greater than n (such as the field of integers modulo a

prime p > n). The dealer D chooses a random polynomial g of degree k with

the only constraint that the free coefficient of g is z. Thus, z = g(0). Then,

if α1 . . . αn are arbitrary but agreed in advance non-zero elements of F , the

shares of party Pi is computed as zi = g(αi). It is now easy to observe that

any k +1 shares zi are enough to interpolate the polynomial g and compute

g(0) = z. Furthermore, any set of k shares is independent of z. This is easy

to see as for any value z′ ∈ F there exists a (k + 1)st share such that with

the given set of k shares they interpolate a polynomial g′ where g′(0) = z′,

in a sense making any value of the secret equally likely. Thus, properties (1)

and (2) stated above are satisfied.

To summarize, the first stage of the MPC is achieved by having each party

Pi invoke the first part of the secret sharing process as the dealer D of its

input ti, and distribute the correct shares of ti to each party Pj . If f is

probabilistic, the players additionally run a special protocol at the end of

which a (k, n)-secret sharing of a random and secret value r is computed.

In the second stage the parties compute the function f . This is done

by evaluating the pre-agreed upon arithmetic circuit representing f over

F , which is composed of addition, scalar-multiplication and multiplication

gates. The computation proceeds by evaluating the gates one by one. We

inductively assume that the inputs to the gates are shared in the manner

described above in the secret sharing scheme, and we guarantee that the

output of the gate will preserve the same representation. This step forms the
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heart of most MPC protocols. The computation of the addition and scalar-

multiplication gates are typically pretty straightforward and does not require

communication (e.g., for the Shamir secret sharing scheme the parties locally

simply add or multiply by the scalar their input shares), but is considerably

more involved for the multiplication gate and requires communication. For

our purposes we will not need the details of the computation mechanism,

simply assuming that this computation on shares is possible will suffice.

Therefore, we can assume that at the end of the second stage the parties have

a valid secret sharing of the required output(s) of the function f . The most

crucial observation is that no additional information is leaked throughout

this stage, since all the values are always shared through a (k, n)-secret

sharing scheme.

Finally, in the last stage the parties need to compute their individual

outputs of the function. As we have inductively maintained the property

that the output of each gate is in the secret sharing representation, then

the same it true for the output gate of f . Thus, to let the parties learn

the output s which is the value of the function, the parties simply run the

reconstruction phase of the secret sharing scheme (as described above), by

having each party broadcast its share of s.

1.2 Game Theory Notions and Settings

Strategic Games. We start by recalling the basic concept of (one-shot)

strategic games with complete information. Such a game G = (I, (Si)i∈I , (ui)i∈I)

is given by a set I of n parties P1 . . . Pn, a set of actions Si for each party

Pi, and a set of real-valued utility functions ui : S → R for each party Pi,

where S = S1 × . . . × Sn. The parties move simultaneously, each choos-

ing an action si ∈ Si. The payoff (or utility) of party Pi is ui(s1, . . . , sn).

The (probabilistic) algorithm xi that tells party Pi which action to take

is called its strategy and a tuple of strategies x = (x1, . . . , xn) is called a

strategy profile. Notationally, if we let ∆(B) denote the set of probability

distributions over a finite set B, we have xi ∈ ∆(Si) and x ∈ ∆(S). We

denote by s−i (or x−i) the strategy profile of all parties except the party

Pi (whom we sometimes also denote P−i). Finally, we naturally extend the

utility functions to strategy profiles, by defining ui(x) as the expectation of

ui(s), where s = (s1, . . . , sn) is chosen according to x.

Game Theory assumes that each party is selfish and rational, i.e. only

cares about maximizing its (expected) payoff. As a result, we are interested

in strategy profiles that are self-enforcing. In other words, even knowing
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the strategy of the other parties, each party still has no incentive to deviate

from its own strategy. Such a strategy profile is called an equilibrium.

Nash equilibrium. This equilibrium notion corresponds to a strategy pro-

file in which parties’ strategies are independent. More precisely, the induced

distribution x over the pairs of actions must be a product distribution; i.e.,

x ∈ ∆(S1) × . . . × ∆(Sn).

Definition 1.3 A Nash equilibrium (NE) of a game G is an independent

strategy profile (x∗
1, . . . , x

∗
n), s.t. ∀Pi ∈ I, si ∈ Si ⇒ ui(x

∗
i , x

∗
−i) ≥ ui(si, x

∗
−i).

In other words, for every party Pi, following its prescribed strategy x∗
i is

an optimal response to the other parties’ prescribed strategies x∗
−i. Nash’s

famous result in game theory states that every finite strategic game has at

least one NE.

Correlated equilibrium. Nash equilibrium is quite a natural and ap-

pealing notion, since parties can follow their strategies independently of each

other. However, we will see that it is often possible to achieve considerably

higher expected payoffs if one allows general, correlated strategies x ∈ ∆(S)

(as opposed to ∆(S1)×. . .×∆(Sn)). To make sense of such a correlated pro-

file when the game is implemented, we augment the basic setting of strategic

(one-shot) games by introducing a trusted party M called a mediator. M

will sample a tuple of correlated actions s = (s1 . . . sn) according to x, and

then privately recommend the action si to party Pi.† In particular, after

receiving its recommendation si each party Pi will have a conditional dis-

tribution, denoted (x−i | si), regarding the strategy profile recommended to

the other parties P−i, after which Pi can decide if following si is indeed the

best course of action assuming the remaining parties follow x−i | si. In a

correlated equilibrium, the answer to this question is positive: it is in the

interest of all the parties to follow the recommendations of the mediator.

Definition 1.4 A correlated equilibrium (CE) is a strategy profile x∗ ∈

∆(S), such that for any Pi ∈ I, si ∈ Si and any action s∗i in the support of

x∗
i , we have ui(s

∗
i , (x

∗
−i | s∗i )) ≥ ui(si, (x

∗
−i | s∗i )).

Correlated equilibria always exist and form a convex set which necessarily

includes the convex hull of Nash equilibria (where the latter is defined to

† More generally, the mediator can tell some other information to Pi, in addition to the rec-
ommended strategy si. However, it turns out this extra freedom will not enrich the class of
correlated equilibria we define below. Intuitively, this is because the player will not want to
deviate no matter what this extra information might be, so we might as well not provide it to
begin with.
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consist of all convex combinations of Nash equilibria; notice, such equilibria

can be implemented by the mediator by flipping a biased coin telling which

Nash equilibria to recommend to players). However, by utilizing correlated

(but not necessarily identical) recommendations, one can achieve correlated

equilibria with equilibrium payoffs outside (and often significantly better!)

anything in the convex hull of Nash equilibria payoffs. This is demonstrated

in the following simple example which is known as the “game of chicken”.

Game of Chicken. This 2 × 2 game is shown in the table below.

C D

C 4,4 1,5

D 5,1 0,0

“Chicken”

C D

C 1/4 1/4

D 1/4 1/4

Mixed Nash x3

C D

C 0 1/2

D 1/2 0

Public Coin x̄

C D

C 1/3 1/3

D 1/3 0

Correlated x∗

Each party can either “dare” (D) or “chicken out” (C). The combination

(D, D) has a devastating effect on both parties (payoffs [0, 0]), (C, C) is

quite good (payoffs [4, 4]), while each party would ideally prefer to dare

while the other chickens-out (giving him 5 and the opponent 1). Although

the “wisest” pair of actions is (C, C), this is not a NE, since both parties

are willing to deviate to D (believing that the other party will stay at C).

The game is easily seen to have three NEs: x1 = (D, C), x2 = (C, D) and

x3 = (1
2 ·D + 1

2 ·C, 1
2 ·D + 1

2 ·C). The respective NE payoffs are [5, 1], [1, 5]

and [52 , 5
2 ]. We see that the first two NEs are asymmetric, while the last

mixed NE has small payoffs, since the mutually undesirable outcome (D, D)

happens with non-zero probability 1
4 in the product distribution. The best

symmetric strategy profile in the convex hull of the NEs is x̄ = 1
2x1 + 1

2x2 =

(1
2(C, D) + 1

2(D, C)), yielding payoffs [3, 3]. On the other hand, the profile

x∗ = (1
3(C, D)+ 1

3(D, C)+ 1
3(C, C)) is a CE, yielding payoffs [31

3 , 31
3 ] outside

the convex hull of the NEs.

To briefly see that x∗ is a CE, consider the row party P1 (same works for

the column party P2). If P1 is recommended to play C, its expected payoff

is 1
2 · 4 + 1

2 · 1 = 5
2 since, conditioned on s∗1 = C, party P2 is recommended

to play C and D with probability 1
2 each. If P1 switched to D, its expected

payoff would still be 1
2 ·5+ 1

2 ·0 = 5
2 , making P1 reluctant to switch. Similarly,

if party P1 is recommended D, it knows that P2 plays C (as (D, D) is never

played in x∗), so its payoff is 5. Since this is the maximum payoff of the

game, P1 would not benefit by switching to C in this case. Thus, we indeed

have a correlated equilibrium, where each party’s payoff is 1
3(1+5+4) = 31

3 ,

as claimed.

Interestingly, we also point out that mediators do not necessarily increase

the parties’ payoffs. In fact, carefully designed mediators can force the
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parties into considerably worse payoffs than what is possible in the un-

mediated game. For example, in the “game of chicken” it is easy to see

that the profile x∗∗ = (1
3(C, D) + 1

3(D, C) + 1
3(D, D)) is also a CE, yield-

ing payoffs [2, 2] which are less than the worst Nash Equilibrium x3 =

(1
4(C, D) + 1

4(D, C) + 1
4(C, C) + 1

4(D, D)) (the latter giving payoffs [52 , 5
2 ]).

Thus, the mediator can generally expand the set of equilibria in all di-

rections. Intuitively, though, we are usually interested to implement only

mediators, who improve the payoffs of most, or even all of the parties.

Games with Incomplete Information. So far we discussed strategic

games where parties knew the utilities of other parties. In games with

incomplete information each party has a private type ti ∈ Ti, where the joint

vector t = (t1, . . . , tn) is assumed to be drawn from some publicly known

distribution. The point of such type, ti, is that it affects the utility function

of party Pi: namely, the utility ui not only depends on the actions s1 . . . sn,

but also on the private type ti of party Pi, or, in even more general games, on

the entire type vector t of all the parties. With this in mind, generalizing the

notion of Nash equilibrium to such games is straightforward. (The resulting

Nash equilibrium is also called Bayesian.)

Mediated games generalize to the typed setting, in which parties have to

send their types to the mediator M before receiving the joint recommen-

dation. Depending on the received type vector t, the mediator samples a

correlated strategy profile s and gives each party its recommended action

si, as before. We remark that the expected canonical strategy of party Pi

is to honestly report its type ti to M , and then follow the recommended

action si. However, Pi can deviate from the protocol in two ways: 1. send a

wrong type t′i or not send a type at all to M , as well as 2. decide to change

the recommended action from si to some s′i.† As a mediator may receive

faulty types, a fully defined sampling strategy for the mediator should spec-

ify the joint distribution x for every type t = (t1 . . . tn), even outside the

support of the joint type distribution. Formally, xt should be defined for

every t ∈
∏

i(Ti ∪ {⊥}), where ⊥ is a special symbol indicating an invalid

type. (In particular, games of complete information can be seen as a special

case where all ti = ⊥ and each party “refused” to report its type.) With this

in mind, the generalization of CE to games with incomplete information is

straightforward.

Aborting the Game. We assume that the parties will always play the

† Although not relevant in the sequel, we mention the famous revelation principle for such games.
It states that from the perspective of characterizing correlated equilibria of such games, we can
safely assume that each party will honestly report its type ti to M , and only then consider the
question whether or not to follow the recommendation of M .
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game by choosing an action si ∈ Si and getting an appropriate payoff ui(s).

Of course, we can always model refusal to play by introducing a special ac-

tion ⊥ into the strategy space, and defining the explicit utilities correspond-

ing to such actions. In other words, to allow for abort, we must explicitly

specify the penalty for aborting the computation. Indeed, many games

effectively guarantee participation by assigning very low payoff to actions

equivalent to aborting the computation. However, this is not a requirement;

in fact, many games do not even have the abort action as parts of their

action spaces. To summarize, aborting is not something which is inherent

to games, although it could be modeled within the game, if required.

Extended Games. So far we only considered strategic games, where par-

ties move in “one-shot” (possibly with the help of the mediator). Of course,

these games are special cases of much more general extensive form games

(with complete or incomplete information), where a party can move in many

rounds and whose payoffs depend on the entire run of the game. In our set-

ting we will be interested only in a special class of such extensive form games,

which we call (strategic) games extended by cheap-talk, or, in brief, extended

games.

An extended game G∗ is always induced by a basic strategic game G (of ei-

ther complete or incomplete information), and has the following form. In the

cheap-talk (or preamble) phase, parties follow some protocol by exchanging

messages in some appropriate communication model. This communication

model can vary depending on the exact setting we consider. But once the

setting is agreed upon, the format of the cheap talk phase is well defined.

After the preamble, the game phase will start and the parties simply play the

original game G. In particular, the payoffs of the extended game are exactly

the payoff that the parties get in G (and this explains why the preamble

phase is called “cheap talk”).

Correspondingly, the strategy xi of party Pi in the extended game consists

of its strategy in the cheap talk phase, followed by the choice of an action

si that Pi will play in G. Just like in strategic games, we assume that the

game phase must always go on. Namely, aborting the game phase will be

modeled inside G, but only if necessary. However, the parties can always

abort the preamble phase of the extended game, and prematurely decide to

move on to the game phase. Thus, a valid strategy profile for the extended

game must include instructions of which action to play if some other party

refuses to follow its strategy, or, more generally, deviates from the protocol

instructions during the cheap talk phase (with abort being a special case of

such misbehavior).
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Nash Equilibrium of Extended Games. With this in mind, (Bayesian)

Nash equilibrium for extended games is defined as before: a tuple of inde-

pendent strategic x∗
1 . . . x∗

n such that for every Pi and for every alternative

strategy xi, we have ui(x
∗
i , x

∗
−i) ≥ ui(xi, x

∗
−i). We remark, however, that

Nash equilibrium is known to be too liberal for extensive form games, as it

allows for “unreasonable” strategy profiles to satisfy the definition of NE.

For example, it allows for equilibrium strategies containing so called “empty

threats” and has other subtle deficiencies. Nevertheless, in order to keep our

presentation simple we will primarily restrict ourselves to the basic concept

of NE when talking about extended games.

Collusions. All the discussion so far assumed the traditional non-cooperative

setting, where agents are assumed not to form collusions. In contrast, coop-

erative game theory tries to model reasonable equilibrium concepts arising

in scenarios where agents are allowed to form collusions. Unfortunately, in

many games no equilibria resistant to coalitional deviations may even exist!

However, when they do, such equilibria seem to be more stable than con-

ventional non-cooperative equilibria. However, traditional game-theoretic

treatment of such equilibria are fairly weak. We will come back to this issue

in Section 1.4.1, where we provide the definition of an equilibrium which we

think is the most appropriate for our setting and has been influenced by the

MPC setting.

1.3 Contrasting MPC and Games

As we can see, MPC and games share several common characteristics. In

both cases an important problem is to compute some function (s1 . . . sn) =

f(t1 . . . tn; r) in a private manner. However, there are some key differences

summarized in Figure 1.3, making the translation from MPC to Games and

vice versa a promising but non-obvious task.

Incentives and Rationality. Game theory is critically built on incen-

tives. Though it may not necessarily explain why parties participate in a

game, once they do, they have a very well defined incentive. Specifically,

players are assumed to be rational and only care about maximizing their

utility. Moreover, rationality is common knowledge: parties are not only

rational, but know that other parties are rational and utilize this knowledge

when making their strategic decisions. In contrast, the incentives in the

MPC setting remain external to the computation, and the reason the com-

putation actually ends with a correct and meaningful output comes from

the assumption on the parties. Specifically, in the MPC setting one as-
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Issue Cryptography Game Theory

Incentive Outside the Model Payoff

Players
Totally Honest

or Malicious Always Rational

Solution Drivers Secure Protocol Equilibrium

Privacy Goal Means

Trusted Party In the Ideal Model In the Actual Game

Punishing Cheaters Outside the Model Central Part

Early Stopping Possible The Game Goes On!

Deviations Usually Efficient Usually Unbounded

k-collusions Tolerate “large” k Usually only k = 1

sumes that there exist two diametrically opposite kinds of parties: totally

honest and arbitrarily malicious. The honest parties are simply assumed

to blindly follow their instructions, without any formally defined rational

behind this. On the other hand, malicious parties might behave in a com-

pletely irrational manner, and a good MPC protocol has to protect against

such “unreasonable” behavior. Thus, the settings are somewhat incompa-

rable in general. On the one hand, the MPC setting may be harder as it has

to protect against completely unexplained behavior of the malicious parties

(even if such behaviors would be irrational had the parties had the utilities

defined). On the other hand, the Game Theory setting could be harder as it

does not have the benefit of assuming that some of the parties (i.e., the hon-

est parties) blindly follow the protocol. However, we remark that this latter

benefit disappears for the basic notions of Nash and correlated equilibria,

since there one always assumes that the other parties follow the protocol

when considering whether or not to deviate. For such basic concepts, we

will indeed see in Section 1.4.2 that the MPC setting is more powerful.

Privacy and Solution Drivers. In the cryptographic setting the objec-

tive is to achieve a secure protocol, as defined in Definition 1.1. In particular,

the main task is to eliminate the trusted party in a private and resilient way.

While in the game theory setting the goal is to achieve “stability” by means

of some appropriate equilibrium. In particular, the existence of the medi-

ator is just another “parameter setting” resulting in a more desirable, but

harder to implement equilibrium concept. Moreover, the privacy constraint

on the mediator is merely a technical way to justify a much richer class of
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“explainable” rational behaviors. Thus, in the MPC setting privacy is the

goal while in the game theory setting it is a means to an end.

“Crime and Punishment”. We also notice that studying deviations from

the prescribed strategy is an important part of both the cryptographic and

the game-theoretic setting. However, there are several key differences.

In cryptography, the goal is to compute the function, while achieving some

security guarantees in spite of the deviations of the faulty parties. Most

protocols also enable the participating parties to detect which party has

deviated from the protocol. Yet, even when exposed, in many instances no

action is taken against the faulty party. Yet, when an action, such as removal

from the computation, is taken, this is not in an attempt to punish the party,

but rather to enable the protocol to reach its final goal of computing the

function. In contrast, in the game-theoretic setting it is crucial to specify

exactly how the misbehavior will be dealt with by the other parties. In

particular, one typical approach is to design reaction strategies which will

negatively affect the payoffs of the misbehaving party(s). By rationality, this

ensures that it is in no player’s self-interest to deviate from the prescribed

strategy.

We already commented on a particular misbehavior when a party refuses

to participate in a given protocol/strategy. This is called early stopping. In

the MPC setting, there is nothing one can do about this problem, since it is

possible in the ideal model as well. In the Game Theory setting, however,

we already pointed out that one always assumes that “the game goes on”.

I.e., if one wishes, it is possible to model stopping by an explicit action with

explicit payoffs, but the formal game is always assumed to be played. Thus,

if we use MPC inside a game-theoretic protocol, we will have to argue —

from the game-theoretic point of view — what should happen when a given

party aborts the MPC.

Efficiency. Most game-theoretic literature places no computational limi-

tations on the efficiency of a party when deciding whether or not to deviate.

In contrast, a significant part of cryptographic protocol literature is designed

to only withstand computationally bounded adversaries (either because the

task at hand is otherwise impossible, or much less efficient). We will see

how to incorporate such efficiency considerations into game theory in Sec-

tion 1.4.1.

Collusions. Finally, we comment again on the issue of collusions. Most

game-theoretic literature considers non-cooperative setting, which corre-

sponds to collusions of size k = 1. In contrast, in the MPC setting the
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case k = 1 is usually straightforward, and a lot of effort is made in order

to make the maximum collusion threshold as much as possible. Indeed, in

most MPC settings one can tolerate at least a linear fraction of colluding

parties, and sometimes even a collusion of all but one party.

1.4 Cryptographic Influences on Game Theory

In this section we discuss how the techniques and notions from MPC and

cryptography can be used in Game Theory. We start by presenting the

notions of computational and k-resilient equilibria, which were directly in-

fluenced by cryptography. We then proceed by describing how to use appro-

priate MPC protocols and replace the mediator implementing a given CE

by a “payoff-equivalent” cheap-talk phase in a variety of contexts.

1.4.1 New Notions

Computational Equilibrium. Drawing from the cryptographic world,

we consider settings where parties participating in the extended game are

computationally bounded and we define the notion of computational equi-

libriums. In this case we only have to protect against efficient misbehavior

strategies xi. A bit more precisely, we will assume that the basic game G has

constant size. However, when designing the preamble phase of the extended

game, we can parameterize it by the security parameter λ, in which case (a)

all the computation and communication shall be done in time polynomial

in λ; and (b) the misbehavior strategies xi are also restricted to be run in

time polynomial in λ.

The preamble phase will be designed under the assumption of the exis-

tence of a computationally hard problem. However, this introduces a negli-

gible probability (see Section 1.1.1) that within xi the attacker might break

(say, by luck) the underlying hard problem, and thus might get considerably

higher payoff than by following the equilibrium strategy x∗
i . Of course, this

can improve this party’s expected payoff by at most a negligible amount

(since the parameters of G, including the highest payoff, are assumed con-

stant with respect to λ), so we must make an assumption that the party will

not bother to deviate if its payoffs will only increase by a negligible amount.

This gives rise to the notion of computational Nash equilibrium: a tuple of

independent strategies x∗
1 . . . x∗

n where each strategy is efficient in λ such

that for every Pi and for every alternative efficient in λ strategy xi, we have

ui(x
∗
i , x

∗
−i) ≥ ui(xi, x

∗
−i) − ǫ, where ǫ is a negligible function of λ.
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k-Resiliency. As we mentioned, the Game Theory world introduced sev-

eral flavors of cooperative equilibria concepts. Yet, for our purposes here,

we define a stronger type of such an equilibrium, called a resilient (Nash

or Correlated) equilibrium. Being a very strong notion of an equilibrium,

it may not exist in most games. Yet, we chose to present it since it will

exist in the “Game Theory-MPC” setting, where we will use MPC protocols

in several game-theoretic scenarios. The possibility of realizing such strong

equilibria using MPC shows the strength of the cryptographic techniques.

Furthermore, with minor modifications, most of the results we present later

in the chapter extend to weaker kinds of cooperative equilibria, such as

various flavors of a more well known coalition-proof equilibrium.†.

Informally, resilient equilibrium requires protection against all coalitional

deviations which strictly benefit even one of its colluding parties. Thus, no

such deviation will be justifiable to any member of the coalition, meaning

that the equilibrium strategies are very stable.

To define this more formally, we need to extend our notation to handle

coalitions. Given a strategic game G = (I, (Si)Pi∈I , (ui)Pi∈I) and a coalition

C ⊆ I, we denote SC =
∏

Pi∈C Si. Then a joint strategy xC of C is an

element of ∆(SC). Given a strategy profile x∗, we will also denote by x∗
C its

“projection” onto C, and by x∗
−C its “projection” on I\C. Then we say that

an independent strategy profile (x∗
1, . . . , x

∗
n) is a k-resilient Nash Equilibrium

of G, if for all coalitions C of cardinality at most k, all deviation strategies

xC ∈ ∆(SC), and all members Pi ∈ C, we have ui(x
∗
C , x∗

−C) ≥ ui(xC , x∗
−C).

The notion of k-resilient correlated equilibrium x ∈ ∆(S) is defined simi-

larly, although here we can have two variants. In the ex ante variant, mem-

bers of C are allowed to collude only before receiving their actions form the

mediator: namely, a deviation strategy will tell each member of the coali-

tion how to change its recommended action, but this would be done without

knowledge of the recommendations to the other members of the coalition.

In the more powerful interim variant, the members of the coalition will see

the entire recommended action vector s∗C and then can attempt to jointly

change it to some sC . Clearly, ex ante correlated equilibria are more abun-

dant than interim equilibria. For example, it is easy to construct games

where already 2-resilient ex ante CEs achieve higher payoffs than 2-resilient

interim equilibria, and even games where the former correlated equilibria

exist and the latter do not! This is true because the ex ante setting makes

a strong restriction that coalitions cannot form after the mediator gave its

† Informally, these equilibria only prevent deviations benefiting all members of the coalition,
while resilient equilibria also prevent deviations benefiting even a single such member.
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recommended actions. Thus, unless stated otherwise, k-resilient CE will

refer to the interim scenario.

Finally, we mention that one can naturally generalize the above notions to

games with incomplete information, and also define (usual or computational)

k-resilient Nash equilibria of extended games. On the other hand, it is quite

non-obvious how to properly define stronger computational equilibria, such

as subgame-perfect, sequential, etc. equilibria. Indeed, such definitions are

quite subtle, and are not well understood at the current stage.

1.4.2 Removing the Mediator in Correlated Equilibrium

The natural question which can be asked is whether the mediator can be

removed in the game theory setting, simulating it with a multiparty com-

putation. The motivation for this is clear, as the presence of the mediator

significantly expands the number of equilibria in strategic form games; yet,

the existence of such a mediator is a very strong and often unrealizable

assumption.

Recall that in any correlated equilibrium x of a strategic game G (with

imperfect information, for the sake of generality), the mediator samples a

tuple of recommended action (s1, ..., sn) according to the appropriate dis-

tribution based on the types of the parties. This can be considered as the

mediator computing some probabilistic function (s1, ..., sn) = f(t1 . . . tn; r).

We define the following extended game G∗ of G by substituting the me-

diator with an MPC and ask whether the extended game is a (potentially

computational) Nash equilibrium.

(i) In the preamble stage, the parties run an “appropriate” MPC proto-

col† to compute the profile (s1 . . . sn). Some additional actions may

be needed (see below).

(ii) Once the preamble stage is finished, party Pi holds a recommended

action si, which it uses in the game G.

Meta-Theorem. Under “appropriate” conditions, the above strategies

form a (potentially computational) Nash equilibrium of the extended game

G∗, which achieves the same expected payoffs for all the parties as the cor-

responding correlated equilibrium of the original game G.‡

As we discussed in Section 1.3, there are several differences between the

† Where the type of the protocol depends on the particular communication model and the capa-
bilities of the parties.

‡ Note that the converse (every NE of G∗ can be achieved by a CE of G) is true as well.
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MPC and the game theory settings. Not surprisingly, we will have to re-

solve these differences before validating the meta-theorem above. To make

matters a bit more precise, we assume that

• x is an interim k-resilient correlated equilibrium† of G that we are trying

to simulate. k = 1 (i.e., no collusions) will be the main special case.

• the MPC protocol computing x is cryptographically secure against coali-

tions of up to k malicious parties. This means the protocol is at least

correct and private, and we will comment about its “output delivery”

guarantees later.

• The objective is to achieve a (possibly computational) k-resilient Nash

equilibrium x∗ of G∗ with the same payoffs as x.

Now the only indeterminant in the definition of G∗ is to specify the be-

havior of the parties in case the MPC computation fails for some reason.

Using MPC with Guaranteed Output Delivery. Recall that there

exist MPC protocols (in various models) which guarantee output delivery

for various resiliencies k. Namely, the malicious parties cannot cause the

honest parties not to receive their output. The only thing they can do is

to choose their inputs arbitrarily (where a special input ⊥ indicates they

refuse to provide the input). But since this is allowed in the mediated game

as well, and k-resilient equilibrium ensures the irrationality of such behavior

(assuming the remaining (n − k) parties follow the protocol), we know the

parties will contribute their proper types and our Meta-theorem is validated:

Theorem 1.5 If x is a k-resilient CE of G specified by a function f , and

π is an MPC protocol (with output delivery) securely computing f against a

coalition of up to k computationally unbounded/bounded parties, then run-

ning π in the preamble step (and using any strategy to select a move in case

some misbehavior occurs) yields a k-resilient regular/computational NE of

the extended game G∗, achieving the same payoffs as x.

Using Fair MPC. In some instances (e.g. part i.c of Theorem 1.2) we

cannot guarantee output delivery, but can still achieve fairness. Recall, this

means that if at least one party Pi obtains its correct output si, then all

parties do. However, it might be possible for misbehaving parties to cause

everybody to abort or complete the protocol without an output.

In the case where the protocol terminates successfully, we are exactly in

the same situation as if the protocol had output delivery, and the same

† As we already remarked, the techniques presented here easily extend to weaker coalitional
equilibria concepts.
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analysis applies. In the other case, we assume that the protocol enables

detection of faulty behavior and that it is observed that one of the parties

(for simplicity, assume it is Pn) deviated from the protocol. As the protocol

is fair, the aborting deviation must have occurred before any party has

any information about their output. The simplest solution is to restart the

computation of x from scratch with all parties. The technical problem with

this solution is that it effectively allows (a coalition containing) Pn to mount

a denial of service attack, by misbehaving in every MPC iteration causing

the preamble to run forever.

Instead, to make the extended game always finite, we follow a slightly more

sophisticated punishment strategy. We restart the preamble without Pn, and

let the (n − 1) remaining parties run a new MPC to compute the (n − 1)-

input function f ′ on the remaining parties’ inputs and a default value ⊥ for

Pn: f ′(t1, . . . , tn−1; r) = f(t1, . . . , tn−1,⊥; r). Notice, in this new MPC n is

replaced by n−1 and k replaced by k−1 (as Pn is faulty), which means that

the ratio k−1
n−1 < k

n
, and, thus, f ′ can still be securely computed in the same

setting as f . Also notice that Pn does not participate in this MPC, and will

have to decide by itself (or with the help of other colluding members) which

action to play in the actual game phase. In contrast, parties P1 . . . Pn−1 are

instructed to follow the recommendations they get when computing f ′, if f ′

completes. If not, then another party (say, Pn−1) must have aborted this

MPC, in which case we reiterate the same process of excluding Pn−1, and

so on. Thus, at some point we have that the process will end, as there is a

finite number n of parties and we eliminate (at least) one in each iteration.

Next, we argue that the resulting strategy profile x∗ forms a k-resilient

Nash equilibrium of G∗. To see this, the fairness of the MPC step clearly

ensures that the only effective misbehavior of a coalition of size |C| is to

declare invalid types ⊥ for some of its members, while changing the real

type for others. In this case, their reluctance to do so follows from the fact

that such misbehavior is allowed in the mediated game as well. And since

we assumed that the strategy profile x is a k-resilient correlated equilibrium

of G, it is irrational for the members of the coalition to deviate in this way.

Using Correct and Private MPC: Case k = 1. To see the difficulties

which arise from the use of an MPC without fairness, consider two parties

playing the game of chicken (see Section 1.2), and trying to implement the

correlated equilibrium x having payoffs 10/3 for both parties. If party P2

receives its move before P1 does, and the move is C, then P2 knows that

its expected payoff is 5
2 < 10

3 . In contrast, if the move is D, it knows its

payoff is 5 > 10
3 . Thus, P2 may decide to abort the game if (and only
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if) its recommendation is C. And even if P1 “punishes” P2 by playing its

“conditional” strategy x1 = 2
3 · C + 1

3 · D, responding with D still gives P2

expected payoff of 2
3 · 5 = 10

3 , making its overall expected payoff strictly

greater than 10
3 .

Nevertheless, we show that one can still use unfair (yet private and correct)

MPC protocols in an important special case of the problem. Specifically,

we concentrate on the usual coalition-free case k = 1, and also restrict

our attention to games with complete information (i.e., no types). In this

case, we show that if some party Pi deviates in the MPC stage (perhaps by

aborting the computation based on its recommended action), the remaining

parties P−i can sufficiently punish Pi to discourage such an action. Let the

min-max value vi for party Pi denote the worst payoff that players P−i can

jointly enforce on Pi: namely, vi = minz−i∈∆(S−i) maxsi∈Si
ui(si, z−i).

Claim 1.6 For any correlated equilibrium x of G, any Pi and any action s′i
for Pi in the support of xi, Exp(ui(s) | si = s′i) ≥ vi.

Proof Notice, since x is a CE, s′i is the best response of Pi to the profile x̄−i

defined as x−i conditioned on si = s′i. Thus, the payoff Pi gets in this case

is what others would force on Pi by playing x̄−i, which is at least as large

as what others could have selected by choosing the worst profile z−i.

Now, in case Pi would (unfairly) abort the MPC step, we will instruct the

other parties P−i to punish Pi to its min-max value vi. More specifically,

parties P−i should play the correlated strategy z−i which would force Pi

into getting at most vi. Notice, however, since this strategy is correlated,

they would need to run another MPC protocol to implement z−i.† By the

above claim, irrespective of the recommendation si that Pi learned, the cor-

responding payoff of Pi can only go down by aborting the MPC. Therefore,

it is in Pi’s interests not to abort the computation after learning si.

We notice that the above punishment strategy does not straightforwardly

generalize to more advanced settings. For example, in case of coalitions it

could be that the min-max punishment for P1 tremendously benefits an-

other colluding party P2 (who poses honest and instructs P1 to abort the

computation to get high benefits for itself). Also, in the case of incomplete

information, it is not clear how to even define the min-max punishment,

since the parties do not even know the precise utility of Pi!

† Notice, there are no dishonest parties left, so any MPC protocol for the honest-but-curious
case would work.
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1.4.3 Stronger Equilibria

So far we only talked about plain Nash equilibria of the extended game G∗.

As we already commented briefly, Nash equilibria are usually too weak to

capture extensive-form games. Therefore, an interesting (and still develop-

ing!) direction in recent research is to ensure much stronger and more stable

equilibria which would simulate correlated equilibria of the original game.

Eliminating Empty Threats. One weakness of the Nash equilibrium

is that it allows for the so called empty threats. Consider, for example,

the min-max punishment strategy used above. In some games, punishing

a misbehaving party to its min-max value is actually very damaging for

the punishers as well. Thus, the threat to punish the misbehaving party

to the min-max value is not credible in such cases, despite being a NE. In

this case, eliminating such an empty threat could be done by modifying

the punishment strategy to playing the worst Nash equilibrium of G for Pi

(in terms of Pi’s payoff) when Pi is caught cheating. Unlike the min-max

punishment, this is no longer an empty threat because it is an equilibrium of

G. However, it does limit (although slightly) the class of correlated equilibria

one can simulate, as one can only achieve a payoff vector which is at least as

large as the worst Nash equilibrium for each player. Additionally, formally

defining such so called subgame-perfect or sequential equilibria has not yet

been done in the computational setting, where most MPC protocols are

analyzed.

Ex Ante Correlated Equilibria. So far we only talked about simu-

lating interim correlated equilibria, where colluding parties can base their

actions after seeing all their recommendations. Another interesting direction

is that of simulating ex ante correlated equilibria, where colluding parties can

only communicate prior to contacting the mediator. To implement this phys-

ical restriction in real life we need to design collusion-free protocols, where

one has to ensure that no subliminal communication (a.k.a. steganography)

is possible. This is a very difficult problem. Indeed, most cryptographic

protocols need randomness (or entropy), and it is known that entropy al-

most always implies steganography. In fact, it turns out that, in order to

build such protocols, one needs some physical assumptions in the real model

as well. On a positive side, it is known that envelopes (and a broadcast

channel) are enough for building a class of collusion-free protocols sufficient

to simulate ex ante correlated equilibria without the mediator.

Iterated Deletion of Weakly Dominated Strategies. In Section

1.5.2 we will study a pretty general class of “function evaluation games”,
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where the objective is to achieve Nash equilibrium which survives so called

iterated deletion of weakly dominated strategies (see Section 1.5.2).

Strategic and Privacy Equivalence. The strongest recent results re-

garding removing the mediator is to ensure (polynomially efficient) “real-

life” simulation which guarantees an extremely strong property called strate-

gic and privacy equivalence. Intuitively, it implies that our simulation gives

exactly the same power in the real model as in the ideal model. As such, it

precisely preserves all different types of equilibria of the original game (e.g.,

without introducing new, unexpected equilibria in the extended game, which

we allowed so far), does not require the knowledge of the utility functions

or an a-priori type distribution (which most of the other results above do),

does not give any extra power to arbitrary coalitions, preserves privacy of

the players types as much as in the ideal model, and has other attractive

properties. Not surprisingly, strategic and privacy equivalence is very diffi-

cult to achieve, and requires some physical assumptions in the real model as

well. The best known result is an extension of the MPC result ii.c in The-

orem 1.2, and shows how to implement strategic and privacy equivalence

assuming a broadcast channel, envelopes and a ballot-box.

To summarize, MPC techniques are promising in replacing the mediator

by cheap talk in a variety of situations. However, more work has to be done

in trying to achieve stronger kinds of equilibria using weaker assumptions.

1.5 Game Theoretic Influences on Cryptography

The influence of Game Theory on Multiparty Computation has exemplified

itself in modeling multiparty computation with a game-theoretic flavor by

introducing rational parties with some natural utility functions into the com-

putation. Once this is done, two main areas of investigation are as follows.

First, we try to characterize the class of functions where it is in parties’

selfish interest to report their true inputs to the computation. We call such

functions non-cooperatively computable (NCC). Second, we can ask to what

extent the existing MPC protocols (used to compute NCC functions) form

an appropriate equilibrium for the extended game, where we remove the

trusted mediator by cheap talk computing the same function. As we will

see, the answer will depend on the strength of the equilibrium we desire

(and, of course, on the natural utilities we assign to the “function evalua-

tion game” defined below). Furthermore, issues arising in the MPC “honest

vs. malicious” setting also hold in the Game Theory “rational” setting,

further providing a synergy between these two fields.
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1.5.1 Non-Cooperatively Computable Functions

In order to “rationalize” the process of securely evaluating a given function

f , we first need to define an appropriate function evaluation game. For

concreteness, we concentrate on single-output functions f(t1 . . . tn), although

the results easily generalize to the n-output case. We also assume that each

input ti matters (i.e., for some t−i the value of f is not yet determined

without ti).

Function Evaluation Game. We assume the parties’ types ti are their

inputs to f (which are selected according to some probability distribution

D having full support). The action of each party Pi is its guess about the

output s∗ of f . The key question, however, is how to define the utilities

of the parties. Now, there are several natural cryptographic considerations

which might weight into the definition of party Pi’s utility:

• Correctness. Each Pi wishes to compute f correctly.

• Exclusivity. Each Pi prefers others parties Pj not to learn the value of f

correctly.

• Privacy. Each Pi wishes to leak as little as possible about its input ti to

the other parties.

• Voyeurism. Each Pi wishes to learn as much as possible about the other

parties’ inputs.

Not surprisingly, one can have many different definitions for a crypto-

graphically motivated utility function of party Pi. In turn, different def-

initions would lead to different results. For concreteness, we will restrict

ourselves to one of the simplest and, arguably, most natural choices. Specif-

ically, we will only consider correctness and exclusivity, and will value cor-

rectness over exclusivity. However, other choices might also be interesting

in various situations, so our choice here is certainly with a loss of generality.

A bit more formally, recall that the utility ui of party Pi depends on the

true type vector t of all the parties, and the parties’ actions s1 . . . sn. Notice,

the true type vector t determines the correct function value s∗ = f(t), and

parties’ actions determine the boolean vector correct = (correct1, . . . , correctn),

where correcti = 1 if an only if si = s∗. In our specific choice of the util-

ity function we will assume that the utilities of each party only depend on

the boolean vector correct: namely, which of the parties learned the output

and which did not. Therefore, we will write ui(correct) to denote the utility

of party Pi. Now, rather than assigning somewhat arbitrary numbers to

capture correctness and exclusivity, we only state the minimal constraints

that imply these properties. Then, the correctness constraint states that
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ui(correct) > ui(correct
′), whenever correcti = 1 and correct

′
i = 0. Similarly,

exclusivity constraint states that if (a) correcti = correct
′
i, (b) for all j 6= i

we have correctj ≤ correct
′
j , while (c) for some j actually correctj = 0 and

correct
′
j = 1, then ui(correct) > ui(correct

′). Namely, provided Pi has the

same success in learning the output, it prefers as few parties as possible to

be successful.

Non-Cooperatively Computable Functions. Having defined the func-

tion evaluation game, we can now ask what are the equilibria of this game.

In this case, Nash equilibria are not very interesting, since parties typically

have too little information to be successful with any nontrivial probability.

On the other hand, it is very interesting to study correlated equilibria of

this game. Namely, parties give their inputs ti to the mediator M , who then

recommends an action s∗i for each party. Given that each party is trying to

compute the value of the function f , it is natural to consider “canonical”

mediator strategy: namely, that of evaluating the function f on the reported

type vector t, and simply recommending each party to “guess” the resulting

function value s∗ = f(t). Now, we can ask the question of characterizing the

class of functions f for which this canonical strategy is indeed a correlated

equilibrium of the function evaluation game. To make this precise, though,

we also need to define the actions of the mediator if some party gives a

wrong type to the mediator. Although several options are possible, here we

will assume that the mediator will send an error message to all the parties

and let them decide by themselves what to play.

Definition 1.7 We say that a function f is non-cooperatively computable

(NCC) with respect to utility functions {ui} (and a specific input distribu-

tion D) if the above canonical mediated strategy is a correlated equilibrium

of the function evaluation game. Namely, it is in the parties’ selfish interest

to honestly report their true inputs to the mediator.

We illustrate this definition by giving two classes of functions which are

never NCC. Let us say that a function f is dominated if there exists an index

i and an input ti which determine the value of f irrespective of the other

inputs t−i. Clearly, for such an input ti it is not in the interest of Pi to submit

ti to the mediator, as Pi is assured of correcti = 1 even without the help of

M , while every other party is not (for at least some of its inputs). Thus,

dominated functions cannot be NCC. For another example, a function f is

reversible if for some index i and some input ti, there exists another input

t′i and a function g, such that (a) for all other parties’ inputs t−i we have

g(f(t′i, t−i), ti) = f(ti, t−i), and (b) for some other parties’ inputs t−i we have
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f(t′i, t−i) 6= f(ti, t−i). Namely, property (a) states that there is no risk in

terms of correctness for Pi to report t′i instead of ti, while property (b) states

that at least sometimes Pi will be rewarded by higher exclusivity. A simple

example of such (boolean) function is the parity function: negating one’s

input always negates the outcome, but still in a manner easily correctable

by negating the output back. Clearly, reversible functions are also not NCC.

In general, depending on the exact utilities and the input distribution D,

other functions might also be non-NCC. However, if we assume that the

risk of losing correctness is always too great to be tempted by higher exclu-

sivity, it turns out that these two classes are the only non-NCC functions.

(And, thus, most functions, like majority, are NCC.) More precisely, assume

that the utilities and the input distribution D are such that for all vectors

correct, correct′, correct′′ satisfying correcti = correct
′
i = 1, correct

′′
i = 0, we

have ui(correct) > (1 − ǫ)ui(correct
′) + ǫui(correct

′′), where ǫ is the smallest

probability in D. Namely, if by deviating from the canonical strategy there

is even a minuscule chance of Pi not learning the value of f correctly, this

loss will always exceed any potential gain caused by many other parties not

learning the outcome as well. In this case we can show

Theorem 1.8 Under the above assumption, a function f is NCC if and

only if it is not dominated and not reversible.†

Collusions. So far we concentrated on the case of no collusions; i.e. k = 1.

However, one can also define (a much smaller class of) k-Non-Cooperatively

Computable (k-NCC) functions, for which no coalition of up to k parties

has any incentive to deviate from the canonical strategy of reporting their

true types. One can also characterize k-NCC functions under appropriate

assumptions regarding the utilities and the input distribution D.

1.5.2 Rational Multiparty Computation

Assume a given function f is k-NCC, so it is in the parties’ own interest to

contribute their inputs in the ideal model. We now ask the same question as

in Section 1.4: can we replace the mediator computing f by a corresponding

MPC protocol for f? Notice, by doing so the parties effectively run the

cryptographic MPC protocol for computing f . Thus, a positive answer

would imply that a given MPC protocol π not only securely computes f

from a cryptographic point of view, but also from a game-theoretic, rational

† In fact, under our assumption that each party’s input matters in some cases and D has full
support, it is easy to see that every dominated function is also reversible.
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point of view! Fortunately, since the function evaluation game is just a

particular game, Theorem 1.5 immediately implies

Theorem 1.9 If f is a k-NCC function (w.r.t. to some utilities and in-

put distribution) and π is a MPC protocol securely computing f against a

coalition of up to k computationally unbounded/bounded parties, then π is

a k-resilient regular/computational Nash equilibrium for computing f in the

corresponding extended game.

From a positive perspective, this result shows that for the goal of achieving

just a Nash equilibrium, current MPC protocols can be explained in rational

terms, as long as the parties are willing to compute f in the ideal model.

From a negative perspective, the latter constraint non-trivially limits the

class of functions f which can be rationally explained, and it is an interesting

open problem how to rationalize MPC even for non-NCC functions, for

which the cryptographic definition still makes perfect sense.

Stronger Equilibria. As another drawback, we already mentioned that

the notion of Nash equilibrium is really too weak to capture the rational-

ity of extensive-form processes, such as multiparty computation protocols.

Thus, an important direction is to try achieving stronger kinds of equilibria

explaining current MPC protocols, or, alternatively, design robust enough

MPC protocols which would achieve such equilibria. In Section 1.4.3 we

briefly touched on several general results in this direction (which clearly still

apply to the special case of the function evaluation games). Here we will

instead concentrate on the specifics of computing the function under the

correctness and exclusivity preferences defined in the previous section, and

will study a specific refinement of the Nash equilibrium natural for these

utility functions.

To motivate our choice, let us see a particular problem with current MPC

protocols. Recall, such protocols typically consist of three stages; in the first

two stages the parties enter their inputs and compute the secret sharing of

the output of f , while the last stage consists of the opening of the appropriate

output shares. Now we claim that the strategy of not sending out the

output shares is always at least as good, and sometimes better than the

strategy of sending the output shares. Indeed, consider any party Pi. The

correctness of output recovery for Pi is not affected by whether or not Pi

sent his own share, irrespective of the behavior of the other parties. Yet,

not sending the share to others might, in some cases, prevent others from

reconstructing their outputs, resulting in higher exclusivity for Pi. True,

along the Nash equilibrium path of Theorem 1.9, such cases where the share
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of Pi was critical did not exhibit themselves. Still, in reality it seems that

there is no incentive for any party to send out their shares, since this is never

better, and sometimes worse than not sending the shares. This motivates

the following definition.

Definition 1.10 We say that a strategy s ∈ Si is weakly dominated by

s′ ∈ Si with respect to S−i if (a) there exists s−i ∈ S−i such that ui(s, s−i) <

ui(s
′, s−i) and (b) for all strategies s′−i ∈ S−i we have that ui(s, s

′
−i) ≤

ui(s
′, s′−i). We define iterated deletion of weakly dominated strategies (ID-

oWDS) as the following process. Let DOMi(S1, ..., Sn) denote the set of

strategies in Si that are weakly dominated with respect to S−i. Let S0
i = Si

and for j ≥ 1 define Sj
i inductively as Sj

i = Sj−1
i \DOMi(S

j−1
1 , . . . , Sj−1

n )

and let S∞
i =

⋂
j≥1 Sj

i . Finally, we say that a Nash equilibrium (x1, . . . xn)

survives IDoWDS, if each xi ∈ ∆(S∞
i ).

k-resilient Nash equilibria surviving IDoWDS are defined similarly.†

Now, the above discussion implies that the k-resilient Nash equilibrium

from Theorem 1.9 does not survive IDoWDS. On a positive side, the only

reason for that was because the basic secret sharing scheme where the par-

ties are instructed to blindly open their shares does not survive IDoWDS.

It turns out that the moment we fix the secret sharing scheme to survive

IDoWDS, the resulting Nash equilibrium for the function evaluation game

will survive IDoWDS too, and Theorem 1.9 can be extended to Nash equi-

librium surviving IDoWDS. Therefore, we will only treat the latter, more

concise problem. We remark, however, that although a Nash equilibrium

surviving IDoWDS is better than plain Nash equilibrium, it is still a rather

weak concept. For example, it still allows for “empty threats”, and has other

undesirable properties. Thus, stronger equilibria are still very desirable to

achieve.

Rational Secret Sharing. Recall, in the (k, n)-secret sharing problem

the parties are given (random valid) shares z1 . . . zn of some secret z, such

that any k shares leak no information about z, while any k + 1 or more

shares reveal z. We can define the secret sharing game, where the objective

of each party is to guess the value of z, and where we assume that parties’

utilities satisfy the correctness and exclusivity constraints defined earlier. In

the extended game corresponding to the secret sharing game, the parties can

perform some computation before guessing the value of the secret. For our

† We notice that, in general, it matters in which order one removes the weakly dominated strate-
gies. The specific order chosen above seems natural, however, and will not affect the results we
present below.
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communication model, we assume that it is strong enough to perform generic

multiparty computation, since this will be the case in the application to the

function evaluation game. (On the other hand, we will only need MPC with

correctness and privacy, and not necessarily fairness.) Additionally, if not

already present, we also assume the existence of a simultaneous broadcast

channel, where at each round all parties can simultaneously announce some

message, after which they atomically receive the messages of all the other

parties. Our goal is to build a preamble protocol for which the outcome of

all the parties learning the secret z will be a k-resilient Nash equilibrium for

the extended game which survives IDoWDS.

As we observed already, the natural 1-round preamble protocol where each

party is supposed to simply broadcast its share does not survive IDoWDS.

In fact, a simple backward induction argument shows that any preamble

protocol having an a-priori fixed number of simultaneous broadcast rounds

(and no other physical assumptions, such as envelopes and ballot-boxes)

cannot enable the parties to rationally learn the secret and survive IDoWDS.

Luckily, it turns out that we can have probabilistic protocols with no fixed

upper bound on the number of rounds, but which have a constant expected

number of rounds until each party learns the secret. We sketch the simplest

such protocol below. W.l.o.g. we assume that the domain of the secret

sharing scheme is large enough to deter random guessing of z, and also

includes a special value denoted ⊥, such that z is guaranteed to be different

from ⊥.

Let α ∈ (0, 1) be a number specified shortly. At each iteration r ≥ 1, the

parties do the following two steps:

(i) Run a MPC protocol on inputs zi which computes the following prob-

abilistic functionality. With probability α, compute fresh and random

(k, n)-secret sharing z′1 . . . z′n of z, where party Pi learns z′i. Other-

wise, with probability 1 − α compute a random (k, n)-secret sharing

z′1 . . . z′n of ⊥, where party Pi learns z′i.†

(ii) All parties Pi simultaneously broadcasts z′i to other parties.

(iii) If either the MPC protocol fails for even one party, or even one party

failed to broadcast the value z′i, all parties are instructed to abort.

(iv) Each party tries to recover some value z′ from the shares received

by the other parties. If the recovery fails, or at least one share is

inconsistent with the final value z′, the party aborts the preamble.

Otherwise, if z′ = ⊥ the parties proceed to the next iteration, while

† This protocol is typically pretty efficient for the popular Shamir’s secret sharing scheme.
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in case z′ 6= ⊥ the parties stop the preamble and output z′ as their

guess for z.

Notice, by the privacy of the MPC step, no coalition C of up to k parties

knows if the value z′ is equal to z or ⊥. Thus, in case this coalition chooses

not to broadcast their shares, they will only learn the value z (while pun-

ishing all the other parties) with probability α, and not learn the value z

forever with probability 1 − α. Thus, if α is small enough (depending on

the particular utilities), the risk of not learning the secret will outweigh the

gain of achieving higher exclusivity. Also, it is easy to see that no strategy

of the above protocol is weakly dominated by another strategy, so the above

Nash equilibrium survives IDoWDS.

The above protocol works for any k. However, it runs in expected O(1/α)

iterations, which is constant, but depends on the specific utilities of the

parties (and the value k). Somewhat more sophisticated protocols are known

to work for not too large k, but have expected number of iterations which is

independent of the utilities. These results are summarized without further

details below.

Theorem 1.11 Assume the parties utilities satisfy correctness over exclu-

sivity properties for the (k, n)-secret sharing game. Then there exists k-

resilient Nash equilibria for the extended game which survive IDoWDS and

run in expected constant number of iterations r, where

• k < n, but r depends on the specific utilities.

• k < n/2, r is fixed, but the parties still need to know a certain parameter

depending on the specific utilities.

• k < n/3, r is fixed, and no other information about the utilities is needed.

1.6 Conclusions

As we have seen, the settings of MPC in cryptography and correlated equi-

librium in game theory have many similarities, as well as many differences.

Existing results so far started to explore these connections, but much works

remains to be done. For example, can we use some flavors of MPC to re-

move the mediator, while achieving very strong types of Nash equilibria,

but with more realistic physical and other set-up assumptions? Or can we

use game theory to ?rationalize? MPC protocols for non-NCC functions

(such as parity), or to explain other popular cryptographic tasks such as

commitment or zero-knowledge proofs? Additionally, so far ?rationalizing?

MPC using game theory resulted only in more sophisticated protocols. Are
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there natural instances where assuming rationality will simplify the design

of cryptographic tasks?

1.7 Notes

The multiparty computation problem (Section 1.1) was introduced in Yao

[Yao82]. The basic definitional and construction approaches were introduced

in Goldreich, Micali and Wigderson [GMW87], in particular the paradigm of

a real/ideal execution. In Section 1.1.1 we follow the definitional framework

of Canetti [Can00], which is based on the works of Goldwasser and Levin,

Micali and Rogaway, and Beaver [GL90, MR91, Bea91] (respectively). The

results mentioned in Theorem 1.2 are from the following: parts i.a and

i.b from Goldreich, Micali and Wigderson [GMW87], part i.c from Lepinski,

Micali, Peikert and shelat [LMPS04], part ii.a from Ben-Or, Goldwasser and

Wigderson [BGW88] and Chaum, Crepeau and Damgard [CCD88], part ii.b

from Rabin and Ben-Or [RB89] and Beaver [Bea91], part ii.c from Izmalkov,

Lepinski and Micali [ILM05]. The secret Sharing protocol presented is

Shamir’s Secret Sharing [Sha79]. The notion of indistinguishability was

introduced in Goldwasser and Micali [GM84]. For a more formal and in

depth discussion on multiparty computations see Goldreich [Gol04].

In Section 1.2 we present the classical results of Nash [Nas51] and Aumann

[Aum74] for Nash and correlated equilibrium (respectively). The extension

of correlated equilibrium to games with incomplete information is due to

Forges [For86]. The notion of extended games is from Barany [Bar92]. For a

broader game theory background, see the book by Osborne and Rubinstein

[OR99].

The comparison discussion between Game Theory and Cryptography, as

it appears in Section 1.3, was initiated in Dodis, Halevi and Rabin [DHR00]

and later expanded by Feigebaum and Shenker [FS02]; yet here we further

expand on these points. The related discussion was also carried out in many

other works, such as [Bar92, LMPS04, ILM05, ADGH06].

The notion of computational equilibrium which appears in Section 1.4.1

was introduced in [DHR00]. The work of Urbano and Vila [UV02, UV04]

also deals with the computational model, but does not explicitly define this

notion. The importance of tolerating collusions was first addressed in our

setting by [FS02]. For the k-resilient equilibrium we chose the formula-

tion of Abraham, Dolev, Gonen and Halpern [ADGH06], as we felt it best

suited our presentation. For other related formulations, see the references in

[ADGH06], and also a recent work of Lysyanskaya and Triandopoulos [LT06].

The results which appear in Section 1.4.2 appear in the following. Theo-
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rem 1.5 follows by combining results such as [DHR00, Bar92, BP98, Ger04,

UV02, UV04] and [ADGH06]. The result for using fair MPC appears in

[LMPS04]. The introduction of a min-max punishment to deal with unfair

MPC in the attempt to remove the mediator appears in [DHR00]. For some

efficiency improvements to the protocol of [DHR00], see the works of Teague

[Tea04] and Attalah et al. [ABFL06]. The results which appear in Section

1.4.2 appear in the following. The worst equilibrium punishment technique

was first applied to unmediated games by Ben-Porath [BP98]. The notion

of collusion free protocols which is used to implement ex ante equilibria

is from the work of Lepinski, Micali and shelat [LMas05]. The result of

achieving strategic and privacy equivalence under physical assumptions is

from [ILM05].

The non-cooperative computation formulation and some discussion used

in Section 1.5.1 are introduced (for k = 1) by Shoham and Tennenholtz

[ST05], and expanded by McGrew, Porter and Shoham [MPS03]. Theorem

1.8 is also from [ST05], while the formulation of “correctness followed by

exclusivity” utilities is from Halpern and Teague [HT04]. The results in

Section 1.5.2 appear as follows. The introduction of rational secret sharing

surviving IDowDS and the impossibility result of reaching it in a fixed num-

ber of rounds are from [HT04]. The protocol for rational secret sharing we

present appears in [ADGH06] and (for k = 1) by Gordon and Katz [GK06].

Yet, a more complicated and less general solution along these lines appeared

first (for k = 1) in [HT04]. Theorem 1.11 is from [ADGH06]. For a different,

but related “mixed MPC” model, see [LT06].
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