
Encapsulated Search Index:

Public-Key, Sub-linear, Distributed, and Delegatable

Erik Aronesty
Atakama

David Cash
University of Chicago

Yevgeniy Dodis
New York University

Daniel H. Gallancy
Atakama

Christopher Higley
Atakama

Harish Karthikeyan
New York University

Oren Tysor
Atakama

January 18, 2022

Abstract

We build the first sub-linear (in fact, potentially constant-time) public-key searchable en-
cryption system:

− server can publish a public key PK.

− anybody can build an encrypted index for document D under PK.

− client holding the index can obtain a token zw from the server to check if a keyword w
belongs to D.

− search using zw is almost as fast (e.g., sub-linear) as the non-private search.

− server granting the token does not learn anything about the document D, beyond the
keyword w.

− yet, the token zw is specific to the pair (D,w): the client does not learn if other keywords
w′ 6= w belong to D, or if w belongs to other, freshly indexed documents D′.

− server cannot fool the client by giving a wrong token zw.

We call such a primitive Encapsulated Search Index (ESI). Our ESI scheme can be made (t, n)-
distributed among n servers in the best possible way: non-interactive, verifiable, and resilient
to any coalition of up to (t − 1) malicious servers. We also introduce the notion of delegatable
ESI and show how to extend our construction to this setting.

Our solution — including public indexing, sub-linear search, delegation, and distributed
token generation — is deployed as a commercial application by Atakama.

1

Contents

1 Introduction 4
1.1 Our Main Tool: Encapsulated Verifiable Random Function 5
1.2 Our EVRF Constructions . 7
1.3 ESI vs Other Searchable Encryption Primitives . 8

2 Preliminaries 9

3 Encapsulated Search Index 10
3.1 Standard Encapsulated Search Index . 10
3.2 Extensions to ESI . 12
3.3 Threshold Encapsulated Search Index . 12
3.4 Delegatable Encapsulated Search Index . 14
3.5 Updatable Encapsulated Search Index . 16

4 Encapsulated Verifiable Random Functions (EVRFs) 16
4.1 Standard EVRFs . 16
4.2 Generic Construction of Encapsulated Search Index 18
4.3 Extensions to EVRFs . 19
4.4 Standard EVRF . 20

5 Threshold Encapsulated Verifiable Random Functions 21
5.1 Definition of Threshold (or Distributed) EVRFs . 21
5.2 Construction of Threshold (or Distributed) EVRFs 23

6 Delegatable Encapsulated Verifiable Random Functions 25
6.1 Definition of Delegatable EVRFs . 25
6.2 Construction of Basic Delegatable EVRF . 28
6.3 Construction of Uni- and Bidirectional Delegatable EVRF 30
6.4 Construction of One-time Delegatable EVRF . 31

7 Conclusion and Final Thoughts 32

A ESI, in Practice 37
A.1 Indexing and Search Functionality . 38

B Bilinear Groups and Hardness Assumptions 39
B.1 Generic Group Model Proof for iBDDH Assumption 41

C Deferred Security Proofs 43
C.1 Proof of Encapsulated Search Index security . 43
C.2 Proof of EVRF security . 44
C.3 Proof of TEVRF security . 46
C.4 Proof of Basic Delegation Security . 48
C.5 Proof of Unidirectional Delegation Security . 50
C.6 Proof of Bidirectional Delegation Security . 52

2

C.7 Proof of One-Time Delegation Security . 56

3

1 Introduction

Imagine the user Alice has a powerful but potentially insecure device, which we call Desktop. Since
the Desktop is insecure (at least when not used by Alice), Alice cannot permanently store any
secret keys on the Desktop. Instead, all the secret keys she will need for her work should be stored
on a more secure, but weaker device, which we call Phone.

Alice works on the Desktop and periodically generates large documents D1, D2 . . . , that she
might want to index separately.1 Since the documents are sensitive, Alice will always keep the
indices encrypted, with the secret key stored on the Phone (and capable of supporting multiple
documents D1, D2, . . . with the same key). Moreover, when the Phone approves her search request
for keyword w inside the document D, the token zw should only tell if w ∈ D, but will not reveal
anything else: either about different keywords w′ in D, or the same keyword w for another document
D′ (that Alice indexed separately).

Encapsulated Search Index. In order to solve the above motivating application, we will
introduce a new primitive, which we term Encapsulated Search Index (ESI). As we will illustrate in
Section 1.3, ESI is different than previously studied primitives in the area of searchable encryption.
But for now, we informally summarize the main functionality and security properties of ESI (see
also Definition 1):

− Phone can generate secret key SK, and send public key PK to the Desktop.

− Given PK and document D, Desktop can build an encrypted index E for D, and a “compact”
handle c.

− D is then encrypted and erased (together with any local randomness created during the
process), and Desktop only remembers E, c and PK.

− Desktop can ask the Phone’s permission to search for keyword w in D, by sending it w and
the compact handle c.

− If approved, the Phone will use the secret key SK to grant token z = z(w, c, SK) to the
Desktop.

− The Phone does not learn anything beyond w from the handle c. This should hold information-
theoretically.

− The Desktop can verify that the token z indeed corresponds to w, and, if so, use E, c, z and
PK to correctly learn if w ∈ D. In particular, the Phone cannot cause the Desktop to output
a wrong answer (beyond denial of service).

− The token z is specific to the pair (D,w): the Desktop does not learn if other keywords
w′ 6= w belong to D, or if w belongs to other, freshly indexed documents D′.

− While each tuple (E, c) is specific to the document D, the same (PK,SK) pair should work
for future documents D′, without compromising security.

1In fact, our solution will allow for generating secure indices even outside the Desktop, possibly by different parties.
But for simplicity, we discuss the already interesting setting where Alice herself generates indices on the Desktop.

4

Remark 1. For simplicity, we had the Desktop serve the role of both index creator and the storage
location with the Phone serving the role of the search approver. However, the same could be gener-
alized to the setting where the storage location is a company server, a trusted Desktop is the index
creator, and the Phone is the search approver — all three being different parties.

Additionally, in a good ESI, the overall search by the Desktop is much faster than the number
of keywords in D. In fact, ideally, the bulk of the search should be done by the Desktop using any
non-private dictionary structure, while the interaction between the Phone and the Desktop should
have constant size/complexity, independent of |D|. Our main construction will have this property.

Extensions of ESI. For applications, we would also like to consider various extensions of ESI.
First, to mitigate Alice’s worry that her Phone might be compromised, she might want to use

a secure indexing scheme that is “friendly” to distributed implementation. For example, she might
wish to secretly share her master key between her Phone, Laptop, and iPad (which we call mobile
devices to differentiate them from the Desktop) in a way that she gets the token whenever two of
them approve her search request. Moreover, this process should be non-interactive. The Desktop
will send a request “Do you authorize to search document D for keyword w?” to each of the n
mobile devices, and gets the token zw the moment t ≤ n of them respond affirmatively. Moreover,
the Desktop can separately verify the authenticity of each of the shares from the mobile devices
(which is why it does not need to wait for all n to respond). The resulting notion of threshold ESI
is formalized in Definition 2. This would correspond to the setting of multiple devices serving the
role of the search approver.

Second, Alice might wish to delegate her searching ability to another user Bob, without the
need to re-index the document. (A special case of this scenario is Bob being “Alice with a new
Phone”.) In this case, Alice does not want to freshly re-index the document, meaning that the
encrypted index E should not change. Instead, she only wants to convert the compact “handle”
c corresponding to her PK to a new compact handle c′ corresponding to Bob’s public key PK ′.
Once this conversion is done, Bob can use the pair (E, c′) with his Phone to search for keywords
in the same document D. We formalize several flavors of such delegatable ESI in Definition 3.

Finally, we might want to have the ability to update the index E by adding and deleting the
keyword. In an updatable ESI, formalized in Definition 4, the token zw sent by Phone is also
sufficient for the Desktop to update E to E′ accordingly: remove, w if w was in D, or add it if it
was not. This does not affect the handle c.

1.1 Our Main Tool: Encapsulated Verifiable Random Function

Naive Solution. Before introducing our solution approach, it is helpful to start with the naive
solution which almost works. The Phone can generate a (PK,SK) pair for a chosen-ciphertext-
attack (CCA) secure encryption scheme. To index a document D, the Desktop can choose a seed k
for a pseudorandom function (PRF) Fk, and generate a standard (non-private) index E by replacing
each keyword w ∈ D with the PRF value y = Fk(w). These values are pseudorandom (hence, also
distinct w.h.p.); thus, index E will not reveal any information about D except the number of
keywords N .

The Desktop will finally generate a ciphertext c encrypting k under PK, and then erase the
PRF key k. To get token for keyword w, the Desktop will send the tuple (c, w) to the Phone, which
will decrypt c to get k, and return y = Fk(w).

5

This naive solution satisfies our efficiency property and almost all the security properties. For
example, the value c is independent of the document D, so the Phone does not learn anything
about the document (including search results). Similarly, the Desktop cannot use the token y to
learn about other keyword w′, as y′ = Fk(w

′) is pseudorandom given y = Fk(w). The only basic
property missing is verifiability: the Desktop cannot tell if the value y indeed corresponds to w.
This can be fixed by replacing PRF FK with a verifiable random function (VRF) [38]. A VRF has
its own public-secret key pair (pk, sk). For each input w, the owner of sk can produce not only the
function value y = Fsk(w), but also a “proof” z = z(sk, w). This proof can convince the verifier
(who only knows pk) that the value y is correct, while still leaving other yet “unproven” output
y′ = Fsk(w

′) pseudorandom. While initial treatment of VRF focused on the “standard model”
constructions [23, 24, 37, 38], VRFs are quite efficient in the random oracle model. In particular,
several such efficient constructions are given the CFRG VRF standard [31,32].

Deficiencies of the Naive Solution. While the composition of VRF and CCA encryption
indeed works for the most basic ESI notion — and shows that sublinear search can be meaningfully
combined with public indexing2 — it seems too inflexible for our two main extensions: threshold
ESI and delegatable ESI.

For threshold ESI, achieving “decrypt-then-evaluate-VRF” functionality non-interactively ap-
pears quite challenging with the current state-of-the-art. In particular, a natural way to accom-
plish this task would be to combine some non-interactive threshold CCA-decryption with a non-
interactive threshold VRF implementation. Each of these advanced primitives is highly non-trivial
but exists in isolation. For example, the works of [7, 12] show how to achieve non-interactive
CCA-secure decryption in bilinear map groups. Unfortunately (for our purposes), both of these
constructions encrypt elements of the “target bilinear group” G1 (see Section B). Thus, to get
a non-interactive threshold ESI scheme we will need to build a non-interactive threshold VRF
in which the secret key resides in the bilinear target group G1. No such construction is known,
however. In fact, we are aware of only two recent non-interactive threshold VRF schemes, both
proposed by [28].3 Unfortunately, both of these constructions have the secret key over the standard
group Zp, and cannot be composed with the schemes of [7, 12]. Hence, we either need to build
a new (threshold) VRF with secret keys residing in G1, or build a new, non-interactive4 threshold
CCA decryption with keys residing in Zp. Both options seem challenging.

For delegatable ESI, our definitions (and the overall application) require an efficient procedure
S-Check(PK1, c1, PK2, c2) to check that the new handle c2 was indeed delegated from c1. The
naive delegation scheme of decrypting c1 to get VRF key sk, and then re-encrypting sk with PK2

does not have such efficient verifiability. We could try to attach a non-interactive zero-knowledge
(NIZK) proof for this purpose, but such proof might be quite inefficient, especially with chosen
ciphertext secure encryptions c1 and c2.

Our New Tool: Encapsulated VRF. Instead of tying our hands with the very specific and
inflexible “CCA-encrypt-VRF-key” solution, we introduce a general primitive we call encapsulated
VRF (EVRF). This primitive abstracts the core of the naive solution, but without insisting on a
particular implementation. Intuitively, an EVRF allows the Phone to publish a public key PK,
keep secret key SK private so that the Desktop can use PK to produce a ciphertext C and trapdoor

2ESI is the first searchable encryption primitive to do so; see Section 1.3.
3As other prior distributed VRFs were either interactive [23,36], or had no verifiability [2,39] or offered no formal

model/analysis [16, 17,21,35,44].
4E.g., we cannot use the interactive threshold Cramer-Shoup [19] construction of [13].

6

key T in a way that for any input w, the correct VRF value y on w can be efficiently evaluated in
two different ways:

(a) Phone: using secret key SK and ciphertext C.

(b) Desktop: using trapdoor T .

In addition, if the Desktop erased T and only remembers C, PK, and w:

(c) Phone can produce a proof z convincing Desktop that the value y is correct.

(d) Without such proof, the value y will look pseudorandom to the Desktop.

These properties are formalized in Definition 5. It is then easy to see that we can combine any
EVRF with a non-private dictionary data structure, by simply replacing each keyword w with EVRF
output y, just as in the naive solution. See Construction 1. Moreover, this construction is very
friendly to all our extensions. If the EVRF is a threshold (resp. delegatable) — see Definitions 8,10,
— then we get threshold (resp. delegatable) ESI. Similarly, if the non-private data structure allows
updates, our ESI construction is updatable.

To summarize, to efficiently solve all the variants of our Encapsulated Search Index scenario,
we just need to build a custom EVRF which overcomes the difficulties we faced with the naive
composition of VRF and CCA encryption.

1.2 Our EVRF Constructions

This is precisely what we accomplish: we build a simple and efficient EVRF under the Bilinear
Decisional Diffie-Hellman (BDDH) assumption [9], in the random oracle model. Our basic EVRF is
given in Construction 2. It draws a lot of inspiration and resemblance to the original Boneh-Franklin
IBE (BF-IBE) [9], but with a couple of important tweaks. In essence, we observe that BF-IBE
key encapsulation produces the ciphertext R = gr which is independent of the “target identity”.
Hence, we can use this value R as “part of identity” ID = (R,w), where w is our input/keyword, and
still have a meaningful “ID-based secret key” zw corresponding to this identity. On the usability
level, this trick allows the index generator to produce the value R = gr before any of subsequent
EVRF inputs (keywords in our application) w will be known. On a technical level, it allows us to
“upgrade” BF-IBE from a chosen-plaintext attack (CPA) to CCA security for free.

Additionally, in Section 5.2 we show that our VRF construction easily lends itself to very simple,
non-interactive threshold EVRF (which gives threshold ESI), by using Shamir’s Secret Sharing [46],
Feldman VSS [26], and the fact that the correctness of all computations is easily verified using the
pairing. The resulting (t, n)-threshold implementation, given in Construction 3, is the best possible:
it is non-interactive and every share is individually verifiable, which allows computing the output
the moment t correct shares are obtained.

Finally, Sections 6.2,6.3,6.4 extend our basic EVRF to various levels of delegatable EVRFs
(which yield corresponding delegatable ESIs). All our constructions have a very simple delegation
procedure, including a simple “equivalence” check to test if two handles correspond to the same
EVRF under two different keys (which was challenging in the naive construction). The most basic
delegatable EVRF in Sections 6.2 (Construction 4) is shown secure under the same BDDH assump-
tion as the underlying EVRF. It assumes that all delegations are performed by non-compromised
devices.

7

To handle delegation to/from an untrusted device, we modify our underlying EVRF construction
to also include “BLS Signature” [11], to ensure that the sender “knew” the value r used to generate
the original handle R = gr. See Section 6.3 and Construction 5. This new construction is shown to
have “unidirectional” delegation security under the same BDDH assumption. Finally, we show that
the same construction can be shown to satisfy even stronger levels of “bidirectional” delegation
security, albeit under slightly stronger variants of BDDH we justify in the generic group model (see
Sections 6.3,6.4 and Appendix B.1).

1.3 ESI vs Other Searchable Encryption Primitives

The notion of ESI is closely related to other searchable encryption primitives: most notably, Search-
able Symmetric Encryption (SSE) [5, 15, 20, 22, 22, 30] and Public-Key Encrypted Keyword Search
(PEKS) [1, 4, 8, 10, 43, 49]. Just like ESI, SSE and PEKS achieve the most basic property of any
searchable encryption scheme, which we call index privacy: knowledge of encrypted index E and
several tokens zw does not reveal information about keywords w′ for which no tokens were yet
given. I.e., the keywords in the index that have not been searched so far continue to remain pri-
vate. Otherwise, the SSE/PEKS primitives have some notable differences from ESI. We discuss
them below, simultaneously arguing why SSE/PEKS does not suffice for our application.

Setting of SSE. As suggested by its name, in this setting the index creator is the same party
as the search approver, meaning that both parties must know the secret key SK which is hidden
from the Desktop storing the index. On the positive, this restriction allows for some additional
properties which are hard or even impossible in the public-indexing setting of the ESI (and PEKS;
see below). First, they allow for “universal searching”, where the search approver can produce
the token zw without getting the document-specific handle c: such token allows to simultaneously
search different indices E1, E2, . . . corresponding to different documents D1, D2,

5

Second, one can talk about so-called “hidden queries” [22] which essentially captures the idea
of “keyword-privacy”. Specifically, the adversary who knows the index E and keyword token z
should not learn if z corresponds to keywords w0 or keyword w1.

6 With public-key indexing, such a
strong semantic-security guarantee is impossible, at least when combined with universal searching:
the adversary can always generate the index for some document D0 containing w0 and not w1 and
then test if z works on this index.

We notice that “keyword privacy” and universal searching are not important for our motivating
application. In fact, w is generated by Alice when using the Desktop (and will be erased when no
longer relevant). Moreover, our verifiability property of the ESI explicitly requires that the Desktop
can check that the token zw is correct, explicitly at odds with keyword privacy. Additionally, when
Alice sees the prompt on her phone asking if it is OK to search for the keyword w, she generally
wants to know in what context (i.e., to what document D) this search would apply; and will not
want a compromised token zw to search a more sensitive document D′. Thus, we do not insist on
universal searching either in the ESI setting.

5From an application perspective, universal and document-specific setting are incomparable, as some application
might want to restrict which keywords are allowed for different databases. On a technical level, however, a universal
scheme can always be converted to a document-specific one, by prefixing the keyword with the name of the document
D. Thus, universal searching is more powerful.

6Unfortunately, as surveyed by Cash et al. [14] and further studied by [20,34] (and others), all SSE schemes in the
literature do not achieve the strongest possible keyword privacy and suffer from various forms of information leakage.

8

On the other hand, the biggest limitation of SSE — the inability to perform public-key indexing,
— makes it inapplicable to our motivating application. First, at the time of index creation, Alice
already has the entire document D she wants to index on the Desktop, and she does not want
to transmit this gigantic document to the Phone, have the Phone spend hours indexing it (or
possibly run out of memory doing so), and then send the (also gigantic) index back to the Desktop.
Second, even if efficiency was not an issue, Alice is not willing to fully trust her Phone either. For
example, while Alice hopes that the Phone is more secure than the Desktop, it might be possible
that the Phone is compromised as well. In this case, Alice wants the (compromised) Phone to only
learn which keywords w she is searching for, but not to learn anything else about the document D
(including if her searches were successful!). Moreover, even if Alice had a secure channel between
the Desktop and the Phone, she does not want to use SSE and send-then-erase the corresponding
secret key. Indeed, this method requires the phone to store a separate secret key for each document
and also does not allow other parties to generate encrypted indexes for different files — a convenient
feature Alice might find handy in the future.

To sum up, Alice wants to generate the entire encrypted index E on her Desktop (and then
erase/encrypt the document D), without talking to the Phone, and only contact the Phone to help
authorize subsequent keyword searches. This means that SSE is inapplicable, and we must use
public-key cryptography.

Setting of PEKS. In a different vein, PEKS allows Alice to publish a public-key PK allowing
anybody to create her encrypted index. Akin to SSE, PEKS also demand universal searching,
meaning that the token zw can be produced independently of the (handle c for the) document D.
This means that strong keyword privacy is impossible (and, thus, not required) in PEKS.

More significantly for our purposes, this feature makes searching inherently slow: not as an
artifact of the existing PEKS scheme, but as already mandated even by the syntax of PEKS.
Specifically, to achieve universality, the index is created by indexing each keyword w′ ∈ D one-
by-one (using PK), and then the token zw can only be used to test each such “ciphertext” e
separately, to see whether or not it corresponds to w′ = w. Thus, inherently slow searching makes
PEKS inapplicable as well for our motivating application. In contrast, the searching in the ESI is
(required to be!) document-specific. As a result, we will be able to achieve the sublinear searching
we desire.

Summary Comparison. Summarizing the above discussion (see Table 1), we can highlight five
key properties of a given searchable encryption scheme: public-key indexing, sublinear search,
universal search, keyword privacy, and index privacy. All of ESI/SSE/PEKS satisfy (appropriate
form) of index privacy, and differ — sometimes by choice (ESI) or necessity (PEKS) — in terms of
keyword privacy. So the most interesting three dimensions separating them are public-key indexing,
sublinear search, and universal search, where (roughly) each primitive achieves two out of three. For
our purposes, however, ESI is the first primitive which combines public-key indexing and sublinear
search, which is precisely the setting of our motivating example. This forms the backbone of the
commercially deployed product called Atakama [3].

2 Preliminaries

Notation. In this paper, we let k be a security parameter. We employ the standard cryptographic
model in which protocol participants are modeled by probabilistic polynomial (in k) time Turing

9

Table 1: A comparison of SSE, PEKS, and ESI.
SSE PEKS ESI

Public-Key Indexing 7 3 3

Sublinear Search 3 7 3

Universal Index 3 3 7

Index Privacy 3 3 3

Keyword Privacy 3 (partial) 7 (impossible) 7 (by choice!)

machines (PPTs). We use poly(k) to denote a polynomial function, and negl(k) to refer to a
negligible function in the security parameter k. For a distribution X, we use x← X to denote that
x is a random sample drawn from distribution X. For a set S we use x ← S to denote that x is
chosen uniformly at random from the set S. Additionally, we use the equality operator to denote
a deterministic algorithm, and the →,← operation to indicate a randomized algorithm.

Further, our EVRF constructions will use some “cryptographic hash function(s)” H,H ′ :
{0, 1}∗ → G mapping arbitrary-length strings (denoted {0, 1}∗) to elements of the bilinear group
G. We produce a formal discussion about bilinear groups in Section B. The key property of these
groups are that: for all u, v ∈ G and x, y ∈ Z, we have e(ux, vy) = e(u, v)xy. In our security
proofs, where we reduce EVRF security to an appropriate assumption from Section B, we model
the cryptographic hash functions as random oracles.

3 Encapsulated Search Index

We begin by formally introducing the new primitive of standard Encapsulated Search Index in Sec-
tion 3.1, defining its syntax and security. We then present extensions to this primitive, adding fea-
tures such as distribution (section 3.3), delegatability (section 3.4), and updatability (section 3.5).

3.1 Standard Encapsulated Search Index

We discussed, at length, the motivating application or setting for the primitive we call as Encap-
sulated Search Index in Section 1.
For visual simplicity, for the remainder of this section we will use upper-case letters (D,E, Y , etc.)
to denote objects whose size can depend on the size of document D (with the exception of various
keys SK,PK, etc.), and by lower-case letters (c, s, r, z, w, etc.) objects whose size is constant.

In the definition below, we let k be a security parameter, PPT stand for probabilistic polynomial-
time Turing machines, poly(k) to denote a polynomial function, and negl(k) to refer to a negligible
function in the security parameter k.

Definition 1. An Encapsulated Search Index (ESI) is a tuple of PPT algorithms ESI = (KGen,Prep, Index,S-Split,S-Core,Finalize)
such that:

− KGen(1k)→ (PK,SK): outputs the public/secret key pair.

− Prep(PK)→ (s, c): outputs compact representation c, and trapdoor s.

− Index(s,D) = E: outputs the encrypted index E for a document D using the trapdoor s.

− S-Split(PK, c′) = r′: outputs a handle r′ from the representation c′.

10

− S-Core(SK, r′, w) = z′: outputs a partial result z′ from the handle r′.

− Finalize(PK,E′, c′, z′, w) = β ∈ {0, 1,⊥}: outputs 1 if the word w is present in the original
document D, 0 if not present, and ⊥ if the partial output z′ is inconsistent.

Before we define the security properties, it is useful to define the following shorthand functions:

− BldIdx(PK,D) = (Index(s,D), c), where (s, c)← Prep(PK).

− S-Prove(PK,SK, c, w) = S-Core(SK,S-Split(PK, c), w).

− Search(PK,SK, (E, c), w) = Finalize(PK,E, c,S-Prove(SK, c, w), w).

We require the following security properties from this primitive:

1. Correctness: with prob. 1 (resp. (1 − negl(k))) over randomness of KGen and Prep, for
all documents D and keywords w ∈ D (resp. w 6∈ D):

Search(PK,SK,BldIdx(PK,D), w) =

{
1 if w ∈ D
0 if w 6∈ D

2. Uniqueness: there exist no values (PK,E, c, z1, z2, w) such that b1 6= ⊥, b2 6= ⊥ and b1 6= b2,
where:

b1 = Finalize(PK,E, c, z1, w); b2 = Finalize(PK,E, c, z2, w)

3. CCA Security: We require that for any PPT algorithm A = (A1,A2) the following holds,
where A does not make the query S-Prove(PK,SK, c∗, w) with w ∈ (D1 \D2) ∪ (D2 \D1)
and |D1| = |D2|, for variables SK, c∗, D1, D2, w defined below:

Pr

 b = b′

(PK,SK)← KGen(1k);

(D1, D2, st)← AS-Prove(PK,SK,·,·)1 (PK);
b← {0, 1};

(E∗, c∗)← BldIdx(PK,Db);

b′ ← AS-Prove(PK,SK,·,·)2 (E∗, c∗, st)

 ≤
1

2
+ negl(k)

4. Privacy-Preserving 7: We require that for any PPT Algorithm A = (A1,A2) which outputs
documents D1, D2 such that |D1| = |D2| for variables D1, D2 defined below, the following
holds:

Pr

 b = b′

(PK,SK)← KGen(1k);
(D1, D2, st)← A1(PK,SK);

b← {0, 1};
(E∗, c∗)← BldIdx(PK,Db);

b′ ← A2(c∗, st)

 ≤ 1

2
+ negl(k)

7It is easy to see that our syntax guarantees that any ESI construction is unconditionally Privacy-Preserving
(even with knowledge of SK), for the simple reason that Prep that produces c does not depend on the input
document D. Thus, we will never explicitly address this property, but list it for completeness, as it is important for
our motivating application.

11

Remark 2. We want to ensure that an honest representation c1 will not collide with another honest
representation c2. With this, we can ensure that honestly generated documents do not conflict. If
there is a non-trivial chance of such a collision, then one can simply generate c2 until collision with
the challenge c1. With this collision, and with knowledge of trapdoor T2, one can trivially break
security.

Remark 3. For efficiency, we will want Search to run in time O(logN) or less, where N is the
size of the document D. In fact, our main construction will have S-Prove run in time O(1), inde-
pendent of the size of the document, and Finalize would run in time at most O(logN), depending
on the non-cryptographic data structure we use.

3.2 Extensions to ESI

Threshold ESI. We extend the definition of the standard Encapsulated Search Index to achieve
support for distributed token generation. To do this, we introduce a new algorithm called KG-Verify
that aims to verify if the output of the KGen algorithm is correct, and replace Finalize with two
more fined-grained procedures S-Verify and S-Combine. The formal discussion about the
syntax and security of this primitive can be found in Section 3.3.

Delegatable ESI. We can also extend the definition of the standard Encapsulated Search Index
to achieve support for delegation. Informally, Encapsulated Search Index is delegatable if there are
two polynomial-time procedures S-Del,S-Check that work as follows: S-Del that achieves the
delegation wherein it takes as input a representation c corresponding to one key pair and produces
a representation c′ corresponding to another key pair; S-Check helps verify if a delegation was
performed correctly. The formal discussion about the syntax and security of this primitive, including
several definitional subtleties, can be found in Section 3.4.

Updatable ESI. We can further extend the definition of the standard Encapsulated Search Index
to support a use-case where one might want to remove a word, or add a word to the document D,
without having to necessarily recompute the entire index. To achieve this, we need an additional
algorithm called Update that can produce a new index E′ after performing an action relating to
word w in original index E, using the same token zw used for searching. The formal discussion
about the syntax and security of this primitive can be found in Section 3.5.

3.3 Threshold Encapsulated Search Index

Definition 2. A (t, n)-threshold Encapsulated Search Index (TESI) is a tuple of PPT algorithms
TESI = (KGen,KG-Verify,Prep, Index, S-Split, S-Core, S-Verify,S-Combine) such that:

− KGen(1k, t, n) → (PK,SK = (sk1, . . . , skn),VK = (vk1, . . . , vkn)): outputs the public key
PK, a vector of secret shares SK, and public key PK.

− KG-Verify(PK,VK) = β ∈ {0, 1}: verifies that the output of KGen is indeed valid.

− Prep(PK)→ (s, c): outputs compact representation e, and trapdoor s.

− Index(s,D) = E: outputs the encrypted index E for a document D using the trapdoor T .

− S-Split(PK,n, c′) = (r′1, . . . , r
′
n): outputs n handles r′1, . . . , r

′
n from c′.

12

− S-Core(ski, r
′
i, w) = z′i: outputs partial result on input x using handle r′i and secret key share

ski.

− S-Verify(PK, vki, z
′
i, w) = β ∈ {0, 1}: verifies that the share z′i produced by party i is valid.

− S-Combine(PK,E′, c′, z′i1 , . . . , z
′
it
, w) = β ∈ {0, 1}: uses the partial shares to determine if

the word w is present in D or not 8.

Before we define the security properties, it is useful to define the following shorthand functions:

− BldIdx(PK,D) = (Index(s,D), c) where (s, c)← Prep(PK).

− S-Prove(SK, i, c, w) = S-Core(ski, ri, w) where r1, . . . , rn = S-Split(PK, n, c)

− Search(SK, i1, . . . , it, (E, c), w): For j = 1, . . . , t let zij = S-Prove(SK, i, c, w).
Output ⊥ if, for some 1 ≤ j ≤ t, S-Verify(PK, vkij , zij , w) = 0.
Otherwise, output S-Combine(PK,E, c, zi1 , . . . , zit , w).

We require the following security properties from this primitive:

1. Correctness:

(a) with prob. 1 over randomness of KGen(1k, t, n)→ (PK,SK,VK),
KG-Verify(PK,VK) = 1.

(b) with prob. 1 (resp. (1−negl(k))) over randomness of KGen and Prep, for all documents
D and keywords w ∈ D (resp. w 6∈ D):

Search(SK, i1, . . . , it,BldIdx(PK,D), w) =

{
1 w ∈ if D

0 w if 6∈ D

2. Uniqueness: there exist no values (PK,VK, E, c, Z1, Z2, w) where Z1 = ((i1, zi1), . . . , (it, zit))
and Z2 = ((j1, zj1), . . . , (jt, zjt)). s.t.

(a) Gen-Vfy(PK,VK) = 1,

(b) for k = 1, . . . , t:

− S-Verify(PK, vkik , zik , w) = 1.

− S-Verify(PK, vkjk , zjk , w) = 1,.

(c) and

S-Combine(PK,E, c, zi1 , . . . , zit , w) 6= S-Combine(PK,E, c, zj1 , . . . , zjt , w)

3. CCA Security: We require that for any PPT algorithm A = (A0,A1,A2) the following
holds, where A does not make the query S-Prove(SK, j, c∗, w) with w ∈ (D1\D2)∪(D2\D1),
|D1| = |D2| and j 6∈ {i1, . . . , it−1}, for variables SK, i1, . . . , it−1, c

∗, D1, D2 defined below:

8Without loss of generality, we will always assume that all the t partial evaluations zi satisfy
S-Verify(PK, vki, z

′
i) = 1 (else, we output ⊥ before calling S-Combine).

13

Pr


b = b′

{i1, . . . , it−1, st} ← A0(1
k, t, n)

(PK,SK,VK)← KGen(1k, t, n);

(D1, D2, st)← AS-Prove(SK,·,·,·)
1 (PK,VK,SK′, st);

b← {0, 1}; (E∗, c∗) = BldIdx(PK,Db);

b′ ← AS-Prove(SK,·,·,·)
2 (E∗, c∗, st)


≤ 1

2 + negl(k)

where SK′ = (ski1 , . . . , skit−1).

4. Privacy-Preserving: We require that for any PPT Algorithm A = (A1,A2) which outputs
documents D1, D2 such that |D1| = |D2| for variables D1, D2 defined below, the following
holds:

Pr

 b = b′

(PK,SK,VK)← KGen(1k, t, n);
(D1, D2, st)← A1(PK,SK,VK);

b← {0, 1};
(c∗, E∗) = BldIdx(PK,Db);

b′ ← A2(c
∗, st)

 ≤ 1

2
+ negl(k)

It is again easy to see that the above primitive is unconditionally Privacy-Preserving, even with
knowledge of SK, since Prep that produces e does not depend on the input document D.

3.4 Delegatable Encapsulated Search Index

In this section, we extend the definition of the standard Encapsulated Search Index to achieve
delegatability. Our definition will capture 3 security levels. Similar levels of security will also
appear in the DEVRF definition (discussed in Section 6.1).

Definition 3. An Encapsulated Search Index ESI = (KGen,Prep, Index, S-Split,S-Core,Finalize)
is also delegatable if there exists polynomial-time procedure S-Del,S-Check such that:

− S-Del(SK1, c1, SK2) = c2: outputs a representation c2 corresponding to key pair (PK2, SK2)
from a representation c1 corresponding to key pairs (PK1, SK1).

9

− S-Check(PK1, c1, PK2, c2) = β ∈ {0, 1}:

Before we define the security properties, it is useful to define the following shorthand functions:

− BldIdx(PK,D) = (Index(s,D), c) where (s, c)← Prep(PK).

− S-Prove(SK, c, w) = S-Core(SK,S-Split(PK, c), w).

− Search(SK, (E, c), w) = Finalize(PK,E, c,S-Prove(SK, c, w), w).

In addition to the standard Encapsulated Search Index properties of Correctness,Uniqueness,
and Privacy-Preserving, we require the following security properties from a delegatable Encap-
sulated Search Index:

9By default, this algorithm takes as input the secret key of the other party. We can consider a publicly-delegatable
algorithm that takes as input only the public key of the second party.

14

1. Delegation-Completeness: for any valid (PK1, SK1), (PK2, SK2), and compact represen-
tation c1

S-Del(SK1, c1, SK2) = c2 =⇒ S-Check(PK1, c1, PK2, c2) = 1

2. Delegation-Soundness: for any valid (PK1, SK1), (PK2, SK2), encrypted index E, and
compact representations c1, c2

S-Check(PK1, c1, PK2, c2) = 1 =⇒
∀w Search(SK1, E, c1, w) = Search(SK2, E, c2, w)

Before we define the CCA Security, it is useful to define the following set of oracles:

− Reg(1k): registration oracle. Every call increments a global counter q, calls (PKq, SKq) ←
KGen(1k), records (q, PKq, SKq), and returns (q, PKq) to the adversary.

− HProve(i, c, w): honest evaluation oracle. Here, 1 ≤ i ≤ q and the oracle returns S-Prove(SKi, c, w).

− HDel(i, c, j): honest delegation oracle. Here 1 ≤ i, j ≤ q, and the oracle returns c2 =
S-Del(SKi, c, SKj)

− OutDel(i, c, SK):“out-delegation oracle”. Here 1 ≤ i ≤ q, and the oracle returns e′ =
S-Del(SKi, c, SK).

− InDel(SK, c, j):“in-delegation oracle”. Here 1 ≤ j ≤ q, and the oracle returns e′ = S-Del(SK, c, SKj).

3. CCA Security: We require that for any PPT algorithm A = (A1,A2) which outputs docu-
ments D1, D2 such that |D1| = |D2| for variables D1, D2 defined below, and where legality of
A and appropriate delegation oracle(s) are defined separately, the following holds:

Pr

 b = b′

(1, PK1)← Reg(1k);

(D1, D2)← AReg,HProve,O
1 (PK1);

b← {0, 1};
(E∗, c∗) = BldIdx(PK,Db);

b′ ← AReg,HProve,O
2 (E∗, c∗)

 ≤
1

2
+ negl(k)

(a) Basic CCA Security: O = {HDel}.
Legality of A: no call to HProve(i, c, w) s.t.

S-Check(PK1, c
∗, PKi, c) = 1 and w ∈ (D1 \D2) ∪ (D2 \D1).

(b) Uni CCA Security: O = {HDel,OutDel}.
Legality of A: no call to HProve(i, c, w) or OutDel(i, c, ∗) s.t.

S-Check(PK1, c
∗, PKi, c) = 1 and w ∈ (D1 \D2) ∪ (D2 \D1).

(c) Bi CCA Security: O = {HDel,OutDel, InDel}.
Legality of A: no call to HProve(i, c, w) or OutDel(i, c, ∗) s.t.

S-Check(PK1, c
∗, PKi, c) = 1 and w ∈ (D1 \D2) ∪ (D2 \D1).

Remark 4. It is easy to see that Delegation-Completeness and Delegation-Soundness imply
Delegation-Correctness which is defined as follows: for any valid (PK1, SK1), (PK2, SK2), and
compact representation c1

15

S-Del(SK1, c1, SK2) = c2 =⇒
∀w Search(SK1, E, c1, w) = Search(SK2, E, c2, w)

3.5 Updatable Encapsulated Search Index

Another useful extension to Encapsulated Search Index would be to support operations that help
update the index. However, note that the process of updating should not reveal information about
the underlying keywords. To achieve this, we extend the standard definition.

Definition 4. An Encapsulated Search Index ESI = (KGen,Prep, Index, S-Split,S-Core,Finalize)
is also updatable if there exists polynomial-time procedures Update such that:

− Update(E, c, w, z, action)→ E′ ∪ ⊥, where action ∈ {add, remove}.

In addition to the standard Encapsulated Search Index properties of Correctness, Uniqueness,
CCA Security and Privacy-Preserving, we require the following security properties from an
updatable Encapsulated Search Index:

Update Correctness: over the randomness of KGen,Prep, Index, for any document D0, update
sequence (action1, w1), . . . , (actionq, wq) and keyword w, the following holds with probability (1−
negl(k)):

− Let (c, E0)← BldIdx(PK,D0).

− For i = 1 to q, let:

– zi = S-Prove(SK, c, wi);

– Ei = Update(Ei−1, c, wi, zi, actioni);

– Di be correct update of Di−1 following actioni on wi.

− Then Search(SK, (Eq, c), w) =

{
1 if w ∈ Dq

0 if w 6∈ Dq

4 Encapsulated Verifiable Random Functions (EVRFs)

As mentioned earlier, we use a new primitive called Encapsulated Verifiable Random Function to
build the encapsulated search index. In this section, we begin by introducing this primitive in
section 4.1. In Section 4.3, we present an overview of extensions to this primitive. Later sections
in paper contained detailed expositions on the extensions.

4.1 Standard EVRFs

Intuitively, an EVRF allows the receiver Alice to publish a public key PK and keep secret key SK
private so that any sender Bob can use PK to produce a ciphertext C and trapdoor key T in a
way such that for any input x, the correct VRF value y on x can be efficiently evaluated in two
different ways:

16

(a) Alice can evaluate y using secret key SK and ciphertext C.

(b) Bob can evaluate y using trapdoor T .

In addition, for any third party Charlie who knows C, PK and x:

(c) Alice can produce a proof z convincing Charlie that the value y is correct.

(d) Without such proof, the value y will look pseudorandom to Charlie.

Definition 5. An Encapsulated Verifiable Random Function (EVRF) is a tuple of PPT algorithms
EVRF = (Gen,Encap,Comp,Split,Core, Post) such that:

− Gen(1k)→ (PK,SK): outputs the public/secret key pair.

− Encap(PK)→ (C, T): outputs ciphertext C and trapdoor T .

− Comp(T, x) = y: evaluates EVRF on input x, using trapdoor T .

− Split(PK,C ′) = R′: outputs a handle from full ciphertext C ′.
Note, this preprocessing is independent of the input x, can depend on the public key PK, but
not on the secret key SK.10

− Core(SK,R′, x) = z′: evaluates partial EVRF output on input x, using the secret key SK
and handle R′.

− Post(PK, z′, C ′, x) = y′ ∪ ⊥: outputs either the EVRF output from the partial output z′, or
⊥.

Before we define the security properties, it is useful to define the following shorthand functions:

− Prove(PK,SK,C, x) = Core(SK,Split(PK,C), x)

− Eval(PK,SK,C, x) = Post(PK,Prove(SK,C, x), C, x)

We require the following security properties:

1. Evaluation-Correctness: with prob. 1 over randomness of Gen and Encap, for honestly
generated ciphertext C and for all inputs x,

Comp(T, x) = Eval(PK,SK,C, x)

2. Uniqueness: there exist no values (PK,C, x, z1, z2) s.t. y1 6= ⊥, y2 6= ⊥, and y1 6= y2 where

y1 = Post(PK, z1, C, x), y2 = Post(PK, z2, C, x)

10The algorithm Split is not technically needed, as one can always set R = C. In fact, this will be the case for
our EVRF in section 4.4. However, one could envision EVRF constructions where the Split procedure can do a
non-trivial (input-independent) part of the overall Prove = Core(Split) procedure, and without the need to know
the secret key SK. This will be the case for some of the delegatable EVRFs we consider in Section 6.1.

17

3. Pseudorandomness under Core ($-Core): for any PPT algorithm A = (A1,A2), where
A does not make query (C, x) to Prove(PK,SK, ·, ·), for variables SK,C, x defined below,
the following holds:

Pr

b = b′

(PK,SK)← Gen(1k);
(C, T)← Encap(PK);

(x, st)← AProve(PK,SK,·,·)1 (PK,C);
y0 = Comp(T, x); y1 ← {0, 1}|y0|;

b← {0, 1}; b′ ← AProve(PK,SK,·,·)2 (yb, st)

 ≤
1

2
+ negl(k)

We present a construction of our EVRF in section 4.4.

Remark 5. We note that any valid ciphertext C implicitly defines a standard verifiable random
function (VRF). In particular, the value z = Prove(SK,C, x) could be viewed as the VRF proof,
which is accepted iff Post(PK, z, C, x) 6= ⊥.

Remark 6. We reiterate that our pseudorandomness definition does not give the attacker “un-
guarded” access to the Core procedure, but only “Split-guarded” access to Prove = Core(Split).
This difference does not matter when the Split procedure just sets R = C. However, when Split
is non-trivial, the owner of SK (Alice) can only outsource it to some outside server (Charlie) if it
trusts Charlie and the authenticity (but not privacy) of the channel between Alice and Charlie.

4.2 Generic Construction of Encapsulated Search Index

Non-private Dictionary Data Structure. Our generic construction will use the simplest
kind of non-cryptographic dictionary which allows one to preprocess some set D into some data
structure E so that membership queries w ∈ D can be answered in sub-linear time in N = |D|.
In particular, a classic instantiation of such a dictionary could be any balanced search trees with
search time O(logN). If a small probability of error is allowed, we could also use faster data
structures, such as hash tables [18], Bloom filters [6,40,41] or cuckoo hash [42], whose search takes
expected time O(1). The particular choice of the non-cryptographic dictionary will depend on the
application, which is a nice luxury allowed by our generic composition.

Formally, a non-private dictionary DS = (Construct,Find) is any data structure supporting
the following two operations:

− Construct(D)→ E: outputs the index E on an input document D.

− Find(E,w) → {0, 1}: outputs 1 if w is present in D, and 0 otherwise. We assume perfect
correctness for w ∈ D, and allow negligible error probability for w 6∈ D.

Our Composition. We show that Encapsulated Search Index can be easily built from any such
non-cryptographic dictionary DS = (Construct,Find) and and EVRF = (Gen,Encap,Comp,
Split,Core, Post). This composition is given below in Construction 1.

Efficiency. By design, the Search operation of our composition inherits the efficiency of the
non-cryptographic dictionary DS. In particular, it is O(log |D|) with standard balanced search trees
and could become potentially O(1) with probabilistic dictionaries, such as hash tables or Bloom
filters.

18

Protocol Generic ESI Construction

KGen(1k)

Run EVRF.Gen(1k)→ (PK,SK).
return PK,SK.

Prep(PK)

Run EVRF.Encap(PK)→ (C, T).
return c = C and s = T .

Index(s,D)

for w ∈ D do
Compute yw = EVRF.Comp(s, w).

Compute Y = {yw|w ∈ D}.
Run DS.Construct(Y)→ E.
return E.

S-Split(PK, c′)

Run EVRF.Split(PK, c′) = r′.
return r′.

S-Core(SK, r′, w)

Run EVRF.Core(SK, r′, w) = z′.
return z′.

Finalize(PK,E′, c′, z′, w)

Run EVRF.Post(PK, z′, c′, w) = y′.
if y′ = ⊥ then

return ⊥.
else

return DS.Find(E′, y′).

Construction 1: Generic ESI = (KGen,Prep, Index,S-Split,S-Core, Finalize).

Security Analysis. The Correctness and Uniqueness properties of the above construction
trivially follows from the respective properties of the underlying EVRF and DS. In particular, we
get negligible error probability for w 6∈ D either due to unlikely EVRF collision between yw and
yw′ for some w′ ∈ D, or a false positive of the DS. In Section C.1 we prove the following theorem:

Theorem 6. If EVRF satisfies the $-Core property, then Encapsulated Search Index is CCA
secure. Further, if the EVRF (resp. DS) is threshold and/or delegatable (resp. updatable; see
Remark 7), the resulting ESI inherits the same.

Remark 7. It is easy to see that our construction of Encapsulated Search Index (Construction 1)
can be made updatable if the underlying data structure supports the addition and removal. Formally
the DS also has the following additional operation:

− DS.Modify(E,w, action) → E′: adds/removes w to/from the index E when action =
add/remove, and outputs the new index E′ .

Then, the Update(E, c, w, z, action) algorithm can be defined as follows:

− Compute EVRF.Post(PK, z, c, w) = y.

− If y = ⊥, return ⊥.

− Otherwise, return E′ = DS.Modify(E, y, action)

4.3 Extensions to EVRFs

The generic construction of ESI from Section 4.2 can be extended to achieve the various extensions
of ESI, as defined in Section 3. We do this by extending the EVRF definitions, and instantiating
each ESI with its corresponding EVRF and inheriting the required functionality.

Threshold EVRF. In the earlier definition, we had a single secret key SK. With possession
of this secret key, one can evaluate the EVRF on any input x. Therefore, it becomes imperative
to protect the key from leakage. Indeed, it is natural to extend our early definition to cater
to the setting of a distributed evaluation of the EVRF. The key difference in the definition of
threshold EVRF from the earlier definition is that the Post algorithm is now formally split into
the share verification algorithm Shr-Vfy and the final evaluation algorithm Combine. The
formal discussion about the syntax and security of this primitive can be found in Section 5.1.

19

Remark 8. It is easy to see that our construction of Encapsulated Search Index (Construction 1)
inherits the different properties of the underlying encapsulated verifiable random function. In other
words, by using TEVRF, one can construct a threshold Encapsulated Search Index by suitably
mapping the functions as follows:

− KG-Verify(PK,VK) = Gen-Vfy(PK,VK)

− S-Verify(ski, z
′
i, w) = Shr-Vfy(ski, z

′
i, w)

− S-Combine(PK,E′, c′, z′i1 , . . . , z
′
it
, w): run

y′ = Combine(PK, c′, z′i1 , . . . , z
′
it , w)

and then output DS.Find(E′, y′)

Therefore, Theorem 6 can be extended to say that if TEVRF satisfies the $-DCore property, then
we have a CCA secure threshold Encapsulated Search Index.

Delegatable EVRF. Next, we extend the definition of standard EVRFs to the setting where the
EVRF owner could delegate its evaluation power to another key. Recall that a standard EVRF has
the following algorithms: Gen,Encap, Comp,Split,Core,Post. Delegation, therefore, implies
that one can convert a ciphertext C1 for key pair (PK1, SK1) to ciphertext C2 for a different key
pair (PK2, SK2) which encapsulates the same VRF, i.e.,

∀x, Eval(PK1, SK1, C1, x) = Eval(PK2, SK2, C2, x) (1)

where Eval(PK,SK,C, x) = Post(PK,Prove(SK, c, x), C, x). The formal discussion about the
syntax and security of this primitive can be found in Section 6.1.

Remark 9. It is easy to see that our construction of Encapsulated Search Index (Construction 1)
inherits the different properties of the underlying encapsulated verifiable random function. In other
words, by using a DEVRF, one can construct a delegatable Encapsulated Search Index by suitably
mapping the functions as follows:

− S-Del(SK1, c1, SK2) = Del(SK1, c1, SK2)

− S-Check(PK1, c1, PK2, c2) = Same(PK1, c1, PK2, c2)

In addition, the Encapsulated Search Index also achieves different levels of CCA security based on
the security level of $-Core property of the delegatable EVRF.

4.4 Standard EVRF

We now present the standard EVRF construction, presented in Construction 2.

20

Protocol Standard EVRF

Gen(1k)

Sample a ∈r Z∗p
Compute A = ga ∈ G.
return SK = a and PK = (g,A).

Encap(PK)

Parse PK = (g,A).
Sample r ∈r Z∗p.
Compute R = gr, S = Ar.
return C = R, T = (R,S).

Comp(T, x)

Parse T = (R,S).
Compute y = e(H(R, x), S).
return y.

Split(PK,C ′)

Parse PK = (g,A), C ′ = R′.
return R′.

Core(SK,C ′, x)

Parse SK = a,C ′ = R′.
Compute z = H(R′, x)a.
return z.

Post(PK, z, C ′, x)

Parse PK = (g,A), C ′ = R′

if e(z, g) 6= e(H(R′, x), A) then
return ⊥.

else
Compute y′ = e(z,R′).
return y′.

Construction 2: Standard EVRF = (Gen,Encap,Comp,Split,Core,Post).

Security Analysis. To check Evaluation-Correctness, we observe that Ar = gar = Ra, and
by the bilinearity we have:

Comp(T = (R,S), x) = e(H(R, x), S) = e(H(R, x), Ar)

From our earlier observation, we get that:

e(H(R, x), Ar) = e(H(R, x), Ra) = e(H(R, x)a, R) = e(z,R)

This is the same as Post(A,Core(a,Split(A,R), x), R, x) which concludes the proof.
To prove Uniqueness, consider any tuple (PK = A,C = R, x, z1, z2). Further, let y1 =

Post(A, z1, R, x) and y2 = Post(A, z2, R, x). If y1 6= ⊥ and y2 6= ⊥, then we have that e(z1, g) =
e(H(R, x), A) = e(z2, g). From definition of bilinear groups, we get that z1 = z2. Consequently,
y1 = e(z1, R) = e(z2, R) = y2.

Finally, we prove the following result in Section C.2.

Theorem 7. The standard EVRF given in Construction 2 satisfies the $-Core property under
the BDDH assumption in the random oracle model.

5 Threshold Encapsulated Verifiable Random Functions

In this section, we formally introduce the primitive known as a Threshold EVRF in Section 5.1.
We then present a construction of Threshold EVRF in Section 5.2 but defer the security proof due
to space constraints. The proof can be found in Section C.3.

5.1 Definition of Threshold (or Distributed) EVRFs

Definition 8. A (t, n)-Threshold EVRF is a tuple of PPT algorithms TEVRF = (Gen,Gen-Vfy,
Encap,Comp,Split,D-Core,
Shr-Vfy, Combine) such that:

− Gen(1k, t, n) → (PK,SK = (sk1, . . . , skn),VK = (vk1, . . . , vkn)): outputs the public key
PK, a vector of secret shares SK, and public shares VK.

21

− Gen-Vfy(PK,VK) = β ∈ {0, 1}: verifies that the output of Gen is indeed valid.

− Encap(PK)→ (C, T): outputs ciphertext C and trapdoor T .

− Comp(T, x) = y: evaluates EVRF on input x, using trapdoor T .

− Split(PK, n,C ′) = (R′1, . . . R
′
n): outputs n handles R′1, . . . , R

′
n from full ciphertext C ′.

− D-Core(ski, R
′
i, x) = z′i: evaluates EVRF share on input x, using handle R′i and secret key

share ski.

− Shr-Vfy(PK, vki, z
′
i, x) = β ∈ {0, 1}: verifies that the share produced by the party i is valid.

− Combine(PK,C ′, z′i1 , . . . , z
′
it
, x) = y′: uses the partial evaluations z′i1 , . . . , z

′
it

to compute the
final value of EVRF on input x.11

Before we define the security properties, it is useful to define the following shorthand functions:

− Prove(SK, i, C, x) = D-Core(ski, Ri, x), where
(R1, . . . , Rn) = Split(PK, n,C).

− Eval(SK, i1, . . . , it, C, x): For j = 1 . . . t, compute zij = Prove(SK, ij , C, x).
Output ⊥ if, for some 1 ≤ j ≤ t, Shr-Vfy(PK, vkij , zij , x) = 0.
Otherwise, output Combine(PK,C, zi1 , . . . , zit , x).

We require the following security properties:

1. Distribution-Correctness:

(a) with prob. 1 over randomness of Gen(1k, t, n)→ (PK,SK,VK),
Gen-Vfy(PK,VK) = 1

(b) with prob. 1 over randomness of Gen and Encap, for honestly generated ciphertext C:
Eval(SK, i1, . . . , it, C, x) = Comp(T, x)

2. Uniqueness: there exists no values (PK,VK, C, x, Z1, Z2) where Z1 = ((i1, zi1), . . . , (it, zit))
and Z2 = ((j1, zj1), . . . , (jt, zjt)). s.t.

(a) Gen-Vfy(PK,VK) = 1

(b) for k = 1, . . . , t:

− Shr-Vfy(PK, vkik , zik , x) = 1.

− Shr-Vfy(PK, vkjk , zjk , x) = 1.

(c) Let Zi = (zi1 , . . . , zit) and Zj = (zj1 , . . . , zjt). Then,

Combine(PK,C,Zi, x) 6= Combine(PK,C,Zj , x)

11Without loss of generality, we will always assume that all the t partial evaluations z′i satisfy
Shr-Vfy(PK, vki, z

′
i) = 1 (else, we output ⊥ before calling Combine). See also the definition of Eval below to

explicitly model this assumption.

22

3. Pseudorandomness under D-Core ($-DCore): for any PPT algorithm A = (A0,A1,A2),
where A does not make query (j, C, x) to Prove(SK, ·, ·, ·), for j 6∈ {i1, . . . , it−1} for variables
i1, . . . , it−1,SK, C, x defined below,

where SK′ = (ski1 , . . . , skit−1).

We present a construction of our threshold EVRF in section 5.2.

Remark 10. For simplicity, in the above definition, we assume honest key generation and do
not explicitly address distributed key generation. Even with this simplification, the existence of the
Gen-Vfy algorithm ensures the users of the system that the public key (PK,VK) is “consistent
”and was generated properly. Moreover, our construction, given in Section 5.2, can easily achieve
efficient distributed key generation using techniques of Gennaro et al. [29].

Remark 11. Note that when t = n = 1, our threshold EVRF implies the the standard EVRF
definition (Definition 5), where Post algorithm first runs Shr-Vfy on the single share z and
then, if successful, runs Combine to produce the final output y. For n > 1, however, we find it
extremely convenient that we can separately check the validity of each share, and be guaranteed to
compute the correct output the moment t servers return consistent (i.e., Shr-Vfy’ed) shares zi.

5.2 Construction of Threshold (or Distributed) EVRFs

Our non-interactive threshold EVRF is given in Construction 3. It combines elements of our
standard EVRF from Construction 2 with the ideas of Shamir’s Secret Sharing [46], Feldman
VSS [26], and the fact that the correctness of all computations is easily verified using the pairing.

Security Analysis. To check Distribution-Correctness, we observe that A = ga, S = gar,
and R = gr. Therefore, Comp(T = (R,S), x) = e(H(R, x), S) = e(H(R, x), g)ar. By definition, we
have that:

Eval(PK,SK, i1, . . . , it, R, x) = e(
t∏

j=1

z
λj
ij
, R)

e(

t∏
j=1

z
λj
ij
, R) = e(

t∏
j=1

H(R, x)aij ·λj , R) = e(H(R, x)
∑t

j=1 aij ·λj , R)

However, we know that a =
∑t

j=1 aij · λj . Therefore,

e(H(R, x)
∑t

j=1 aij ·λj , R) = e(H(R, x)a, gr) = e(H(R, x), g)ar

To check Uniqueness, we are given: (PK,VK = (vk1, . . . , vkn), R, x, Z1, Z2) where

Z1 = ((i1, zi1), . . . , (it, zit)); Z2 = ((j1, zj1), . . . , (jt, zjt)).

− Gen-Vfy(PK,VK) = 1 implies that a0, a1, . . . , an where ga0 = PK and gai = vki all lie
on a consistent polynomial f of degree t − 1. Thus, there exist λ1, . . . , λt ∈ Zp such that

23

Protocol Non-Interactive Threshold EVRF

Gen(1k)

Sample a random (t− 1) degree polynomial f ∈ Z∗p[X].
Compute a = f(0), A0 = ga.
for i = 1, . . . , n do

Compute ai = f(i), Ai = gai .
return PK = (g,A0), SK = (a1, . . . , an), VK = (A1, . . . , An),
with server i getting secret key ski = ai and verification key
vki = Ai.

Gen-Vfy(PK,VK)

Parse PK = (g,A0),VK =, (A1, . . . , An)).
for i = t, . . . , n do

Compute Lagrange coefficients λi,0 . . . , λi,t−1 s.t. f(i) =∑t−1
j=0 λi,j · f(j).

Each λi,j is a fixed constant.

if Ai 6=
∏t−1
j=0A

λi,j

j then
return 0

return 1

Encap(PK)

Parse PK = (g,A0).
Sample r ∈r Z∗p.
Compute R = gr, S = Ar0.
return ciphertext C = R and trapdoor T = (R,S).

Comp(T, x)

Parse T = (R,S).
Compute y = e(H(R, x), S).
return y.

Split(PK,C ′)

Parse PK = (g,A0), C ′ = R′.
return R′1 = R′, . . . , R′n = R′.

D-Core(SKi, R
′
i, x)

Parse SKi = ai, R
′
i = R′.

Compute partial output zi = H(R′i, x)ai .
return zi.

Shr-Vfy(PK, V Ki, z
′
i, x)

Parse PK = (g,A0), V Ki = Ai.
if e(z′i, g) 6= e(H(R′i, x), Ai) then

return ⊥.

Combine(PK,C ′, z′i1 , . . . , z
′
it
, x)

Parse PK = (g,A0), C ′ = R′.
Compute Lagrange coefficients λ1 . . . , λt s.t. f(0) =

∑t
j=1 λj · f(ij).

Note that these λj ’s only depend on indices i1, . . . , it.

Compute z′ =
∏t
j=1(z′ij)λj .

return y = e(z′, R′).

Construction 3: TEVRF = (Gen, Gen-Vfy, Encap, Comp, Split, D-Core, Shr-Vfy,
Combine).

f(0) =
∑t

`=1 λ` · f(i`) and λ′1, . . . , λ
′
t ∈ Zp such that f(0) =

∑t
`=1 λ` · f(j`). Therefore, we

have that:

A =

t∏
`=1

vki`
λ` =

t∏
`=1

vkj`
λ′` (2)

− We also know that for ` = 1, . . . , t, Shr-Vfy(PK, vki` , zi` , x) = 1 and Shr-Vfy(PK, vkj` , zj` , x) =
1. Therefore, we have that for ` = 1, . . . , t:

e(zi` , g) = e(H(R, x), vki`); e(zj` , g) = e(H(R, x), vkj`) (3)

− We will now show that the 2 outputs of Combine must be equal. Here we we will write
R = gr for some r,

Combine(PK,R, zi1 , . . . , zit , x) = e(
t∏

`=1

zλ`i` , R) =

t∏
`=1

e(zi` , g)r·λ`

From Equation (3):

t∏
`=1

e(zi` , g)r·λ` =
t∏

`=1

e(H(R, x), vki`)
r·λ` = e(H(R, x),

t∏
`=1

vkλ`i`)r

24

From Equation (2), we have that:

e(H(R, x),
t∏

`=1

vkλ`i`)r = e(H(R, x),
t∏

`=1

vk
λ′`
j`

)r =
t∏

`=1

e(H(R, x), vkj`)
r·λ′`

We again use Equation (3) to conclude the proof. Finally, we prove the following result in Sec-
tion C.3.

Theorem 9. If Construction 2 satisfies the $-Core property of standard EVRF, then Construc-
tion 3 satisfies the $-DCore property of threshold EVRF. By Theorem 7, it follows that Construc-
tion 3 satisfies the $-DCore property under the BDDH assumption in the random oracle model.

6 Delegatable Encapsulated Verifiable Random Functions

In this section, we formally introduce the primitive known as a Delegatable EVRF in Section 6.1.
This definition captures different levels of delegatability and we present constructions that satisfy
these levels in Sections 6.2,6.3, and 6.4. The security proofs are deferred to the appendix.

6.1 Definition of Delegatable EVRFs

In this work, we will be interested in a stronger type of delegatable EVRFs where anybody can check
if two ciphertexts C1 and C2 “came from the same place”. This is governed by the “comparison”
procedure Same(PK1, C1, PK2, C2) which outputs 1 only if Equation (1) holds. This procedure
will have several uses. First, it allows the owner of SK2 to be sure that the resulting ciphertext
C2 indeed encapsulates the same VRF under PK2 as C1 does under PK1. Second, it will allow
us to cleanly define a “trivial” attack on the pseudorandomness of delegatable EVRFs. See also
Remark 13.

Before we define the syntax and the security of delegatable EVRFs, we include a brief exposition
on the nuances in the syntax and security of such a primitive.

Secretly-Delegatable vs Publicly-Delegatable EVRFs. It is fairly obvious from the
security of EVRFs that the delegation procedure must use the secret key SK1 of the delegating
party. The big distinction/subtlety comes from whether or not such delegation also requires the
secret key SK2 of the receiving party. In our basic notion, defined below, we will allow such a
dependence. However, for completeness, we also define publicly-delegatable EVRFs, where only
the public key PK2 is needed. A priori, publicly delegatable EVRFs have the advantage that
the delegation does not need the cooperation of the receiving party. However, all our secretly-
delegatable schemes will have a trivial implementation, where the sender can use SK1 to non-
interactively convert C1 into the “C1-specific” trapdoor T1 of the EVRF, which it can (securely)
send to the receiving party. In turn, the receiving party can use the secret key SK2 to convert T1
to the corresponding delegated ciphertext C2. Thus, all our concrete secret-key delegatable EVRFs
will have no “usability disadvantages” compared to publicly-delegatable EVRFs.

Bounded Delegation. Additionally, the definition we present is for unbounded delegation,
where any delegated ciphertext can be further delegated. We could also restrict the definition to
t-delegatable, with t = 1 being an important special case, where Delegation-Completeness is
only required to hold for up to t iterated delegations starting from any ciphertext C1 output by
the encapsulation procedure Encap. We will consider such a variant in Section 6.4.

25

Pseudorandomness of Delegatable EVRFs. To capture the pseudorandomness property
of delegatable EVRFs, it is clear that our definition should give the attacker the ability to call
the delegation oracle Del. However, there are several subtleties in such a definition which we list
below:

− Should we allow delegation queries from target SK1 only to honestly generated keys (PK2, SK2)
(for which the attacker does not know SK2), or shall we allow the attacker A to specify such
keys adversarially?

− For secretly-delegatable schemes, should the attacker A only have access to “OUT” oracle
Del(SK1, ·, ·), or should we also give A the “IN” oracle Del(·, ·, SK1) as well?12 This cor-
responds to the attacker A tricking the user U to get some malicious EVRF from A, only
to force U to use its secret key SK1 in a way that will help the attacker break some honest
EVRF owned by U .

− What is the definitional security effect of studying one-time vs t-time vs unbounded-time
delegatable schemes? As we will see, the security definitions will not change syntactically
when restricted to t-time delegatable schemes. In particular, we will not explicitly limit the
number of times the attacker can attempt to iteratively call the delegation oracle. However,
since in such schemes the correctness is no longer required when delegating more than t times,
it will be easier to make t-delegatable schemes secure when t is smaller.

− How to prevent the attacker from “trivial” attacks, where one can delegate ciphertext C1

under PK1 to C2 under PK2, and then “break” C1 by asking an evaluation query on C2?
This is where the comparison procedure Same will be handy, as it allows us to precisely
exclude all such ciphertexts C2 which “originated” from C1, while still allowing the attacker
to try all other ciphertexts.13

Now, we can define the oracles. To adequately capture the discussed nuances, we define the
following oracles to the attacker:

1. Reg(1k): registration oracle. It maintains a global variable q, initially 0, counting the number
of non-compromised users. A call to Reg: (a) increments q; (b) calls (PKq, SKq)← Gen(1k),
(c) records this tuple (q, PKq, SKq) in a global table not accessible to the attacker; (d) returns
(q, PKq) to the attacker.

2. HProve(i, C, x): honest evaluation oracle. Here 1 ≤ i ≤ q is an index, C is a ciphertext, and
x in an input. The oracle returns Prove(SKi, C, x) = Core(SKi,Split(PKi, C), x).

3. HDel(i, C, j): honest delegation oracle. Here 1 ≤ i, j ≤ q are two indices, and C is a
ciphertext. The oracle returns C ′ = Del(SKi, C, SKj) (or Del(SKi, C, PKj) in the publicly-
delegatable case).

4. OutDel(i, C, SK/PK): “Out” delegation oracle. Here 1 ≤ i ≤ q is an index, C is a
ciphertext, and PK or SK (depending on whether scheme is publicly-delegatable or not) is
any public/secret key chosen by the attacker. The oracle returns C ′ = Del(SKi, C, SK/PK).

12Clearly, this is a moot issue for publicly-delegatable schemes.
13In Definition 21 we will give an even stronger (and optimal) legality condition; some of our schemes will satisfy

even this stronger notion.

26

5. InDel(SK,C, i): “In” delegation oracle. Here 1 ≤ i ≤ q is an index, and C is a ciphertext,
and SK is any secret key chosen by the attacker. The oracle returns C ′ = Del(SK,C, SKi).
Notice, this oracle is interesting only in the secretly-delegatable case.

Consequently, we can define three levels of pseudorandomness security for delegatable EVRFs.

Definition 10. An EV RF = (Gen,Encap,Comp,Split,Core,Post) is delegatable if there
exists polynomial-time procedures Del and Same, such that:

− Del(SK1, C1, SK2) = C2 for the (default) secretly-delegatable variant;

− Del(SK1, C1, PK2) = C2 for the publicly-delegatable variant.

− Same(PK1, C1, PK2, C2) = β ∈ {0, 1}.

Before we define the security properties, it is useful to define the following shorthand functions:

− Prove(SKi, C, x) = Core(SKi,Split(PKi, C), x)

− Eval(SK,C, x) = Post(PK,Prove(SK,C, x), C, x)

In addition to the standard EVRF properties of Evaluation-Correctness and Uniqueness , we
require the following security properties from a delegatable EVRF:

1. Delegation-Completeness: for any valid (PK1, SK1), (PK2, SK2), and ciphertext C1,

Del(SK1, C1, SK2/PK2) = C2 =⇒ Same(PK1, C1, PK2, C2) = 1

2. Delegation-Soundness: for any valid (PK1, SK1), (PK2, SK2), and ciphertexts C1, C2

Same(PK1, C1, PK2, C2) = 1 =⇒
∀x Eval(SK1, C1, x) = Eval(SK2, C2, x)

Moreover, if we have PK1 = PK2, then C1 = C2.

1. Pseudorandomness under Core ($-Core): for any legal PPT attacker A = (A1,A2),
where legality of A and appropriate delegation oracle(s) O are defined separately for each
notion:

Pr

 b = b′

(1, PK1)← Reg(1k);
(C1, T1)← Encap(PK1);

(x, st)← AReg,HProve,O
1 (PK1, C1);

y0 = Comp(T1, x); y1 ← {0, 1}|y0|;
b← {0, 1}; b′ ← AReg,HProve,O

2 (yb, st)

 ≤
1

2
+ negl(k)

(a) Basic-$-Core: A has 1 delegation oracle O = HDel.
Legality of A: no call to HProve(i, C ′, x) s.t.
Same(PK1, C1, PKi, C

′) = 1.

(b) Uni-$-Core: A has 2 delegation oracles O = (HDel, OutDel).
Legality of A: no call to HProve(i, C ′, x) or
OutDel(i, C ′, ∗) s.t. Same(PK1, C1, PKi, C

′) = 1.

27

(c) Bi-$-Core: A has 3 delegation oracles
O = (HDel,OutDel, InDel).
Legality of A: same as that of Uni-$-Core.

Remark 12. Delegation-Completeness and Delegation-Soundness easily imply Delegation-
Correctness which was advocated in Equation (1):

Del(SK1, C1, SK2/PK2) = C2 =⇒ ∀x Eval(SK1, C1, x) = Eval(SK2, C2, x)

Remark 13. The legality condition on the attacker is necessary, as evaluating EVRF on the “same”
ciphertext C ′ as the challenge ciphertext C1 breaks pseudorandomness (by delegation-soundness).
However, it leaves open the possibility for the attacker to find such equivalent ciphertext C ′ without
building some explicit “delegation path” from the challenge ciphertext C1. Indeed, in Definition 21
we will give an even stronger legality condition on A, and some (but not all) of our schemes will meet
it. For applications, however, we do not envision this slight definitional gap to make any difference.
Namely, the higher-level application will anyway need some mechanism to disallow any “trivial”
attacks. We expect this mechanism will explicitly use our Same procedure, rather than keep track
of the tree of “delegation paths” originating from C1, which could quickly become unmanageable.

Remark 14. It is easy to observe the following implications:

Bi-$-Core =⇒ Uni-$-Core =⇒ Basic-$-Core =⇒ $-Core

Here, the last implication uses the fact that C1 is the only ciphertext equivalent to C1 under PK1.
Thus, bidirectional delegation security is the strongest of all the notions.

Remark 15. One could also consider EVRFs which are simultaneously threshold and delegatable.
In this case, n1 servers for the sender’s EVRFs will communicate with n2 servers for the receiver’s
EVRF to help convert a ciphertext C1 for the sender EVRF into a corresponding ciphertext C2 for
the receiver EVRF. We leave this extension to future work.

6.2 Construction of Basic Delegatable EVRF

We now show that our original EVRF Construction 2 can be extended to make it basic-delegatable.
The idea is to separate the role of the “handle” R hashed under H inside the Core procedure from
the one used in the preprocessing. For technical reasons explained below, we will also hash the
public key A when evaluating the EVRF. The construction is presented as Construction 4.

Observations. We notice that, since R = D initially, the resulting EVRF before the delegation is
the same as the one we defined in Section 4.4, except (a) we also include the public key A under the

hashH during both Encap and Core; and (b) we perform the delegation check e(A′, R′)
?
= e(A,D′)

in the split procedure Split, which is trivially true initially, as A′ = A and R′ = D′ = R. Thus,
Evaluation-Correctness trivially holds, as before. For the same reason, Uniqueness trivially
holds as well.

The importance of change (a) comes from the fact that challenge ciphertext C = (A,R,D) no
longer includes only the value R, even though the value R would be all that is needed to actually
evaluate our EVRF, had we not included A under the hash H. In particular, the attacker A given
challenge C = (A,R,R), can easily produce C ′ 6= C by setting C ′ = (A2, R,R2). C ′ passes the

28

Protocol Basic Delegatable EVRF

Gen(1k)

Sample a ∈r Z∗p
Compute A = ga ∈ G.
return SK = a and PK = (g,A).

Encap(PK)

Parse PK = (g,A).
Sample r ∈r Z∗p.
Compute R = D = gr, S = Ar.
return ciphertext C = (A,R,D) and trapdoor T = (A,R, S).

Comp(T, x)

Parse T = (A,R, S).
Compute y = e(H(A,R, x), S).
return y.

Del(SK1, C1, SK2)

Parse SK1 = a1, SK2 = a2, C1 = (A,R,D1).
if e(A,R) 6= e(ga1 , D1) then

return ⊥.
else

Compute D2 = D
a1/a2
1 where a1/a2 = a1 · (a2)−1 mod p.

return C2 = (A,R,D2).

Split(PK,C ′)

Parse PK = (g,A), C ′ = (A,R′, D′).
if e(A′, R′) 6= e(A,D′) then

return ⊥.
else

return (A′, R′).

Core(SK,C ′, x)

Parse SK = a,C ′ = (A′, R′, D′).
Compute partial output z = H(A′, R′, x)a.
return z.

Post(PK, z′, C ′, x)

Parse PK = (g,A), C ′ = (A′, R′, D′)
if e(z′, g) 6= e(H(A′, R′, x), A) then

return ⊥.
else

Compute full output y′ = e(z′, D′).
return y′.

Same(PK1, C1, PK2, C2)

Parse PK1 = (g,A1), PK2 = (g,A2), C1 = (A,R,D1), C2 =
(A′, R′, D2).
if (A,R) 6= (A′, R′) or e(A1, D1) 6= e(A2, D2) then

return ⊥.

Construction 4: Basic Delegatable DEVRF1 = (Gen,Encap,Comp, Split, Core,
Post,Del,Same).

delegation check e(A2, R) = e(A,R2), but clearly produces the same partial output z = H(R, x)a

as the challenge ciphertext, trivially breaking the $-Core property. Instead, by also hashing the
public key, the oracle call Prove(C ′, x) would return z′ = H(A2, R, x)a, which is now unrelated to
z = H(A,R, x)a, foiling the trivial attack.

The importance of change (b) comes from ensuring that a valid ciphertext (A′, R′, D′) determines
the value D′ information-theoretically from the values (A′, R′) (and the public key A), because the
condition e(A′, R′) = e(A,D′) uniquely determines D′. Thus, it is OK that the Core procedure
only passes the values (A′, R′) under the random oracle H.

Delegation. To check Delegation-Completeness, notice that valid delegation of (A,R,D1)

outputs (A′, R′, D2), where (A′, R′) = (A,R) and D2 = D
a1/a2
1 , which implies that

e(A2, D2) = e(ga2 , D
a1/a2
1) = e(ga1 , D1) = e(A1, D1)

which means Same(A1, (A,R,D1), A2, (A
′, R′, D2)) = 1 indeed.

For Delegation-Soundness, given C1 = (A,R,D1) and C2 = (A′, R′, D2) satisfying (A′, R′) =

(A,R) and e(A1, D1) = e(A2, D2), we can see that the delegation checks e(A,R)
?
= e(A1, D1)

and e(A′, R′)
?
= e(A2, D2) are either both false or true simultaneously. Moreover, by writing

A1 = A
a1/a2
2 , the second equation implies that D2 = D

a1/a2
1 . In particular, if A1 = A2, we

have C1 = C2; and, in general, when (A′, R′) = (A,R) and D2 = D
a1/a2
1 , for any x, we know:

Eval(a2, (A,R,D2), x) = e(H(A,R, x)a2 , D2).
However, that can be rewritten as

e(H(A,R, x)a2 , D
a1/a2
1) = e(H(A,R, x)a2 , D

a1/a2
1) = e(H(A,R, x)a1 , D1)

29

which concludes the proof.
We reiterate that though our delegation is secretly-delegatable, as D2 depends on a2, in practice

the owner Alice of a1 will simply send the trapdoor value T1 = Da1
1 to the owner Bob of a2 over

secure channel (say, encrypted under a separate public key), and Bob can then compute D2 = T
1/a2
1 .

In particular, this does not leak any extra information beyond (D2, a2) to Bob, as T1 = Da2
2 is

efficiently computable from D2 and a2. Also, the delegation check does not require any of the
secret keys. Despite that, it ensures that only properly delegated ciphertexts can be securely
re-delegated again. We will critically use it in Section C.4 to prove the following:

Theorem 11. The basic delegatable EVRF, given in Construction 4, satisfies the Basic-$-Core
property under the BDDH assumption in the random oracle model.

Delegation Attack on Stronger Legality. We briefly mentioned in Section 6.1 that one
could require a stronger legality condition to say that the only way to distinguish the evaluation of
C on x from random is to honestly delegate C to some honest user (possibly iteratively), getting
ciphertext C ′, and then ask this user to evaluate EVRF on x.

Here we show that our construction does not satisfy this notion. Consider challenge ciphertext
C1 = (A1, R1, R1) under public key A1. Construct C ′1 = (A1, R

2
1, R

2
1). C ′1 will satisfy the delega-

tion check, so we could ask to delegate C ′ to public key A2. We get C ′2 = (A1, R
2
1, (R

2
1)a1/a2) =

(A1, R
2
1, (R

a1/a2
1)2). By taking square roots from the last two components, we get C2 = (A1, R1, R

a1/a2
1).

Notice, Same(A1, C1, A2, C2) = 1 is true, so our original definition does not permit the attacker
to evaluate HProve(2, C2, x) (which clearly breaks the scheme). However, since we obtained C2

without asking the delegate C1 itself (instead, we asked a different ciphertext C ′1), the stronger
notion would have allowed the attacker to call HProve(2, C2, x) and break the scheme.

6.3 Construction of Uni- and Bidirectional Delegatable EVRF

Next, we extend the construction from the previous EVRF construction to also handle delegation
to (and, under a stronger assumption, from) potentially untrusted parties. The idea is to add a
“BLS signature” [11] σ in the Encap procedure which will prove that the initial ciphertext was
“well-formed”. This makes it hard for the attacker to maul a valid initial ciphertext C into a related
ciphertext C ′, whose delegation might compromise the security of C. The public verifiability of the
signature σ will also make it easy to add a “signature check” to the “delegation check” we already
used in our scheme, to ensure that the appropriate pseudorandomness property is not compromised.
This is presented as Construction 5.

Security Analysis. Since DEVRF2 is essentially the same as DEVRF1, its correctness follows
the same argument. In particular, we notice that the original signature σ indeed satisfies our
signature check:

e(H ′(A,R), R) = e(H ′(A,R), gr) = e(H ′(A,R)r, g) = e(σ, g)

Similar to the delegation check, the signature check, e(H ′(A′, R′), R′)
?
= e(σ′, g), is important to

ensure that the value σ′ is information-theoretically determined from the value (A′, R′), so it is fine
to not include σ under H.

Also, since the delegation procedure Del simply copies the values A,R and σ, and only modifies
the value D1, the Delegation-Completeness and Delegation-Soundness of DEVRF2 holds

30

Protocol Delegatable EVRF

Gen(1k)

Sample a ∈r Z∗p
Compute A = ga ∈ G.
return SK = a and PK = (g,A).

Encap(PK)

Parse PK = (g,A).
Sample r ∈r Z∗p.
Compute R = D = gr, S = Ar, σ = H ′(A,R)r.
return ciphertext C = (A,R,D, σ) and trapdoor T = (A,R, S).

Comp(T, x)

Parse T = (A,R, S).
Compute y = e(H(A,R, x), S).
return y.

Del(SK1, C1, SK2)

Parse SK1 = a1, SK2 = a2, C1 = (A,R,D1, σ).
if e(A,R) 6= e(ga1 , D1) or e(H ′(A,R), R) 6= e(σ, g) then

return ⊥.
else

Compute D2 = D
a1/a2
1 where a1/a2 = a1 · (a2)−1 mod p.

return C2 = (A,R,D2).

Split(PK,C ′)

Parse PK = (g,A), C ′ = (A′, R′, D′, σ′).
if e(A′, R′) 6= e(A,D′) or e(H ′(A′, R′), R′) 6= e(σ′, g) then

return ⊥.
else

return (A′, R′).

Core(SK,C ′, x)

Parse SK = a,C ′ = (A′, R′, D′, σ′).
Compute partial output z = H(A′, R′, x)a.
return z.

Post(PK, z′, C ′, x)

Parse PK = (g,A), C ′ = (A′, R′, D′, σ′)
if e(z′, g) 6= e(H(A′, R′, x), A) then

return ⊥.
else

Compute full output y′ = e(z′, D′).
return y′.

Same(PK1, C1, PK2, C2)

Parse PK1 = (g,A1), PK2 = (g,A2), C1 = (A,R,D1, σ), C2 =
(A′, R′, D2, σ

′).
if (A,R, σ) 6= (A′, R′, σ′) or e(A1, D1) 6= e(A2, D2) then

return ⊥.

Construction 5: DEVRF2 = (Gen,Encap,Comp, Split, Core, Post,Del,Same).

as it did for DEVRF1, since the signature check is not affected by changing D1 to D2 = D
a1/a2
1 .

In particular, similar to the delegation checks, both signature checks are either simultaneously true
or false.

More importantly, in Section C.5 we also show how the addition of the “BLS signature” σ and
the new signature check allow us to prove the following theorem:

Theorem 12. The delegatable EVRF given in Construction 5 satisfies the Uni-$-Core property
under the BDDH assumption in the random oracle model.

Finally, we also show that the same construction also satisfies the strongest bidirectional-
delegation security, but now under a much stronger iBDDH assumption. In fact, for this result,
we will even show a stronger legality condition mentioned earlier: the only way to break DEVRF2

is to trivially delegate it “out” to the attacker, or delegate it to the honest user, and then ask the
user to evaluate on challenge x. We define this formally in Section C.6 (see Definition 21), where
we also show the following result:

Theorem 13. The delegatable EVRF given in Construction 5 satisfies the Bi-$-Core property
under the interactive iBDDH assumption in the random oracle model. It satisfies the strongest
possible legality condition for the attacker (see Definition 21).

6.4 Construction of One-time Delegatable EVRF

Note that the bidirectional-delegation security of Construction 5 relied on a very strong inversion-
oracle BDDH (iBDDH) assumption, which is interactive and not well studied. For applications
where we only guarantee security after a single delegation, we could prove bidirectional-delegation
under a much reasonable extended BDDH (eBDDH) assumption. More precisely, any party P is
“safe” to do any number of “out-delegations” to other, potentially untrusted parties P ′, but should

31

only accept “in-delegation” from such an untrusted P ′ only if the delegated ciphertext C ′ was
created directly for P ′ (and not delegated to P ′ from somewhere else).

More formally, the one-time delegation scheme we present here is identical to the unidirectional-
delegation scheme from the previous section, except we replace the “delegation check”

e(A,R)
?
= e(A1, D1)

by a stricter “equality check”:
(A,R)

?
= (A1, D1)

which means that the ciphertext C1 was directly created for public key A1 = A. We call the re-
sulting 1-time-delegatable construction DEVRF3. In Section C.7 we show that DEVRF3 satisfies
bidirectional-delegation security, but now under a much weaker (non-interactive) eBDDH assump-
tion:

Theorem 14. The one-time delegatable DEVRF3 above satisfies the Bi-$-Core property under
the eBDDH assumption in the random oracle model. It satisfies the strongest possible legality
condition for the attacker (see Definition 21).

We stress that our 1-time delegatable scheme could in principle be delegated further, if the
stricter delegation check (A,R)

?
= (A1, D1) is replaced by the original check e(A,R)

?
= e(A1, D1).

However, by doing so the party receiving the EVRF from some untrusted source must rely on the
stronger iBDDH complexity assumption.

7 Conclusion and Final Thoughts

In this work we introduce the idea of an encapsulated search index (ESI) that offers support for
public-indexing and where the search takes sub-linear time. We also presented a generic construc-
tion of ESI from another primitive known as encapsulated verifiable random functions (EVRF).
We further detailed meaningful extensions to both ESI and EVRF with support for delegation and
distribution. We presented constructions of a standard EVRF and its various extensions. Indeed,
obtain the following Theorem as a corollary of Theorem 6, and by using any updatable sub-linear
DS with an appropriate (delegatable and/or threshold) EVRF from the earlier sections, we get:

Theorem 15. We have an updatable ESI (Section 3.5) which

(a) maintains the efficiency of the non-cryptographic DS;

(b) has non-interactive (t, n) threshold implementation for token generation (by using TEVRF);
and

(c) achieves either of the following delegation security levels in the random oracle model:

− Basic CCA secure under BDDH assumption (by using DEVRF1)

− Uni CCA secure under BDDH assumption (by using DEVRF2)

− Bi CCA secure under iBDDH assumption (by using DEVRF2)

− One Time CCA secure under eBDDH assumption (by using DEVRF3)

32

Commercial Product. This theorem forms the backbone of a commercially available product
that has been in the market since 2020 called Atakama [3]. It serves over two-dozen enterprise
customers, with the largest having over 100 users. At a high level, the commercial application
is essentially the motivating application described in the Introduction, but with a few pragmatic
extensions.

The code is production quality and has been deployed without any noticeable performance
degradation, even for large files. Note that a typical mobile device has the capability to compute
10,000 elliptic curve multiplications (which is needed in our partial decryption step) per second,
with the help of multiple cores. This number is only expected to go up with further technological
advancements such as the growth of mobile GPUs. In the search functionality, a user can enter
one or several keywords. The system then sequentially searches each file using the ESI that has
been built leading to a total complexity proportional to the product of the number of keywords, the
number of files, and the ESI search time. By using a blinded bloom filter as the data structure, the
application achieves a constant time search dictionary.14 Currently, searching 1000 files with up to
4 keywords (or 2000 files with a maximum of 2 keywords) can be accomplished in about 2 seconds
on a standard mobile phone. The application already uses the distributed token generation and the
search delegation capabilities of our underlying ESI. We present additional details in Section A.

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption
revisited: Consistency properties, relation to anonymous IBE, and extensions. In Victor Shoup,
editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 205–222, Santa Barbara, CA, USA, August 14–18, 2005. Springer, Heidelberg,
Germany.

[2] Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter Rindal. DiSE: Dis-
tributed symmetric-key encryption. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communications
Security, pages 1993–2010, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[3] Atakama. Secure your files multi-factor encryption, 2022. https://www.atakama.com/.

[4] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Public key encryption with keyword
search revisited. In Osvaldo Gervasi, Beniamino Murgante, Antonio Laganà, David Taniar,
Youngsong Mun, and Marina L. Gavrilova, editors, Computational Science and Its Applications
– ICCSA 2008, pages 1249–1259, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[5] Steven M. Bellovin and William R. Cheswick. Privacy-enhanced searches using encrypted
bloom filters. Cryptology ePrint Archive, Report 2004/022, 2004. http://eprint.iacr.org/
2004/022.

[6] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, July 1970.

14Of course, the indexing step is proportional to the size of the file.

33

https://www.atakama.com/
http://eprint.iacr.org/2004/022
http://eprint.iacr.org/2004/022

[7] Dan Boneh, Xavier Boyen, and Shai Halevi. Chosen ciphertext secure public key threshold
encryption without random oracles. In David Pointcheval, editor, Topics in Cryptology – CT-
RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 226–243, San Jose, CA,
USA, February 13–17, 2006. Springer, Heidelberg, Germany.

[8] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
506–522, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

[9] Dan Boneh and Matthew Franklin. Identity-based encryption from the weil pairing. SIAM
Journal on Computing, 32(3):586–615, 2003.

[10] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith III. Public key
encryption that allows PIR queries. In Alfred Menezes, editor, Advances in Cryptology –
CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages 50–67, Santa Bar-
bara, CA, USA, August 19–23, 2007. Springer, Heidelberg, Germany.

[11] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin
Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes
in Computer Science, pages 514–532, Gold Coast, Australia, December 9–13, 2001. Springer,
Heidelberg, Germany.

[12] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security from identity-
based techniques. In Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels, editors, ACM
CCS 2005: 12th Conference on Computer and Communications Security, pages 320–329,
Alexandria, Virginia, USA, November 7–11, 2005. ACM Press.

[13] Ran Canetti and Shafi Goldwasser. An efficient threshold public key cryptosystem secure
against adaptive chosen ciphertext attack. In Stern [48], pages 90–106.

[14] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against
searchable encryption. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM
CCS 2015: 22nd Conference on Computer and Communications Security, pages 668–679,
Denver, CO, USA, October 12–16, 2015. ACM Press.

[15] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In John Ioannidis, Angelos Keromytis, and Moti Yung, editors, ACNS 05:
3rd International Conference on Applied Cryptography and Network Security, volume 3531 of
Lecture Notes in Computer Science, pages 442–455, New York, NY, USA, June 7–10, 2005.
Springer, Heidelberg, Germany.

[16] Cloudflare. Cloudflare Randomness Beacon docs. https://developers.cloudflare.com/

randomness-beacon/.

[17] Corestar. corestario/tendermint, October 2020. original-date: 2018-12-19T13:33:15Z.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

34

https://developers.cloudflare.com/randomness-beacon/
https://developers.cloudflare.com/randomness-beacon/

[19] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 13–25, Santa Bar-
bara, CA, USA, August 23–27, 1998. Springer, Heidelberg, Germany.

[20] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. In Ari Juels, Rebecca N. Wright,
and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006: 13th Conference on Computer
and Communications Security, pages 79–88, Alexandria, Virginia, USA, October 30 – Novem-
ber 3, 2006. ACM Press.

[21] DAOBet. DAOBet (ex — DAO.Casino) to Deliver On-Chain Random Beacon Based on BLS
Cryptography, May 2019. https://daobet.org/blog/on-chain-random-generator/.

[22] Dawn Xiaoding Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In Proceeding 2000 IEEE Symposium on Security and Privacy. S P 2000, pages 44–55,
2000.

[23] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In Yvo
Desmedt, editor, PKC 2003: 6th International Workshop on Theory and Practice in Public
Key Cryptography, volume 2567 of Lecture Notes in Computer Science, pages 1–17, Miami,
FL, USA, January 6–8, 2003. Springer, Heidelberg, Germany.

[24] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs
and keys. In Serge Vaudenay, editor, PKC 2005: 8th International Workshop on Theory and
Practice in Public Key Cryptography, volume 3386 of Lecture Notes in Computer Science, pages
416–431, Les Diablerets, Switzerland, January 23–26, 2005. Springer, Heidelberg, Germany.

[25] Ratna Dutta, Rana Barua, and Palash Sarkar. Pairing-based cryptographic
protocols : a survey. Cryptology ePrint Archive, Report 2004/064, 2004.
http://eprint.iacr.org/2004/064/.

[26] Frank A. Feldman. Fast spectral tests for measuring nonrandomness and the DES. In Carl
Pomerance, editor, Advances in Cryptology – CRYPTO’87, volume 293 of Lecture Notes in
Computer Science, pages 243–254, Santa Barbara, CA, USA, August 16–20, 1988. Springer,
Heidelberg, Germany.

[27] Steven D. Galbraith. Supersingular curves in cryptography. Lecture Notes in Computer Sci-
ence, 2248:495–513, 2001.

[28] David Galindo, Jia Liu, Mihai Ordean, and Jin-Mann Wong. Fully distributed verifiable
random functions and their application to decentralised random beacons. Cryptology ePrint
Archive, Report 2020/096, 2020. https://eprint.iacr.org/2020/096.

[29] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, January
2007.

[30] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http:

//eprint.iacr.org/2003/216.

35

https://daobet.org/blog/on-chain-random-generator/
https://eprint.iacr.org/2020/096
http://eprint.iacr.org/2003/216
http://eprint.iacr.org/2003/216

[31] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin, Sachin Vasant, and
Asaf Ziv. NSEC5: Provably preventing DNSSEC zone enumeration. In ISOC Network and
Distributed System Security Symposium – NDSS 2015, San Diego, CA, USA, February 8–11,
2015. The Internet Society.

[32] Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopoulos, and Jan Včelák. Verifiable Random
Functions (VRFs). Internet-Draft draft-irtf-cfrg-vrf-07, Internet Engineering Task Force, June
2020. Work in Progress.

[33] Antoine Joux and Kim Nguyen. Separating Decision Diffie-Hellman from Diffie-
Hellman in cryptographic groups. Cryptology ePrint Archive, Report 2001/003, 2001.
http://eprint.iacr.org/2001/003/.

[34] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable symmetric
encryption. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012: 19th
Conference on Computer and Communications Security, pages 965–976, Raleigh, NC, USA,
October 16–18, 2012. ACM Press.

[35] Keep. The Keep Random Beacon: An Implementation of a Threshold Relay, 2020. https:

//docs.keep.network/random-beacon/.

[36] Veronika Kuchta and Mark Manulis. Unique aggregate signatures with applications to dis-
tributed verifiable random functions. In Michel Abdalla, Cristina Nita-Rotaru, and Ricardo
Dahab, editors, CANS 13: 12th International Conference on Cryptology and Network Security,
volume 8257 of Lecture Notes in Computer Science, pages 251–270, Paraty, Brazil, Novem-
ber 20–22, 2013. Springer, Heidelberg, Germany.

[37] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 597–612, Santa Barbara, CA, USA, August 18–22,
2002. Springer, Heidelberg, Germany.

[38] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In 40th
Annual Symposium on Foundations of Computer Science, pages 120–130, New York, NY, USA,
October 17–19, 1999. IEEE Computer Society Press.

[39] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions and
KDCs. In Stern [48], pages 327–346.

[40] Moni Naor and Eylon Yogev. Tight bounds for sliding bloom filters. Algorithmica,
73(4):652–672, December 2015.

[41] Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal bloom filter replacement. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’05, page 823–829, USA, 2005. Society for Industrial and Applied Mathematics.

[42] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122
– 144, 2004.

36

https://docs.keep.network/random-beacon/
https://docs.keep.network/random-beacon/

[43] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee. Improved searchable
public key encryption with designated tester. In Wanqing Li, Willy Susilo, Udaya Kiran
Tupakula, Reihaneh Safavi-Naini, and Vijay Varadharajan, editors, ASIACCS 09: 4th ACM
Symposium on Information, Computer and Communications Security, pages 376–379, Sydney,
Australia, March 10–12, 2009. ACM Press.

[44] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. ETHDKG: Dis-
tributed key generation with Ethereum smart contracts. Cryptology ePrint Archive, Report
2019/985, 2019. https://eprint.iacr.org/2019/985.

[45] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the Association for Computing Machinery, 27:701–717, 1980.

[46] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[47] Victor Shoup. Lower bounds for discrete logarithms and related problems. Lecture Notes in
Computer Science, 1233:256–266, 1997.

[48] Jacques Stern, editor. Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture
Notes in Computer Science, Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg,
Germany.

[49] Yunhong Zhou, Na Li, Yanmei Tian, Dezhi An, and Licheng Wang. Public key encryption
with keyword search in cloud: A survey. Entropy, 22(4), 2020.

A ESI, in Practice

In this section, we look at the deployed product [3] with a focus on the minutiae of the implemen-
tation and the user interface. However, before we proceed, we look at a high-level overview of the
application.

The application is designed to allow users to: upload files on a device (say, a desktop); encrypt
these files; and search these files with the search operation being approved by multiple devices (say, a
mobile phone and/or a laptop). The application outputs all the files that contain the keyword. The
techniques presented in this paper are for purposes of supporting the search functionality: building,
searching, and delegating the index. Thus, below we will do not discuss the encryption/decryption
of files, which uses rather standard techniques.

We note that the indexed files are entirely known at the time of indexing. Furthermore, the
output of the search operation is the actual list of all files containing the keyword, as opposed to a
less useful answer on whether some file contains the keyword. Therefore, the issue of information
leakage due to multiple files sharing keywords (which is of great concern in the PEKS/SSE setting)
is moot. In other words, the “static” nature of ESI is totally fine for this application. Moreover,
in terms of efficiency, searching is done sequentially over all files but does almost does not depend
on the sizes of individual files, which is a great saving compared to PEKS. Similarly, the fact that
indexing is done on the desktop without any involvement of the mobile “search approvers” is a
huge benefit over SSE.

Moreover, non-interactive threshold implementation is extremely handy, allowing the owner of
the mobile device to simply “tap approve” (see below), and not worry about losing connectivity in

37

https://eprint.iacr.org/2019/985

between the approval process, or needing to wait for all helper devices to be online. Finally, the
application supports delegating the search operation to new “desktops”, which implies the need for
supporting such operations without spending precious resources rebuilding the index. In short, the
motivating application is to build a static index that achieves sub-linear search, with support for
threshold search approvals and delegation of such approvals, which is precisely the ESI setting.

The images below contain fictitious company name and filenames to preserve anonymity.

A.1 Indexing and Search Functionality

− The software begins by creating an index for every file it encrypts. This index is built by
using the EVRF combined with a blinded bloom filter, producing the resulting encapsulated
search index.

− The built index is appended to the encrypted file.

− There is authorization needed to perform searches, similar to the authorization needed to
decrypt the file.

− Let us assume the user wants to search “computer”. The user enters the keyword they wish
to search in the interface, as shown in the following figure:

− This search needs to then be approved on a mobile device. The user’s mobile device receives
this prompt:

38

− When the user taps to approve, the mobile device computes a partial search token for each
word of the search query. The partial search token is computed based on the share of the
secret key and using its handle.

− This share of the search token is communicated to the software.

− The software then combines the shares it has received from each device to generate the actual
search token. This token is then used to return the set of all files that contain the keyword.
This is how a typical output looks:

Notice, different files have different sizes, but this does not affect the performance in practice.

− In the event a file needs to be transferred to another user, the handles can be re-derived using
the algorithms of Delegated EVRF. The delegation step costs O(f), where f is the number
of files.

B Bilinear Groups and Hardness Assumptions

Bilinear groups. We use bilinear maps in our constructions.15 We briefly review their properties
below (see [25] for a more comprehensive treatment).

Consider two (multiplicative) cyclic groups G and G1 of prime order p. Let g be a generator of
G. Roughly speaking, a mapping is bilinear if it is linear with respect to each of its variables:

Definition 16. An (admissible) bilinear map is a map e : G×G 7→ G1 with the following properties:

1. Bilinear: for all u, v ∈ G and x, y ∈ Z, we have e(ux, vy) = e(u, v)xy.

2. Non-degenerate: e(g, g) 6= 1.

15For simplicity of exposition, we will use symmetric bilinear maps. However, all our assumptions and constructions
easily extend to the asymmetric variant; see [9].

39

3. Computable: there is an efficient algorithm to compute e(u, v) for all u, v ∈ G.

We say that a group G is bilinear if the group action in G is efficiently computable and there
exists a group G1 and an admissible bilinear map e : G×G 7→ G1. Henceforth, we shall use G∗ to
stand for G\{1G}. Such maps can be constructed from Weil and Tate pairings on elliptic curves or
abelian varieties [9, 27,33].

DDH is easy in Bilenear groups. Given two group elements A = ga, B = gb ∈ G, we
define the DH(A,B) = DH(ga, gb) = gab ∈ G. Note that an admissible bilinear map provides an
algorithm for solving the decisional Diffie-Hellman problem (DDH) in G. Specifically, to determine
whether (g,A,B,R) is a DDH tuple, meaning check if R = DH(A,B). Indeed, R = DH(A,B) iff
e(A,B) = e(g,R), which is efficiently checkable in bilinear groups. We now state the hardness
assumptions on which our constructions are based. In what follows, we let G be a bilinear group
of prime order p, and let g be its generator.

Bilinear Diffie-Hellman Assumption. Our basic and unidirectional EVRF constructions will
rely on the Bilinear Decisional Diffie-Hellman (BDDH) assumption from the original Boneh-Franklin
paper [9]. The BDDH problem on G asks: given

(
g, ga, gb, gr

)
∈ (G∗)4 as input, distinguish the

value e(g, g)abr from random element h← G1. Formally, an algorithm B has advantage ε in solving
BDDH in G if ∣∣∣ Pr

[
B(g, ga, gb, gr, e(g, g)abr) = 1

]
− Pr

[
B(g, ga, gb, gr, g1) = 1

]∣∣∣ ≤ ε,
where the probability is over the internal coin tosses of A and the choice of a, b, r ∈ Z∗p and g1 ∈ G1.

Definition 17. (BDDH assumption) We say that BDDH assumption holds in G if every PPT
algorithm B has advantage at most ε(k) = negl(k) in solving the BDDH problem in G.

Extended BDDH assumption. Our one-time bidirectional delegatable EVRF construction will
rely on the extended Bilinear Decisional Diffie-Hellman (eBDDH) that we introduce, where the
attacker is additionally given the value g1/a ∈ G∗. Formally, an algorithm B has advantage ε in
solving eBDDH in G if∣∣∣ Pr

[
B(g, g1/a, ga, gb, gr, e(g, g)abr) = 1

]
− Pr

[
B(g, g1/a, ga, gb, gr, g1) = 1

]∣∣∣ ≤ ε,
where the probability is over the internal coin tosses of A and the choice of a, b, r ∈ Z∗p and g1 ∈ G1.

Definition 18. (eBDDH assumption) We say that extended eBDDH assumption holds in G if every
PPT algorithm B has advantage at most ε(k) = negl(k) in solving the eBDDH problem in G.

Inversion-Oracle BDDH assumption. Our multi-time bidirectional delegatable EVRF con-
struction will rely on the inversion-oracle Bilinear Decisional Diffie-Hellman (iBDDH) that we
introduce, where the attacker is additionally given the oracle Oa(h) = h1/a ∈ G∗. Formally, an
algorithm B has advantage ε in solving iBDDH in G if∣∣∣ Pr

[
BOa(·)(g, ga, gb, gr, e(g, g)abr) = 1

]
− Pr

[
BOa(·)(g, ga, gb, gr, g1) = 1

]∣∣∣ ≤ ε,
where the probability is over the internal coin tosses of A and the choice of a, b, r ∈ Z∗p and g1 ∈ G1.

Definition 19. (iBDDH assumption) We say that inversion-oracle BDDH assumption (iBDDH)
holds in G if every PPT algorithm B has advantage at most ε(k) = negl(k) in solving the iBDDH
problem in G.

40

Clearly, iBDDH assumption is stronger than eBDDH (as g1/a = Oa(g)), which in turn is stronger
than the well believed BDDH assumption.

iBDDH =⇒ eBDDH =⇒ BDDH

These assumptions can be proven secure in the Generic Group Model. We present an analysis
of the iBDDH assumption in the generic group model in Section B.1.

B.1 Generic Group Model Proof for iBDDH Assumption

In this section, we examine the iBDDH assumption in the generic group model [47].
In the generic group model, elements of G,G1 are encoded as unique random strings. We define

an injective function θ : Zp 7→ {0, 1}∗ which maps a ∈ Zp to the string encoding of the group
element ga ∈ G. Similarly, we define θ1 : Zp 7→ {0, 1}∗ for G1. The encodings are such that non-
group operations are meaningless. Typically, there exist three oracles - one which computes the
group action in G, another which computes the group action in G1, and a third that compute the
bilinear pairing e : G×G 7→ G1. In our case, there exists a fourth oracle that models the inversion
oracle Oa(·).

Theorem 20. Let A be an algorithm that solves the iBDDH problem. Assume that a ∈ Z∗p,
b, c, r ∈ Zp, and the encoding functions θ, θ1 are chosen at random. If A makes at most qG queries
to the four oracles, then∣∣∣∣∣∣∣Pr

AOa(·)

p, θ(1),

θ(a), θ(b), θ(c),

θ1(Γ0), θ1(Γ1)

 = β

∣∣∣∣∣
β ← {0, 1};
a← Z∗p, b, c, r ← Zp,
Γβ = abc,Γ1−β = r

− 1

2

∣∣∣∣∣∣∣ ≤
2 · (qG + 6)2(qG − 3)

p

Proof. Instead of letting A interact with the actual oracles, we play the following game.
We begin by maintaining two dynamic lists L,L′. Informally, L contains the information that

A has garnered about group elements in G, while L′ contains information about those elements in
G1. Formally, we have

L = {(Fi, si) : i = 0, . . . , t− 1},
L1 = {(F ′i , s′i) : i = 0, . . . , t′ − 1}.

Here si, s
′
i ∈ {0, 1}∗ are random encodings and

Fi, F
′
i ∈ Zp[A,B,C,A−1,Γ0,Γ1] are multivariate Laurent polynomials in A,B,C, A−1,Γ0,Γ1. Note

that this is a departure from typical modeling which models Fi as polynomials with only positive
degree elements. However, we need Laurent polynomials here to capture the inversion oracle.

In the beginning of the game, the lists are initialized as follows: F0 = 1, F1 = A,F2 = B,F3 = C,
F ′0 = Γ0, F

′
1 = Γ1. The corresponding encodings are set to arbitrary distinct strings in {0, 1}∗. At

this state, the lists have sizes t = 4, t′ = 2. The total length of lists at a step τ ≤ qG in the game
must satisfy:

t+ t′ = τ + 6, (4)

and it is easy to note that this condition is met at the start of the game.
We start the game by providing A with encodings s0, s1, s2, s3, s

′
0, s
′
1. Algorithm A begins to

make oracle queries and we respond as follows:

41

− Group Actions: A provides a multiply/divide bit and two operands 0 ≤ i, j < t corresponding
to two encodings si, sj . We first compute Ft = Fi ± Fj depending on the choice of the bit.
We then check to see if ∃` < t such that F` = Ft. If yes, we set st = s`. Otherwise, we set
st to a random string in {0, 1}∗ \ {s0, . . . , st−1}. Then increment t by 1 and return st to A.
Similarly, we handle operations in G1, except that the operation is on the other list L′.

− Bilinear Pairing: A provides 0 ≤ i, j < t′ indicating operands si, sj . First compute F ′t′ =
Fi · Fj . We then check to see if ∃` < t′ such that F ′` = F ′t′ . If yes, we set s′t′ = s′`. Otherwise,
we set s′t′ to a random string in {0, 1}∗ \ {s′0, . . . , s′t′−1}. Then increment t′ by 1 and return
s′t′ to A.

− Inversion Oracle: A provides 0 ≤ i < t indicating operand si. First compute Ft = Fi/A. We
then check to see if ∃` < t such that F` = Ft. If yes, we set st = s`. Otherwise, we set st to
a random string in {0, 1}∗ \ {s0, . . . , st−1}. Then increment t by 1 and return st to A.

After making at most qG queries, A halts with a guess β̂ ∈ {0, 1}. Then we choose a← Z∗p, b, c, r ←
Zp. Then, consider Γβ ← abc, Γ1−β ← r for both choices of β. By sampling the values only after
A’s guess bit, the simulation does not reveal anything about β, unless our indeterminates give rise
to some non-trivial equality relation for the sampled values. Specifically, A wins the game if for
any Fi 6= Fj or any F ′i 6= F ′j , one of the following conditions hold:

1. Fi(a, b, c, a
−1, abc, r)− Fj(a, b, c, a−1, abc, r) = 0

2. Fi(a, b, c, a
−1, r, abc)− Fj(a, b, c, a−1, r, abc) = 0

3. F ′i (a, b, c, a
−1, abc, r)− F ′j(a, b, c, a−1, abc, r) = 0

4. F ′i (a, b, c, a
−1, r, abc)− F ′j(a, b, c, a−1, r, abc) = 0

Let us look at the degree of the polynomials. For all i, deg(Fi) ≤ t− 3, and deg(F ′i) ≤ 2(t− 3).
In other words, each Fi is a polynomial in A,B,C,A−1, ABC,R whose degree is at most t − 3.
Consider the polynomial: fi = Fi ·At−4. Note that fi is a polynomial only in A,B,C,ABC,R and
deg(f ′) ≤ t − 3. Further, every root of Fi is a root of fi and there are at most t − 3 roots of fi.
Similarly, consider the polynomial f ′i = F ′i ·A2t−8. The degree of f ′i is at most 2t−6 and every root
of F ′i is a root of f ′i , and there are at most 2t−6 roots of f ′i . We can therefore apply Schwartz-Zippel
Lemma [45] to get that for all i, j, Pr[Fi − Fj = 0] ≤ Pr[fi − fj = 0] ≤ (t − 3)/p,Pr[F ′i − F ′j] ≤
Pr[f ′i − f ′j = 0] ≤ 2(t− 3)/p. Therefore, A’s advantage is:

ε ≤ 2 ·
((

t

2

)
t− 3

p
+

(
t′

2

)
2 · (t− 3)

p

)
< (t+ t′)2 · 2 · (t− 3)

p

< (qG + 6)2 · 2 · (t− 3)

p

< (qG + 6)2 · 2 · (qG − 3)

p
= O

(
q3G
p

)

42

C Deferred Security Proofs

C.1 Proof of Encapsulated Search Index security

Theorem 6. If EVRF satisfies the $-Core property, then Encapsulated Search Index is CCA
secure. Further, if the EVRF (resp. DS) is threshold and/or delegatable (resp. updatable; see
Remark 7), the resulting ESI inherits the same.

Proof. The proof is through a sequence of Hybrids where at each step we replace the index cor-
responding to a word w ∈ (D1 \ D2) ∪ (D2 \ D1) with a random index, one by one. Recall that
the process of building an index is to use the keyword as the input to the EVRF, making the
output of the EVRF as the index. The key idea behind the proof is that only these words can
help distinguish the two documents and the adversary is prevented from receiving computation of
S-Prove on these words. Thus, the EVRF of these words is never realized by the adversary. Let
Hi be the distribution where the first i distinguishing words in D1 have been replaced by a random
string and call the resulting encrypted index Ei. We will show that if A can distinguish between
Hi and Hi+1, then we can construct an adversary B that can win in the EVRF security game.

Formally, let A = (A1,A2) be a PPT attacker trying to distinguish between hybrids Hi and
Hi+1, having advantage ε. A is given public key PK (for unknown SK) and oracle access to
S-Prove(SK, ·, ·). In addition, the challenge index is either Ei or Ei+1.

Using this attacker A, we now define a PPT attacker B which will break the $−Core property
of EV RF . B is given the value PK, challenge ciphertext C, and oracle access to Prove. Note
that S-Prove and Prove are identical functions for our construction.

Definition of BProve(SK,·,·)(PK,C).

− Setup: B provides to A the PK value.

− Queries to S-Prove(SK, ·, ·): B receives inputs (ci, wi)

– Uses its access to Prove queries to receive the output of Prove(SK, ci, wi) = zi.

– Responds to A with zi after recording (ci, wi, zi) in a table T .

– B uses table T to verify that A is not querying S-Prove on a distinguishing word wi.

− Challenge Query: B receives two documents D1, D2. It identifies the set of distinguishing
words W , i.e., W = (D1 \D2) ∪ (D2 \D1). Let W = {w′1, . . . , w′m}. B tests the legality of A
using T . If the test passes, then for w ∈ D, do the following:

– If w ∈ {wi+2, . . . , wm} or w 6∈W , then

∗ Query oracle Prove with input (C,w) to receive as output z = Core(SK,Split(PK,C), w)

∗ Compute Post(PK, z, C, x) = y.

∗ Add y to Y .

– If w ∈ {w1, . . . , wi}, then:

∗ Pick y at random.

∗ Add y to Y ,

– If w = wi+1, then:

∗ B uses wi+1 as its challenge word. It receives as response yi+1.

43

∗ Add yi+1 to Y .

Run DS.Construct(Y) = E∗. Set c∗ = C. Forward (E∗, c∗) to A.

− Finish: Let A return b′ as its guess. It forwards b′ as its guess.

Analysis of Reduction. If the challenger’s bit was 0, then B simulates the distribution Hi

perfectly, where the first i distinguishing words are indexed by a random value. If the challenger’s
bit was 1, then B simulates the distribution Hi+1 perfectly where the first i+1 distinguishing words
are indexed by a random value. Therefore, the advantage of B in distinguishing between real or
random value is same as A’s advantage in distinguishing between hybrids Hi and Hi+1 (which is
ε).

C.2 Proof of EVRF security

Theorem 7. The standard EVRF given in Construction 2 satisfies the $-Core property under
the BDDH assumption in the random oracle model.

Let A = (A1,A2) be a PPT attacker against the $-Core property of EVRF, having advantage
ε. A is given the public key A = ga (for unknown a), challenge ciphertext R = gr (for unknown
r), and oracle access to Prove, which is equal to Core due to empty Split step. Namely, A has
access to Core(a, ·, ·): on query (R′, x′), A gets z′ = H(R′, x′)a. A then outputs challenge x, gets
back a value y which is either e(H(R, x)a, R) = e(H(R, x), g)ar or uniform over G1, and has to tell
which without asking its Core(a, ·, ·) oracle on the challenge (R, x). Additionally, A expects to
have oracle access to the random oracle H : {0, 1}∗ → G, and values g, A = ga, B = gb, R = gr

(for unknown a, b, r), and a challenge g1, which is either e(g, g)abr or uniform in G1. There is no
random oracle for B.

Definition of B(g,A,B,R, g1). Run A = (A1,A2) as follows:

− Setup: Pass PK = A and challenge ciphertext C = R to A1.

− Queries to H: let q be the upper bound on the number of queries to Core made by A.
B will maintain a table T — initially empty — of the form {((Ri, xi), βi, coini)}, where i is
the index of the query to H incremented with each query, (Ri, xi) in the input to the query
(inputs not of this form are consistently answered at random), and the meaning of βi ∈ Zp
and coini ∈ {0, 1} will be explained below:

1. If (Ri, xi) was already made, meaning there is j < i such that (Ri, xi) = (Rj , xj) and
((Rj , xj), βj , coinj) ∈ T , then respond with:

H(Ri, xi) = gβj if coinj = 0, and with H(Ri, xi) = Bβj if coinj = 1.

2. Otherwise, flip a fresh coini ∈ {0, 1} such that Pr[coini = 1] = 1/q, sample random
βi ←r Zp, add the tuple ((Ri, xi), βi, coini) to T , and respond with:

H(Ri, xi) = gβi if coini = 0, and with H(Ri, xi) = Bβi if coini = 1.

44

− Queries to Core: Given query (R′, x′) to Core, check if A made the H-query (R′, x′) by
checking if there exists j such that (R′, x′) = (Rj , xj) and ((Rj , xj), βj , coinj) ∈ T . If such
query was not made, make this query for A following the normal H-query simulation strategy
above. In either case, retrieve the record ((Rj , xj), βj , coinj) ∈ T with (R′, x′) = (Rj , xj).
Respond as follows:

If coinj = 1, abort the simulation, outputting a random bit b′ ∈r {0, 1}.

Otherwise, we know H(R′, x′) = gβj , so B outputs partial output z′ = Aβj .

(Notice, z′ = Aβj = gaβj = H(R′, x′)a, for unknown a.)

− Challenge query: When A1 produces challenge x, produce answer y as follows. Check
if A1 made the H-query (R, x) by checking if there exists j such that (R, x) = (Rj , xj)
and ((Rj , xj), βj , coinj) ∈ T . If such query was not made, make this query for A fol-
lowing the normal H-query simulation strategy above. In either case, retrieve the record
((Rj , xj), βj , coinj) ∈ T with (R, x) = (Rj , xj). Respond as follows:

If coinj = 0, abort the simulation, outputting a random bit b′ ∈r {0, 1}.

Otherwise, we know H(R, x) = Bβj , and B will output challenge y = g
βj
1 .

(Notice, y0 = Eval(a,R, x) = e(H(R, x)a, R) = e(Bβja, gr) = (e(g, g)abr)βj .)

− Finish: If the simulation did not fail, and A produces a guess b′, B outputs the same b′.

Analysis of the Reduction. Assume the advantage of A is ε, and let us denote by ε′ the
advantage of B. We will argue that ε′ > ε/3q, which would complete the proof, since q is polynomial.
Let use define “failure event” F to be that B had to abort the simulation of A, either during one
of the Core queries (if coinj = 1), or when simulating the challenge (if coinj = 0). Recall, if F
happens, B still outputs a random bit b′, which has 1/2 chance to be equal to the challenge b. Let
us also define “success probability” γ ∈ [0, 1] as Pr[¬F] = γ. Notice,

1

2
+ ε′ = Pr[b = b′]

= Pr[F] · Pr[b = b′ | F] + Pr[¬F] · Pr[b = b′ | ¬F]

= (1− γ) · 1

2
+ γ · Pr[b = b′ | ¬F]

=
1

2
+ γ ·

(
Pr[b = b′ | ¬F]− 1

2

)
Thus, to complete our proof that ε′ > ε/3q, it suffices to show the following two claims:

Claim 1. γ = Pr[¬F] > 1
3q .

Claim 2 (2). Pr[b = b′ | ¬F] = 1
2 + ε.

45

Proof of Claim 1. We see that in order for B not to abort the simulation, all random bits
coinj have to be equal to 0 (each independently happens with probability 1−1/q) when simulating
at most q Core queries, and also the “challenge” coin coinj should be 1 (independently happens
with probability 1/q, since none of the Core queries used the challenge (R, x)). This means that,
overall,

γ ≥
(

1− 1

q

)q
· 1

q
>

1

3q

completing the proof.

Proof of Claim 2. We claim that when B successfully completes the simulation, he perfectly
simulates the run of A. More precisely, in this case the run of B with challenge bit b = 0 is identical
to the run of A with challenge bit b = 0, and the same for b = 1. This will complete the proof, as
then

Pr[b = b′ | ¬F] = Pr[A wins] =
1

2
+ ε

To see this, first we notice that all the queries to H are answered at random irrespective of the
value of the coinj , since both distributions gβj and Bβj are perfectly uniform when βj ←r Zp.

Second, we already saw that when all Core queries are answered, each partial answer z′ is
correct, as z′ = Aβj = gaβj = H(R′, x′)a (for correct, although unknown, a). Finally, let use look
at the challenge query (R, x). Since the simulation succeeded, we know H(R, x) = Bβj , for some
fresh and random βj ∈ Zp. This means the correct output y0 = Eval(a,R, x) = e(H(R, x)a, R) =

e(Bβja, gr) = (e(g, g)abr)βj . Our simulator B responded with g
βj
1 , where g1 is its own challenge.

Thus:
When b = 0, we have g1 = e(g, g)abr, meaning that y0 = g

βj
1 indeed.

When b = 1, g1 ∈r G1, which means that the response g
βj
1 is identically distributed with a

uniform answer y1 ∈r G1, as needed.
This completes the proof of Claim 1 and Theorem 7.

C.3 Proof of TEVRF security

Theorem 9. If Construction 2 satisfies the $-Core property of standard EVRF, then Construc-
tion 3 satisfies the $-DCore property of threshold EVRF. By Theorem 7, it follows that Construc-
tion 3 satisfies the $-DCore property under the BDDH assumption in the random oracle model.

Proof. Let A = (A0,A1,A2) be a PPT attacker against the $-DCore property of TEVRF, having
advantage ε. A first chooses t−1 indices S = {i1, . . . , it−1} where each index is a subset of {1, . . . , n}.
Then, A is given the public key A = ga (for unknown a), challenge ciphertext R = gr (for unknown
r), secret keys ski1 = ai1 = f(i1), . . . , skit−1 = ait−1 = f(it−1) (for unknown polynomial f of degree
t such that f(0) = a), verification keys VK, and oracle access to Prove, with equal valued Split
step. Namely, A has access to Prove(ski, ·, ·): on query (i, R′, x′), A gets z′ = H(R′, x′)ai . A
then outputs challenge x, gets back a value y which is either e(H(R, x)a, R) = e(H(R, x), g)ar or
uniform over G1, and has to tell which without asking its Prove(SK, ·, ·, ·) oracle on input (j, R, x)
for j 6∈ S. Additionally, A expects to have oracle access to the random oracle H : {0, 1}∗ → G.

Using this attacker A, we now define a PPT attacker B which will break the $-Core prop-
erty of EVRF. B = (B1,B2) is given the values g, public key A∗ = ga

∗
(for unknown a∗),

ciphertext R∗ = gr
∗

(for unknown r∗), and an oracle access to Prove which is equal to Core
due to empty Split step. Namely B has access to Core(a∗, ·, ·) on query (R′, x′), it receives

46

in response H(R′, x′)a
∗
. B then outputs a challenge x and receives a response y which is either

e(H(R∗, x)a
∗
, R∗) = e(H(R∗, x), g)a

∗r or uniform in G1. Additionally, B expects to have oracle
access to the random oracle H : {0, 1}∗ → G.

Definition of BCore(a∗,·,·),H(·,·)(A∗, R∗). Run A = (A0,A1,A2) as follows:

− Setup: B does the following during Setup.

– Receive set S = {i1, . . . , it−1} from A.

– Next B generates the key shares and public key as follows:

∗ Sample ai1 , . . . , ait−1 ∈ Zp.
∗ Pick it 6∈ S at random.

∗ Let f ∈ Zp[X] be the degree t−1 polynomial implicitly defined to satisfy f(it) = a∗,
and f(ij) = aij for j = 1, . . . , t− 1.

∗ Note that B does not know f since it does not know a∗.

∗ Recall that f(0) = a and A = ga is the public key. B determines the Lagrange
coefficients λ1, . . . , λt−1, λt ∈ Zp such that f(0) =

∑t
j=1 λj · f(ij). Note that these

do not require the knowledge of f . Therefore, we can now compute A =
∏t−1
j=1 g

aijλj ·
(A∗)λt .

∗ B gives ai1 , . . . , ait−1 , A to A.

– Next B computes the verification key VK = (vk1, . . . , vkn) as follows:

∗ For ij ∈ S, this is easy and merely sets vkij = gaij . Further it sets vkit = A∗.

∗ For ` 6∈ S, B determines the Lagrange coefficients λ′1, . . . , λ
′
t such that f(j) =∑t

j=1 λj · f(ij). Again, this does not need knowledge of f . Now, it can set

vk` =
∏t
j=1 vk

λ′j
ij

.

∗ B gives VK to A.

– B also provides R∗ to A.

− Queries to H: B merely responds to all queries from A to H by using its oracle access to
H.

− Queries to Prove: B will maintain a table T , which is initially empty, of the form {(jk, Rk, xk), wk}
where k is the index of the query to Prove incremented with each query (jk, Rk, xk). On
receiving a query (jk, Rk, xk), it does the following:

– If there exists ` < k such that jk = j`, Rk = R`, xk = x`, then set wk = w`.

– Else if jk ∈ S, then it merely uses its oracle access to H to receive the value H(Rk, xk) =
hk. It then sets wk = h

ajk
k .

– Else if jk = it, then it uses it oracle access to Core to receive wk which is actually equal
to H(Rk, xk)

a∗ .

– For all other jk, it does the following:

∗ Uses its oracle access to H to receive the value hk = H(Rk, xk).

∗ Further uses its oracle access to Core to receive the value h∗ which is actually
H(Rk, xk)

a∗ .

47

∗ Determines Lagrange coefficients λ1, . . . , λt such that f(jk) =
∑t

`=1 λ` · f(i`). Now,

it computes wk = (h∗)λt ·
∏t−1
`=1 h

ai` ·λ`
k

– Record ((jk, Rk, xk), wk) and return wk to A.

− Challenge Query: On receiving the challenge input x, B does the following:

– Check if there exists ((jk, Rk, xk), wk) ∈ T such that jk 6∈ S, Rk = R∗, and xk = x. If
yes, abort as A has violated the definition of the game.

– If not, B issues its challenge input as x. It receives y∗ which is either e(H(R∗, x), R∗)a
∗

or a random element in G1.

– It also uses its oracle access to H to receive h = H(R∗, x).

– Determines Lagrange coefficients λ1, . . . , λt such that f(0) =
∑t

`=1 λ` · f(i`).

– Computes z∗ =
∏t−1
`=1 h

λ`·ai` .

– It finally computes y = y∗λt · e(z∗, R∗) and outputs y to A

− Finish: It forwards A’s guess as its own guess.

Analysis of the Reduction. When y∗ = e(H(R∗, x), R∗)a
∗
, then we get that:

y = y∗λt · e(z∗, R∗)
= e(H(R∗, x), R∗)a

∗·λt · e(z∗, R∗)

= e(h,R∗)a
∗·λt · e(

t−1∏
`=1

hλ`·ai` , R∗)

= e(h,R∗)f(it)·λt · e(h
∑t−1

`=1 λ`·f(i`), R∗)

= e(h,R∗)
∑t

`=1 λ`·f(i`) = e(h,R∗)f(0) = e(h,R∗)a

It is easy to see that if y∗ was a random group element in G1, the final output y is also a random
group element. Therefore, B perfectly simulates the $ − Core game for A, and B’s advantage is
the same as A’s advantage. This completes the proof of Theorem 9.

C.4 Proof of Basic Delegation Security

Theorem 11. The basic delegatable EVRF, given in Construction 4, satisfies the Basic-$-Core
property under the BDDH assumption in the random oracle model.

Let A = (A1,A2) be a PPT attacker against the Basic-$-Core property of DEVRF1, having
advantage ε. A is given the public key A1 = ga1 (for unknown a1), challenge ciphertext C1 =
(A1, R1, R1) (where R1 = gr for unknown r), and has oracle access to 4 oracles: random oracle H,
registration oracle Reg, honest evaluation oracle HProve, and honest delegation oracle HDel.

Legality of A. Let u be the polynomial upper bound on the number of overall honest pub-
lic/secret keys (including the challenge) used by A (meaning A made at most u − 1 registration

queries). Denote corresponding key pairs {(ai, Ai = gai)}ui=1, so that a1 = a. Define Di = R
a1/ai
1

and Ci = (A1, R1, Di), for i = 1 . . . u. The legality condition on A states what A is not able to

48

call HProve(i, C ′i, x), where x is the challenge input produced by A1, for any C ′i = (A′i, R
′
i, D

′
i)

where Same(A1, C1, Ai, C
′
i) = 1. This means (A′i, R

′
i) = (A1, R1) and e(A1, R1) = e(Ai, D

′
i). It

follows that D′i = Di = R
a1/ai
1 and overall C ′i = Ci. Hence, in our reduction to BDDH we can

assume that A never calls HProve(i, (A1, R1, Di), x), for any i ∈ [u]. Moreover, for any D′i 6= Di,
a call HProve(i, (A1, R1, D

′
i), x) returns ⊥, since the value D′i does not pass the delegation check:

e(A1, R1) = e(Ai, Di) 6= e(Ai, D
′
i). To sum up this discussion, without loss of generality in our

reduction to BDDH, we can assume that

Condition (*): A never calls HProve(i, (A1, R1, D), x), for any i ∈ [u] and any D

Namely, these calls either immediately return ⊥ (if D 6= Di, and this can be checked by A), or
disallowed anyway.

Our Reduction. Our reduction, which uses A to build a BDDH attacker B(g,A,B,R, g1), will
proceed very similarly to the proof of Theorem 7, but with several small modifications:

1. Initialization. B will set the challenge key A1 = A (implicitly keeping the secret key a1 = a
unknown), and the challenge ciphertext is C1 = (A,R,R), so we set R1 = D1 = R.

2. Registration Oracle Reg. A can set some polynomial number of honest key pairs {(Ai, ai)}ui=2,
where Ai = gai . In our reduction, we set each such Ai = Aαi , for random αi ∈ Zp chosen by
B. Since the αi’s are random, these keys are correctly distributed. For ease of notation we
set α1 = 1.
(Note, even though B does not know any of the secret keys ai = αia mod p, B can compute
the ratio ai/aj = αi/αj .)

3. Honest Delegation Oracle HDel. When A calls
HDel(i, (A′, R′, D′), j), B can perform the delegation check e(A′, R′)

?
= e(Ai, D

′) itself, and
then can compute (D′)ai/aj = (D′)αi/αj without the knowledge of any of the ai’s.

4. Hash Queries to H: previously, the oracle H used by the Core procedure was only
evaluated on the values (R′, x′) given as input, but now we evaluate H on the tuple (A′, R′, x′).
Indeed, we already observed a simple attack showing that the construction is insecure if we
only hash the value (R′, x′). Nevertheless, our simulation of H remains unchanged, modulo
now accepting (A′, R′, x′) as input to H, rather than only (R′, x′). Namely, every such fresh
evaluation H(A′, R′, x′) chooses values (βi, coini), where i is the query index, as in the proof
of Theorem 7, and still sets

H(A′, R′, x′) = gβi if coini = 0, and H(A′, R′, x′) = Bβi if coini = 1.

5. Honest Prove Oracle HProve. The oracle
HProve(i, (A′, R′, D′), x′) first checks that e(A′, R′) = e(Ai, D

′), and then proceeds as before
in the proof of Theorem 7. In particular, it aborts if the value of coinj corresponding to the
oracle query H(A′, R′, x′) is 1, and otherwise (meaning H(A′, R′, x′) = gβ

′
for some random

β′) returns z′ = Aβ
′

i , as before. This is correct since z′ = Aβ
′

i = gaiβ
′

= H(A′, R′, x′)ai (for
unknown ai).

6. Challenge value y. This is returned as before, by evaluatingH(A1, R1, x) and aborting if the
value of coinj corresponding to the oracle queryH(A1, R1, x) is 0 (meaningH(A1, R1, x) = Bβ

for some random β if we do not abort). The challenge value y is then set to gβ1 , as before.

49

7. Finishing. If the simulation succeeds until the end, B outputs the same b′ as A.

Analysis of Reduction. We claim that the proof of the security of this reduction can go exactly
as in Theorem 7. The only subtle point comes in the proof of Claim 1, where we argue that the
values (β′, coin′) sampled during the emulation of the evaluation oracle HProve(i, (A′, R′, D′)) are
chosen independently from the value (β, coin) used to emulate the challenge query (A1, R1, x). This
is indeed essential since we want all former coins to the 0, and the latter coin to be 1.

Fortunately, it immediately follows from Condition (*), as all evaluation queries on challenge
x, must use (A′, R′) 6= (A1, R1). Thus, we never have a conflict, and the proof of Claim 1 holds.

C.5 Proof of Unidirectional Delegation Security

Theorem 12. The delegatable EVRF given in Construction 5 satisfies the Uni-$-Core property
under the BDDH assumption in the random oracle model.

let A = (A1,A2) be a PPT attacker against the Uni-$-Core property of DEVRF2, having
advantage ε. A is given the public key A1 = ga1 (for unknown a1), challenge ciphertext C1 =
(A1, R1, R1, σ1) (where R1 = gr for unknown r and σ1 = H ′(A1, R1)

r1), and has oracle access to 6
oracles: random oracles H, H ′, registration oracle Reg, honest evaluation oracle HProve, honest
delegation oracle HDel, and “OUT” delegation oracle OutDel. Note, oracles H ′ and OutDel
are new compared to the the proof of Theorem 11. Still, our proof will mimic almost exact the
proof of Theorem 11, so we will use the same notation as in that proof, and only mention the key
differences in our reduction.

Legality of A: As before, we denote u− 1 honest keys by

{(ai, Ai = gai)}ui=2, and define Di = R
a1/ai
1 , Ci = (A1, R1, Di, σ1), for i = 1 . . . u. The legality

condition on A states what A is not able to call HProve(i, C ′i, x) or OutDel(i, C ′i, ∗), where x is
the challenge input produced by A1, for any C ′i = (A′i, R

′
i, D

′
i, σ
′) where Same(A1, C1, Ai, C

′
i) = 1.

This means (A′i, R
′
i, σ
′) = (A1, R1, σ1) and e(A1, R1) = e(Ai, D

′
i). But this means D′i = Di = R

a1/ai
1

and overall C ′i = Ci. Moreover, as in the the proof of Theorem 11, we can assume without loss of
generality that A will not use ciphertext C ′i = (A1, R1, D

′, σ′) for any (D′, σ′) 6= (Di, σ1), as those
will not pass the delegation or the signature check of either HProve or OutDel. Hence, similar
to the proof of Theorem 11, we can we can assume that

Condition (**): A never calls HProve(i, (A1, R1, D, σ), x) or OutDel(i, (A1, R1, D, σ), ∗),
for any i ∈ [u] and any D,σ.

Our Reduction. Our reduction, which uses A to build a BDDH attacker B(g,A,B,R, g1), will
proceed very similarly to the proof of Theorem 11, but with several small modifications:

1. Hash Queries to H ′: B will maintain a table T ′ containing entries of the form (A′, R′, γ),
where A′, B′ ∈ G and γ ∈ Zp. To create the first such entry in T ′, B chooses a random value
γ1 ∈r Zp, and stores the tuple (A,R, γ1), where A and R come from B’s challenge. After T ′

is initialized, as above, all future queries H ′(A′, R′) are answered as follows.

If (A′, R′) = (A,R), respond with gγ1 , meaning that we set H ′(A,R) = gγ1 .

Otherwise, check if T ′ has an entry of the form (A′, R′, γ′). If not, pick a random γ′ ←r Zp
and add the tuple (A′, R′, γ′) to T ′. In either case, return H ′(A′, R′) = (A′)γ

′
.

50

2. Initialization. B will set the challenge key A1 = A (implicitly keeping the secret key a1 = a
unknown), and the challenge ciphertext is C1 = (A1, R1, D1, σ1), where R1 = D1 = R, and
signature σ1 = Rγ1 .
(Note, since H ′(A1, R1) = gγ1 , we have that σ1 = Rγ1 = (gr)γ1 = (gγ1)r = H ′(A1, R1)

r.)

3. Registration Oracle Reg. Same as the proof of Theorem 11. In particular, each public
key Ai = Aαi , for random αi ∈ Zp chosen by B, and we set α1 = 1. This means that even
though B does not know any of the secret keys ai = αia mod p, B can compute the ratio
ai/aj = αi/αj .

4. Honest Delegation Oracle HDel. When A calls
HDel(i, (A′, R′, D′, σ′), j), B can perform the delegation check e(A′, R′)

?
= e(Ai, D

′) and the
signature check
e(H ′(A′, R′), R′)

?
= e(σ′, g) himself (by evaluating H ′ according to the standard strategy

above). Then, B then can compute (D′)ai/aj = (D′)αi/αj without the knowledge of any of
the ai’s.

5. “OUT” Delegation Oracle OutDel. When A calls
OutDel(i, (A′, R′, D′, σ′), a∗), for any secret key a∗, B can perform the delegation check

e(A′, R′)
?
= e(Ai, D

′) and the signature check e(H ′(A′, R′), R′)
?
= e(σ′, g) himself (by evaluat-

ing H ′ according to the standard strategy above). Moreover, from Condition (**) we know
that (A′, R′) 6= (A1, R1). Thus, when we set the value H ′(A′, R′) in our simulation of H ′, we
set it to H ′(A′, R′) = (A′)γ

′
for some random γ′ known to B. B will combine this γ′ with the

values of signature σ′ and secret key a∗ given by A, and return

OutDel(i, (A′, R′, D′, σ′), a∗) := (σ′)(a
∗γ′)−1 mod p

To check that this value indeed equals to (D′)ai/a
∗
, it suffices to prove that (D′)ai = (σ′)1/γ

′
.

To see that, our signature check implies that

e(H ′(A′, R′), R′) = e(σ′, g) =⇒ e((A′)γ
′
, R′) = e(σ′, g)

This further implies that:
e(A′, R′) = e((σ′)1/γ

′
, g)

Finally, combined with the delegation check e(A′, R′) = e(Ai, D
′) and Ai = gai , we get that

e((σ′)1/γ
′
, g) = e(A′, R′) = e(Ai, D

′) = e((D′)ai , g)

which implies that
(D′)ai = (σ′)1/γ

′

6. Hash Queries to H: These are identical to the proof of Theorem 11.

7. Honest Evaluation Oracle HProve. The oracle
HProve(i, (A′, R′, D′, σ′), x′) first checks that e(A′, R′) = e(Ai, D

′) and e(H ′(A′, R′), R′) =
e(σ′, g) (by evaluating H ′ according to the standard strategy above). After that, it proceeds
exactly like the proof of Theorem 11.

51

8. Challenge value y. This is returned as before, by evaluatingH(A1, R1, x) and aborting if the
value of coinj corresponding to the oracle queryH(A1, R1, x) is 0 (meaningH(A1, R1, x) = Bβ

for some random β if we do not abort). The challenge value y is then set to gβ1 , as before.

9. Finishing. If the simulation succeeds until the end, B outputs the same b′ as A.

Analysis of Reduction. The analysis of the reduction then goes exactly as in Theorem 11
(which in turn is based on that in Theorem 7). As before, the only subtle point comes in the proof
of Claim 1, where we argue that the emulation of H during the evaluation queries Prove does not
conflict with its emulation for the challenge query H(A1, R1, x).

Fortunately, this immediately follows from our Condition (**) above, as all evaluation queries
on challenge x must use (A′, R′) 6= (A1, R1). Thus, we never have a conflict, and the proof of
Claim 1 holds.

C.6 Proof of Bidirectional Delegation Security

Theorem 13. The delegatable EVRF given in Construction 5 satisfies the Bi-$-Core property
under the interactive iBDDH assumption in the random oracle model. It satisfies the strongest
possible legality condition for the attacker (see Definition 21).

We start by showing Bi-$-Core delegation security of DEVRF2 as defined in Definition 10.
Since the construction we analyze is identical to that of Theorem 12, our proof will be almost
identical as well. Now, however, we also need to show how to simulate the “IN” delegation oracle
InDel(a∗, (A′, R′, D′, σ′), i). This appears hard, since the values a∗, A′, R′, D′, σ′ are adversarial,
while the answer expected by the attacker should be equal (assuming the ciphertext is well formed)
to (D′)a

∗/ai . Recall also that in our simulation we set ai = αia, where αi were known by B, but a
was unknown. Thus, our reduction B must be able to compute the value

D = (D′)a
∗/αia = ((D′)a

∗/αi)1/a

Fortunately, we are now reducing from the inversion-oracle BDDH (iBDDH) assumption, given
in Section B. Namely, in addition to its standard BDDH inputs, B also has oracle access to Oa(h) =
h1/a. With this access, the simulation of
InDel(a∗, (A′, R′, D′, σ′), i) becomes trivial: B simply returns
Oa((D′)a

∗/αi) = (D′)a
∗/ai . This completes the first part of our proof.

Stronger Legality Condition. We now show that under the iBDDH assumption we can
actually strengthen the legality condition of A to be optimal; informally, only trivially delegated/e-
valuated ciphertexts can be broken by A. We formalize this below.

Definition 21. If A makes a call C ′ = HDel(i, C, j), we say A creates a delegation edge from
(i, C) to (j, C ′), denoted (i, C) → (j, C ′). A sequence of delegation edges (i1, C1) → (i2, C2) →
. . .→ (it, Ct) defines a delegation path from (i1, C1) to (it, Ct), denoted (i1, C1) (it, Ct).
We now define a stronger legality condition on A (focusing on the bidirectional splittable case):

◦ Given challenge ciphertext C1 on user 1, A produced no delegation path (1, C1) (i, C ′),
followed by either a call to HProve(i, C ′, x), or a call to OutDel(i, C ′, ∗), where x is the
challenge input returned by A1.

52

Thus, the only “prohibited” ciphertexts C ′ must have been explicitly obtained by the attacker.
In contrast, our original Definition 10 only prevented C ′ directly satisfying Same(PK1, C1, PKi, C

′) =
1. While reasonable in many situations, the “gap” between the two notions involves an attacker
who managed to find a ciphertext C ′ satisfying Same(PK1, C1, PKi, C

′) = 1 without creating a
delegation path (1, C1) (i, C ′).

Indeed, we saw that our unidirectional construction DEVRF2 was trivially insecure wrt the
stronger (and, clearly, optimal) legality condition on A. However, when looking at our current
construction DEVRF2, we see that the existence of the signature σ in the ciphertext appears to
foil the trivial attack from Section 6.2. In fact, we show that is not luck, but the construction is
actually secure w.r.t. to this stronger legality condition. Unfortunately, for this, we must rely on
the stronger iBDDH assumption (even for basic or unidirectional security, so we might as well get
the optimal bidirectional security).

Stronger Legality for DEVRF2. Consider any attacker A against Bi-$-Core security of
DEVRF2 which satisfies the stronger legality condition, and has advantage ε. Recalling all the
notation we used in the proof of Theorem 12, the challenge ciphertext C1 = (A1, R1, D1, σ), where
D1 = R1, and u “special” ciphertexts which we cannot fully handle (see below) in our reduction

are Ci = (A1, R1, Di, σ), where Di = R
ai/a1
1 . Indeed, these are the only ciphertexts satisfying

Same(A1, C1, Ai, Ci) = 1

Define the event G to denote the “gap” between the two legality conditions of A; namely,

− Let G be the event that A made a call to HProve(i, Ci, x) or OutDel(i, Ci, ∗) for some
i ∈ [u], where x is the challenge input produced by A1, but did not create a delegation path
(1, C1) (i, Ci).

Expanding the definition of A’s advantage ε, we get that

1

2
+ ε = Pr[(b′ = b) ∧G] + Pr[(b′ = b) ∧ ¬G]

≤ Pr[G] + Pr[(b′ = b) ∧ ¬G]

Thus, to prove that ε = negl(k) under the iBDDH assumption, it suffices to prove the following
two Lemmas:

Lemma 22. Under the iBDDH assumption, Pr[G] = negl(k).

Lemma 23. Under the iBDDH assumption, Pr[(b′ = b) ∧ ¬G] ≤ 1
2 + negl(k).

Lemma 23 is exactly the proof of security of DEVRF2 we just finished at the beginning of this
section above, as this corresponds to the run of A satisfying the original legality condition. Thus,
to show the security of DEVRF2 under the stronger legality condition, we only need to prove
Lemma 22.

Proof of Lemma 22. Let use call a query Q of A violating if it triggers the event G, meaning
that for some index i ∈ [u] this query is:

− either OutDel(i, Ci, ∗), where there is no delegation path (1, C1) (i, Ci) so far;

53

− or HProve(i, Ci, x), where there is no delegation path
(1, C1) (i, Ci) so far.

Let us also consider a dynamic “delegation graph” M = (V,E) consisting of all the delegation
edges of the form (i, Ci) → (j, Cj). (Namely, we only look at u special ciphertexts Ci and ignore
the rest.) The edge set E of this graph starts empty, but eventually could grow when A makes
honest delegation query HDel(i, Ci, j) (which returns Cj). Moreover, without loss of generality,
we assume M is acyclic, as A get no information by completing the cycle in this graph (i.e., we can
simply remove all such edges creating cycles, as A already knows the answer).

Let Q be the first violating query of A, and j ∈ [u] be the corresponding index of this query.
By assumption that G is triggered, Q and j are well defined. Moreover, if E is the current edge
set of the delegation graph M , we know that there is no delegation path (1, C1) (j, Cj) in E.
However, there could potentially be incoming edges from some (i, Ci) → (j, Cj) in E, as long as
there is no delegation path (1, C1) (i, Ci). Going backward from (j, Cj), though, since we know
that M is acyclic, we must reach some “source” (i, Ci) where i > 1, which has no incoming edges
at all (and, hence, no path from (1, C1) still). Let (i, Ci) be such “source node”, which could be
the original (j, Cj) in the special case where no delegation edges entered (j, Cj). In either case,
however, we know that the query Q∗ corresponding to the first time ciphertext Ci appeared in
either HDel(i, Ci, ∗), HProve(i, Ci, x) or OutDel(i, Ci, ∗) had the property that no delegation
path (1, C1) (i, Ci) existed.

In other words, there must exist a query Q∗ of A and an index i > 1 such that:

− Q∗ is either HDel(i, Ci, ∗), HProve(i, Ci, x) or OutDel(i, Ci, ∗), and no prior calls of this
form where made so far (i.e., ciphertext Ci was not “declared” by A before Q∗).

− At the time Q∗ is made, there is no delegation path (1, C1) (i, Ci).

Let us say that such query Q∗ is i-incriminating. Note, from our definition, each index i > 1 could
have either zero or one i-incriminating query. To summarize,

event G =⇒ there exists 1 < i ≤ u having (unique) i-incriminating query Q∗.

Using Incriminating Query. Recall, in our proof of Bi-$-Core security of DEVRF2 under the
original legality condition we constructed an attacker BOa(·)(g,A,B,R, g1) for iBDDH which could
simulate all queries of A except HProve(j, Cj , x) and OutDel(j, Cj , ∗), which were prohibited
under the original legality condition of A.

We will now construct a different iBDDH attacker BOa(·)
(g,A,B,R, g1) which will instead use the

fact that A must make an i-incriminating query for some 1 < i ≤ u. B will pick a random index
i ∈ [2, . . . u], hoping that this is the index corresponding to the i-incriminating query Q∗. Assuming
this guess is correct, we know that Q∗ appears before (or exactly at) the first violating query of
A, which means that we could have used (but we won’t!) the original reduction B to simulate
all the queries of A before Q∗, as none of these queries will have the form HProve(j, Cj , x) or
OutDel(j, Cj , ∗).

More precisely, B will proceed nearly identically to the original reduction B, but with the
following modifications.

1. Same Simulation. Initialization of A, challenge ciphertext C1, challenge output y, and
oracles H,H ′, HProve, and OutDel are identical, except when OutDel or HProve query
is i-incriminating, as explained below.

54

2. Registration Oracle Reg. Previous attacker B set all value Aj = A
αj

1 for 2 ≤ j ≤ u,
implicitly setting aj = αja. B will do the same for all j 6= i. However, for the i-th secret key
B will chose a random key ai ∈r Zp and honestly set Ai = gai . In other words, B will actually
know the i-th secret key.

3. i-Incriminating Query Q∗. Recall, such queries are
HDel(i, Ci, ∗), HProve(i, Ci, x) or OutDel(i, Ci, ∗). Notice, B can test if a ciphertext
C = (A′, R′, D′) is equal to Ci, by checking that (A′, R′) = (A1, R1) and e(A1, R1) = e(Ai, D

′).
Thus, B can indeed test that the query Q∗ is i-incriminating.

In this case B knows that the value Di inside the ciphertext Ci is equal to Di = R
a1/ai
1 . Since

R1 = R, a1 = a and B knows ai, B can compute Dai
i = Ra, and then test if

e(Dai
i , B)

?
= g1

In either case, B will abort the entire simulation and output guess b′ = 0 if and only if the
test above passes.

To explain B’s behavior, notice that e(Dai
i , B) = e(Ra, gb) = e(g, g)abr. Hence, if g1 =

e(g, g)abr the test always passes, and if g1 is random, it almost never passes.

4. Stuck/Complete Simulation. When B guesses the “incriminating index” i correctly, we
know that B will encounter the incriminating query Q∗, and hence output the guess b′, before
it encounters any of the HProve(j, Cj , x) or OutDel(j, Cj , ∗) queries that it cannot simulate.
However, when B’s guess for i is wrong, we could encounter such a query, or perhaps run A
to completion (say, when G does not happen). In this case, B will output a random guess b′.

5. “IN” Delegation Oracle InDel. The oracle InDel(a′, C ′, j) is identical for j 6= i to what
was done before by B. Namely, if valid, it simply returns Oa((D′)a

∗/αi), where
C ′ = (A′, R′, D′, σ′). For j = i, we know the secret key ai, so we can simply evaluate InDel
honestly using a′ and ai.

6. Honest Delegation Oracle HDel. When A calls
HDel(j1, (A

′, R′, D′, σ′), j2), B will first do the delegation and signature checks, rejecting
if they fail. Otherwise, if i 6∈ {j1, j2}, B does the same thing as B, returning (D′)ai/aj =
(D′)αi/αj . Otherwise, either j1 = i or j2 = i. We treat them differently:

− If A calls HDel(i, (A′, R′, D′, σ′), j) where j 6= i, B first checks if (A′, R′, D′) = Ci,
which means (A′, R′) = (A1, R1) and e(A1, R1) = e(Ai, D

′). If this is the case, B knows
this is an i-incriminating query, and will process it, as explained above.

Otherwise, B is supposed to return the value

(D′)ai/aj = ((D′)ai/αj)1/a = Oa((D′)ai/αj)

where B knows ai and αj . Thus, B can simply return Oa((D′)ai/αj) using its own oracle.
To put it differently, we can pretend that this HDel query is actually an InDel query
with an adversarial key ai.

− If A calls HDel(j, (A′, R′, D′, σ′), i) where j 6= i, then we know we have not yet reached
the i-incriminating query (assuming the guess for i is correct, else we don’t care). This

55

means that the ciphertex
(A′, R′, D′, σ′) 6= Cj , or else the answer to this query will be equal to Ci, contradicting
the fact that Ci has no incoming delegation edges. In this case we notice that even
though key Ai is supposed to be honest, we can pretend that ai is an adversarial key,
and simulate HDel(j, (A′, R′, D′, σ′), i) as if it is a call to OutDel(j, (A′, R′, D′, σ′), ai).

Specifically, B can perform the delegation check
e(A′, R′)

?
= e(Aj , D

′) and the signature check

e(H ′(A′, R′), R′)
?
= e(σ′, g) himself (by evaluatingH ′ according to the standard strategy).

Moreover, we know that (A′, R′) 6= (A1, R1) in this case, because (A′, R′, D′, σ′) 6= Cj
and the signature/delegation checks worked. Thus, when we set the value H ′(A′, R′) in
our simulation of H ′, we set it to H ′(A′, R′) = (A′)γ

′
for some random γ′ known to B.

B will combine this γ′ with the values of signature σ′ and secret key ai known to B, and
return

HDel(j, (A′, R′, D′, σ′), i) := (σ′)(aiγ
′)−1 mod p

The proof of correctness is the same as before, and is omitted.

Analysis of Reduction. The analysis of the reduction is partitioned as to whether B managed
to reach the i-incriminating query Q∗ before being stuck with the simulation. Let us call this event
I, and notice that it happens at least when G happens and A’s guess i correctly, so

Pr[I] ≥ Pr[G]

u− 1
=

Pr[G]

poly(k)

When I happens, B’s advantage is at least 1 − 1/p = 1 − negl(k). Otherwise, B simply outputs a
random b′, achieving advantage 1/2. This gives overall advantage of B equal to

Pr[b′ = b] ≥ Pr[I] · (1− negl(k)) + (1− Pr[I]) · 1

2
=

1

2
+

Pr[G]

poly(k)

And since we assume that the iBDDH assumption is true, we know B’s advantage must at most
1/2 + negl(k), which means Pr[G] = negl(k), completing the proof of Lemma 22.

C.7 Proof of One-Time Delegation Security

Theorem 14. The one-time delegatable DEVRF3 above satisfies the Bi-$-Core property under
the eBDDH assumption in the random oracle model. It satisfies the strongest possible legality
condition for the attacker (see Definition 21).

The proof of 1-time delegation is largely similar to the proof of Theorem C.6. As in that proof,
we start with the simpler setting of standard legality condition on A, from Definition 10, and then
generalize it to the stronger legality in Definition 21.

Original Legality Condition. Recall, our goal is to construction a reduction B which uses the
attacker A, except must B must solve the harder eBDDH problem, as opposed to iBDDH. Namely,
B is given (g,W,A,B,R, g1), where W = g1/a, as is no longer given full inversion oracle Oa(·).
Recall also that, in the proof of Theorem 13, the only place where B used the inversion oracle was
to simulate InDel(a′, C ′, i) oracle.

56

Our main idea is to use the fact that in the 1-time delegation scenario, each valid ciphertext
C ′ = (A′, R′, D′, σ′) submitted to OutDel must have A′ ∈ {A1, . . . , Au}, while each such ciphertext
submitted to InDel must have A′ 6∈ {A1, . . . , Au} (or else the attacker breaks the discrete log of
some unknown honest key Ai). Thus, if previously we only used the signature σ to help us simulate
OutDel queries, by effectively extracting the value DH(A′, R′) for the submitted ciphertext C ′,
now we can use it instead for helping simulate InDel queries as well, since those queries operate
on disjoint sets of public keys A.

More concretely, our new attacker B(g,W,A,B,R, g1) for eBDDH will operate identically with
the previous attacker in Theorem C.6 (which used the inversion-oracle), except with the following
changes:

1. Initialization ofA, challenge ciphertext C1, challenge output y, and oracles Reg, H, HProve,
and HDel are identical.

2. Hash Queries to H ′. Recall, our previous attacker set H ′(A1, R1) = gγ1 for random
γ1 ∈r Zp, but all other queries H ′(A′, R′) = (A′)γ

′
for fresh random γ′ ∈r Zp. Now, we still

set H ′(A1, R1) = gγ1 , but set other queries (A′, R′) 6= (A1, R1) as follows:

− If A′ ∈ {A1, . . . , Au}, set H ′(A′, R′) = (A′)γ
′

for fresh random γ′ ∈r Zp, as before.

− Otherwise, set H ′(A′, R′) = W γ for fresh random γ ∈r Zp, where W = g1/a comes from
the input of B.

3. “OUT” Delegation Oracle OutDel. When A calls
OutDel(i, (A′, R′, D′, σ′), a∗), for any secret key a∗, any such (allowed) query must have
A′ = Ai, by our stricter delegation check. Hence, the oracle H ′(A′, R′) = (A′)γ

′
, as in the

proof of Theorem C.6 (this uses the fact (A′, R′) 6= (A1, R1), as this query is not allowed by
legality of A, even if i = 1.) Hence, we can use the same strategy as before. Namely, the
value B can return the value

OutDel(i, (A′, R′, D′, σ′), a∗) := (σ′)(a
∗γ′)−1 mod p

as before, as this value is equal to (D′)ai/a
∗
. The proof of this is the same as in Theorem 12.

c

4. “IN” Delegation Oracle InDel. When A calls
InDel(a′, (A′, R′, D′, σ′), i), for any secret key a′, we first check if a′ ∈ {a1, . . . , au}, by

checking that ga
′ ?

= Ai for all i. If this is the case, B can compute a = a′/αi, which trivially

allows it to win its game by checking whether g1
?
= e(B,R)a.

Otherwise, we know that H ′(A′, R′) = W γ for some random γ. From delegation check,
we also know that A′ = ga

′
and R′ = D′, and from the signature check we know that

e(H(A′, R′), R′) = e(σ′, g). This means

e(σ′, g) = e(H(A′, R′), R′) = e(W γ , R′) = e((R′)γ/a, g)

This implies that (R′)1/a = (σ′)1/γ . But A expects to see

(D′)a
′/ai = (R′)a

′/(αia) = ((R′)1/a)a
′/αi = ((σ′)1/γ)a

′/αi = (σ′)a
′/(γαi)

57

Thus, B can complete the simulation by responding with

InDel(a′, (A′, R′, D′, σ′), i) = (σ′)a
′/(γαi)

This completes our reduction for the basic legality condition.

Stronger Legality Condition. Finally, we show how to extend our proof to the optimal
legality condition given in Definition 21. This will be done very similar to the proof of Theorem 13,
but slightly simpler due to the more limited structure of the delegation graph M used in the proof
of Theorem 13.

In particular, recall “special” ciphertexts Ci = (A1, R1, Di, σ), where Di = R
ai/a1
1 and σ =

H ′(A1, R1)
r1 . Except for i = 1, none of these ciphertexts can be delegated. Thus, the “gap” event

G between the 2 legality conditions of A becomes simply:

− A made a call to HProve(i, Ci, x) for some i > 1, where x is the challenge input produced
by A1, but did not query HDel(1, C1, i).

If G does not happen, this corresponds to the original legality condition, for which we already
finished the proof. Thus, it remains to show that for any PPT attacker A, we have Pr[G] = negl(k).
Once again, this is proven similarly to the corresponding proof of Lemma 22 in Section C.6.

In particular, we will build a reduction B to eBDDH from any attacker A which triggered the
gap event G. Since our 1-time delegatable scheme, DEVRF3 is really a special case of the general
scheme DEVRF2 considered in Section C.6, our reduction B can be identical to the “old” reduction
— call it B′ — used in the proof of Lemma 22, except we need to make sure we no longer need to
use the inversion oracle Oa(·), and only use the value W = g1/a. Fortunately, we can do it using
the same technique as in the proof of the original legality condition, by basically choosing a random
index i > 1 (hoping it corresponds to the incriminating query of A), and effectively treating the
known key ai as adversarial. We highlight the differences here:

1. Registration Oracle Reg. We simulate exactly like the previous reduction B′. We choose
a random index i > 1 at random, and set all public keys Aj = A

αj

1 for j 6= i for random αj .
However, for the i-th secret key B will chose a random key ai ∈r Zp and honestly set Ai = gai .
In other words, B will actually know the i-th secret key.

2. New Simulation of H ′. As done earlier in the section, we set H ′(A′, R′) as follows:

− If (A′, R′) = (A1, R1), set H ′(A1, R1) = gγ1 , for random γ1 ∈r Zp
− If A′ ∈ {Aj | j 6= i}, set H ′(A′, R′) = (A′)γ

′
for fresh random γ′ ∈r Zp.

− Otherwise, set H ′(A′, R′) = W γ for fresh random γ ∈r Zp.
(Note, this critically includes the values H ′(Ai, R

′).)

Due to the 1-time delegation nature of DEVRF3, this restriction on H ′ still allows us to
correctly simulate all OutDel(j, C ′, ∗) calls for j 6= i, as they will use H ′(Aj , R

′) = (Aj)
γ′ .

While for j = i we can simply use the secret key ai.

3. Places Previous B′ used Oa(·). Examining the proof of Lemma 22, there were only two

places where B′ used the inversion oracle Oa(·):

58

− Case 1: When A called InDel(a′, (A′, R′, D′, σ′), j). For j = i, our new reduction B
can simply use ai, as did B. However, for j 6= i, instead of calling (no longer present)
oracle Oa((D′)a

∗/αj), we use the same strategy we used at the beginning of this section
to extract the answer from the signature σ′ supplied by the attacker. Namely, we know
that ga

′
= A′, R′ = D′, H(A′, R′) = W γ in our simulation (as otherwise a′ = aj = αja,

for j 6= i, which allows us to break eBDDH trivially), and e(H(A′, R′), R′) = e(σ′, g).
This means

e(σ′, g) = e(H(A′, R′), R′) = e(W γ , R′) = e((R′)γ/a, g)

This implies that (R′)1/a = (σ′)1/γ . But A expects to see

(D′)a
′/aj = (R′)a

′/(αja)

= ((R′)1/a)a
′/αj

= ((σ′)1/γ)a
′/αj = (σ′)a

′/(γαj)

Thus, B can complete the simulation by responding with

InDel(a′, (A′, R′, D′, σ′), j) = (σ′)a
′/(γαj)

− Case 2: When A called HDel(i, (A′, R′, D′, σ′), j) for j 6= i. However, by 1-time
delegation check we know that A′ = Ai, which means H(Ai, R

′) = W γ as well. And
hence we can use exactly the same strategy as in the previous Case 1, effectively treating
the known ai as the adversarial key and returning

HDel(i, (A′, R′, D′, σ′), j) = (σ′)ai/(γαj)

This completes the new reduction B to the eBDDH problem, and the overall proof of the stronger
legality condition of DEVRF3.

59

	Introduction
	Our Main Tool: Encapsulated Verifiable Random Function
	Our EVRF Constructions
	ESI vs Other Searchable Encryption Primitives

	Preliminaries
	Encapsulated Search Index
	Standard Encapsulated Search Index
	Extensions to ESI
	Threshold Encapsulated Search Index
	Delegatable Encapsulated Search Index
	Updatable Encapsulated Search Index

	Encapsulated Verifiable Random Functions (EVRFs)
	Standard EVRFs
	Generic Construction of Encapsulated Search Index
	Extensions to EVRFs
	Standard EVRF

	Threshold Encapsulated Verifiable Random Functions
	Definition of Threshold (or Distributed) EVRFs
	Construction of Threshold (or Distributed) EVRFs

	Delegatable Encapsulated Verifiable Random Functions
	Definition of Delegatable EVRFs
	Construction of Basic Delegatable EVRF
	Construction of Uni- and Bidirectional Delegatable EVRF
	Construction of One-time Delegatable EVRF

	Conclusion and Final Thoughts
	ESI, in Practice
	Indexing and Search Functionality

	Bilinear Groups and Hardness Assumptions
	Generic Group Model Proof for iBDDH Assumption

	Deferred Security Proofs
	Proof of Encapsulated Search Index security
	Proof of EVRF security
	Proof of TEVRF security
	Proof of Basic Delegation Security
	Proof of Unidirectional Delegation Security
	Proof of Bidirectional Delegation Security
	Proof of One-Time Delegation Security

