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Abstract— Randomness extractors [12] allow one to obtain It is well known that one must have< t—2log (%)+O(1).

nearly perfect randomness from highly imperfect sources ran- QOn a constructive side, this bound can be achieved, and with

domness,_ v_vhich are only known to contain “scattered” entropy. very short seedg (of lengthO(log n +log (;)))' For most of
Not surprisingly, such extractors have found numerous applica- our apolications. however. minimizin theeseed lenath
tions in many areas of computer science including cryptography. pp ' ' g 9

Aside from extracting randomness, a less known usage of extrac- Of secondary importance, and the famdefsover hash lemma

tors comes from the fact that they hide all deterministic functions (LHL), which we describe below, will be more than sufficient.
of their (high-entropy) input [6]: in other words, extractors . .
provide certain level of privacy for the imperfect source that DEFINITION 2 A family H = {h;: {0,1}" — {0,1}*} is
they use. In the latter kind of applications, one typically needs called auniversal hash family if for every distinctz,y €
extra properties of extractors, such as invertibility, collision- {0,1}™ we havePrz[hz(z) = hz(y)] = 9—L. o
resistance or error-correction. In this abstract we survey soma

of such usages of extractors, concentrating on several reden A simple construction of such a family for generaland

results by the author [5], [6], [7]. The primitives we will survey ¢ views both the input: and the randomness (defining the
include several flavors of randomness extractors, entropically index i) as elements of finite field}‘F[2ma"(”7‘)] and sets

secure encryption and perfect one-way hash functions. The main . . .
technical tools will include several variants of the leftover hash hi(x) to be the first/ bits of _the field prOdUCt‘? -. The
lemma, error correcting codes, and the connection between LHL below states that such universal hash functions (stsong

randomness extraction and hiding all partial information. extract all the randomness from atgource.

Due to space constraints, many important references and
results are nFc)Jt mentioned here; inte):este% reader can find those Lemma_l ([8] Leftqver Hash Lemma)t £ < t—2iog (%)
in [5], [6], [7]. then a universal familyi = {h; : {0,1}" — {0,1}*}, is a
(n,t, ¢, €)-strong extractor. O
We remark that LHL is pretty robust. For example, its
The main measure of entropy we userig1-entropy which  conclusions holds even if the collision probability of ugrigal
measures the difficulty of guessing a random varialtl@- hash functions is relaxed to roughy“(1 + €?), and also
priori: Ho(A) = —log(max, Pr[A = a]) (all logarithms are even if the indexZ choosing the functiorfi; itself comes
base 2 by default)4 is called at-source ifHo(A) > t. from an imperfect source [9]: iH.(Z) > |Z| — c and ¢ <
The conditional min-entropy oft given B is Hoo (A | B) £ ¢ — ¢ — 2log (1), thenSD ((hz(W),Z), (U, 7)) < e. It also
—log(Ey p [27H=(AIB=b)])_(This definition is not standard generalizes nicely w.r.t. conditioning [5]: #” and S are such
but is “right” for cryptographic purposes [5].) We [€% denote thatH., (W |S) > t, thenSD ((hz(W), S,T), (U, S,T)) < e.
th_e uniform distribution o_n{O_,l}‘i, and define thestatistical g\tropic SECURITY. Entropic security first appeared in
differencebetween two ;jlstr|but|ons4 and B on the same gpecific contexts of entropically secure encryption [13% an
space asSD (4, B) = 33, [Pr[A = v] — Pr[B = v]|. perfectly one-way hash functions (POWHF) [3]. Here we
If E(z;Z) is a probabilistic algorithm taking input and yefine the general concept following [6].
using randomnesg, we will often omitZ and haveE(x)

denote the random variablg(x;Z), whereZ is assumed to DEFINITION 3 ([6]) The probabilistic mapY'() hides all
be sampled uniformly at random from its domain.Xfis a functions of W with leakagee if for every adversaryA,
random variable, thef(X) also stands fo(X;T). there exists an adversan, such that for all functionsf :

- I : {0,1}* — {0, 1}~,

DEFINITION 1 A polynomial time probabilistic functiofxt :

{0,1}™ — {0,1}* with randomnesg (called theseed is a | Pr[A(Y (W)) = f(W)] = Pr[A.() = f(W)]] <e.
(n,t, ¢, e)-extractorif for all ¢-sources? on{0,1}", we have
SD (Ext(W;Z),U;) < e. Ext is a(n,t,¥,€)-strong extractor
if its extracted randomness is statistically independeoinf
the seedZ. Namely, if Ext'(W;Z) = Ext(W;Z) o T is by Intuitively, entropic security ofY” states that as long as
itself an extractorSD ((Ext(W;T1),T),(Uy, 7)) < e. & the random variabld¥ has high-enough min-entropy, it is

|. RANDOMNESSEXTRACTORS AND ENTROPIC SECURITY

The mapY () is called(¢, ¢)-entropically securaf Y () hides
all functions of W, for all ¢t-sourcesiV’. &



nearly as hard to predict(W) givenY as it is withoutY, should be close to a fixed distributidnv(U,,Z). However,
regardless of the adversary’s computing power. We remdtks is impossible, sinc&’ could be any distribution of min-
that it should not be confused with a much stronger notion ehtropy¢ (and we assume < n). However, some parf,
Shannon security, where we say tfatand W are (almost) of the indexZ = (Z;,Z,) could indeed independent from the
statistically independent. Entropic security only statest Y  output. (We call such extractotsemi-strong”.) Unfortunately,
does not help in predicting(17), for any functionf specified an extension of the previous argument still implies that the
in advance For example, it is entirely possible that aftef'secret part”’Z, of the seed must be londZ;| > n — ¢ +
seeing any particular realizatignof Y, one might learn many 2log (%) —O(1). However, having the public paf}, we enable
functions f, of W (although no particular functioyi is likely us to achieve simpler constructions.

to be one of them for an averagg. Another unfortunate
possibility is thaty; andY> could be individually entropically

secure, and yeli” can be completely recpvered frol’fj(W) the shared secret key, and the extracted random@ess
and (W) (see [6]).' Nonet.helless,_ the mformauon-theorenEX,c(W;I) is the ciphertext. By invertibility of our extractor,
guaranteg of entropic security is ?t'” pretty stro'ng anelftui; e recipient can indeed recover the mess#igefrom the
and we will see examples_where it can be applled, despite ﬁﬁhertext C and the secret key. What about security?
fact that Shgnr:on S seiunty 'Sf.n(?t. even ach;]evable}! Corollary 3 immediately implies that Ext is a (¢ — 2)-source
A seemingly ~weaker de nition 1S _that 0 (t’e?' extractor, then the ciphertext hides all functions about the
|nd|st!ng_ws_hab_|||ty [Q]: a (pro_bablllstlc) map¥() is messagél, as long adV has min-entropy. This is exactly
(t,e)-_lnd}stlr!gwshablelf for all pairs of t-sourcesWy, Wa,  ha notion of (¢, €)-entropically secure encryption [13], [6]!
the d'St”bUt_'on.SY(Wl) andY'(W2) aree—clo_se. In part_lcul_ar, Once again, this notion is weaker than that of Shannon’s
all such dlstr|bgt|ons aree—clgsg to a fixed distribution security, but it also allows us to have shorter secret kegs th
Y= Y(U_")' Not.lce.tha.t when” is equall (or at IeasF (,:I,Ose)what is possible in the latter setting. While Shannon’s fasnou
to the uniform distribution, then we retrieve the definitioh impossibility results requires a secret key of length astiea

a randomness extractor! In particular, extractorstfepurces here we will achieve keys of length slightly more than— )
are trivially (¢, ¢)-indistinguishable. The following, perhaps In fact there is a nice connection between Shannon’s

surprising but very useful, result states that entropiaisge security and entropic security: by considering a distidhut

is essentially equivalent to indistinguishability. W,, whose first(n — ¢) bits are fixed to some message
Theorem 2 ([6]): If Y() is (¢, ¢)-entropically secure, then and the remaining bit are chosen uniformly at random, it is
itis (¢ — 1,4e)-indistinguishable. Conversely, i () is (t,¢)- easy to see that entropic securityrebit t-sourcelV,,, implies
indistinguishable, then it i¢t + 2, 8¢)-entropically secure$>  Shannon’s security of — ¢)-bit messagen (which is indeed
Corollary 3: Extractors for min-entropy hide all functions recoverable from any possible value in the supporiiaf,).
for sources of min-entropy + 2. ¢ This connection also implies that entropically-secureesots

The above connection states that, to design an entropicd¥st have secret keys of length at least-¢).
secure map satisfying some special functionality, it ificieht We also remark that “semi-strong” invertible extractorswi
to design a “special purpose” randomness extractor havigged(Z,,Z,) corresponds tgrobabilistic encryption, where
this functionality. From a different perspective, a randess the parties only share the “secret paft, while the “public
extractor with some special property immediately gives giart” Z, is sent together with the cipherteikt(W; (Zs, Z,,)).
entropically secure map with the same property. Thus, here we only care about minimizing the secret part

APPLICATION: ENTROPICALLY SECURE ENCRYPTION. As-
sume now that the sourdd” is the message, the se&dis

CONSTRUCTIONS The idea of [6] is to construct invertible
extractors from good expander graphs, which in fact mix in
one step! They call such grapliextractor graphs”. A bit

As a first special property, let us considevertible extrac- more formally, assume we havedaregular expander graph
tors: namely, the extractor’s inpul” should be reproducible G on 2" verticesV with the property that for any subsgt
from its outputExt(TW;Z) and the seed by some (efficient) of 2¢ vertices, picking a random vertex of T' and taking a
procedurelnv(-, -). Notice that invertibility of the extractors random neighbor, we obtain an almost uniform distribution
and the fact thatZ is independent fromiV imply that the onV (say, within distance from U,,). Since anyt-sourcel’/
output length¢ of the extractor must be at least Since these is known to be a convex combination of uniform distributions
¢ > n bits are (nearly) uniform, and has only¢ bits of on some subsefE of size2?, it is obvious that such extractor
entropy, we see that the remaining at least ¢ bits of the graphs immediately yeild @, ¢, ¢ = n, €)-extractor, where the
entropy must come from the se&d In fact, the lower bound sourcel?’ defines the original vertex and the seed specifies
on extractors easily implies thif| > n—¢+2log () —O(1). which neighbor of w to take. To see the invertibility of this
We will shortly see how we can match this bound. scheme, we need to ensure that it is possible to label thesedge

Also notice that an invertible extractamannot be strong of G in such a way that knowing the indexand thei-th
Indeed, in this case the valu& should be obtainable from neighborv of a vertexw uder this labeling, we can recover
an almost uniform strindxt(W;Z) o Z, which means thalV  back. We call such natural labelingertible Luckily, Hall's

Il. ADDING INVERTIBILITY: ENTROPICALLY SECURE
ENCRYPTION



marriage theorem implies that evedyregular graph has anIn particular, restrictingA to 0™ gives the usual definition of
invertible labeling, although this labeling does not hawe tuniversal hash functions, but thex construction of universal
be efficient. In all our examples, however, the correspandimash functions described earlier is in fact XOR-universal
labeling will indeed be efficient. already. The following variant of the LHL was proven in [6].
It remains to construct such extractor with the smallest| aqyma 5 ([6] LHL: One-Time Pad Extractor)if H =

degreed, sincelog d will translate to the length of the seed{hj :{0,1}% — {0 1}n} is XOR-universal andX and W
. . . ) ) ]
(i.e., the secret key). [6] give three such contructionspseh are two independent distributions off, 1}* and {0, 1}",

properties are stated below and then explained in moreldm%spectively satisfyin#l. (X) +Hoo (W) > n+2log (1) +1

€

Theorem 4:There exists (three different) invertibley, . g1y ho (X)W U.)) <
(n,t,n, €)-extractors with the following properties: (T (X) W), (T, Un)) < e ¢

1) Optimal: The seed lengllf| = n—t+2log () +O(1).

2) “Sparse One-Time Pad”: The seed lenfffh=n —¢ +
2log (1) 4 2logn + O(1), where the seed consists
of a random points in some “special” se C {0,1}",
andExt(W;s) =s@ W.

3) “LHL-based semi-strong extractor”: the seédonsists
of a secret par, of lengthk = n—t+2log (1) +0(1),
which is just a random pointt € {0,1}*, and a
public partZ,, which samples a random hash function

. i n [1l. ADDING COLLISION-RESISTANCE PERFECTLY
hg from any family H = {h;:{0,1}* — {0,1}"}.
. ) i . ONE-WAY HASH FUNCTIONS
of XOR-universal hash functions. The extractor is

The last construction of Theorem 4 follows from this result
by takingk = n—t+2log (1)+1 and havingX to be uniform
on {0,1}*. Applied to thea - 2 XOR-universal family, we
get the following very simple entropically-secure enciypt
scheme: viewG F'[2*] as a subset off F[2"] (where XOR co-
incides with field addition) and encrypt messagéy sending
(a,a -z + w), wherea € GF[2"] is a public randomizer, and
r € GF[2¥] is the secret key.

Ext(W;(X,J)) = hg(X) o W. {  The next special property we consider is (computational)
The first of these extractors is obtained by using (optimafpllision-resistance. We say that an extradiat is collision-
Ramanujan expander graphs, which indeed hiyed — 'esistant, if itis (computationally) infeasible to find tirgputs

n—t+2log (1) 4+ O(1). However, the constructions of such(w: @) 7# (w',i’) such thatExt(w;i) = Ext(w';i’). A small
optimal graphs is relatively complex. A simpler and muckechnicality here is that the definition of collision-resisce
more intutive second construction (with only marginallyrae 29ainst non-uniform adversaries requires an extratkey be
parameters) results if we consider graphs induced by the $@nerated at the beginning of the game, so we will do the
called 5-biased spaces [11]. A sef in {0,1}" is §-biased Same: i.e., our extractor will also have “collision-rearst
if for all nonzeroa € {0,1}", the binary inner product key k, in addition to i'_cs seed. Also,_we vyill consider only
a® s is nearly balanced fos drawn uniformly inS: namely, strong extractors, which output their seeds part of their
Pr, sla®s=0] € [1776) 1;_6] Alon et al. [1] gave explicit output. This means that: (a) an outguti) can be verified by
constructions of-biased sets if0, 1}" with size O(n2/52). Presentingw alone (by checking it: = Exty(w;i)); and (b)
Given such a se§, we can construct a grapliss where two the definition of collision resistance states that, for adcan
nodesz, y € {0,1}" are connected if and only if &y € S. K&y &, it is hard to findw # w' and a seed such that
It is well known (see [6]) that such graphs will be,¢)- EXtx(w;i) = Exty(w’;i). Combined, this means that the value
expander graphs providedl < ¢2("~t=2)/2, Coupled with (z,1) is a “‘commitment” tow, which can be “opened” by
optimal constructions of-biased spaces, we get graphs witRésentingw alone! . _ _
logd = n—t+2log (1) +2logn+0O(1). Also notice that the Of course, the price we pay for such a nice decommltm'ent
encryption/decryption procedure here is indeeda“veryﬁja procedure comes from a Weaker p”Vacy guarantee: since
one-time pad: a random neigbor Bf is simply W & s. extractors are entropically secure, we can only say that the

Still, 5-biased sets are relatively non-trivial to construct. TgFOMMitment” value(z,7) hides all functions ofw (for any
get a very simple construction, the last construction ksuild€Y . but for random seed), as long asw has high entropy.
much simpler “semi-strong” extractors with optimally shor!"us, publishing(z, 7) allows anybody to test (without either
secret partZ, and relatively short public part. In the grapH‘alse positives or false negatives!) whether or not sometinp

! " i1} H M

terminology, we construct a family af-regular graphgG,;} @' 1S equal to the “correct” secret input, and yet without
(for optimally small d) which are good “average-case” exJeaking any particular function ofv. We also notice that
panders: for any sef’ of size 2!, a random graphG., entropic security/indistinguishability is all we need s ap-
will be a good extractors graph fdF, as discussed above_plication.(i.e., we do not care if the ex_tractqr’s.outlput isse
However, it is much easier to understand this last constnuct {© the uniform as opposed to some otfigeddistribution). We
directly, since it is very related to the LHL. First, as a btig call_s_uch(t, e_)-lndlstlngwshable (but not ngcessanly extractor)
generalization of universal hash functions from Definitan collision-resistant mapg, ¢)-privately binding
we say that a family{ = {h; : {0,1}* — {0, 1}”}j is called APPLICATION: PERFECTLY ONE-WAY HASH FUNCTIONS.
a XOR-universalf for every distinctz, y € {0,1}™ and every (¢, ¢)-privately binding maps immediately give a construction
A € {0,1}™ we havePrslhs(x) ® hy(y) = A] = 27™.  of (¢, ¢)-perfectly one-way hash functiofBOWHFs) [3], [6]



(here we give a slightly stronger than usual definition, sinof pairwise independergermutationsherehz(z) andhz(y)
it is simpler to state and we will be able to achieve it): look like a par of randondlistinct elementsAlthough they are
c]Iechnically not pairwise independefunctions they are2—"-
close to them, which will not affect Lemma 6. In thex + b
construction, this is achieved by restrictingo be non-zero.
We now get the following construction of dt,e)-
privately binding map:Ej(w,i) = Cik(h;(w)). lts (t,¢€)-
indistinguishability follows directly from Lemma 6, whiligs
collision-resistance follows from that @, and the fact that
h; is apermutation for anyi. Also notice that if the collision-
resistant functionCy, is regular, i.e.Cy(Uy) = Uy, then we
indeed get a collision-resistant randomness extracta.[3e
for a construction of such regular collision-resistantdiions.

DEFINITION 4 ([3]) An ensemble of keyed randomize
functions™ = {Hy},cxc, ey With domain {0, 1}" (where
n is the security parameter), key spakg and randomness
spaceR,, is (t, ¢)-perfectly one-wayf there is a polynomial-
time verification algorithmver such that

o For all keysk € K, inputsw € {0,1}", and strings
i € Ry, Ver(k,w, H(w;1)) = ACC.

« For any efficient adversaryl, the probability overk €
K, that A(k) outputs(w,w’,y) satisfyingw # w’ and
Ver(k,w,y) = Ver(k,w’,y) = ACC is negligible inn.

o For all keysk € K,, the randomized magl’ —
H,(W;I) is (t,e¢)-entropically secure: for ali-sources V. ADDING ERROR-CORRECTION FUZZY EXTRACTORS
W, the valueH;,(W;Z) hides all functions ofi¥’ with AND SECURE SKETCHES

leakagee, whenZ is chosen at random frorR,,. ¢ Fuzzy extractors were introduced in [5] to cope with keys
. oo derived from biometrics and other noisy measurements. The
As we can see from Theorem 2(i&+-2, ¢)-privately binding jyes is to extract a random kef from the biometrici
map E is (t,¢)-entropically secure, and thus_'mmed'?teWogether with the error-correction informatidh such that? is
gives a(t,¢)-POWHF H of the following form: Hi(w;i) random even givetP, but R can be recovered from any noisy
outputs(Ey (w; ), @), andVer(k, w, (2, 1)) accepts if and only yajant 117 of W using P. Equivalently, it gives a one-round
if By (w; i) = 2. ' _ secret key agreement protocol over a public channel, where
CONSTRUCTION Here we present_asn_mple construction fronthe transmission of allows the communicating parties to
[6], which slightly improves and simplifies the analysis bét agree on the same ke, despite initially receiving different
original construction from [3]. We start from a yet anotheversions of some noisy data. Formally, assumitigives in a
variant of the leftover hash lemma. It states that combiningetric spaceM equipped with a distance functiatist (-, -),
a pairwise independent hash functiégnwith an arbitrary .
function f (of small enough output domain) yields an indistinPEFINITION 5 ([5) An (M,1,4,7,¢)-fuzzy extractoris a

guishable map: that is, the output may not be look random, iyen by t\./vo efficient p.ro.cedure(ﬁer?, Rep). )
it will look the same for all input distributions of sufficigp 1) Gen is a probabilistic generation procedure, which on
high entropy. input w € M outputs an “extracted” string € {0,1}

Lemma 6 ([7] LHL': Composing with arbitrary function): and a public string®, such that for any-sourcelV’, if
Let f : {0,1}¥ — {0,1}* be an arbitrary function (R, P) — Gen(W), thenSD (R, P), (Ug, P)) < e
Y ': ’{h- {01 ;{O 1}N} is a family of. 2) Rep is a deterministic reproduction procedure wh_lch
o . Lo ’ fi . allows one to recoveR from the corresponding public
pairwise '”depenfe”t. hash functions aQW IS a i string P and any vectoty’ close tow: for all w, w’ € M
Z%Jrce over{0,1}" with ¢ > €+ 2log(¢) + 1, then satisfyingdist(w,w’) < 7, if (R,P) «— Gen(w), then
(Z, F(hz(W))). (Z, f(U))) < e | we haveRep(u/ P) — R.
Contrary to intuition, this statemgnt doest follow directly The entropy lossof a fuzzy extractor is defines ds- £. <&
from the usual LHL (Lemma 1), since the hash function
m|ght be |ength_increasing (i_e_, there is no Constrainﬂ\@m While the above definition is general enough to deal with
and thus the intermediate distributidn (W) might not be arbitrary metricsM, in the following we will restrict ourselves
close to uniform. On the other hand, we do need a slightyith M = F", where ¥ is a finite set equipped with the
stronger assumption on our hash family that universagtigi--  Usual Hamming metriadist(w, w’) is the number of positions
wise independencéNamely, for anyz # y, the valuehz(z) i whgre w; # @g. (See [5] for constructions over different
andhz(y) should be truly random and independent from eadRetrics.) In this case we call the corresponding extractor
other (i.e.,(hz(z), hz(y)) = (Un,Uy)). Constructively, one (n.t,¢,7,€)-fuzzy. The binary case¢® = {0,1} will be of
can turn thes - 2 construction of universal hash functions int¢Pecial importance.
that of pairwise independent hash function, by also sampliSECURE SKETCH. Notice that in the “error-free” case & 0)
a randomb € G F[2max("N)] together witha (i.e.,i = (a,b)), Sstrong extractors achieve this functionality, by settifg= Z.
and settingh;(z) to be the firstN bits of a - 2 + b. A natural way to extend strong extractors into fuzzy extest
We can now apply this lemma as follows. The functifn is to publish, as part aP, some “error-correction information”
will be a (computationally) collision-resistant hash ftion S aboutW, which will allow to recoveri¥ from W' and S,
C), whose output lengtlf < ¢ — 2log (1) — 1 (and whose after which we can apply a strong extractor to this recovered
choice will fix the collision-resistant kek). As for the family W. A formalization of this idea leads to a new primitive of
of pairwise independent hash functions, we will take a fgmiindependent interest callescure sketcifb].



DEFINITION 6 ([5]) A (n,t,t', T)-secure sketclfover F) is a Lemma 7 (Fuzzy Extractors from Sketches [53ssume
pair of efficient (possibly randomized) mafis 7™ — {0,1}* (S,Rec) is an (n,t,t',7)-secure sketch, and Ildixt be the

andRec : {0,1}* — F" such that: (n,t',£,¢)-strong extractor based on universal hashing (in
« For all pairs of stringaw, w’ of distance at most, we Particular,t =" —2log (£))- Then the following(Gen, Rep)
haveRec(w’, S(w)) = w with probability 1. is a(n,t,¢,7, ¢)-fuzzy extractor:
« For all t-sourcesW, we haveH., (W | S(W)) > t'. o Gen(w;(r,1)): setP = (S(w;r),7) and R = Ext(w; ).
The entropy lossof a sketch is defined as— t'. o « Rep(w/, (s,1)): output R = Ext(Rec(w’, ), 7). Y

V. CORRECTINGERRORSWITHOUT LEAKING PARTIAL

Intuitively, a secure sketch allows one to correct errors in
INFORMATION

W while giving up the smallest amount of entropy about

W (which is exactly the entropy loss — t'). Also notice  We now combine the notions of error-correction and en-
that the most direct way to bound the entropy loss is topic security. For a motivation, we saw that secure slestch
make the output length of the sketch as small as possibiiow one to correct errors i without significantly lowering
indeed, it is easy to see that-t' < |SS(W)|. Bounding its entropy. They do, however, leak information abdiit

the length of the sketch is also important from the perspectifor example, the syndrome construction revealed the entire
of communication complexity fomformation reconciliation syndrome ofi¥. Can we build secure sketches which leak
if Alice wants to transmit her stringl” to Bob (who knows ng information aboui?’? Unfortunately, we know that secure
some noisy versioV’ of W), sending a shorter sketch will sketches must leak “Shannon information” abdit [2];
result in a more communication-efficient protocol. i.e., the entropy ofi¥ must drop givenS(W). Surprisingly

CODE-OFFSET CONSTRUCTION The following well known €nough, it was shown in [7] that (for the Hamming distance)
construction builds secure sketches for the Hamming spdtds nevertheless possible for the secure sketches to hide all
F", where F is a field. Recall that a lineafn, k, d]-code functions ofW; i.e., to be entropically secure! Put differently,
consists of a&-dimensional subsef of the vector Spacé—'”, itis pOSSible tocorrect errors inWW without I’evealing a-priori

with the property that any two distinct vectatsy € C' have information aboutiV'.

Hamming distance at least (called theminimal distanceof Theorem 8 ([7]): (Binary Alphabet) There exist efficient

C). A parity-check matrix{ for C'is any matrix whose rows (n, ¢, ¢/, 7)-secure sketches for inputs {f, 1} which are also
generate the orthogonal spaCe-. Fixing such a matrix, for (t, €)-entropically secure, such that

any v edfn we can define thesyndromeof v V\_/'r't' C. as 1) the tolerated error and residual entropy areQ(n);
syno(v) = Hu. l.e., the syndrome of a vector is its projection 2) the information leakage is exponentially small i,
onto subspace that is orthogonal to the code, and can thus be

intuitively viewed as the vector modulo the code. Note thdfhenever the original min-entropyis linear inn. That is,

v € C & syng(v) = 0. Note also thatf is an (n — k) x n whenevert/ = Q(n), vlve can find entropically secure sketches

matrix, and thusyn,.(v) is (n — k) field-elements long. Also, Where7, ¢’ andlog (¢) areQ(n).

it is well known that any error vectar of Hamming weight  (Large Alphabet) If |F| = ¢ > n and? > 27log(q),

less thand,/2 is (in principle) uniquely determined from itsth.ere exist efficient(n,t,t', 7)-entropically secure sketches

syndromesyn-(¢). Moreover, efficiently decodable codes caith leakagec over 7 such thatt’ = ¢ — 27log(q) and

recover thise in polynomial time from its syndrome. e =0(27"/?). Both of these parameters are optimal. <
Given an efficiently decodablé, k, d]-code, whered = A few comments are in place. First, if dn,¢,t', 7)-secure

27 + 1, we now defineS(w) = syn-(w). As for the recovery sketch is also(t, ¢)-entropically secure, therf is bounded

procedure, notice that dist(w,w’) < 7 < d/2, thenw — w’ below bylog (é) (roughly), since by the definition of entropic

defines a vectoe of Hamming weights less tha#/2. More- security the adversary’s probability of predicting theritity

over,syn(e) = syna(w) —syns(w') = S(w) —syns(w’) can function f(W) = W is at moste + 2=¢ ~ e. Thus, good

be recovered fronf(w) andw’. By efficient decodability of entropic security automatically gurantees high residuid-m

the code, this means we can recoveand thusw = w’ +e. entropyt’. Second, by Corollary 3, to demonstrate Theorem 8

Overall, we obtain a secure sketch Bt with entropy loss it suffices to constructandomness extractorghich are si-

at most|S(w)| = (n — k) log | F|. (This loss was shown to be multaneously secure sketches! In fact, [7] even constducte

nearly optimal in [5].) For example, in cas&| > n, we can a strong randomness extractor (whose output included the

use Reed-Solomon codes which hdve n—d+1=n—27, seed) with this property. Namely, they constructed a strong

obtaining (optimal) entropy losar log | F|. extractor Ext such thatw can be recovered frorxt(w; i),

the seed and anyw’ close tow. Unlike the standard rational

by [5], secure sketches naturally combine with the leftovd?" extract"o.rs, hqweyer, th? objective of sugh “sec.ureteﬁke
hash lemma (more generally, with any strong extractor) fxtractors” is tominimizetheir output length, since this length

yield nearly optimal fuzzy extractors, whose entropy Iass Eorresponds to the length of the secure sketch, which direct
that of the secure sketch plaslog(l). ounds the entropy loss of the sketch. In other words, the

purpose of this extractor is the recoverywofising the minimal

Fuzzy EXTRACTORSFROM SECURESKETCHES. As noticed



amount of information, and not the randomness extractiovhat we call(t, 7, €)-fuzzy perfectly one-walyash functions,
(which only serves as a convenient tool to argue privacy). satisfying the following three conditions:
Finally, it is also instructive to compare such invertible « For all keysk € K,, inputs w,w’ € {0,1}" satis-

extractors with the invertible extractors studied in Swmrtil. fying dist(w,w’) < 7, and stringsi € R,, we have
There we could also recover from Ext(w;¢) and the seed, Ver(k,w', Hi(w; 1)) = ACC.

but without the stringw’ close tow. As a consequence, the « For any efficient adversaryl, the probability overk

output length such extractors had to be at leasHere, by K, that A(k) outputs a triple (w,w’,y) such that
also giving a stringv’ close tow, the objective is to push the dist(w,w’) > 27 and Ver(k,w,y) = Ver(k,w',y) =

output length down as much as possible: not only betgw Acc is negligible inn.

but also significantly below the min-entropy o For all keysk € K,, the randomized magl’ —

CONSTRUCTION The secure sketch/strong extractor construc-  17x(W;Z) is (¢, €)-entropically secure.

tion of [7] used a special familfC;}, of [n,k,d = 27 +1]-  Thus, publishingH}(w,i) allows anybody to test (without
codes (for “appropriate’), and setS(w;i) = (i,sync, (w)). either false positives or false negatives!) whether or notes
The challenge was to obtain the largest possible dimensi@put «’ is close to the “correct” secret inpuiv, and yet

k suth that, for a random cod€z and for anyt-sourceW, without leaking any particular function ofy. Taking now
(Z,sync, (W)) is close to uniform. We refer to [7] for the de-the specific construction of entropically secure sketches f
tails on how to build such codes in order to prove Theorem 8heorem 8 and the construction of POWHFs from Section llI,
here only stating (without proof) the actual construction f we obtain, for any entropy level = Q(n), a (¢, 7,¢)-fuzzy
the large alphabet case. We start from a fixed codequal POWHF where bothr andlog (1) are Q(n).

to the[n, n — 27, 27 + 1]-Reed-Solomon code. Given an indeX\ pp| caTion: KEY REUSE IN THENOISY BSM. Perhaps as

i = (a1,...a,) consisting ofnon-zeroelements ofF, We  the most surprising application of entropically secureicies,
defineC; = {(a1-c1,...,an - cn) € F" | (c1,...,¢n) € C}. 7] showed that they can be used to simultaneously achieve
(Restricting a;'s to be non-zero ensures that ea€h still  grror correction, key reuse and “everlasting security’hia $0

has minimal distance2r + 1.) The resulting family iS ¢gjled bounded storage model (BSM) [10]. This resolved the
{Clar,an) [ @1 # 0, a, # 0}. Theorem 8 states that themain open problem of [4]. We refer to [7] for more details
resulting secure skecth matches the entropy loss of théaregu, g references regarding this application.

entropically insecure” sketch presented in Section IV! Acknowledgments: The author is grateful to Leonid Reyzin
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