Resolving Concurrency In
Group Ratcheting Protocols

Real World Crypto 2021

2020-08-27

Horst Gortz Institute for IT Security
Cryptography Group Chair for Network and Data Security
New York University Ruhr University Bochum

Alexander Bienstock, Yevgeniy Dodis, Paul Rdsler

aveemt RIUB
Abstract for RWC Committee

Post-Compromise Security, or PCS, refers to the ability of a given protocol to recover—by means of normal protocol operations—from the exposure
of local states of its (otherwise honest) participants. Reaching PCS in group messaging protocols so far either bases on n parallel two-party
messaging protocol executions between all pairs of group members in a group of n users (e.g., in the Signal messenger), or on so-called tree based
group ratcheting protocols (e.g., developed in the context of the IETF Message Layer Security initiative). Both approaches have great restrictions:
Parallel pairwise executions induce for each state update a communication overhead of O(n). While tree-based protocols reduce this overhead to
O(log n), they cannot handle concurrent state updates. For resolving such inevitably occurring concurrent updates, these protocols delay reaching
PCS up to n communication time slots (potentially more in asynchronous settings such as messaging). Furthermore, a consensus mechanism (such
as a central server) is needed in practice.

In this talk we discuss the trade-off between PCS, concurrency, and communication overhead in the context of group ratcheting. In particular, we will
explain why state updates, concurrently initiated by t group members for reaching PCS immediately, necessarily induce a communication overhead
of Q(t) per message. This result is based on an analysis of generic group ratcheting constructions in a symbolic execution model. Secondly, we will
present a new group ratcheting construction that resolves the aforementioned problems with concurrency but reaches a communication overhead of
only O(t-(1+log(n/t))), which smoothly increases from O(log n) with no concurrency, to O(n) with unbounded concurrency. Thus, we present a
protocol in which each group member can (nearly) immediately recover from exposures independent of concurrency in the group with almost
minimal communication overhead. We believe that this result, beyond its applicability to the IETF Message Layer Security (MLS) standardization
effort, more generally and more importantly is of interest for (distributed) messaging environments where concurrency is unavoidable.

Although all three considered properties (fast recovery from exposures, little induced communication, and handling of concurrency) are indeed
desired by practical messengers, our short review of current real-world protocols and academic proposals at the beginning of this talk reveals (that
and) where these approaches fail. Hence, our results, if being deployed, can enhance messaging for a large audience.

While the formal execution of our results is theoretic and partially complex, the high-level ideas and concepts, summarized in this talk, are simple
and intuitive. We think that our plain results are interesting for practitioners and the combination of different theoretic approaches to derive these
results are insightful to real-world crypto researchers.

Our primary submission are the presentation slides. For further details and background information, imparted in the talk but maybe not entirely clear
from only the slides, we provide a short extended abstract at https://drive.google.com/file/d/IMEIM-P8tZNkK1jxonOZ2yudZ5IA6fmT5/ .

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 2

https://drive.google.com/file/d/1MFlm-P8tZNkK1jxonOZ2yudZ5iA6fmT5/

_ e RUB
(Concurrent) Group Ratcheting

‘ g « Group computes

— joint keys
@ * Exposure of local

‘ @ } Q @ }B @ state temporarily
3

@@B

* Long-term sessions,

@ @ @ @ mobile devices etc.
Q Q * Leaks group key until
all states recovered
time >

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 3

« Group computes
joint keys

* Exposure of local

&
@ state temporarily
&

 Long-term sessions,
mobile devices etc.

 Leaks group key until

> all states recovered

*Recovery:

— —
— @ — — @ — * Generate new secrets
@ @ @ @ Share public values

©)

time >
sequential
Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 4

@@m ®© ®
S © S

time

©)

time

concurrent

Resolving Concurren

cy in Group Ratcheting Protocols Real World Crypto 2021 | Pau

sequential
| Rosler | 2020-08-27

« Group computes

joint keys
* Exposure of local
state temporarily

 Long-term sessions,
mobile devices etc.

 Leaks group key until
all states recovered

*Recovery:

» Generate new secrets

 Share public values

e Concurrent

recovery
» Speedup

* Merge recoveries

(Concurrent) Group Ratcheting

ﬁ.'fﬁ .

&

time

concurrent

Resolving Concurren

cy in Group Ratcheting Protocols Real World Crypto 2021 | Pau

sequential
| Rosler | 2020-08-27

Target:

1. Post-

Compromise
Security

2. Small shares ="
3. Concurrency “~

Otherwise:

» Slow recovery
from exposures

« Consensus
required

- Inapplicable to
decentralized
networks

RUHR
UNIVERSITAT
BOCHUM

Previous Work: Lower Bound:
What’s the What’s the minimal

Problem? overhead?

Q(t) vs. O(t-(1+log(n/t))?
NIKE?

Open Questions ... PCS-Delay?

Forward-secrecy?

Application to MLS

Upper Bound:
Almost optimal

construction

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rosler | 2020-08-27 7

Previous Work: sz RUB
What's the Problem?

» Essentially: Dynamic group key exchange (DGKE)
« Expose = Unwanted member ‘, @

 Recovery = Remove + Add (R&A) 5 5®s ©825 ©9s
| | “f@f@ O (® B » B
« Many protocols from ‘80s — ‘O0ers "\@9 ® a0 g0 U 5 ©
» Tree-based DGKE best suited for o g
asynchronous settings: Remove + Add
* Little communication for R&A: O(log n)
* (Almost) non-interactive for R&A
- First known DH-tree-based protocol [KPT'04]
»))) public
} secret

root secret
= group key
Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 8

Previous Work: sz RUB
What's the Problem?

« Essentially: Dynamic group key exchange (DGKE) o ® & e =
« Expose = Unwanted member o¥e BT0 B0 ©T0
_ @Ax‘*©fe©§{((o@©ﬁf©
 Recover = Remove + Add (R&A) @ ®e0 ®30 0408
* Tree-based DGKE best suited for ’ ‘
asynchronous settings ' Removeﬂdd? i
* Ratcheting in trees
* Merge R&A [CCGMM’18]
,))) public
} secret

root secret
= group key

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 9

Previous Work: sz RUB
What's the Problem?

+ Essentially: Dynamic group key exchange (DGKE) o | ® .
- Expose = Unwanted member 5@ o8 o e 5 5
_ 7 S & o e o 4
« Recover = Remove + Add (R&A) @ ®e0 ®30 0408

* Tree-based DGKE best suited for | ‘

asynchronous settings ' Removeﬂdd? i

* Ratcheting in trees
* Merge R&A [CCGMM’18]
 DH to KEM [BBR'18]

,))) public

} secret

root secret
= group key

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 10

Previous Work: sz RUB
What's the Problem?

+ Essentially: Dynamic group key exchange (DGKE) o | ® .
- Expose = Unwanted member 5@ o8 o e 5 5
_ 7 S & o e o 4
« Recover = Remove + Add (R&A) @ ®e0 ®30 0408

* Tree-based DGKE best suited for | ‘

asynchronous settings ' Removeﬂdd? i

* Ratcheting in trees
* Merge R&A [CCGMM’18]

« DH to KEM [BBR18]
« Recovery: sample X, sk.=X., pke=gen(sk.),

,))) public

} secret

root secret
= group key

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 11

Previous Work: sz RUB
What's the Problem?

« Essentially: Dynamic group key exchange (DGKE) o ® & ® 5
« Expose = Unwanted member o¥e BT0 B0 ©T0
_ 5 -Q © 7 ® 5./ & + B
 Recover = Remove + Add (R&A) @ ®e0 ®30 0408
» Tree-based DGKE best suited for ’ |
asynchronous settings ' Removeﬂdd? i
* Ratcheting in trees
* Merge R&A [CCGMM’18]
* DH to KEM [BBR'18] %) public
 Recovery: sample x., sk.=x., pke=gen(sk.), A secret

Xc’d:H(Xc’)’ enc(pkd, Xc’d)’ Skc’d =Xcody - root secret

= group key

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 12

Previous Work: sz RUB
What's the Problem?

+ Essentially: Dynamic group key exchange (DGKE) o | ® .
- Expose = Unwanted member 5@ o8 o e 5 5
_ 7 S & o e o 4
« Recover = Remove + Add (R&A) @ ®e0 ®30 0408

* Tree-based DGKE best suited for | ‘

asynchronous settings ' Removeﬂdd? i

* Ratcheting in trees
 Merge R&A [CCGMM'18]
 DH to KEM [BBR’18]
 Better forward-secrecy [ACDT 20]
* Maintain balanced tree [ACCKKPPW’19]

,))) public

} secret

root secret
= group key

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 13

Previous Work: sz RUB
What's the Problem?

+ Essentially: Dynamic group key exchange (DGKE) o | ® .
- Expose = Unwanted member 5, B e B e & s
_ , QB 7 ® o /(@ B » 0B
« Recover = Remove + Add (R&A) @ ®e0 ®30 0408

* Tree-based DGKE best suited for | ‘

asynchronous settings ' Removeﬂdd? i

« Ratcheting in trees —
» Merge R&A [CCGMM'18] e

+ DH to KEM [BBR'18] s) publc
- Better forward-secrecy [ACDT20] o B secret
 Maintain balanced tree [ACCKKPPW’19] @ @ oot secre

= group key

* NO concurrency
 Intersection of concurrently updated paths ee:CC((E::d:d))
- Merging under PCS without multiparty-NIKE?!

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 14

Previous Work: sz RUB
What's the Problem?

+ Essentially: Dynamic group key exchange (DGKE) ¢ & _
« Expose = Unwanted member 598 8% 888 B8°8
5 -Q © 7 ® 5./ & + B
« Recover = Remove + Add (R&A) @ ®e0 ®30 0408
» Tree-based DGKE best suited for ’ |
asynchronous settings ' Removeﬂdd? i
* Ratcheting in trees
’ pkabc’d/pkabcd’ Skabc'd/Skabcd'
* Merge R&A [CCGMM’18]
« DH to KEM [BBR'18] %) public
 Better forward-secrecy [ACDT 20] £® secret
« Maintain balanced tree [ACCKKPPW’19] root secret
= group key
* NO concurrency
* Intersection of concurrently updated paths
= Merging under PCS without multiparty-NIKE?! Compine sk.,, sk., and sk,
s.t. sk, and sky are useless: ~)oo((t+1)-party NIKE

3P-NIKE(sk,,pK,,pKy) for t-concurrency

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 15

Previous Work: sz RUB
What's the Problem?

+ Essentially: Dynamic group key exchange (DGKE) o | ® .
- Expose = Unwanted member 5@ o8 o e 5 5
_ 7 S & o e o 4
 Recover = Remove + Add (R&A) @ ®,0 ®30 ©540

* Tree-based DGKE best suited for | ‘

asynchronous settings ' Remove+Addj i

» Ratcheting Iin trees R

1-grk
. Merge R&A [CCGMM’18] {:«; &
- DH to KEM [BBR’18] - & o | N Gilczn))
» Better forward-secrecy [ACDT 20] O Q

* Maintain balanced tree [ACCKKPPW’19]

MLSvV9 worst-case:
(v) O(n)

- Rejects concurrent
path updates
- Degrades to “n-tree]

(v)

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 16

Previous Work:
What's the Problem?

» Essentially: Dynamic group key exchange (DGKE)

« Expose = Unwanted member
 Recover = Remove + Add (R&A)

» Tree-based DGKE best suited for
asynchronous settings

» Ratcheting in trees
* Merge R&A [CCGMM’18]

 DH to KEM [BBR'18]
» Better forward-secrecy [ACDT 20]

* Maintain balanced tree [ACCKKPPW’19]

 Real-World

« Forward-secure hash chain [WhatsApp]

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27

©@’©

RUHR
UNIVERSITAT
BOCHUM

17

Previous Work:
What's the Problem?

» Essentially: Dynamic group key exchange (DGKE) o
OB

« Expose = Unwanted member
 Recover = Remove + Add (R&A)

» Tree-based DGKE best suited for
asynchronous settings

» Ratcheting in trees
* Merge R&A [CCGMM’18]

 DH to KEM [BBR'18]
» Better forward-secrecy [ACDT 20]

* Maintain balanced tree [ACCKKPPW’19]

 Real-World

» Forward-secure hash chain [WhatsApp]
 Parallel pair-wise communication [Signal]

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27

RUHR
UNIVERSITAT
BOCHUM

&

5% ®

®)

s ©8°%s
(«@@‘% 5 6526 8.0
| .‘ e~ “o S

' Remove + Add l |

e o
& gp 1 grk
aTR &
®
- a « O(logn)) ¢
- & n-Kig
&./, S X o v
- o

® o v O(n) v

18

Previous Work:
What's the Problem?

» Essentially: Dynamic group key exchange (DGKE) o
OB

« Expose = Unwanted member
 Recover = Remove + Add (R&A)

» Tree-based DGKE best suited for
asynchronous settings

» Ratcheting in trees
* Merge R&A [CCGMM’18]

 DH to KEM [BBR'18]
» Better forward-secrecy [ACDT 20]

* Maintain balanced tree [ACCKKPPW’19]

 Real-World

» Forward-secure hash chain [WhatsApp]
 Parallel pair-wise communication [Signal]

* We

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27

RUHR
UNIVERSITAT
BOCHUM

&

5% ®

®)

s ©8°%s
(«@@‘% 5 6526 8.0
| .‘ e~ “o S

' Remove + Add l |

O(log n)
O(1)

O(n)

Be

N

Be
C £ X L
C £ < X

19

RUHR
UNIVERSITAT
BOCHUM

Previous Work:
What's the
Problem?

Lower Bound:
What’s the minimal
overhead?

PCS & Coneurreney & Small overhead
PCS & Concurrency & Small overhead
PCS & Concurrency & Small-overhead

Q(t) vs. O(t-(1+log(n/t))?
NIKE?

Open Questions ... PCS-Delay?

Forward-secrecy?

Application to MLS

P kabc'd’ S ka bc'd’

Upper Bound:

Almost optimal
construction

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rosler | 2020-08-27 20

| ower Bound: e RUB
What's the minimal overhead?

« Symbolic model

. . . :Fs %5 085 of o
« Variables are symbols without bit % % 5 - A T
representation or algebraic structure @ ® ® 50

 Algorithms follow “transition rules”
* Round based execution @ @ M

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 21

| ower Bound: e RUB
What's the minimal overhead?

« Symbolic model

. . . 65 s°5- s s ©%s
 Variables are symbols without bit % % 5 » 57/ @® O/(® O & 0O
representation or algebraic structure @ ® ® 50

 Algorithms follow “transition rules”
. Remove + Add
* Round based execution @ @ L:ﬁ

* Fixed set of allowed bU|Id|ng blocks (for constructions with minimal overhead under PCS)
Our “transition rules” model: [
 (Dual) pseudo-random functions |5_1|
« Key-updatable public key encryption (see [BRV20])]

« Broadcast encryption @ @

- More than what previous constructions used —

D= 2

000
Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 22

| ower Bound: e RUB
What's the minimal overhead?

« Symbolic model

A@’A e . ®

: i : ¥ S QB ©
» Variables are symbols without bit 5 » 8/ ® 97(8 O
representation or algebraic structure O J S

* Algorithms follow “transition rules” | 3
. Remove + Add
« Round based execution @ @ L:ﬁ

* Fixed set of allowed bU|Id|ng blocks (for constructions with minimal overhead under PCS)

®)

(©) I
‘r@)@)@)

Our “transition rules” model: [
- (Dual) pseudo-random functions e = |5_1|
« Key-updatable public key encryption (see [BRV20])]
« Broadcast encryption &' @
- More than what previous constructions used —

* Inspired by [MP0A4]: = 2

Lower bound O(log n) for forward-secure DGKE

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 23

Lower Bound:
What's the minimal overhead?

Round i-2
I-2 EXxposure:
* No (shared) secrets

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27

BBBBBB

24

| ower Bound: e RUB
What's the minimal overhead?

Round i-2 Round i-1
I-2 EXposure: t., senders

+ No (shared) secrets ﬁ
LRSS o¥9%s ©%9cs
| Saming o ew secrets o_# 52 (®
@ ® 20
O % %j‘
%j
&

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rosler | 2020-08-27 25

7

® »»f

Lower Bound:
What's the minimal overhead?

Round i-2 Round i-1
I-2 EXposure: t., senders

* No (shared) secrets
I-1 Recovery 1: r-s f—s @ —
« Still no (shared) secrets @ ,v, @
« Sampling of new secrets f“ ‘
 Sharing of derived values ‘}B * @ ‘(m
- Still no (shared) secrets ‘ O\
- Though, public values of @ @ @ Q @
shared secrets
| Recovery 2:
» Respond to public values !
 All senders must respond to every sender @m %
from i-1 as they cannot coordinate %_l

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27

RUHR
UNIVERSITAT
BOCHUM

Round i
t. senders

<

| ower Bound: e RUB
What's the minimal overhead?

Round i-2 Round i-1 Round i
I-2 EXposure: t., senders t. senders
* No (shared) secrets

I-1 Recovery 1. r-s @ = = @ = — (~) —
« Still no (shared) secrets @ @ @ é @ @ @ @
« Sampling of new secrets B B\ B — —
 Sharing of derived values @ }B @ {; (((‘Q @ @
> Still no (shared) secrets ~ WSl R T =
eThIough, public values of @ @ @ é @ @ «gt: @

shared secrets

Note: Even NIKE
seems useless
here.

All senders must respond to every sender
from i-1 as they cannot coordinate

—> Each sender sends 2 (t_;-1) responses C _l

| Recovery 2: O
» Respond to public values % ol

> > (t,-1)t shares in round i @
= Overhead per recovery under t-concurrency: Q(t) .

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 @ 27

RUHR
UNIVERSITAT
BOCHUM

Previous Work: Lower Bound:

What's the What’s the minimal
Problem? overhead?
PCS & Coenecurrency & Small overhead Realistic symbolic model:
PCS & Concurrency & Small overhead No coordination + PCS
PCS & Concurrency & Small-overhead = Q(t)

Q(t) vs. O(t-(1+log(n/t))?
NIKE?

Open Questions ... PCS-Delay?

Forward-secrecy?

Application to MLS

P kabc'd’ S ka bc'd’

Upper Bound:

Almost optimal
construction

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rosler | 2020-08-27 28

Upper Bound: e RUB
Almost optimal construction

Key tree (with updatable KEM) é
S s

DR

»))) public

} secret

root secret
= group key
Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 29

Upper Bound: e RUB

Almost optimal construction

Round i-2
0 senders
Key tree (with updatable KEM) @
-2 EXposure:
« Paths of ¢ and d public: A D

SK., SKy, SKcqs SKopeg

»))) public

} secret

root secret
= group key
30

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27

Upper Bound: e RUB
Almost optimal construction

Round i-2 Round i-1
0 senders t_, senders
Key tree (with updatable KEM) @ @
-2 EXposure:
» Paths of c and d public: A B Q’)))/m ®)

SK., SKy, SKcqs SKopeg

I-1 Recovery 1. 5 2]

» Generate and share new leaf key pairs:
(Skc”pkc’)’ (Skd”pkd’)

»))) public

} secret

root secret
= group key
Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 31

Upper Bound: e RUB
Almost optimal construction

Round i-2 Round i-1 Round i
0 senders t_, senders t. senders
Key tree (with updatable KEM) @ @ .
-2 EXposure: g
« Paths of ¢ and d public: 7 “‘ 7 e
Skcv Skd’ Skcd’ Skabcd } @ Q’)))’::; @ ©’))) {m @

-1 Recovery 1: o ®
» Generate and share new leaf key pairs:
(Skc”pkc’)’ (Skd”pkd’)
| Recovery 2:
a) See Recovery 1

»))) public

} secret

root secret
= group key
32

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27

RUHR

U pper Bou nd L RaITAT
Almost optimal construction

Round i-2 Round i-1 Round i
0 senders t_, senders t. senders

Key tree (with updatable KEM)

I-2 EXxposure: © & g
« Paths of c and d public: 7 N\ = =
sK,, SKg, SKegs SKapeg S, ®) ;’; © D) &

i-1 Recovery 1: o @

» Generate and share new leaf key pairs:
(Skc”pkc’)’ (Skd”pkd’)
| Recovery 2:
a) See Recovery 1

« Each sender generates new
paths for previous senders:

b) Sample X4
C) Derive skyg=Xoas Xabea=HXca): SKaboa=Xapca PRea=0€N(SKeq), PKapea=g€N(SKapcq)

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27

RUB

»))) public

} secret

root secret
= group key
33

Upper Bound: e RUB
Almost optimal construction

Round i-2 Round i-1 Round i
0 senders t_, senders t. senders

Key tree (with updatable KEM)

SK., SKy, SKcqs SKopeg

I-1 Recovery 1.

» Generate and share new leaf key pairs:
(Skc”pkc’)’ (Skd”pkd’)
| Recovery 2:

a) See Recovery 1

« Each sender generates new
paths for previous senders:

b) Sample X4
C) Derive skyg=Xoas Xabea=HXca): SKaboa=Xapca PRea=0€N(SKeq), PKapea=g€N(SKapcq)
d) Send enc(pk,Xyq), €Nc(PKy,Xqq) %) public
- Number of leafs: t; ; }g

secret

-2 Exposure: © © g
« Paths of c and d public: 2) BV NE =
© @))Q &) »))) Vi

3

pkabcd S ka bcd

root secret
= group key

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27 34

RUHR

U pper Bou nd L RaITAT
Almost optimal construction

Round i-2 Round i-1 Round i
0 senders t_, senders t. senders

Key tree (with updatable KEM)

I-2 EXxposure: © & g
« Paths of c and d public: 7 N\ = g
sK,, SKg, SKegs SKapeg S, ®) ;’; © D) &

-1 Recovery 1: o ®
» Generate and share new leaf key pairs:
(Skc”pkc’)’ (Skd”pkd’)
| Recovery 2:
a) See Recovery 1

« Each sender generates new
paths for previous senders:

b) Sample X4
C) Derive skyg=Xoas Xabea=HXca): SKaboa=Xapca PRea=0€N(SKeq), PKapea=g€N(SKapcq)
d) Send enc(pk.,Xzq), €NC(PKy Xeq), PKegs €NCPKp Xapera)

- Number of leafs: t,_;, number of update-tree-siblings: O(t; ;-log(n/t, ,))

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27

RUB

»))) public

} secret

root secret
= group key
35

Upper Bound: e RUB
Almost optimal construction

Round i-2 Round i-1 Round i
0 senders t_, senders t. senders

Key tree (with updatable KEM)

—_—

©)

-2 EXposure:

) ©
« Paths of ¢ and d public: & B @’)))fi © ’)))
& =

=~
l&

SK., SKy, SKcqs SKopeg

-1 Recovery 1: o ®

» Generate and share new leaf key pairs:
(ske,PKe), (SKg:PKy)
| Recovery 2:
a) See Recovery 1
« Each sender generates new

paths for previous senders:
b) Sample X4 @ @ @ @@ @ @

C) Derive skog=Xgds Xaboa=HXed)s SKapca=Xapcdr PKea=9€N(SKeg), PKapca=9€N(SKabea)

pkabcd Skabcd pkabcd Skabcd

d) Send enc(pky,Xeq), €Nc(PKg,Xeq)s PKegs €NC(PKap Xaped) ,))) public
- Number of leafs: t,_;, number of update-tree-siblings: O(t; ;-log(n/t, ,)) }9
secret
= Overhead per recovery under t-concurrency: O(t+t-log(n/t)) ° © © root secret
= group key
36

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rdsler | 2020-08-27

RUHR
UNIVERSITAT
BOCHUM

Previous Work: Lower Bound:

What's the What’s the minimal
Problem? overhead?
PCS & Coenecurrency & Small overhead Realistic symbolic model:
PCS & Concurrency & Small overhead No coordination + PCS
PCS & Concurrency & Small-overhead l = Q(t)

Q(t) vs. O(t-(1+log(n/t))?
Upper Bound: NIKE?

Almost optimal Open Questions ... PCS-Delay?
construction Forward-secrecy?

Application to MLS

P kabc'd’ S ka bc'd’

Two-step recovery ; . .
= O(t-(1+log(n/t)) @roeslpa Full details & formal proofs online soonish

Resolving Concurrency in Group Ratcheting Protocols Real World Crypto 2021 | Paul Rosler | 2020-08-27 37

