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t. We 
onsider the question of adaptive se
urity for two re-lated 
ryptographi
 primitives: all-or-nothing transforms and exposure-resilient fun
tions. Both are 
on
erned with retaining se
urity when anintruder learns some bits of a string whi
h is supposed to be se
ret:all-or-nothing transforms (AONT) prote
t their input even given partialknowledge of the output; exposure-resilient fun
tions (ERF) hide theiroutput even given partial exposure of their input. Both of these prim-itives 
an be de�ned in the perfe
t, statisti
al and 
omputational set-tings and have a variety of appli
ations in 
ryptography. In this paper,we study how these notions fare against adaptive adversaries, who may
hoose whi
h positions of a se
ret string to observe on the 
y.In the perfe
t setting, we prove a new, strong lower bound on the 
on-stru
tibility of (perfe
t) AONT. This applies to both standard and adap-tively se
ure AONT. In parti
ular, to hide an input as short as log nbits, the adversary must see no more than half of the n-bit output. Thisbound also provides a new impossibility result on the existen
e of (ramp)se
ret-sharing s
hemes [6℄ and relates to a 
ombinatorial problem of in-dependent interest: �nding \balan
ed" 
olorings of the hyper
ube.In the statisti
al setting, we show that adaptivity adds stri
tly morepower to the adversary. We relate and redu
e the 
onstru
tion of adap-tive ERF's to that of almost-perfe
t resilient fun
tions [19℄, for whi
hthe adversary 
an a
tually set some of the input positions and stilllearn nothing about the output. We give a probabilisti
 
onstru
tion ofthese fun
tions whi
h is essentially optimal and substantially improveson previous 
onstru
tions of [19, 5℄. As a result, we get nearly optimaladaptively se
ure ERF's and AONT's. Finally, extending the statisti
al
onstru
tion we obtain optimal 
omputational adaptive ERF's, \publi
-value" AONT's and resilient fun
tions.1 Introdu
tionRe
ently, there has been an explosion of work [23, 9, 10, 20, 18, 7, 1, 26, 14℄ sur-rounding an intriguing notion introdu
ed by Rivest 
alled the All-Or-Nothing



Transform (AONT) [23℄. Roughly speaking, an AONT is a randomized mappingwhi
h 
an be eÆ
iently inverted if given the output in full, but whi
h leaks noinformation about its input to an adversary even if the adversary obtains almostall the bits of the output. The AONT has been shown to have important 
rypto-graphi
 appli
ations ranging from in
reasing the eÆ
ien
y of blo
k 
iphers [20,18, 7℄ to prote
ting against almost 
omplete exposure of se
ret keys [10℄. The�rst formalization and 
onstru
tions for the AONT were given by Boyko [9℄ inthe Random-Ora
le model. However, re
ently Canetti et al. [10℄ were able toformalize and exhibit eÆ
ient 
onstru
tions for the AONT in the standard 
om-putational model. They a

omplished this goal by redu
ing the task of 
onstru
t-ing AONT's to 
onstru
ting a related primitive whi
h they 
alled an Exposure-Resilient Fun
tion (ERF) [10℄. An ERF is a deterministi
 fun
tion whose outputlooks random to an adversary even if the adversary obtains almost all the bitsof the input. A salient feature of the work of [10℄ is the fa
t that they were ableto a
hieve good results for the 
omputational (and most 
ryptographi
ally ap-pli
able) versions of these notions by �rst fo
using on the perfe
t and statisti
alforms of AONT's and ERF's.1.1 Ba
kgroundWe �rst re
all informally the de�nitions of the two main notions we examine inthis paper. An `-AONT [23, 9, 10℄ is an eÆ
iently 
omputable and invertible ran-domized transformation T , whi
h transforms any string x into a pair of strings(ys; yp), respe
tively 
alled the se
ret and the publi
 part of T . While the inverta-bility of T allows to re
onstru
t x from the entire T (x) = (ys; yp), we require thatany adversary learning all of yp and all but ` bits of ys obtains \no information"about x.On the other hand, an `-ERF [10℄ is an eÆ
iently 
omputable deterministi
fun
tion f on strings su
h that even if an adversary learns all but ` bits ofa randomly 
hosen input r, it still 
annot distinguish the output f(r) from arandom string. As usual, we 
an de�ne perfe
t, statisti
al, and 
omputationalversions of these notions. It is easy to see that in the perfe
t or statisti
al settings,the length of the output of an `-ERF 
an be at most `; whereas for perfe
tor statisti
al `-AONT's, the length of the input is at most `. To beat thesetrivial bounds, one must examine the 
omputational forms of ERF's and AONT's.Indeed, if we are given a pseudorandom generator, it is easy to see that byapplying the generator to the output of a perfe
t or statisti
al ERF, we 
anobtain ERF's with arbitrary (polynomial) output size.Canetti et al. [10℄ showed that the following simple 
onstru
tion suÆ
es to
onstru
t AONT's from ERF's. Given an `-ERF f mapping f0; 1gn to f0; 1gk,we 
onstru
t an `-AONT T transforming k bits to n bits of se
ret output andk bits of publi
 output: T (x) = hr; f(r) � xi. Intuitively, if at least ` bits of rare missed, then f(r) \looks" random. Hen
e f(r) � x also looks random, thushiding all information about the input x.Appli
ations. The All-Or-Nothing Transform and its variants have been ap-plied to a variety of problems. In the perfe
t setting, it is a spe
ial 
ase of a ramp



s
heme [6℄, useful for sharing se
rets eÆ
iently. Its statisti
al variant 
an be usedto provide se
ure 
ommuni
ation over the \wire-tap 
hannel II", a partly publi

hannel where the adversary 
an observe almost all the bits 
ommuni
ated (butthe sender and the re
eiver do not know whi
h) [22, 3℄. In the 
omputationalsetting, it also has many uses. Rivest [23℄, and later Desai [14℄, use it to enhan
ethe se
urity of blo
k 
iphers against brute-for
e key sear
h. Matyas et al. [20℄propose to use AONT to in
rease the eÆ
ien
y of blo
k 
iphers: rather than en-
rypt all blo
ks of the message, apply an AONT to the message and en
rypt onlyone or very few blo
ks. The same idea is used in various forms by Ja
kobson etal. [18℄ and Blaze [7℄ to speed up remotely-keyed en
ryption. Similarly, it 
anbe 
ombined with authenti
ation to yield a novel en
ryption te
hnique [24, 1℄.Several other appli
ations have been suggested by [9, 26℄.Another 
lass of appli
ations for (
omputational) AONT's was suggested byCanetti et al. [10℄. They 
onsidered a situation where one of our most basi

ryptographi
 assumptions breaks down | the se
re
y of a key 
an be
ome par-tially 
ompromised (a problem 
alled partial key exposure). [10℄ point out thatmost standard 
ryptographi
 de�nitions do not guarantee (and often violate)se
urity on
e even a small portion of the key has been exposed. The AONT of-fers a solution to this problem. Namely, rather than store a se
ret key x, onestores y = T (x) instead. Now the adversary gets no information about the se
retkey even if he manages to get all but ` bits of y. The problem of gradual keyexposure is also raised by [10℄, where information about a (random) private keyis slowly but steadily leaked to an adversary. In this situation, the private key
an be \renewed" using an ERF to prote
t it against dis
overy by the adversary,while additionally providing forward se
urity when the \
urrent" key is totally
ompromised.1.2 Adaptive Se
urityIn many of the appli
ations above, the question of adaptive se
urity arises nat-urally. For example, in the problem of partial key exposure, it is natural to
onsider an adversary that is able to �rst gain a

ess to some fra
tion of the bitsof the se
ret, and then de
ides whi
h bits to obtain next as a fun
tion of the bitsthe adversary has already seen.Perfe
t AONT's and Adaptive Se
urity. In the de�nition of a perfe
t`-AONT, we demand that any subset of all but ` bits of the output must be
ompletely independent of the input x.1 In this 
ase, it is trivial to observethat there is no di�eren
e between adaptive and non-adaptive se
urity. Hen
e,if we 
ould 
onstru
t good perfe
t AONT's, this would also solve the problem of
onstru
ting adaptively se
ure AONT's.Consider `-AONT's that transform k bits to n bits. [10℄ show how to 
onstru
tperfe
t `-AONT's where ` = n( 12 + ") for any " > 0 (at the expense of smallerk = 
(n)), but were unable to 
onstru
t perfe
t AONT's with ` < n=2 (i.e.perfe
t AONT's where the adversary 
ould learn more than half of the output).1 In the perfe
t setting, publi
 output is not needed (e.g., 
an be �xed a-priori).



Perfe
t AONT's | Our Contribution. In our work, we show that un-fortunately this limitation is inherent. More pre
isely, whenever n � 2k, theadversary must miss at least half of the output in order not to learn anythingabout the input. We prove this bound by translating the question of 
onstru
tingperfe
t `-AONT's to the question of �nding \`-balan
ed" weighted 
olorings ofthe hyper
ube, whi
h is of independent 
ombinatorial interest. Namely, we wantto 
olor and weight the nodes of the n-dimensional hyper
ube H = f0; 1gn using
 = 2k 
olors, su
h that every `-dimensional sub
ube of H is \equi-
olored" (i.e.has the same total weight for ea
h of the 
 
olors). We prove our result by non-trivially extending the beautiful lower bound argument of Friedman [15℄ (whi
honly worked for unweighted 
olorings) to our setting. Our bound also gives anew bound on ramp se
ret sharing s
hemes [6℄. In su
h s
hemes one divides these
ret of size k into n s
hares su
h that there are two thresholds t and (t � `)su
h that any t shares suÆ
e to re
onstru
t the se
ret but no (t� `) shares yieldany information. To our knowledge, the best known bound for ramp s
hemes [8,17, 21℄ was ` � k. Our results imply a mu
h stronger bound of ` � t=2 (whenea
h share is a bit; over larger alphabets of size q we get ` > t=q).Therefore, we show that despite their very attra
tive perfe
t se
urity, perfe
tAONT's are of limited use in most situations, and do not o�er a 
ompelling wayto a
hieve adaptive se
urity.Statisti
al ERF's and Adaptive Se
urity. The de�nition of a perfe
t `-ERF (mapping n bits to k bits) states that the output, when 
onsidered jointlywith any subset of (n� `) bits of the input, must be truly uniform. In this 
ase,
learly on
e again adaptive and non-adaptive se
urity 
ollapse into one notion.The de�nition of a (non-adaptive) statisti
al `-ERF, however, allows for the thejoint distribution above to be merely 
lose to uniform. In this 
ase, the non-adaptive statisti
al de�nition does not imply adaptive se
urity, and in parti
ularthe 
onstru
tion given in [10℄ of statisti
al ERF's fails to a
hieve adaptive se
u-rity.2 Intuitively, it 
ould be that a small subset of the input bits S1 determinessome non-trivial boolean relation of another small subset of the input bits S2with the output of the fun
tion (e.g., for a �xed value of the bits in S1, oneoutput bit might depend only on bits in S2). In the adaptive setting, reading S1and then S2 would break an ERF. In the non-adaptive setting, however, any �xedsubset of the input bits is very unlikely to 
ontain S1 [S2. (A similar dis
ussionapplies to AONT's.) In other words, statisti
al 
onstru
tions of [10℄ were able toprodu
e statisti
al `-ERF's (and `-AONT's) with nearly optimal ` = k+o(k), butfailed to a
hieve adaptive se
urity, while perfe
t ERF's a
hieve adaptive se
urity,but are limitted to ` > n=2 [15℄.Statisti
al ERF's | Our Contribution. Thus, we seek to identify notionslying somewhere in between perfe
t and statisti
al (non-adaptive) ERF's thatwould allow us to 
onstru
t adaptively se
ure ERF's (and AONT's), and yeta
hieve better parameters than those a
hievable by perfe
t ERF's (and AONT's).In this task, we make use of resilient fun
tions (RF's). These were �rst de�ned2 For more details, see Se
tion 2.2.



in the perfe
t setting by Vazirani [28℄ and �rst studied by Chor et al. [12℄ andindependently by Bennett et al. [3℄. An `-RF is identi
al to an `-ERF ex
ept thatthe adversary, instead of merely observing 
ertain bits of the input, gets to setall but ` bits of the input.3 Note that the notions of ERF and RF are the samewhen 
onsidered in the perfe
t setting. A statisti
al variant of resilient fun
tions(no longer equivalent to ERF's) was �rst 
onsidered by Kurosawa et al. [19℄, whoalso gave expli
it 
onstru
tions of su
h fun
tions (improved by [5℄).We show that the strong notion of statisti
al RF's introdu
ed by Kurosawaet al. [19℄ suÆ
es to 
onstru
t adaptively se
ure ERF's (and AONT's). Whilethe 
onstru
tion of Kurosawa et al. [19℄ already slightly beats the lower boundfor perfe
t ERF's, it is very far from the trivial lower bound of ` > k (in fa
t,it is still limited to ` > n=2). We present an eÆ
ient probabilisti
 
onstru
tionof su
h \almost-perfe
t" RF's a
hieving optimal ` = k + o(k). While not fullydeterministi
, our 
onstru
tion has to be run only on
e and for all, after whi
hthe resulting eÆ
ient fun
tion is \good" with probability exponentially 
lose to1, and 
an be deterministi
ally used in all the subsequent appli
ations. As aresult of this 
onstru
tion and its relation to adaptive ERF's and AONT's, wea
hieve essentially optimal se
urity parameters for adaptive se
urity by fo
usingon a stronger notion of almost-perfe
t RF's.We also take the opportunity to study several variants of statisti
al RF'sand (stati
/adaptive) ERF's, and give a 
omplete 
lassi�
ation of these notions,whi
h may be of additional, independent interest.Computational Setting. As we pointed out, [10℄ used their statisti
al (non-adaptive) 
onstru
tions to get ERF's and AONT's in the 
omputational setting.We show that the same te
hniques work with our adaptive de�nitions. Coupledwith our statisti
al 
onstru
tions, we get nearly optimal 
omputational 
onstru
-tions as well.Larger alphabets. To simplify the presentation and the dis
ussion of theresults in this paper, as well as to relate them more 
losely with the previouswork, we restri
t ourselves to dis
ussing exposure-resilient primitives over thealphabet f0; 1g. However, all our notions and results 
an be easily generalizedto larger alphabets.1.3 OrganizationIn Se
tion 2, we de�ne the 
entral obje
ts of study in our paper, and reviewsome of the relevant previous work of [10℄. In Se
tion 3 we study perfe
t AONT's,relate them to hype
ube 
olorings and prove the strong lower bound on ` (show-ing the limitations of perfe
t AONT's). Finally, in Se
tion 4 we study variantsof statisti
al ERF's will allow us to a
hieve adaptive se
urity. We show that\almost-rerfe
t" RF's of [19℄ a
hieve this goal, and exhibit a simple and almostoptimal (probabilisti
) 
onstru
tion of su
h fun
tions. In parti
ular, we show3 In mu
h of the literature about resilient fun
tions, su
h a fun
tion would be 
alledan (n� `)-resilient fun
tion. We adopt our notation for 
onsisten
y.



the existen
e of adaptively se
ure AONT's and ERF's with essentially optimalparameters.2 PreliminariesLet f ǹg denote the set of size-` subsets of [n℄ = f1 : : : ng. For L 2 f ǹg, y 2f0; 1gn, let [y℄�L denote y restri
ted to its (n� `) bits not in L. We say a fun
tion�(n) is negligible (denoted by � = negl(n)) if for every 
onstant 
, �(n) = O � 1n
 �.We denote an algorithm A whi
h has ora
le a

ess to some string y (i.e., 
anquery individual bits of y) by Ay.2.1 De�nitions for Non-Adaptive AdversariesFor stati
 adversaries, the de�nitions of AONT and ERF 
an be stated quite eÆ-
iently in terms of perfe
t, statisti
al or 
omputational indistinguishability (see[16℄). For 
onsisten
y we have also provided a de�nition of RF (where adaptivitydoes not make sense, and hen
e the adversary 
an be seen as \stati
").Note that for full generality, we follow the suggestion of [10℄ and allow theall-or-nothing transform to have two outputs: a publi
 part whi
h we assume theadversary always sees; and a se
ret part, of whi
h the adversary misses ` bits.De�nition 1. A polynomial-time randomized transformation T : f0; 1gk !f0; 1gs � f0; 1gp is an `-AONT (all-or-nothing transform) if1. T is polynomial-time invertible, i.e. there exists eÆ
ient I su
h that for anyx 2 f0; 1gk and any y = (y1; y2) 2 T (x), we have I(y) = x. We 
all y1 is these
ret part and y2, the publi
 part of T .2. For any L 2 f s̀g; x0; x1 2 f0; 1gk: hx0; x1; [T (x0)℄�Li � hx0; x1; [T (x1)℄�Li4Here � 
an refer to perfe
t, statisti
al or 
omputational indistinguishability.If p = 0, the resulting AONT is 
alled se
ret-only.De�nition 2. A polynomial time fun
tion f : f0; 1gn ! f0; 1gk is an `-ERF(exposure-resilient fun
tion) if for any L 2 f ǹg and for a randomly 
hosenr 2 f0; 1gn, R 2 f0; 1gk, we have: h[r℄�L; f(r)i � h[r℄�L; Ri.Here � 
an refer to perfe
t, statisti
al or 
omputational indistinguishability.De�nition 3. A polynomial time fun
tion f : f0; 1gn ! f0; 1gk is `-RF (re-silient fun
tion) if for any L 2 f ǹg, for any assignment w 2 f0; 1gn�` to thepositions not in L, for a randomly 
hosen r 2 f0; 1gn subje
t to [r℄�L = w andrandom R 2 f0; 1gk, we have: hf(r) j [r℄�L = wi � hRi.Here � 
an refer to perfe
t, statisti
al or 
omputational indistinguishability.4 Noti
e, for L 2 f s̀g we have notationally that [(y1; y2)℄�L = ([y1℄�L; y2).



As an obvious note, a `-RF is also a stati
 `-ERF (as we shall see, this will nolonger hold for adaptive ERF; see Lemma 5).Perfe
t primitives. It is 
lear that perfe
t ERF are the same as perfe
tRF. Additionally, perfe
t AONT's are easy to 
onstru
t from perfe
t ERF's. Inparti
ular one 
ould use the simple one-time pad 
onstru
tion of [10℄: T (x) =hr; f(r) � xi, where r is the se
ret part of the AONT. However, we observe that(ignoring the issue of eÆ
ien
y) there is no need for the publi
 part in the perfe
tAONT (i.e., we 
an �x it to any valid setting y2 and 
onsider the restri
tion of theAONT where the publi
 part is always y2). Setting y2 = 0 in the one-time pad
onstru
tion implies an AONT where we output a random r subje
t to f(r) = x.Thus, in the perfe
t setting the \inverse" of an `-ERF is an `-AONT, and we get:Lemma 1. (Ignoring issues of eÆ
ien
y) A perfe
t `-ERF f : f0; 1gn ! f0; 1gkimplies the existen
e of a perfe
t (se
ret-only) `-AONT T : f0; 1gk ! f0; 1gn.While the redu
tion above does not work with statisti
al ERF (to produ
estatisti
al AONT), we will show that it works with a stronger notion of almost-perfe
t RF (to produ
e statisti
al AONT). See Lemma 7.2.2 De�nitions for Adaptive AdversariesAdaptively Se
ure AONT. In the ordinary AONT's the adversary has to\de
ide in advan
e" whi
h (s � `) bits of the (se
ret part of) the output it isgoing to observe. This is 
aptured by requiring the se
urity for all �xed sets Lof 
ardinality `. While interesting and non-trivial to a
hieve, in many appli
a-tions (e.g. partial key exposure, se
ret sharing, prote
ting against exhaustivekey sear
h, et
.) the adversary potentially has the power to 
hoose whi
h bits toobserve adaptively. For example, at the very least it is natural to assume thatthe adversary 
ould de
ide whi
h bits of the se
ret part to observe after it learnsthe publi
 part. Unfortunately, the 
onstru
tions of [10℄ do not even a
hieve thisminimal adaptive se
urity, invalidating their 
laim that \publi
 part requires noprote
tion and 
an be given away for free". More generally, the 
hoi
e of whi
hbit(s) to observe next may partially depend on whi
h bits the adversary hasalready seen. Taken to the most extreme, we 
an allow the adaptive adversaryto read the bits of the se
ret part \one-bit-at-a-time", as long as he misses atleast ` of them.De�nition 4. A polynomial time randomized transformation T : f0; 1gk !f0; 1gs � f0; 1gp is a (perfe
t, statisti
al or 
omputational) adaptive `-AONT(adaptive all-or-nothing transform) if1. T is eÆ
iently invertible, i.e. there is a polynomial time ma
hine I su
h thatfor any x 2 f0; 1gk and any y = (y1; y2) 2 T (x), we have I(y) = x.2. For any adversary A who has ora
le a

ess to string y = (ys; yp) and isrequired not to read at least ` bits of ys, and for any x0; x1 2 f0; 1gk, wehave: ��Pr(AT (x0)(x0; x1) = 1)� Pr(AT (x1)(x0; x1) = 1)�� � �, where



{ In the perfe
t setting � = 0.{ In the statisti
al setting � = negl(s+ p).{ In the 
omputational setting � = negl(s+ p) for any PPT A.We stress that the adversary 
an base its queries on x0; x1, the publi
 part ofthe output, as well as those parts of the se
ret output that it has seen so far. Wealso remark that in the perfe
t setting this de�nition is equivalent to that of anordinary perfe
t `-AONT. Thus, adaptivity does not help the adversary in theperfe
t setting (be
ause the de�nition of a perfe
t AONT is by itself very strong!).In parti
ular, good perfe
t AONT's are good adaptive AONT's. Unfortunately,we will later show that very good perfe
t AONT's do not exist.Adaptively Se
ure ERF. In the original de�nition of ERF [10℄, the adversaryhas to \de
ide in advan
e" whi
h (n� `) input bits it is going to observe. This is
aptured by requiring the se
urity for all �xed sets L of 
ardinality `. However, inmany situations (e.g., the problem of gradual key exposure [10℄), the adversaryhas more power. Namely, it 
an de
ide whi
h (n� `) bits of the se
ret to learnadaptively based on the information that it has learned so far. In the mostextreme 
ase, the adversary would de
ide whi
h bits to observe \one-bit-at-a-time". Unfortunately, the de�nition and the 
onstru
tion of [10℄ do not satisfythis notion.There is one more parti
ularity of adaptive se
urity for ERF's. Namely, insome appli
ations (like the 
onstru
tion of AONT's using ERF's [10℄) the adver-sary might observe some partial information about the se
ret output of the ERF,f(r), before it starts to 
ompromise the input r. Is it a

eptable in this 
ase thatthe adversary 
an learn more partial information about f(r) than he alreadyhas? For example, assume we use f(r) as a stream 
ipher and the adversarylearns the �rst few bits of f(r) before it 
hooses whi
h (n� `) bits of r to read.Ideally, we will not want the adversary to be able to learn some informationabout the remaining bits of f(r) | the ones that would be used in the stream
ipher in the future. Taken to the extreme, even if the adversary sees either theentire f(r) (i.e., has 
omplete information on f(r)), or a random R, and onlythen de
ides whi
h (n� `) bits of r to read, it 
annot distinguish the above two
ases.As we argued, we believe that a good notion of adaptive ERF should satisfyboth of the properties above, whi
h leads us to the following notion.De�nition 5. A polynomial time fun
tion f : f0; 1gn ! f0; 1gk is a (perfe
t,statisti
al or 
omputational) adaptive `-ERF (adaptive exposure-resilient fun
-tion) if for any adversary A who has a

ess to a string r and is required not toread at least ` bits of r, when r is 
hosen at random from f0; 1gn and R is 
ho-sen at random from f0; 1gk, we have: jPr(Ar(f(r)) = 1)� Pr(Ar(R) = 1)j � �,where{ In the perfe
t setting � = 0.{ In the statisti
al setting � = negl(n).{ In the 
omputational setting � = negl(n) for any PPT A.



Noti
e that in the perfe
t setting this de�nition is equivalent to that of anordinary (stati
) perfe
t `-ERF, sin
e for any L, the values [r℄�L and f(r) areuniform and independent. In the statisti
al setting, the notions are no longerequivalent: indeed, the original 
onstru
tions of [10℄ fail dramati
ally under anadaptive atta
k. We brie
y mention the reason. They used so-
alled randomnessextra
tors in their 
onstru
tion of statisti
al ERF's (see [10℄ for the de�nitions).Su
h extra
tors use a small number of truly random bits d to extra
t all therandomness from any \reasonable" distribution X . However, it is 
ru
ial thatthis randomness d is 
hosen independently from and after the distribution Xis spe
i�ed. In their 
onstru
tion d was part of the input r, and reading upto(n� `) of the remaining bits of r de�ned the distribution X that they extra
tedrandomness from. Unfortunately, an adaptive adversary 
an �rst read d, andonly then determine whi
h other bits of r to read. This alters X depending on d,and the notion of an extra
tor does not work in su
h a s
enario. In fa
t, tra
ingthe parti
ular extra
tors that they use, learning d �rst indeed allows an adaptiveadversary to break the resulting stati
 ERF.Also noti
e that on
e we have good adaptive statisti
al ERF's, adaptive 
om-putational ERF's will be easy to 
onstru
t in same same way as with regularERF [10℄: simply apply a good pseudorandom generator to the output of anadaptive statisti
al ERF. Finally, we noti
e that the generi
 one-time pad 
on-stru
tion of [10℄ of AONT's from ERF's extends to the adaptive setting, as long aswe use the strong adaptive de�nition of ERF given above. Namely, the 
hallengehas to be given �rst, sin
e the adversary for the AONT may 
hoose whi
h bitsof the se
ret part r to read when having already read the entire publi
 part |either f(r) � x0 or f(r)� x1 (for known x0 and x1!). Thus, we getLemma 2. If f : f0; 1gn ! f0; 1gk is an adaptive `-ERF, then T (x) = hr; x� f(r)iis an adaptive `-AONT with se
ret part r and publi
 part x� f(r).3 Lower Bound on Perfe
t AONTIn this se
tion we study perfe
t AONT's. We show that there exists a stronglimitation in 
onstru
ting perfe
t AONT's: the adversary must miss at least halfof the n-bit output, even if the input size k is as small as logn. Re
all that perfe
tAONT's are more general than perfe
t ERF's (Lemma 1), and thus our boundnon-trivially generalizes the lower bound of Friedman [15℄ (see also another proofby [4℄) on perfe
t ERF. As we will see, the proof will follow from the impossibilityof 
ertain weighted \balan
ed" 
olorings of an n-dimensional hyper
ube, whi
his of independent interest.Theorem 1. If T : f0; 1gk ! f0; 1gn is a perfe
t (se
ret-only) `-AONT, then` � 1 + n � 2k�1 � 12k � 1 = n2 +�1� n2(2k � 1)� (1)In parti
ular, for n � 2k we get ` > n2 , so at least half of the output of T has toremain se
ret even if T exponentially expands its input! Moreover, the equality
an be a
hieved only by AONT's 
onstru
ted from ERF's via Lemma 1.



3.1 Balan
ed Colorings of the Hyper
ubeA 
oloring of the n-dimensional hyper
ube H = f0; 1gn with 
 
olors is any mapwhi
h asso
iates a 
olor from f1; : : : ; 
g to ea
h node in the graph. In a weighted
oloring, ea
h node y is also assigned a non-negative real weight �(y). We willoften 
all the nodes of weight 0 un
olored, despite them having an assignednominal 
olor. For ea
h 
olor i, we de�ne the weight ve
tor �i of this 
olor byassigning �i(y) = �(y) if y has 
olor i, and 0 otherwise. We noti
e that for anygiven y 2 H, �i(y) > 0 for at most one 
olor i, and also P�i = �. A 
oloringwhere all the nodes are un
olored is 
alled empty. Sin
e we will never talk aboutsu
h 
olorings, we will assume that Py2H �(y) = 1. A uniform 
oloring has allthe weights equal: �(y) = 2�n for all y.An `-dimensional sub
ube HL;a of the hyper
ube is given by a set of ` \free"positions L 2 f ǹg and an assignment a 2 f0; 1gn�` to the remaining positions,and 
ontains the resulting 2` nodes of the hyper
ube 
onsistent with a.De�nition 6. We say a weighted 
oloring of the hyper
ube is `-balan
ed if,within every sub
ube of dimension `, ea
h 
olor has the same weight. That is,for ea
h L and a, Py2HL;a �i(y) is the same for all 
olors i.Noti
e, `-balan
ed 
oloring is also `0-balan
ed for any `0 > `, sin
e an `0 di-mensional sub
ube is the disjoint union of `-dimensional ones. We study balan
ed
olorings sin
e they exa
tly 
apture the 
ombinatorial properties of `-AONT'sand `-ERF's. We get the following equivalen
es.Lemma 3. Ignoring eÆ
ien
y, the following equivalen
es hold in the perfe
tsetting:1. `-AONT's from k to n bits() weighted `-balan
ed 
olorings of n-dimensionalhyper
ube with 2k 
olors.2. `-ERF's from n to k bits () uniform `-balan
ed 
olorings of n-dimensionalhyper
ube with 2k 
olors.Proof Sket
h. For the �rst equivalen
e, the 
olor of node y 2 H 
orresponds tothe value if the inverse map I(y), and its weight 
orresponds to Prx;T (T (x) = y).For the se
ond equivalen
e, the 
olor of node y 2 H is simply f(y). utNoti
e, the lemma above also gives more insight into why perfe
t AONT's aremore general than perfe
t ERF's (and an alternative proof of Lemma 1). We nowrestate our lower bound on perfe
t AONT's in Theorem 1 in terms of weighted`-balan
ed 
olorings of H with 
 = 2k 
olors (proving it for general 
).Theorem 2. Any (non-empty) `-balan
ed weighted 
oloring of the n-dimensionalhyper
ube using 
 
olors must have ` � n2 +�1� n2(
�1)�. Moreover, equality 
anhold only if the 
oloring is uniform and no two adja
ent nodes of positive weighthave the same 
olor.We believe that the theorem above is interesting in its own right. It says thaton
e the number of 
olors is at least 3, it is impossible to �nd a 
-
oloring (evenweighted!) of the hyper
ube su
h that all `-dimensional sub
ubes are \equi-
olored", unless ` is very large (linear in n).



3.2 Proof of the Lower Bound (Theorem 2)In our proof of Theorem 2, we will 
onsider the 2n-dimensional ve
tor spa
eV 
onsisting of real-valued (not boolean!) ve
tors with positions indexed bythe strings in H, and we will use fa
ts about the Fourier de
omposition of thehyper
ube.Fourier De
omposition of the Hyper
ube. Like the original proof ofFriedman [15℄ for the 
ase of uniform 
olorings, we use the adja
en
y matrixA of the hyper
ube. A is a 2n � 2n dimensional 0-1 matrix, where the entryAx;y = 1 i� x and y (both in f0; 1gn) di�er in exa
tly one 
oordinate. Re
allthat a non-zero ve
tor v is an eigenve
tor of the matrix A 
orresponding to aneigenvalue �, if Av = �v. Sin
e A is symmetri
, there is an orthonormal basisof R2n in whi
h all 2n ve
tors are eigenve
tors of A. For two strings in x; z inf0; 1gn, let x � z denote their inner produ
t modulo 2 and let weight(z) be thenumber of positions of z whi
h are equal to 1. Then:Fa
t 1 A has an orthonormal basis of eigenve
tors fvz : z 2 f0; 1gng, wherethe eigenvalue of vz is �z = n� 2 � weight(z), and the value of vz at position yis vz(y) = 1p2n � (�1)z�y.We will use the notation hu;vi = u>v =Pi uivi to denote the inner produ
tof u and v, and let kuk2 = hu;ui = Pi u2i denote the square of the Eu
lideannorm of u. We then get the following useful fa
t, whi
h follows as an easy exer
isefrom Fa
t 1 (it is also a 
onsequen
e of the Courant-Fis
her inequality).Fa
t 2 Assume fvz : z 2 f0; 1gng are the eigenve
tors of A as above, and letu be a ve
tor orthogonal to all the vz's 
orresponding to z with weight(z) <t: hu;vzi = 0. Then we have: u>Au � (n� 2t) � kuk2. In parti
ular, for anyu we have: u>Au � n � kuk2.Exploiting Balan
edness. Consider a non-empty `-balan
ed weighted 
ol-oring � of the hyper
ube using 
 
olors. Let �i be the 
hara
teristi
 weight ve
tor
orresponding to 
olor i (i.e. �i(y) is the weight of y when y has 
olor i and 0otherwise). As we will show, the �i's have some ni
e properties whi
h 
apturethe balan
edness of the 
oloring �. In parti
ular, we know that for any 
olors iand j and for any `-dimensional sub
ube of H, the sum of the 
omponents of�i and of �j are the same in this sub
ube. Hen
e, if we 
onsider the di�eren
e(�i��j), we get that the sum of its 
oordinates over any `-dimensional sub
ubeis 0.To exploit the latter property analyti
ally, we 
onsider the quantity (�i ��j)>A(�i��j), where A is the adja
en
y matrix of the n-dimensional hyper
ube.As suggested by Fa
t 2, we 
an bound this quantity by 
al
ulating the Fourier
oeÆ
ients of (�i � �j) 
orresponding to large eigenvalues. We get:Lemma 4. For any i 6= j, we have: (�i��j)>A(�i��j) � (2`�n�2)�k�i��jk2.



We postpone the proof of this 
ru
ial lemma until the the end of this se
tion,and now just use it to prove our theorem. First, note that the lemma above onlygives us information on two 
olors. To simultaneously use the information fromall pairs, we 
onsider the sum over all pairs i; j, that is� def=Xi;j (�i � �j)>A(�i � �j) (2)We will give upper and lower bounds for this quantity (Equation (3) andEquation (4), respe
tively), and use these bounds to prove our theorem. We �rstgive the upper bound, based on Lemma 4.Claim. � � 2 (2`� n� 2) (
� 1) �Xi k�ik2 (3)Proof. We 
an ignore the terms of � when i = j sin
e then (�i � �j) is the 0ve
tor. Using Lemma 4 we get an upper bound:Xi;j (�i � �j)>A(�i � �j) � (2`� n� 2) �Xi 6=j k�i � �jk2Now the ve
tors �i have disjoint supports (sin
e ea
h y 2 H is assigned only one
olor), so we have k�i � �jk2 = k�ik2 + k�jk2. Substituting into the equationabove, we see that ea
h k�ik2 appears 2(
�1) times (re
all that 
 is the numberof 
olors), whi
h immediately gives the desired bound in Equation (3). utSe
ond, we 
an expand the de�nition of � to dire
tly obtain a lower bound.Claim. � � �2n �Xi k�ik2 (4)Proof. Sin
e A is symmetri
 we have �>i A�j = �>j A�i. Then:Xi;j (�i � �j)>A(�i � �j) =Xi;j ��>i A�i + �>j A�j � 2�>i A�j�= 2
 �Xi �>i A�i � 2 �Xi;j �>i A�jLet us try to bound this last expression. On the one hand, we know that �>i A�i �0 sin
e it is a produ
t of matri
es and ve
tors with non-negative entries. On theother hand, we 
an rewrite the last term as a produ
t:Xi;j �>i A�j =  Xi �i!>A Xi �i!



This quantity, however, we 
an bound using the fa
t that the maximum eigen-value of A is n (see Fa
t 2). We get: Xi �i!> A  Xi �i! � n � 




Xi �i




2Sin
e the ve
tors �i have disjoint support (again, ea
h node y is assigned aunique 
olor), they are orthogonal and so kPi �ik2 = Pi k�ik2. Combiningthese results, we get the desired lower bound:Xi;j (�i � �j)>A(�i � �j) � 0� 2n �Xi k�ik2 = �2n �Xi k�ik2 utCombining the lower and the upper bounds of Equation (3) and Equation (4),we noti
e that Pi k�ik2 > 0 and 
an be 
an
elled out (sin
e the 
oloring � isnon-empty). This gives us 2(2`�n� 2)(
� 1) � �2n, whi
h exa
tly implies theneeded bound on `.Proof of Lemma 4. It remains to prove Lemma 4, i.e. (�i��j)>A(�i��j) �(2` � n � 2) � k�i � �jk2. By Fa
t 2, it is suÆ
ient show that all the Fourier
oeÆ
ients of (�i��j) whi
h 
orrespond to eigenvalues �z � 2`�n = n�2(n�`)are 0. In other words, that (�i��j) is orthogonal to all the eigenve
tors vz whoseeigenvalues are at least (n � 2(n � `)), i.e. weight(z) � n � `. But re
all thatby the de�nition of balan
edness, on any sub
ube of dimension at least `, the
omponents of (�i � �j) sum to 0! On the other hand, the eigenve
tors vz are
onstants on very large-dimensional sub
ubes of H when �z is large (see Fa
t 1).These two fa
ts turn out to be exa
tly what we need to in order to show thathvz ; �i � �ji = 0 whenever �z � 2`� n, and thus to prove Lemma 4.Claim. For any z 2 f0; 1gn with weight(z) � n� ` (i.e. �z � 2`� n), we have:hvz ; �i � �ji = 0.Proof. Pi
k any ve
tor z = (z1; : : : ; zn) 2 f0; 1gn with weight(z) � n � `, andlet S be the support of z, i.e. S = fj : zj = 1g. Note that jSj � n�`. Also, re
allthat vz(y) = 1p2n � (�1)z�y (see Fa
t 1). Now 
onsider any assignment a to thevariables of S. By letting the remaining variables take on all possible values, weget some sub
ube of the hyper
ube, 
all it Ha.One the one hand, note that vz is 
onstant (either 1=p2n or �1=p2n) onthat sub
ube, sin
e if y and y0 di�er only on positions not in S, we will havez �y = z �y0. Call this value Ca. On the other hand, sin
e the 
oloring is `-balan
edand sin
e jSj � n� `, the sub
ube Ha has dimension at least ` and so we knowthat both 
olors i and j have equal weight on Ha. Thus summing the values of(�i � �j) over this sub
ube gives 0.Using the above two observations, we show that h�i � �j ;vzi = 0 by rewrit-ing the inner produ
t as a sum over all assignments to the variables in S:



h�i � �j ;vzi = Xy2Hvz(y)[�i(y)� �j(y)℄ = Xa2f0;1gjSj0�Xy2Ha vz(y)[�i(y)� �j(y)℄1A=Xa Ca �0�Xy2Ha �i(y)� Xy2Ha �j(y)1A =Xa Ca � 0 = 0 utEquality Conditions. We now determine the 
onditions on the 
olorings sothat we 
an a
hieve equality in Theorem 2 (and also Theorem 1). Interestingly,su
h 
olorings are very stru
tured, as we 
an see by tra
ing through our proof.Namely, 
onsider the lower bound proved in Equation (4), i.e. that Pi;j(�i ��j)>A(�i��j) � �2nPi k�ik2. Going over the proof, we see that equality 
ano

ur only if two 
onditions o

ur.On the one hand, we must have �>i A�i = 0 for all 
olors i. An easy 
al
ulationshows that �>i A�i is 0 only when there is no edge of non-zero weight 
onne
tingtwo nodes of 
olor i. Thus, this 
ondition implies that the 
oloring is in fa
t a
-
oloring in the traditional sense of 
omplexity theory: no two adja
ent nodeswill have the same 
olor. On the other hand, the inequality (Pi �i)>A(Pi �i) �n � kPi �ik2 must be tight. This 
an only hold if the ve
tor � =Pi �i is parallelto (1; 1; : : : ; 1) sin
e that is the only eigenve
tor with the largest eigenvalue n.But this means that all the weights �(y) are the same, i.e. that the 
oloring mustbe uniform.We also remark that Chor et al. [12℄ showed (using the Hadamard 
ode) thatour bound is tight for k � logn.3.3 Extension to Larger AlphabetsAlthough the problem of 
onstru
ting AONT's is usually stated in terms of bits, itis natural in many appli
ations (e.g., se
ret-sharing) to 
onsider larger alphabets,namely to 
onsider T : f0; : : : ; q � 1g ! f0; : : : ; q � 1gn. All the notions fromthe \binary" 
ase naturally extend to general alphabets as well, and so does ourlower bound. However, the lower bound we obtain is mostly interesting when thealphabet size q is relatively small 
ompared to n. In parti
ular, the thresholdn=2, whi
h is so 
ru
ial in the binary 
ase (when we are trying to en
ode morethan logn bits), be
omes n=q (re
all, q is the size of the alphabet). Signi�
antly,this threshold be
omes meaningless when q > n. This isn't surprising, sin
e inthis 
ase we 
an use Shamir's se
ret sharing [25℄ (provided q is a prime power)and a
hieve ` = k. We also remark that our bound is tight if qk � n and 
an bea
hieved similarly to the binary 
ase by using the q-ary analog of the Hadamard
ode.Theorem 3. For any integer q � 2, let T : f0; : : : ; q � 1gk ! f0; : : : ; q � 1gnbe a perfe
t `-AONT. Then` � nq +�1� q � 1q � nqk � 1�



In parti
ular, ` > n=q when qk > n.Similarly to the binary 
ase, there is also a natural 
onne
tion between `-AONT'sand weighted `-balan
ed 
olorings of the \multi-grid" f0; : : : ; q�1gn with 
 = qk
olors. And again, the bound of Theorem 2 extends here as well and be
omes` � nq + �1� q�1q � n
�1� :The proof te
hniques are essentially identi
al to those for the binary 
ase. Wenow work with the graph f0; : : : ; q�1gn, whi
h has an edge going between everypair of words that di�er in a single position. We think of verti
es in this graphas ve
tors in Znq . If ! is a primitive q-th root of unity in C , then a orthonormalbasis of eigenve
tors of the adja
en
y matrix is given by the qn-dimensional
omplex ve
tors vz for z 2 f0; : : : ; q� 1gn, where vz(y) = 1pqn � !z�y (here, z � yis the standard dot produ
t modulo q). Constru
ting upper and lower boundsas above, we eventually get (q` � n � q)(
 � 1)Pi k�ik2 � �n(q � 1)Pi k�ik2whi
h implies the desired inequality. Equality 
onditions are the same.4 Adaptive Se
urity in the Statisti
al SettingWe now address the question of adaptive se
urity in the statisti
al setting. In-deed, we saw that both perfe
t ERF's and perfe
t AONT's have strong limita-tions. We also observed in Lemma 2 that we only need to 
on
entrate on ERF's| we 
an use them to 
onstru
t AONT's. Finally, we know that applying a reg-ular pseudorandom generator to a good adaptively se
ure statisti
al ERF willresult in a good adaptively se
ure 
omputational ERF. This leaves with the needto 
onstru
t adaptive statisti
al ERF's (re
all that unfortunately, the 
onstru
-tion of [10℄ for the stati
 
ase is not adaptively se
ure). Hen
e, in this se
tionwe dis
uss only the statisti
al setting, and mainly resilient fun
tions (ex
ept forSe
tion 4.3; see below).More spe
i�
ally, in Se
tion 4.1 we dis
uss several 
avors of statisti
al re-silient fun
tions, and the relation among them, whi
h should be of independentinterest. In parti
ular, we argue that the notion of almost-perfe
t resilient fun
-tions (APRF) [19℄ is the strongest one (in parti
ular, stronger than adaptiveERF). In Se
tion 4.2 we show how to 
onstru
t APRF's. While seemingly onlyslightly weaker than perfe
t RF's, we show that we 
an a
hieve mu
h smaller,optimal resilien
e for su
h fun
tions: ` � k (
ompare with ` � n=2 for perfe
tRF's). In parti
ular, this will imply the existen
e of nearly optimal statisti
alRF's and adaptive statisti
al ERF's with the same parameters. Finally, in Se
-tion 4.3 we will show that APRF's 
an also be used to show the existen
e ofoptimal se
ret-only adaptive statisti
al AONT's (whi
h improves the one-timepad 
onstru
tion from Lemma 2 and was not known even in the non-adaptivesetting of [10℄).4.1 Adaptive ERF and Other Flavors of Resilient Fun
tionsThe de�nition presented in se
tion 2 for adaptive se
urity of an ERF is only oneof several possible notions of adaptive se
urity. Although it seems right for most



appli
ations involving resilien
e to exposure, one 
an imagine stronger atta
ksin whi
h the se
urity of resilient fun
tions (RF), whi
h tolerate even partly �xedinputs, would be desired. In this se
tion we relate these various de�nitions, andredu
e them to the stronger notion of an almost-resilient fun
tion [19℄, whi
hare of independent 
ombinatorial interest.There are several parameters whi
h one naturally wants to vary when 
on-sidering \adaptive" se
urity of an ERF, whi
h is in its essen
e an extra
tor forprodu
ing good random bits from a partially 
ompromised input.1. Does the adversary get to see the 
hallenge (output vs. a random string)before de
iding how to \
ompromise" the input?2. Does the adversary get to de
ide on input positions to \
ompromise" one ata time or all at on
e?3. Does the adversary get to �x (rather than learn) some of the positions?Flavors of Resilient Fun
tions. To address the above questions, we lay outthe following de�nitions. Unless stated otherwise, f denotes an eÆ
ient fun
tionf : f0; 1gn ! f0; 1gk, L 2 f ǹg, r is 
hosen uniformly from f0; 1gn, R is 
hosenuniformly from f0; 1gk. Finally, the adversary A is 
omputationally unbounded,and has to obtain a non-negligible advantage in the 
orresponding experiment.1. (Weakly) Stati
 ERF: (This is the original notion of [10℄.)r 2 f0; 1gn is 
hosen at random. The adversary A spe
i�es L and learnsw = [r℄�L. A is then given the 
hallenge Z whi
h is either f(r) or R. A mustdistinguish between these two 
ases.2. Strongly Stati
 ERF: (In this notion, the 
hallenge is given �rst).r 2 f0; 1gn is 
hosen at random. The adversary A is then given the 
hallengeZ whi
h is either f(r) or R. Based on Z, A spe
i�es L, then learns w = [r℄�L,and has to distinguish between Z = f(r) and Z = R.3. Weakly Adaptive ERF: (This is a natural notion of adaptivity for ERF.)r 2 f0; 1gn is 
hosen at random. The adversary A learns up to (n� `) bits ofr, one at a time, basing ea
h of his 
hoi
es on what he has seen so far. A isthen given the 
hallenge Z whi
h is either f(r) or R, and has to distinguishbetween these two 
ases.4. (Strongly) Adaptive ERF: (This is the notion de�ned in Se
tion 2.)r 2 f0; 1gn is 
hosen at random. The adversary A is then given the 
hallengeZ whi
h is either f(r) or R. Based on Z, A learns up to (n � `) bits of r,one at a time, and has to distinguish between Z = f(r) and Z = R.5. Statisti
al RF: (This is the extension of resilient fun
tions [12, 3℄ to thestatisti
al model, also de�ned in Se
tion 2.)A 
hooses any set L 2 f ǹg and any w 2 f0; 1gn�`. A requests that [r℄�L isset to w. The remaining ` bits of r in L are set at random. A is then givena 
hallenge Z whi
h is either f(r) or R, and has to distinguish betweenthese two 
ases. (Put another way, A loses if for any L 2 f ǹg and anyw 2 f0; 1gn�`, the distribution indu
ed by f(r) when [r℄�L = w and theother ` bits of r 
hosen at random, is statisti
ally 
lose to the uniform onf0; 1gk.)



6. Almost-Perfe
t RF (APRF): (This is the notion of [19℄.)A 
hooses any set L 2 f ǹg and any w 2 f0; 1gn�`. A requests that [r℄�L isset to w. The remaining ` bits of r in L are set at random and Z = f(r)is evaluated. A wins if there exists y 2 f0; 1gk su
h that Pr(Z = y) in thisexperiment does not lie within 2�k(1� �), where � is negligible.5Note that for ea
h of the �rst �ve notions above, we 
an de�ne the \error pa-rameter" � as the advantage of the adversary in the given experiment (for thesixth notion, � is already expli
it).Let us begin by dis
ussing the notion we started with | adaptive ERF. First,it might seem initially like the notion of weakly adaptive ERF is all that we need.Unfortunately, we have seen that to 
onstru
t adaptive AONT's from ERF's viaLemma 2, we need strong adaptive ERF's. Se
ond, the \algorithmi
" adaptivebehavior of the adversary is diÆ
ult to deal with, so it seems easier to deal witha more 
ombinatorial notion. For example, one might hope that a statisti
al RFis by itself an adaptive ERF (noti
e, su
h RF is 
learly a stati
 ERF), and then
on
entrate on 
onstru
ting statisti
al RF's. Unfortunately, this hope is false, asstated in the following lemma.Lemma 5. There are fun
tions whi
h are statisti
al RF but not statisti
al adap-tive (or even strongly stati
!) ERF.Proof Sket
h. Let n be the input size. Let f 0 be an statisti
al RF from n0 = n2 bitsto k0 = n6 bits su
h that `0 = n4 . Su
h fun
tions exist, as we prove in Se
tion 4.2.De�ne f as follows: on an n-bit input string r, break r into two parts r1 andr2 both of length n2 . Apply f 0 to r1 to get a string s of length n6 . Now divide sinto n6(log n�1) blo
ks of size log n2 , whi
h 
an be interpreted as a random subsetS from f1; : : : ; n2 g with n6(log n�1) elements. LetLS be the parity of the bits in[r2℄S . The output of f is the pair hs;LSi. Thus k � n6 .Now let ` = n � n6(logn�1) . Clearly, an adversary who sees the 
hallenge�rst, 
an (non-adaptively) read the bits [r2℄S and 
he
k the parity (giving himadvantage at least 1=2 over the random string). Thus, f is not an adaptivelyse
ure ERF. On the other hand, an adversary who 
an �x only (n�`) � n=6 log(n)input bits 
an still not learn anything about the output of f 0 and thus is unlikelyto know the value of all the bits in S. Su
h an adversary will always havenegligible advantage. Hen
e f is a statisti
al RF. utSin
e the opposite dire
tion (from adaptive ERF's to statisti
al RF's) is obvi-ously false as well, we ask if some notion a
tually 
an simultaneously a
hieve bothadaptive se
urity for ERF, and statisti
al se
urity for RF. Fortunately, it turnsthat by satisfying the stronger 
ondition of an almost-perfe
t resilient fun
tion(APRF) [19℄, one obtains an adaptive ERF. Sin
e APRF's will play su
h a 
ru
ialrole in our study, we give a separate, more formal de�nition.5 Note that in [19℄ the error parameter was measured slightly di�erently: they de�ne� as the maximum absolute deviation. Our 
onvention makes sense in the 
rypto-graphi
 setting sin
e then the adversary's advantage at distinguishing f(r) fromrandom in any of the above experiments is 
omparable �, as opposed to �2k.



De�nition 7. A polynomial time fun
tion f : f0; 1gn ! f0; 1gk is `-APRF(almost-perfe
t resilient fun
tion) if for any L 2 f ǹg, for any assignment w 2f0; 1gn�` to the positions not in L, for a randomly 
hosen r 2 f0; 1gn and forsome negligible � = negl(n), we have:Pr(f(r) = y ��� [r℄�L = w) = (1� �)2�k (5)While it is obvious that any APRF is a statisti
al RF (by summing over 2kvalues of y), the fa
t that it is also an adaptive ERF is less 
lear (espe
ially
onsidering Lemma 5), and is shown below.Theorem 4. If f is an APRF, then f is a statisti
al adaptive ERF.Proof. By assumption, f is an `-APRF with error �: for every set L 2 f ǹg andevery assignment w to the variables not in L, Equation (5) above holds whenr is 
hosen at random. Now suppose that we have an adaptive adversary Awho, given either Z = f(r) or Z = R and (limited) a

ess to r, 
an distinguishbetween the two 
ases with advantage �0. We will show that �0 � �.At �rst glan
e, this may appear trivial: It is tempting to attempt to proveit by 
onditioning on the adversary's view at the end of the experiment, and
on
luding that there must be some subset L and appropriate �xing w whi
halways leads to a good 
han
e of distinguishing. However, this argument failssin
e the adversary A may base his 
hoi
e of L on the parti
ular 
hallenge here
eives, and on the bits he 
onsiders.So we use a more sophisti
ated argument, although based on a similar intu-ition. First, we 
an assume w.l.o.g. that the adversaryA is deterministi
, be
ausethere is some setting of his random 
oins 
onditioned on whi
h he will distin-guish with advantage at least �0, and so we may as well assume that he alwaysuses those 
oins.Following the intuition above, we 
onsider the adversary's view at the end ofthe experiment, just before he outputs his answer. This view 
onsists of two 
om-ponents: the input 
hallenge Z and the (n� `) observed bits w = w1; : : : ; wn�`(whi
h equal [r℄�L for some set L of size at least `). Signi�
antly, L need not beexpli
itly part of the view: sin
e A is deterministi
, L is a fun
tion of Z and w.Denote by View(Z)A the view of A on 
hallenge Z. When Z = R, it is easy toevaluate the probability that A will get a given view. Sin
e the values r 2 f0; 1gnand R 2 f0; 1gk are independent, we havePr hView(R)A = (y; w)i = 2�(n�`+k)On the other hand, when Z = f(r), we have to be 
areful. If L is the subset
orresponding to A's 
hoi
es on view (y; w), then we do indeed have:Pr hView(f(r))A = (y; w)i = Pr hf(r) = y ^ [r℄�L = wiThis last equality holds even though the 
hoi
e of L may depend on y. In-deed, A is deterministi
 and so he will always 
hoose the subset L when [r℄�L = w,



regardless of the other values in r. Thus, we 
an in some sense remove the adver-sary from the dis
ussion entirely. Now this last probability 
an be approximatedby 
onditioning and using Equation (5):Pr hf(r) = y ^ [r℄�L = wi = Pr hf(r) = y ��� w = [r℄�LiPr hw = [r℄�Li= (1� �)2�k � 2�(n�`)= (1� �)2�(n�`+k)We 
an now expli
itly 
ompute the adversary's probability of su

ess in ea
hof the two experiments we are 
omparing. Let A(y; w) = 1 if A a

epts on view(y; w) and 0 otherwise. Then:�0 = ���Pr hAr(f(r)) = 1i� Pr hAr(R) = 1i���= �����Xy;w �Pr hView(f(r))A = (y; w)i � Pr hView(R)A = (y; w)i� �A(y; w)������Xy;w ���(1� �)2�(n�`+k) � 2�(n�`+k)��� � �Thus �0 � �, and so f is a statisti
al adaptive ERF. utClassifi
ation of Resilient Fun
tions. In fa
t, we 
an 
ompletely relateall the six notions of resilient fun
tions that we introdu
ed:
Almost−Perfect RFStatic ERF

Static ERF
Strongly

Weakly

Adaptive ERF

Statistical RFAdaptive ERFThis diagram is 
omplete: if there is no path from notion A to notion B, thenthere is a fun
tion whi
h satis�es A but not B. We noti
e that ex
ept for thetwo proofs above, only one non-trivial proof is needed in order to 
omplete thediagram: the separation between weakly adaptive ERF's and stati
 ERF's (otherimpli
ations and separations are easy exer
ises). However, this separation followsfrom the stati
 
onstru
tion of Canetti et al. [10℄, whi
h, as we mentioned, neednot yield a weakly adaptive ERF.We also remark that while the diagram above is useful from a stru
tural pointof view, in the next se
tion we show how to build APRF's | the strongest of theabove notions | a
hieving l � k, whi
h is nearly optimal even for stati
 ERF's| the weakest of the above notions. Thus, all the above notions are almostthe \same" in terms of the optimal parameters they a
hieve (whi
h are alsosubstantially better than those possible in the perfe
t setting).



4.2 Obtaining Nearly Optimal Almost-Resilient Fun
tionsGiven the dis
ussion of the previous se
tion, it is natural to try to 
onstru
tgood APRF's. These were �rst de�ned and studied by Kurosawa et al. [19℄.Using te
hniques from 
oding theory, they 
onstru
t6 `-APRF su
h that ` �n+k2 +2 log � 1� �. Although this beats the lower bound on perfe
t ERF of [15, 4℄, itis very far from the trivial lower bound ` � k, espe
ially when k = o(n). Thus, itis natural to ask whether this is a fundamental limitation on APRF's, or whetherindeed one 
an approa
h this simplisti
 lower bound.As a �rst step, we 
an show that if f is pi
ked at random from all thefun
tions from f0; 1gn to f0; 1gk, it is very likely to be a good APRF (we omitthe proof sin
e we subsume it later). However, this result is of little pra
ti
alvalue: storing su
h a fun
tion requires k �2n bits. Instead, we repla
e the randomfun
tion with a fun
tion from a t-wise independent hash family [11℄ for t roughlyon the order of n. Fun
tions in some su
h families (e.g., the set of all degree t�1polynomials over the �eld GF (2n)) require as little as tn bits of storage, and areeasy to evaluate.Using tail-bounds for t-wise independent random variables, one 
an showthat with very high probability we will obtain a good APRF:Theorem 5. Fix any n, ` and �. Let F be a family of t-wise independent fun
-tions from n bits to k bits, where t = n= logn andk = `� 2 log�1��� O(logn)Then with probability at least (1 � 2�n) a random fun
tion f sampled from Fwill be an `-APRF (and hen
e adaptive `-ERF and statisti
al `-RF) with error �.Corollary 1. For any ` = !(logn), there exists an eÆ
ient statisti
al adaptive`-ERF f : f0; 1gn ! f0; 1gk with k = `� o(`).The proof of Theorem 5 uses the following lemma, whi
h is used (impli
itly)in the 
onstru
tions of deterministi
 extra
tors of [27℄. Re
all that a distributionX over f0; 1gn has min-entropy m, if for all x, Pr(X = x) � 2�m.Lemma 6. Let F be a family of t-wise independent fun
tions (for even t � 8)from n to k bits, let X be a distribution over f0; 1gn of min-entropy m, and lety 2 f0; 1gk. Assume for some � > 0k � m��2 log 1� + log t+ 2�� : (6)Let f be 
hosen at random from F and x be 
hosen a

ording to X. ThenPrf2F�����Prx (f(x) = y)� 12k ���� � � � 12k� � 2��t (7)6 This result looks (but is not) di�erent from the one stated in [19℄ sin
e we measure� di�erently.



In other words, for any y 2 f0; 1gk, if f is 
hosen from F then with overwhelmingprobability we have that the probability that f(X) = y is 12k (1� �).Theorem 5 follows trivially from this lemma. Indeed, set � = 3 logn, t =n= logn. Noti
e that for any L 2 f ǹg and any setting w of bits not in L, therandom variable X = hr j [r℄�L = wi has min-entropy m = `. Then k given inTheorem 5 indeed satis�es Equation (6). Now we apply Lemma 6 and take theunion bound in Equation (7) over all possible �xings of some (n� `) input bits,and over all y 2 f0; 1gn. Overall, there are at most �ǹ�2n�`2k � 22n termsin the union bound, and ea
h is less than 2��t = 2�3n, �nishing the proof ofTheorem 5.For 
ompleteness, we give a simple proof of Lemma 6. We will make use ofthe following \tail inequality" for sums of t-wise independent random variablesproven by Bellare and Rompel [2℄. There they estimate Pr[jY � Exp[Y ℄j > A℄,where Y is a sum of t-wise independent variables. We will only be interested inA = � � Exp[Y ℄, where � � 1. In this 
ase, tra
ing the proof of Lemma 2.3 (andLemma A.5 that is used to prove it) of [2℄, we get the following:Theorem 6 ([2℄). Let t be an even integer, and assume Y1; : : : ; YN are t-wiseindependent random variables in the interval [0; 1℄. Let Y = Y1 + : : : + YN ,� = Exp[Y ℄ and � < 1. ThenPr(jY � �j � ��) � Ct �� t�2��t=2 (8)where the 
onstant Ct < 3 and in fa
t Ct < 1 for t � 8.Now we 
an prove Lemma 6:Proof. Let px denote the probability that X = x, and let q denote the randomvariable (only over the 
hoi
e of f) whi
h equals to the probability (over the
hoi
e of x given f) that f(x) = y, i.e.q = Xx2f0;1gn px � Iff(x)=ygwhere Iff(x)=yg is an indi
ator variable whi
h is 1 if f(x) = y and 0 other-wise. Sin
e for any x the value of f(x) is uniform over f0; 1gk, we get thatExpf [Iff(x)=yg℄ = 2�k, and thus Expf [q℄ = 2�k. Noti
e also that the variablesIff(x)=yg are t-wise independent, sin
e f is 
hosen at random from a family oft-wise independent fun
tions. And �nally noti
e that sin
e X has min-entropym, we have that all px � 2�m.Thus, if we let Qx = 2m � px � Iff(x)=yg, and Q = Px2f0;1gn Qx = 2mq, weget that the variables Qx are t-wise independent, all reside in the interval [0; 1℄,and Exp[Q℄ = 2mExp[q℄ = 2m�k. Now we 
an apply the tail inequality given inTheorem 6 and obtain:



Prf �����q � 12k ���� � � � 12k � = Prf ���Q� 2m�k�� � � � 2m�k�� � t�2 � 2m�k�t=2 = � 12m�k�2 log 1��log t�t=2� 2��twhere the last inequality follows from Equation (6). ut4.3 Adaptively Se
ure AONTWe already remarked that that the 
onstru
tion of optimal adaptive statisti
alERF's implies the 
onstru
tion of adaptive 
omputational ERF's. Combined withLemma 2, we get optimal 
onstru
tions of AONT's as well. We noti
e also thatthe publi
 part of these AONT 
onstru
tion is k. In the statisti
al setting, wherewe a
hieved optimal ` = k+o(k), we 
ould then 
ombine the publi
 and the se
retpart of the AONT to obtain a se
ret-only adaptive AONT with ` = 2k + o(k).One may wonder if there exist statisti
al se
ret-only AONT's with ` = k + o(k),whi
h would be optimal as well. Using our 
onstru
tion of almost-perfe
t resilientfun
tions, we give an aÆrmative answer to this question. Our 
onstru
tion is noteÆ
ient, but the existential result is interesting be
ause it was not known evenin the stati
 setting.Lemma 7. Ignoring the issue of eÆ
ien
y, there exist adaptive statisti
al se
ret-only `-AONT T : f0; 1gk ! f0; 1gn with ` = k + o(k).Proof. Re
all, Lemma 1 used an inverse of a perfe
t RF (or ERF, whi
h is thesame) to 
onstru
t perfe
t se
ret-only AONT. We now show that the same 
on-stru
tion 
an be made to work in the statisti
al setting provided we use APRFrather than weaker statisti
al RF. In parti
ular, let f : f0; 1gn ! f0; 1gk be an`-APRF. We know that we 
an a
hieve ` = k + o(k). We de�ne T (x) to be arandom r 2 f0; 1gn su
h that f(r) = x. (This is well-de�ned sin
e APRF's aresurje
tive.)Now take any distingusher A, any x 2 f0; 1gk and any possible view of Ahaving ora
le a

ess to T (x) = r. Sin
e we 
an assume that A is deterministi
,this view 
an be spe
i�ed by the (n�`) values w thatA read from r (in parti
ular,the subset L is also determined from w). Now, we use Bayes law to estimatePr(View(T (x))A = w). Noti
e, sin
e r = T (x) is a random preimage of x, we
ould assume that r was 
hosen at random from f0; 1gn, and use 
onditioning



on f(r) = x. This gives us:Pr(View(T (x))A = w) = Pr(View(r)A = w ��� f(r) = x) = Pr([r℄�L = w ��� f(r) = x)= Pr(f(r) = x ��� [r℄�L = w) � Pr([r℄�L = w)Pr(f(r) = x)= (1� �) � 2�k � 2`�n(1� �) � 2�k = (1� 2�) � 2`�nNoti
e that this bound is independent on A, x and w. Hen
e, for any x0; x1and any adversary A, View(T (x0))A and View(T (x1))A are within statisti
al distan
e4� from ea
h other, implying that T is an adaptive statisti
al AONT. utA
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