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Abstract. End-to-End (E2E) encrypted messaging, which prevents even the service provider
from learning communication contents, is gaining popularity. Since users care about maintaining
access to their data even if their devices are lost or broken or just replaced, these systems are
often paired with cloud backup solutions: Typically, the user will encrypt their messages with a
fixed key, and upload the ciphertexts to the server. Unfortunately, this naive solution has many
drawbacks. First, it often undermines the fancy security guarantees of the core application, such
as forward secrecy (FS) and post-compromise security (PCS), in case the single backup key is
compromised. Second, they are wasteful for backing up conversations in large groups, where
many users are interested in backing up the same sequence of messages.

Instead, we formalize a new primitive called Compact Key Storage (CKS) as the “right”
solution to this problem. Such CKS scheme allows a mutable set of parties to delegate to a
server storage of an increasing set of keys, while each client maintains only a small state. Clients
update their state as they learn new keys (maintaining PCS), or whenever they want to forget
keys (achieving FS), often without the need to interact with the server. Moreover, access to
the keys (or some subset of them) can be efficiently delegated to new group members, who all
efficiently share the same server’s storage.

We carefully define syntax, correctness, privacy, and integrity of CKS schemes, and build
two efficient schemes provably satisfying these notions. Our line scheme covers the most basic
“all-or-nothing” flavor of CKS, where one wishes to compactly store and delegate the entire
history of past secrets. Thus, new users enjoy the efficiency and compactness properties of the
CKS only after being granted access to the entire history of keys. In contrast, our interval
scheme is only slightly less efficient but allows for finer-grained access, delegation, and deletion
of past keys.

⋆ This is the full version of an article with the same title appearing in the proceedings of CRYPTO 2024,
Springer, © IACR 2024.

† Research partially conducted while contracting for Zoom. Research partially supported by NSF grant
CNS-2055578, and gifts from JP Morgan, Protocol Labs, Stellar, and Algorand Foundation.

‡ Research partially conducted while contracting for Zoom.

https://orcid.org/0000-0003-1013-6318
https://orcid.org/0000-0002-6562-9665
https://orcid.org/0000-0001-5109-1641


Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Traditional Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Our Work: Compact Key Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Scheme Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Compact Key Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 High-level CKS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Syntax Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 CKS Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Definitional Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Impossibility of Key-Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Preservation Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Compact Key Storage Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 The Line Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 The Interval Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A Additional Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B On CKS-compatible Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

B.1 Single to Many Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.2 CKS Compatibility of Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
B.3 CKS Compatibility of Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

C Details on CKS Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
D Convergent Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
E Details on the Line Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

E.1 A Formal Description of the Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
E.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

F Details on the Interval Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
F.1 A Formal Description of the Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
F.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



1 Introduction

Existing cryptographic literature on secure messaging heavily focuses on the core functionality: sending
secure messages and the intermediate step of establishing shared key material. The security guarantees
of the respective protocols, such as Signal’s Double Ratchet [42,2] or the IETF MLS protocol [8,3]
have been investigated in depth, formalizing and proving advanced properties such as forward secrecy
(FS) and post-compromise security (PCS). This means that compromising internal secrets used by
these messaging applications does not hurt the security of past (FS) and future (PCS) messages.
Bigger Picture and Our Main Question. The secure messaging protocols above are almost always
just part of a bigger messaging application providing additional functionality. Most importantly for
our purposes, the conversation history is often a valuable resource that is too prized to only store
on one device. In particular, users do not want to lose their conversation history forever in case the
device is replaced, lost, or stolen. In practice, this means that the application should also offer some
cloud backup option to restore prior messages.

In a related vein, when a new user joins a group in a secure group messaging protocol such as
MLS, FS (cryptographically) ensures that the past messages are not automatically given to the user
(even if the user recorded prior ciphertexts before joining the group). In many business application
scenarios, however, the need for a new member to know the conversation history of the team trumps
the need to achieve FS. Thus, once again a special (often cryptographic) delegation method needs to
ensure that new users are given prior history.

In both of these examples, the attacker would get extra information compared to the one provided
in the analysis of the “secure messaging” component. For example, in the case of cloud backup, it
would include the information stored in the cloud. More importantly, upon compromise, the attacker
might get (at least some of) the “cloud access” credentials that the user needs for accessing the backup,
in addition to the cryptographic material used (and analyzed) by the secure messaging application.
Somewhat surprisingly, we argue below that in many cases such an attacker will be able to completely
break FS/PCS security that the secure messaging application worked so hard to achieve. By this, we
do not mean a “trivial break” where the attacker gets legitimate messages that the user should get
anyway. Instead, the attacker would get (a) messages that the legitimate user thought were “securely
erased,” and; (b) future messages not yet sent or even generated, at the time the compromise occurs.

Breaking FS/PCS is not merely a theoretical concern and we argue that advising privacy-concerned
users to turn off cloud backup is not a satisfying solution. For example, a user may wish to have
their messages regularly backed up in general, or simply use an application that defaults to such a
setting. However, if at some point they sent or received a particularly sensitive message, they may
decide to erase even after the automatic backup process has been run. A user may also be coerced by
law enforcement/immigration control to hand over the secrets to their cloud backup, or their device
might simply be hacked. The ability to erase messages or restore security after a compromise, without
entirely restarting the backup process, seems like a natural and possibly critical requirement.

As the main question of this work, we ask whether this state of affairs is inherent, and argue
that there is a better way to add cloud backup and/or delegation capabilities to secure messaging
applications. Before introducing our proposed solution, which we call Compact Key Storage (CKS), let
us dive into the problem more closely, for concreteness focusing on the cloud backup scenario. But an
interested reader can jump to Figs. 1 and 2 for a sneak peek of our approach.

1.1 Traditional Backup

Traditionally, backup has been considered an orthogonal problem to the core secure messaging (SM)
application. That is, one only backs up the plaintext messages mi produced by a SM application —
any ciphertext c̃i or secret si used by the SM application is treated as an implementation detail1 not
1 For clearer comparison with our approach, we explicitly put the “Encryption Box" Enc as the place where

messages are encrypted with fresh keys. While not entirely without loss of generality, this approach is
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Fig. 1: A schematic representation of a classical cloud-backup process. The plaintext messages
m1, m2, . . . are backed up independently of the secure-messaging scheme, secured by a static key k
kept safe in a “Compact Secure Storage”. Notice:
(1) the CCS secret k does not have PCS/FS unlike SM secrets s1, s2, . . .;
(2) SM ciphertexts c̃i are not used for Backup, wasting storage & computation;
(3) fresh backup key k per user precludes deduplication.
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Encm1, m2, . . .
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CKS
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Compact
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st1, st2, . . .
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Outsourcing

Cloud storage
((c̃1, c1), (c̃2, c2), . . .)

Fig. 2: A schematic representation of the CKS approach for backup. The secure-messaging ciphertexts
c̃1, c̃2, . . . are stored and the secure-messaging secrets s1, s2, . . . are backed up. Notice:
(1) the CSS secret state sti can offer PCS/FS analogous to SM secrets s1, s2, . . .;
(2) reusing SM ciphertexts c̃i saves computation and enables shared storage;
(3) CKS state st is a deterministic function of s1, s2, . . ., enabling deduplication.

exposed to the backup process. In fact, this is considered advantageous for the sake of modularity, so
that SM choice is independent of the backup, and vice versa. Unfortunately, the modularity achieved
often lacks the expected composition properties one would hope to have.

The most common backup method, depicted in Fig. 1, simply chooses a single static symmetric key
k, and (authentically) encrypts the plaintext messages mi under this key k. The resulting ciphertexts
ci are uploaded to the cloud. In Fig. 1, we call this part “Outsourcing”. Then a separate “Compact
Secure Storage” component is designed to protect this static secret key k. We use red to indicate a
secret value that is stored at rest, making it vulnerable to compromises, to distinguish it from the
respective short-lived values used while processing in the “Enc” and “Outsourcing” components. The
methods for designing this latter component vary a lot from implementation to implementation.

very common for achieving FS/PCS, and used by the two predominant abstractions of SM: continuous key
agreement (CKA) [2] and continuous group key agreement (CGKA) [3].
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For example, WhatsApp’s solution combines hardware secure modules (HSM) at their premise
storing the (high-entropy) encryption key k, and a variant of the OPAQUE password-based key
exchange to securely retrieve said key based on a low-entropy password while maintaining an adequate
level of security [24]. Password-protected secret sharing (PPSS) [7,35] presents an alternative solution
to store the key by secret sharing it among a number of servers. Moreover, other solutions include
Updatable oblivious key management [36] and DPaSE [23] with both schemes allowing users to derive
strong keys from a password using the help of multiple servers, based on varying trust assumptions.

As we are not going to improve on the “Compact Secure Storage” component in this work, we
will assume that it is done “well,” although the attacker is allowed to occasionally compromise
this component, which is a standard practice in designing and analyzing cryptographic primitives.
Unfortunately, when such compromise happens for whatever reason, the attacker gets their hands on
the static key k used to encrypt all messages — both past and present. Stated differently — irrespective
of the advanced FS/PCS security properties achieved by the SM protocol whose (not-explicitly-erased)
conversation history is being backed up — the overall protocol offers zero PCS/FS security, as
everything is eventually encrypted by the same static key k.2

While the loss of FS/PCS is our primary concern, we also mention a few other inefficiencies in
doing traditional backups, which our solutions will address.

(a) It is generally neither storage nor bandwidth efficient if every user of a group backs up the same
content, instead of doing this once for the entire group.

(b) Somewhat less critically, not reusing the secure messaging application’s old ciphertexts c̃1, . . . , c̃n,
which already have all the desired security properties, and instead generating new ones appears
wasteful, especially if backing up long messages, such a video calls.

(c) One could imagine applications where one would want to only delegate part of the conversation
history, without first downloading it from the cloud, and then redacting it appropriately. For
example, if law enforcement (LE) got a warrant to observe messages sent by the user so far, it
would be nice to give a compact token to LE allowing them to precisely get only prior (but not
future) messages. Once again, a fixed encryption key k does not work.3

1.2 Our Work: Compact Key Storage

Our high-level idea to address all these deficiencies simultaneously, depicted in Fig. 2, is to create
a smarter “Outsourcing” box than simply encrypting the plaintexts with a fixed key. For starters,
we could directly reuse the ciphertexts c̃i produced by the “Encryption Box" Enc, and focus on
outsourcing the symmetric keys si used to encrypt these ciphertexts. As a minor gain, this saves time
on re-encrypting the plaintext with a separate key and already opens the door for sharing the same
backup storage by multiple users who anyway know the same SM secrets {si}. More importantly, by
reducing our problem to that of backing up SM secrets {si}, we get two advantages.

First, the SM application already solved the hard problem of ensuring that the (dynamically
changing) set of people who know current sn is exactly the same set of people who are entitled to
know the plaintext mn for epoch n. This is once again compatible with our idea to share outsourced
storage by multiple people. Second, since these keys {si} are computationally indistinguishable from
independent uniformly distributed keys, we can try to simultaneously use them as “keys for backing
up themselves.” Namely, instead of using an externally generated key k in the naive Backup solution,
we will use the application secrets {si} themselves to deterministically derive and update the compact
secret state st1, st2, . . . which will be input to the “Compact Secure Storage” box in Fig. 2.
2 Of course, WhatsApp is well aware of this problem, but their current efforts are all directed at designing

harder-to-compromise “Secure Compact Storage” component [24], making it practically harder to get k
than to compromise the Double Ratchet keys. Our work will offer a complementary solution.

3 At least not without doing a special encryption process which will anticipate such a warrant; e.g., using
puncturable PRFs [17,38,19].
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Compact Key Storage. This leads us to the main technical and conceptual novelty of our work:
Compact Key Storage (CKS) primitive. CKS dynamically (and deterministically!) transforms the
stream of application secrets s1, s2, . . . into a stream of outsourced ciphertexts c1, c2, . . . stored in
the cloud, and a compact, dynamically changing secret state stn, which needs to be protected using
whatever “Compact Secure Storage” solution we wish to use.4 The current state stn has several
attractive features, beyond compactness:

– Secret Recovery: despite compactness, stn plus an appropriate subset of stored ciphertexts {ci}
is enough to recover any prior secret sj , unless this secret is forgotten (see “FS” below).

– PCS: compromising stn clearly leaves all future secrets sn+1, . . . secure, as stn does not depend
on these (computationally) unrelated secrets.

– FS/Delegation: users can “forget” some subsets S of the secrets, by transforming their current
state stn into a “lesser” state st′

n. In particular, every secret in S will be “secure” upon corrupting
st′

n, even given all previously uploaded ciphertexts (c1, . . . , cn).5
– Deduplication: since CKS is deterministic, all users knowing stn and sn+1 will compute the

same ciphertext cn+1 and state stn+1. In particular, only one copy of cn+1 should be uploaded to
the cloud, by any one of such users.

Our Contributions. We can group our overall contributions into three categories. These are explained
in detail in Sections 3, 5, and 4, respectively, but here we mention the highlights:

1. CKS Primitive. First, we propose CKS as a novel aspect of outsourced cloud backups in
secure messaging, or more generally contexts where FS and PCS are relevant. As such, our work
complements the existing literature on backup that predominantly focuses on securely storing and
retrieving a small secret state (such as an encryption key) based on a user-memorable password.

2. Efficient Constructions. Second, we propose two practically efficient CKS schemes. Our line
scheme covers the most basic “all-or-nothing” flavor of CKS, where one wishes to compactly
store and delegate the entire history of past secrets. In particular, new users enjoy the efficiency
and compactness properties of the CKS only after being granted access to the entire history of
keys. In contrast, our interval scheme is only slightly less efficient but allows for finer-grained
access/delegation and selective deletion of past keys.

3. Novel Definition. Third, we introduce a novel security preservation definitional approach that
could be of independent interest, well beyond the setting of CKS. In essence, it applies to security
games where the traditional “key indistinguishability” notion is unachievable (which is the case
for CKS, as we show in Section 4.2). Instead, our definition requires that the addition of CKS
functionality (e.g., the knowledge of uploaded ciphertexts {ci}) provably does not hurt the security
of the original application (i.e., SM). In fact, we will manage to argue such “security preservation”
in quite general terms, albeit in the random oracle model. This allows our definition of CKS to be
applicable to many application scenarios (see “Additional CKS Use Cases” below), beyond adding
backup to SM. We motivate our notion in Section 4.1.

Additional CKS Use Cases. As mentioned above, the generality of our CKS definition makes it
applicable to other application scenarios, beyond secure backup. First, supporting multiple devices has
been a long-standing user request for popular E2E-secure messaging applications such as WhatsApp [49].
Recently, WhatsApp has thus re-engineered its application to natively support companion devices,
such as browser-based sessions or desktop clients, without requiring an active smartphone connection.
According to [49], whenever such a device is linked to the primary phone, the primary device encrypts
4 As we mentioned, this part does not change, and one still needs to derive a good method to secure this

compact state.
5 This correctly models forward secrecy in the backup application scenario, where our goal is to keep the

entire conversation history, unless explicitly erased.
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a bundle of recent chat messages and transfers them to the newly linked device.6 Instead, leveraging
CKS one could have the primary device simply send its current compact state (per group) to the new
device.7

Our CKS notion furthermore supports fine-grained (say, given by a date range) delegation of parts
of the conversation to another party. This has several use cases from auditing and compliance to
enabling granting access to (select) past conversations to new group members. (For instance, when
a party replies to a message, one may show that old message also to parties having joined in the
meantime. There also exists a number of applications such as Slack or Keybase where new group
members get access to the entire chat history by default.)

Finally, while conceived in the context of secure messaging, CKS composes with any application
that leverages some ordered sequence of shared keys. In particular, this covers all applications using the
continuous key agreement (GKA) [2] and continuous group key agreement (CGKA) [3] abstractions.
For instance, Zoom’s E2EE video meetings [26] use a form of CGKA that allows to rotate the keys
used to encrypt the meeting streams as participants join or leave the meeting. One could, for instance,
leverage CKS to build more efficient cloud recordings of E2E encrypted video calls where the server
directly records the ciphertexts, while parties use the delegation process of the compact key storage to
share the recording with outsiders.

Practical Aspects. Our schemes are based on symmetric encryption and hash functions — some of
the most efficient cryptographic primitives. Amortized, each party performs a constant number of
such operations per message. The scheme can be run in the background and is not latency-critical. In
terms of cloud storage, we expect the scheme to become more efficient for groups with more than
a handful of participants when compared to the existing per-user backup with static keys (while
providing superior functionality even for smaller groups).

When compared to the traditional backup process with static keys, the on-device backup process
becomes slightly more involved. First, the required secret state evolves over time (this is inherent
to obtaining FS/PCS). At the same time, the secret state must still be recoverable if the user loses
all their devices, meaning it should preferably be protected by a static human-memorable secret.
As discussed earlier, efficient solutions for using human-memorable secrets to protect a static secret
typically involve hardware secure modules (HSM) [24] or password-protected secret sharing (PPSS)
[7,35]. We consider extending those approaches to support changing secrets (securely erasing the
old ones) to be an orthogonal issue to CKS. Note also that for our interval scheme, the secret state
(slowly) grows over time. If an issue, one can employ an additional layer of encryption to store this
growing CKS state in the cloud under a freshly sampled fixed-size key, and then protect that latter
key instead. Given the compact nature of the CKS state, we do not anticipate issues uploading such
encrypted CKS state in regular intervals, such as once a week.

1.3 Scheme Overview

Let us give an overview of our line scheme, which covers the most basic “all-or-nothing” flavor of
CKS. Consider some E2E-secure application that wishes to securely back up a sequence of secrets
(s1, . . . , sn). For simplicity, we assume in the following that parties learn those secrets in order; we refer
to Section 5.1 on how to handle the general case. On a very high level, our CKS scheme will iteratively
aggregate a (secret) state ste−1 and a secret se into a new compact state ste and a ciphertext ce to
be outsourced. The state ste together with ce then allows the party to later recover ste−1 and se.
Hence, the party can recover all secrets (s1, . . . , se) from ste and (c1, . . . , ce). See Fig. 3 for a schematic
depiction.
6 To the best of our understanding, the reason for WhatsApp to implement multi-device support in this

manner is the opt-in nature of backups.
7 The trust model here slightly differs from sharing with another party, as the user’s primary device can be

assumed to be honest. Also, fine-grained delegation is typically irrelevant for adding additional devices to
the same user account.
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Fig. 3: A schematic representation of line CKS scheme. The top half shows the parties outsourcing the
keys, while the lower half shows the key-recovery process.

To achieve deduplication across parties, we need this process to be deterministic and not assume
any additional shared secrets across parties beyond (s1, . . . , sn). In other words, we want that each
party that knows the same sequence of secrets to end up with the identical sequence of ciphertext
(c1, . . . , cn).8 To achieve this, our construction makes use of Convergent Encryption (CE) as introduced
by Douceur et al. [27] for de-duplicated outsourced storage. CE uses a one-time secure deterministic
symmetric encryption scheme SE := (SE.Enc, SE.Dec) and a hash function H. Simply speaking, CE
first deterministically derives a key K by hashing the to-be encrypted message itself, and then encrypts
it using SE and the derived key. Therefore, the resulting ciphertext C is deterministically derived
from the message only, with security intuitively holding in the ROM only for high-entropy messages.
In addition to the ciphertext, CE also computes a tag T authenticating the ciphertext.

In our CKS protocol, a state ste = (e, Ke, Te) stores the latest epoch number, CE key, and CE tag.
A ciphertext ce = (e, Ce, Te−1) sent to the server contains the CE ciphertext and the prior tag.9 We
call the aforementioned aggregation process “Derive” and implement it based on CE:
Derive

(
se, ste−1 = (e− 1, Ke−1, Te−1)

)
:

1. Ke ← H(se∥Ke−1) computes the new key based on the new secret se and the previous key;
2. Ce ← SE.Enc(Ke, (se∥Ke−1)) encrypts the new secret and the old key under the (message-derived)

key;
3. Te ← H(Ce∥Te−1) generates an authentication tag;
4. Sends ce ← (e, Ce, Te−1) to the server and stores ste ← (e, Ke, Te).

The initial key K0 and tag T0 are set to some public constant. The corresponding “Invert” procedure
then recovers the secret and prior state by undoing those operations:
Invert

(
ste = (e, Ke, Te), ce = (e, Ce, Te−1)

)
:

1. Recomputes T ′
e ← H(Ce∥Te−1);

2. Checks that T ′
e

?= Te;
3. Decrypts (se∥Ke−1)← SE.Dec(Ke, Ce);
4. Stores ste−1 ← (e− 1, Ke−1, Te−1) and outputs se.

Intuitively, security follows from Ce not leaking information about se and Ke−1 as long as either of
them is unpredictable (in the ROM). The precise security statement is, however, a bit subtle and, in
8 Having identical ciphertexts allows us to efficiently thwart insider attacks in which a party knowing

(s1, . . . , sn) attempts to disrupt another party’s ability to recover secrets or even have them recover wrong
secrets.

9 Including the prior allows the server to lookup the entire sequence of ciphertexts (c1, . . . , ce) non-interactively,
and the client to verify integrity without decryption.
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particular, does not follow from the message-locked encryption (MLE) abstraction of CE by Bellare et
al. [10].

The interval scheme works similarly by organizing the secrets (s1, . . . , sn) as leaves of a binary tree.
The “Derive” process is then used to aggregate two children into their parent node, thus aggregating
two secrets (si, si+1) at the first level and two CE keys on higher levels. Each intermediate node thus
has an associated CE key, tag, and ciphertext.

1.4 Related Work

Outsourced storage with PCS and FS, as well as secure deduplication mechanisms, have been studied
extensively. To the best of our knowledge, they have however been treated mostly separately, while
our work combines both aspects.

Updatable encryption. A line of research [16,29,40,39,18,15] tackling the former issue — in particular
PCS — is updatable encryption (UE), which allows a party to periodically rotate encryption keys, and
then issue a special “update token” ∆, using which another party can update ciphertexts encrypted
under old key k to those decryptable using a new key k′. In particular, UE can be applied to the
naive Backup scheme from Fig. 1 to rotate the static outsourcing key k. Unfortunately, doing so has
several disadvantages when compared to the CKS solution from Fig. 2, in addition to not addressing
the deduplication issue.

First, achieving PCS forces the cloud server to re-encrypt all prior ciphertexts after receiving the
update token ∆. Second, UE solutions either do not address the FS issue at all (e.g., bi-directional
ciphertext-independent schemes), or address it in a computationally expensive way (e.g., uni-directional
ciphertext-independent and ciphertext-dependent schemes). For example, in the case of ciphertext-
dependent schemes, the user would need to download all the ciphertexts they want to “keep,” before
issuing a compact token to the server, which then will update all such ciphertexts. A notable exception
is the ciphertext-independent scheme by [47], which achieves FS using heavy public-key machinery,
while still forcing the server to manually update all the ciphertexts the user wants to keep.

Secure deduplication. The second issue is tackled by secure deduplication schemes. Message Locked
Encryption (MLE) [10,9] and Multi-Key Revealing Encryption [41] allow servers to deduplicate
encrypted storage of the same file by different users. In particular, the simplest MLE scheme, called
convergent encryption [27], symmetrically encrypts the message using as a key the hash of the message
itself, so that encrypting the same message will result in the same ciphertext. More recently, secure
deduplication has been studied by Best et al. [12], who propose a protocol satisfying Universal
Composability (UC) security.

We note, however, that those schemes do not address the issue of incrementality growing the backup
as new messages arrive. More concretely, when applied to the naive outsourcing solution, parties
would either have to encrypt the new data separately, growing the compact secure storage linearly, or
re-encrypt the entire communication history each time. Nevertheless, our CKS schemes use convergent
encryption [27] mentioned above, but at a lower level. This allows us to fix the incrementality issue,
while also addressing the FS/PCS/delegation concerns (which are not addressed by any existing secure
deduplication primitives).

Additional related work. Many additional concerns about outsourced storage have been considered.
These concerns are generally orthogonal to CKS but sometimes can be added to any CKS scheme in a
black-box manner. Additionally, none of them addresses the deduplication aspect of CKS, as all these
solutions require an independently sampled secret key.

The first line of work is focused on improved confidentiality. Oblivious RAM (ORAM) [32,45,33,48]
[44,5] allows a single client to outsource a large amount of storage to an untrusted server while allowing
for efficient retrieval and update of individual memory chunks, hiding not only the content of such
chunks but also the access patterns. Forward Secure Encrypted RAM (FS-eRAM) [13,25] does not
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hide access patterns, but ensures that even if both the client and server are compromised, content
that had been erased or overwritten cannot be recovered.

Another direction is protecting data against tampering and deletion. Memory Checkers [14,43,21]
focus on ensuring the integrity of a portion of the outsourced storage that is getting accessed, without
providing any confidentiality. Proofs of Retrievability (also Proofs of Storage) [46,37,6,28] allow a
server storing a large amount of data on behalf of a client to prove that such data hasn’t been erased,
with far smaller communication than the size of the data being stored. Similarly, Filecoin [31] leverages
Proofs of Replication [4,22,30] to offer distributed storage as a service (from a set of untrusted servers),
but again it does not allow multiple clients to easily cooperate or offer interfaces for efficient delegation
and independent updates.

1.5 Outline

In Section 3 we introduce the CKS notion. In Section 4 we then define CKS security. We highlight
the challenge of defining security and prove that the strongest and most natural notion of key
indistinguishability is, unfortunately, impossible in Sections 4.1 and 4.2, respectively. In Section 4.3 we
introduce our novel approach which we call preservation-security. Furthermore, we present a strong
integrity notion protecting users from restoring erroneous data even if both the cloud server and other
users of the system behave maliciously. In Section 5 we present two CKS schemes. The first one is a
simple “all-or-nothing” CKS scheme in which users either know all or none of the keys. The second is
an improved, albeit slightly less efficient scheme, that allows for fine-grained delegation and erasure
(for FS).

2 Preliminaries

In this work, we assume a simple notion of (token-based) interactive algorithms. An execution of a
two-party algorithm Alg between parties A and B is denoted (yA; yB)←

〈
A.Alg(xA)↔ B.Alg(xB)

〉
,

where xA and xB denote the respective parties’ inputs and yA and yB their outputs. In particular,
we view oracle machines as a special case of such an interactive algorithm where the oracle name
is appropriately encoded as part of a message sent from the invoking party to the invoked party.
When executing an interactive protocol between two honest parties in a security game we assume that
the oracle blocks until the interaction is finished. We write (yU ;⊥) ←

〈
U.Alg(xU ) ↔ A

〉
to denote

that the adversary acts as the second party. In that case, whenever the interactive protocol transfers
control to the adversary, they may either choose to reply and transfer control back to the party U , or
may choose to invoke a different oracle, or answer to a different ongoing interactive protocol. As such,
the adversary may arbitrarily interleave oracle invocations and protocol executions (unless otherwise
specified). The execution of the oracle code continues once the honest party terminates.

When describing stateful algorithms or security games, we make use of the following special
keywords. First, for a boolean condition cond, the statement req cond is shorthand for “if cond is
false, revert all changes to the state made during this invocation and return an error ⊥.” Second, the
statement parse (x, y)← z denotes the attempt to parse z as a tuple and abort analogous to req in
case this is not possible. Third, we use try y ← A(x) to denote that if the invocation of algorithm
A fails, the calling procedure itself unwinds and aborts with an error. We present some additional
preliminaries in Appendix A.

3 Compact Key Storage

3.1 High-level CKS Overview

Recall from Fig. 2 that the goal of CKS is to create a smarter “Outsourcing” box by reusing the
ciphertexts c̃i produced by the “Encryption Box” Enc, and focus on outsourcing the symmetric keys
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si used to encrypt these ciphertexts instead. For each epoch n, given current compact state stn−1
and a new secret sn, CKS thus produces a small local state stn (using a non-interactive Append
procedure), and (potentially) uploads some ciphertext(s) cn to the server (using the corresponding
Upload procedure).

Accessing keys. Whenever a user U wants to retrieve one or more of the keys si that it knew at some
point, they can run the Retrieve procedure with the server to download the ciphertexts “necessary” to
retrieve these keys using their current compact state stn. For this to succeed, obviously the necessary
information must have been uploaded to the server. More concretely, we require that at least one user
V who knew “as much as U” at epoch i (which includes U itself, of course) ran the Upload procedure
in that epoch. We will elaborate on this when discussing correctness.

Delegating access. When a new user V joins the system (e.g., becomes a member of the secure
messaging group), any existing user U can share her current CKS state stn with V to immediately
give V access to everything that U knows. Crucially, we want this delegation operation to be more
efficient than the trivial solution of having the user U recover all keys locally, and (privately) sending
them to the other party V . Both the granting operation by U and the accepting operation by V might
use the help of the server S. Concretely, when U runs the Grant operation with S, it will obtain
some compact message msg that U will securely transmit to V .10 V will then use msg to run the
corresponding Accept procedure with S to appropriately update its secret state stn.

Erasing secrets. A special case of delegation could be self-delegation. More generally, a user U might
wish to explicitly “forget” some of the secrets that it no longer needs.

Supported subsets. We were quite general in terms of functionality so far, potentially allowing the user
to outsource, retrieve, and delegate arbitrary subsets of secrets. Unfortunately, such generality cannot
be supported efficiently. As a result, our notion will be parameterized by three respective predicates —
one for retrieval, delegation, and erasure — which will govern for which subsets of keys the CKS must
be able to efficiently operate the respective functionality.

3.2 Syntax Definition

We now formally define the Compact Key Storage notion. To this end, we first introduce a notion
formalizing which subsets of keys users can efficiently delegate, which then becomes a parameter of
the CKS notion.

Definition 1. A delegation family G is a predicate G : P(N) × P(N) → {0, 1}, where for a set
know ⊆ N of epochs denoting the respective keys known to a party, G(know, share) indicates whether
they can delegate share ⊆ N. Analogously, a retrieval family R and an erasure family E indicate
whether the party can recover share ⊆ N or erase share ⊆ N, respectively.

Definition 2. A Compact Key Storage (CKS) scheme CKS for a delegation family G, a retrieval
family R, and an erasure family E (or (G,R, E)-CKS for short) is an interactive protocol between
stateful user U and server S algorithms, respectively, defined by the following sub-algorithms:

Initialization:
– The stS ← S.Init(1κ) algorithm initializes the server’s state.
– The st← U.Init(1κ) algorithm initializes a user’s state.

10 Any protocol that supports dynamic groups needs some setup assumptions to bootstrap security. This
could be a traditional PKI, security codes, or a key-transparency system. We leave the choice to the outside
application and simply assume that there is a way for the message to be securely communicated.
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Key Management:
– The non-interactive append algorithm takes the current state st, an epoch e, a secret s, and flag

upload. The invocation (
st′, stup

)
← U.Append(st, e, s, upload),

produces an updated state st′ and, if upload = true, an upload state stup. (If upload = false,
then stup = ⊥.)

– The interactive upload algorithm takes the upload state and after the interaction(
⊥; st′

S
)
←

〈
U.Upload(stup)↔ S.Upload(stS)

〉
,

the server outputs an updated state st′
S.

– The interactive erase algorithm takes the current state st and a set of epochs share ⊆ N. After the
following interaction (

st′;⊥
)
←

〈
U.Erase(st, share)↔ S.Erase(stS)

〉
,

the user outputs an updated state st′ (and the server has no output).

Delegation:
– The interactive granting algorithm takes a user U1’s state st1 and a set share ⊆ N of keys to be

shared with another user U2. After the interaction(
msg;⊥

)
←

〈
U1.Grant(st1, share)↔ S.Grant(stS)

〉
the user outputs the information msg to be sent to the other party U2.

– The interactive grant-accepting algorithm extends another user’s U2 known key set by processing a
grant msg. After the interaction(

st′
2, stup;⊥

)
←

〈
U2.Accept(st2, share, msg, upload)↔ S.Accept(stS)

〉
the user outputs an updated state st′

2, as well as (if upload = true) a state for the Upload
algorithm.

Retrieval:
– The interactive key-retrieval algorithm restores the secrets for epochs share ⊆ N with the interaction(

secrets;⊥
)
←

〈
U.Retrieve(st, share)↔ S.Retrieve(stS)

〉
ending with the user outputting a function secrets : share→ s.

Efficiency requirements. In the following, assume secrets are appended in (roughly) consecutive
order. For a CKS scheme to be considered efficient, we require that in this case all operations operate
in sublinear — ideally logarithmic — time in the number of epochs n. As such, the predicates (G,R, E)
dictate efficiency requirements: if for instance a party wants to retrieve an arbitrary set I of epochs,
they can find a minimal cover I = I1 ∪ · · · ∪ Ik and obtain an overall efficiency of O(k log(n)). In
terms of client state, we require it to grow at most in the order of O(d log(n)), with d denoting the
number of erasure operations.

In case secrets are appended sparsely (such as odd epochs only), are appended completely out of
order, or linearly many erasures have been performed, efficiency may degrade to linear time.

The server state must grow at most linearly in the number of overall epochs outsourced by any
party, and in particular, must not grow in the number of participating parties. Observe that in the
above definition, the server state is only modified in Upload. For simplicity, we do not model that
Erase might enable to server to discard state once no party needs the certain information anymore;
an actual implementation might of course implement such optimizations.
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3.3 Correctness

Honest parties interacting with an honest server must be able to retrieve their secrets, as long as
uploading to the server is properly coordinated. This coordination can be non-trivial.11 In particular,
it may be insufficient if only the first user to learn a new secret runs the Upload procedure. Instead,
we may want to allow users to learn different subsets of secrets, learn secrets in different order, or
learn inconsistent secrets altogether. For instance, consider a setting with n + 1 users and n epochs.
For j ≤ n, user Uj learns sj (and nothing else). Afterwards, Un+1 learns all secrets s1, . . . , sn. For
efficient protocols, we cannot expect this user to maintain a compact state that allows them to recover
all secrets without having uploaded information themselves.12

We thus mandate that uploading is required unless another party knows a superset of secrets for
the same set of epochs. For example, if a user U already knows secrets 1 to n and now learns secret
n + 1, then they are not required to upload (but still can!) in case another user U ′ already knows
secrets 1 to 2n. If, on the other hand, at this point, U ′ knows secrets 1 to n and U ′′ knows n + 1
to 2n, then U still must run Upload. We believe this to be a good trade-off between usability (e.g.,
not requiring parties to learn secrets in the same order to be able to “contribute”) and efficiency of
potential schemes.

To enhance composability, we moreover demand that correctness holds even if the keys might be
adversarially chosen, and all states are assumed to be known to the adversary. In the case of a user
accepting a malicious grant request, no correctness guarantees are given for those particular keys but
the correctness of other epochs must not be affected. More concretely, the game tracks the difference
between epochs for which they know a certain secret (as tracked by Secret) and those for which they
believe to know a key (as tracked by Known) with the two diverging in case of malicious delegations.
The game then requires that retrieving and delegating keys works as long as all involved keys are
honest, and that erasure works as long as at least one key is honest. Furthermore, the adversary can
emulate malicious insiders interacting with the server. For simplicity, we assume the adversary to not
interleave those oracle calls, as an honest server could always serialize requests. Finally, note how
(G,R, E) affects the correctness notion. For instance, the Grant oracle can only be invoked for a user
U and share such that the user’s knowledge satisfies G for this share.

Definition 3. We say that a (G,R, E)-CKS scheme CKS is correct, if the probability of any adversary
A winning the (G,R, E)-CKS-CorrA

CKS game from Fig. 4 is negligible in κ.

4 CKS Security

In this section, we define the security of a CKS scheme, which consists of two properties: confidentiality
and integrity.

4.1 Definitional Challenges

Recall that CKS is not so much a cryptographic application in its own right, but intended to augment
existing applications with backup and delegation functionality. As such, the fundamental goal must
be to define CKS security in such a way that a (presumably) secure CKS scheme does not undermine
the security of the higher-level application. Moreover, one would wish for this to be modular such
that any secure CKS scheme can be used to augment any (suitable) application without having to
worry about interdependence. Typically, we expect this process to look as follows:
11 The coordination is left to the application integrating CKS. One possibility is each client communicating

with the server to see whether uploading is required. An alternative is the server issuing an attestation to
the client that did the upload, which can then be shared with the other clients.

12 It seems that such a strong notion would imply some form of homomorphic encryption where the server is
able to combine the information from the other users.
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Game (G,R, E)-CKS-CorrA
CKS (Correctness)

Main

win← false, n← 0
St[·], Secret[·, ·], GrantInfo[·]← ⊥
Known[·, ·]← false
stS ← S.Init(1κ)
ACreateUser,...,UploadAdv(1κ, stS)
return win

Oracle CreateUser

n← n + 1
St[n]← U.Init(1κ)
return St[n]

Oracle Append

Input: (u, e, s, upload) ∈ [n]× N× {0, 1}κ × {0, 1}
req Secret[u, e] = ⊥
Secret[u, e]← s; Known[u, e]← true
if ¬Subsumed(u) then

upload← true
(St[u], stup)← U.Append(St[u], e, s, upload)
if upload then(
⊥; stS

)
←

〈
U.Upload(stup)↔ S.Upload(stS)

〉
return (stS, St[u], stup)

Oracle Erase

Input: (u, share) ∈ [n]× P(N)
req E(Known[u, ·], share)(
st′;⊥

)
←

〈
U.Erase(St[u], share)↔ S.Erase(stS)

〉
if st′ = ERROR then

if ∀e ∈ share : Secret[u, e] ̸= ⊥ then win← true
else

St[u]← st′

for e ∈ share do
Known[u, e]← false; Secret[u, e]← ⊥

return st′

Oracle Retrieve

Input: (u, share) ∈ [n]× P(N)
req R(Known[u, ·], share)(
secrets;⊥

)
←

〈
U.Retrieve(St[u], share)↔ S.Retrieve(stS)

〉
if secrets = ERROR then

if ∀e ∈ share : Secret[u, e] ̸= ⊥ then win← true
else

for e ∈ share do
if Secret[u, e] /∈ {⊥, secrets(e)} then

win← true
Secret[u, e]← secrets(e)

return secrets

Oracle Grant

Input: (u, share) ∈ [n]× [n]× P(N)
req G(Known[u, ·], share)(
msg;⊥

)
←

〈
U.Grant(St[u], share)↔ S.Grant(stS)

〉
if msg = ERROR then

if ∃e ∈ share : Secret[u, e] ̸= ⊥ then win← true
else

keys[·]← ⊥
for e ∈ share do

keys[e]← Secret[u, e]
GrantInfo[msg]← (share, keys)

return msg

Oracle Accept

Input: (u′, msg, share, upload) ∈ [n]× {0, 1}∗ × P(N)× {0, 1}
(share′, keys)← GrantInfo[msg]
if GrantInfo[msg] ̸= ⊥ ∧ share′ = share then

for e ∈ share do
Secret[u, e]← keys[e]
Known[u, e]← true

if ¬Subsumed(u′) then upload← true
else upload← true(
st′, stup;⊥

)
←

〈
U.Accept(St[u′], share, msg, upload)↔ S.Accept(stS)

〉
if upload then(
⊥; stS

)
←

〈
U.Upload(stup)↔ S.Upload(stS)

〉
if GrantInfo[msg] ̸= ⊥ ∧ share′ = share then

if st′ = ERROR then win← true
St[u′]← st′

else if st′ ̸= ERROR then
for e ∈ share do Known[u, e]← true
St[u′]← st′

return (stS, st′)

Oracle UploadAdv

(⊥; stS)←
〈
A ↔ S.Upload(stS)

〉
return stS

Helper Subsumed

Input: u ∈ [n]
return ∃u′ ̸= u ∈ [n], ∀e : Secret[u, e] ∈ {⊥, Secret[u′, e]}

Fig. 4: The Compact Key Storage correctness notion. We assume the adversary to not interleave calls
of the adversarial oracles.

1. Prove the higher-level application (which uses a sequence of secrets) secure, without concerning
CKS;

2. Prove a CKS scheme secure with respect to its standalone security definition;
3. Deduce that the combined scheme, where one outsources the sequence of secrets using CKS, is

still as secure as the original application.

In particular, we would like that the last step can be done generically, reducing any attack on the
combined scheme to one on either the original scheme or the CKS security. Therefore, one can employ
any CKS scheme for any given application, and prove the security of each CKS scheme in isolation.

The natural candidate for a CKS security notion satisfying the above constraints would be
pseudorandomness: All the real secrets should remain pseudorandom even when given the CKS
ciphertexts, i.e., the uploaded backup. Indeed, most applications that use secrets assume in their
security games that those are chosen uniformly at random (or at least can be modularized into a part
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establishing pseudorandom secrets and a part assuming random secrets). Unfortunately, we will show
in Section 4.2 such a notion to be impossible, i.e., not satisfiable by any CKS scheme. We furthermore
argue in Section 4.3 that this is not simply a definitional shortcoming but that there are indeed
applications which when composed with our proposed CKS scheme — and most likely any efficient
CKS scheme — would be rendered insecure.

Slightly less ambitious, we can therefore ask for the combination with CKS to be secure for a
wide range of applications. How should this be reflected in the CKS security definition, and how can
the class of applications that can be combined with CKS be characterized? One approach would
be something along the line of saying that the secrets remain unpredictable even given the CKS
ciphertexts. Indeed, such a definition seems possible and avoids the impossibility result of Section 4.2.
However, this severely limits the class of potential applications that can be CKS-augmented, as many
applications require random and not merely unpredictable keys for their security. While, at least in
the ROM, most applications could be adjusted to work with unpredictable keys, a goal of ours is to
be able to combine CKS with legacy applications such as Signal or MLS that have not been designed
with CKS in mind.

Traditionally defining a weaker security notion for an abstract class of “good” applications is
done using two-stage games. Prominent examples are MLE or the notion of Universal Computational
Extractors (UCE) [11]. For instance, when applied to CKS one could formalize that a first adversary
generates some leakage (modeling the usage of the secrets by an underlying application such as SM),
while a second adversary then tries to break CKS. Unfortunately, such two-stage games tend not to
survive contact with reality. For instance, the sketched definition for CKS would require the underlying
application (e.g., SM) to be completely independent of the CKS. This assumption is trivially broken the
moment any malicious insider sends a CKS ciphertext over the secure messaging scheme. Generalizing
such multi-stage games to rule out impossibilities (i.e., impose enough restrictions) while still capturing
a wide variety of applications has proven to be challenging for various notions such as UCE [20,11].

A novel approach. Instead of using a multi-stage game, in the remainder of the section, we propose
a novel approach to defining CKS security, that (a) is (almost) independent of the concrete application;
and (b) appears to compose better than multi-stage games. In a nutshell, we turn the definition on
its head, and instead of formalizing CKS security in isolation, we define a very broad (and easy to
understand) class of “CKS-compatible games” G modeling the higher-level application (e.g., SM)
which uses the keys stored by the CKS. In Appendix B we show that this class encompasses a wide
variety of protocols, including Signal. We then require that CKS does not undermine the security of
any such CKS-compatible game G. We call this preservation security, as it aims to prove that CKS
preserves the security of an (already analyzed) scheme.

Our approach aims to bring the best of both worlds and achieve a notion that can be met by
(practical) CKS schemes while general enough to compose with a wide variety of applications. We
stress that our approach still constitutes a proper modularization, extricating us from proving the
security of each concrete application with a concrete CKS scheme as a monolith. We hope that this
approach could also be useful for other primitives such as MLE [10].

Modeling choices. While we strive to keep our novel security definition as generic as possible, some
of its aspects do reflect specific assumptions about the schemes. Let us briefly discuss those:

– Deterministic schemes: Our security definition deliberately allows for deterministic CKS schemes.
Recall that CKS should allow a group of parties to jointly outsource a shared sequence of secrets,
without additional interaction, coordination, or shared setup. This seems inherently linked to
various deduplication notions whose practical schemes share the trait of being built around
determinism. Examples are MLE or proof-of-ownership [34].

– ROM: Our security definition will leverage the random oracle model. We believe that most practical
CKS schemes will anyway rely on the ROM.
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4.2 Impossibility of Key-Indistinguishability

For simplicity, consider the special case of “all-or-nothing” CKS. Recall that in this case the functionality
of the scheme simply requires that from the current state sti and previously uploaded ciphertexts
(c1, . . . , ci), all the secrets (s1, . . . , si) should be recoverable. Now, we would like to say that the
knowledge of ciphertexts should not jeopardize the security of the outside application that uses
(s1, . . . , si).

The strongest and most natural formalization of such security would require that all the real
secrets remain pseudorandom conditioned on (st0, c1, . . . , ci), where st0 is the initial (public) state.
Unfortunately, a moment of reflection demonstrates that this is incompatible with correctness —
requiring that, from the current state sti and previously uploaded ciphertexts (c1, . . . , ci), all the seeds
(s1, . . . , si) should be recoverable — and compactness saying that correctness should hold even if the
ciphertexts were uploaded by different users.

This impossibility holds true even for a weaker notion with an honest-but-curious server. To this
end, consider the following simple key-indistinguishability notion: One user, say, Alice, appends n
keys to the CKS. Afterward, an adversary is given real-or-random keys as well as the server’s most
recent state stS and tries to distinguish the two cases.

Lemma 1. For every correct CKS scheme that is non-trivial — i.e., for which a party’s local state
grows slower than the key material recoverable by that party — there exists a PPT adversary A and a
polynomial n, such that

Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b←$ {0, 1}
st← U.Init(1κ); stS ← S.Init(1κ)
s0

1, s1
1, s0

2, s1
2, . . . , s0

n, s1
n ←$ {0, 1}κ

∀i ∈ [n] : (st, stup)← U.Append(st, i, s0
i , true),(

⊥; stS
)
←

〈
U.Upload(stup)↔ S.Upload(stS)

〉
b′ ← A(1κ, sb

1, . . . , sb
n, stS)


is not bounded by 1

2 + negl(κ).

Proof (Sketch). Choose n such that the compactness of the CKS kicks in: |stn| ≪ |s1|+ . . . + |sn|,
where sti refers to the state after the i-th append operation in the above experiment. In the following,
let’s call the user appending the keys to the CKS in the above experiment Alice. Now, consider the
following adversary A: The adversary emulates a second party, say, Bob in their head. Bob appends
the keys sb

1, . . . , sb
n to the CKS by internally running Append. Finally, A retrieves all the keys on

Bob’s behalf by internally emulating the interactive Retrieve algorithm using the state stS input to
the adversary. It outputs 0 iff all keys match the one input to the adversary.

Observe that by correctness A will output 0 if b = 0, i.e. if Bob uploads the same keys as Alice. On
the other hand, if b = 1 then the server’s state stS at the end of Alice’s uploads is independent of the
keys (s1

1, . . . , s1
n) afterward output by the Challenge oracle. Observe that A uses this same unmodified

server state throughout the rest of the execution (recall that for correctness only one party needs
to upload) and in particular for the final key retrievals. Meanwhile Bob’s state st′

n can depend on
the keys input to the adversary — but is compact as well, i.e., |st′

n| ≪ |s1|+ . . . + |sn|. Hence, the
probability of the interaction of Bob and the server successfully recovering (s1

1, . . . , s1
n) is negligible

based on a basic information-theoretic observation. ⊓⊔

4.3 Preservation Security

In this section, we formally introduce our CKS security notion.
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CKS-compatible games. First, we define the type of games for which preservation security will
be applicable, which we call CKS compatible. Obviously, such a game (and hence its corresponding
primitive) must define keys one wishes for CKS to outsource. We stress that this does not necessarily
mean that the adversary gets to see those keys, but simply that syntactically the game defines such a
sequence. For instance, for any secure messaging application that can be modularized as employing
a continuous key agreement (CKA) [2] or continuous group key agreement (CGKA) [3] scheme, the
respective security game hopefully turns out to be CKS-compatible with the C(G)KA instance run as
part of the scheme within the challenger defining the sequence of keys.

To cope with corruptions of a party’s CKS state, a CKS-compatible game must moreover offer
an exposure oracle leaking the keys: By correctness the CKS state allows the adversary to restore
all its stored keys, implying they can no longer be secure. It is up to the game to deem certain
unavoidable attacks (e.g., where the key used for a challenge of a committing-encryption scheme would
be exposed) caused by such an exposure to be “trivial” by adjusting its winning condition accordingly
(e.g., deeming the adversary to lose the game if they exposed a key used in a challenge).

CKS schemes must support effective deduplication and strong integrity properties against malicious
insiders. We anticipate that this implies efficient schemes to leverage determinism. (For instance, for
MLE, no randomized scheme with strong tag consistency is known [10].) As a result, we stipulate
that CKS must only be used for applications that can tolerate a testing oracle for the keys without
security breaking down.

Definition 4. A security game G = (C, α) is characterized by a challenger C, which upon interaction
with an adversary A outputs a bit b, and the advantage function α : N→ [0, 1] such that the advantage
of A winning G is characterized by

AdvG(A) = |Pr[A(1κ)↔ C(1κ)⇒ 1]− α(κ)|,

where the interaction’s output bit is w.l.o.g. decided by the challenger C.

Definition 5. A game G = (C, α) is said to be CKS compatible if C provides the following private
oracle (not accessible to the adversary)

– A Keys oracle that upon input an epoch e ∈ N outputs a key k ∈ {0, 1}κ or an error ⊥, such that
once a value k has been set it is persistent (i.e., subsequent queries return the same k).

and the following public oracles to the adversary

– A Test oracle that upon input an epoch e and a key k′ outputs whether k = k′, i.e., whether k′

matches the return value by the Keys oracle.
– An Expose oracles that upon input an epoch e returns the key from Keys(e).

Keys are to be of fixed length and, for simplicity, we assume the key space to be {0, 1}κ in the following.

Examples of CKS compatibility. CKS compatibility is mainly a structural requirement — the
application must make use of an ordered sequence of secrets — except for the key-testing oracle.
Most cryptographic primitives and schemes naturally tolerate the presence of such a testing oracle, as
any attacker who could guess secrets with non-negligible probability could anyway break the primi-
tive/application. The exception to this rule appears to be non-committing primitives. In Appendix B
we indeed show the CKS compatibility of a number of primitives, and also briefly sketch the CKS
compatibility of the Signal protocol, one of our main motivating examples for CKS.

In the following, we consider two simple examples. First, we establish the CKS compatibility
of one-time authenticated encryption — the argument that will be at the core of Signal’s CKS
compatibility. Second, we use the One Time Pad as a rare example of an application that cannot be
securely augmented with CKS. For simplicity, we consider a single epoch (i.e., a single secret) only
and only allow for a single call to the testing oracle. Both simplifications are without loss of generality.

17



Positive example: one-time authenticated encryption. Consider (symmetric) authenticated encryption
with one-time security, which formalizes the security of an AE scheme where at most one message can
be encrypted. Intuitively, we argue that any adversary who can guess the key could instead break
authenticity. As a result, the testing oracle can be replaced by a trivial one that always returns 0.

Lemma 2. Let GOTAE denote the one-time AE security game: if b = 0 then the adversary can ask for
the encryption of a single challenge message m∗ and receive c∗. Afterward, they can make arbitrarily
many decryption queries for c′ ̸= c∗. If b = 1, then the game returns c∗ to be a uniform random
ciphertext instead, and the decryption oracle always returns ⊥. Let G+

OTAE denote the same game with
an additional testing oracle for the key k that can be queried once. For every PPT adversary A that
can win G+

OTAE with non-negligible probability, there exists a PPT adversary B that wins GOTAE with
non-negligible probability.

Proof. Consider a hybrid game HOTAE that augments GOTAE by a trivial testing oracle that always
returns 0. As this oracle can be emulated, winning this game is just as hard as winning the standard
PRF security game GOTAE. To see that any PPT adversary A has the same winning probability for
the hybrid as the game G+

OTAE with a proper testing oracle, we use the following reduction to GOTAE:

– The adversary B runs A internally, forwarding the challenge message and response, as well as any
decryption queries.

– Once A calls the testing oracle on k′, B randomly chooses m̃ different to m′ and encrypts it under
k′ to obtain c̃.

– It then submits c̃ to the decryption oracle and returns b′ = 0 if this decrypts to m̃. Otherwise, it
samples b′ = 1 uniformly at random.

Assume A distinguishes G+
OTA and HOTA with probability β. Since the games are equivalent-until-bad,

this means A queries the testing oracle with k′ = k with probability (at least) β. Let γ denote the
probability of the check in the reduction succeeding. If b = 1, then γ is 0 and, therefore, B guesses
b′ = 1 with probability 1/2. If b = 0, then observe that c̃ ≠ c∗ with overwhelming probability by the
correctness of the scheme. Thus, we know that γ ≥ β (the ciphertext could still decrypt even if the
key differs e.g. in one bit). The conditional probability of B correctly guessing b′ = 0 is therefore
γ/2 + 1/2 ≥ β/2 + 1/2, resulting in a non-negligible overall advantage. ⊓⊔

Negative example: One Time Pad. Not every application is compatible with our CKS notion and, hence,
exhibits a CKS-compatible security game. In the following, we show that the one-time security game
of the one-time pad (OTP) is incompatible. In other words, we show that winning the CKS-enhanced
game is easier than winning the original game by a non-negligible gap.

Lemma 3. Consider the one-time IND-CPA security game enhanced with a Test oracle When instan-
tiated with the One Time Pad, there exists a PPT adversary A who wins this game with non-negligible
advantage.

Proof. Consider the following adversary: A chooses two distinct messages of appropriate length, m0
and m1, and submits them as the challenge. Given the challenge ciphertext c, the adversary queries
the testing oracle for the key k0 := c⊕m0. If the testing oracle returns true, A guesses b = 0, and
b = 1 otherwise. Since c := mb ⊕ k, where k denotes the key used by the challenger, we can observe
that k0 = c⊕m0 = k ⊕ (mb ⊕m0) equals k iff b = 0. ⊓⊔

CKS-enhanced games. For a CKS-compatible game, we now define the enhanced game in which
the adversary further gets to interact with parties executing the CKS scheme. Intuitively, we would
hope that for any CKS-compatible game, this enhanced game is still secure. Unfortunately, this is
impossible: Consider the game whose winning condition is to compute a valid CKS ciphertext, with
the adversary in the original game having no information on the keys at all. Obviously, this game
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Game GCKS

Main

b← ⊥ ; n← 0
St[·], Msgs[·], RO[·]← ⊥
Known[·, ·], ActualKey[·, ·], Corr[·]← false
AChallenger, CreateUser, . . . , RO(1κ)
if b = ⊥ then b← 0
return b

Oracle Challenger

req b = ⊥
b← 0
(⊥; b)←

〈
A ↔ C

〉
Oracle CreateUser

n← n + 1
St[n]← U.InitRO(1κ)

Oracle Corrupt

Input: u ∈ [n]
for all e : ActualKey[u, e] = true do

Corr[e]← true
C.Expose(e)

return St[u]

Oracle Append

Input: (u, e, s, upload) ∈ [n]× N× ({0, 1}κ ∪ {⊥})× {0, 1}
req Known[u, e] = false
if s = ⊥ then

s← C.Keys(e)
// Record that party knows actual key
ActualKey[u, e]← true

try
(
St[u], stup

)
← U.AppendRO(St[u], e, s, upload)

if upload then
try

〈
U.UploadRO(stup)↔ A

〉
Known[u, e]← true

Oracle Erase

Input: (u, share) ∈ [n]× N× ({0, 1}κ ∪ {⊥})
try

(
St[u];⊥

)
←

〈
U.EraseRO(St[u], share)↔ A

〉
for e ∈ share do

Known[u, e]← false ; ActualKey[u, e]← false

Oracle Grant

Input: (u, share, leak) ∈ [n]× P(N)× {0, 1}
try

(
msg;⊥

)
←

〈
U.GrantRO(St[u], share)↔ A

〉
if leak then

for e ∈ share : ActualKey[u, e] do
C.Expose(e)

h← msg
else

h←$ {0, 1}κ // handle for delivery
actual← {e ∈ share | ActualKey[u, e]}
Msgs[h]← (msg, actual)

return h

Oracle Accept

Input: (u′, share, h, upload) ∈ [n]× P(N)× {0, 1}∗ × {0.1}
actual = ⊥
if Msgs[h] ̸= ⊥ then

(msg, actual)← Msgs[h] // Delivery
else

msg← h // Injection
try

(
St[u′], stup;⊥

)
←

〈
U.AcceptRO(St[u′], share, msg, upload)↔ A

〉
if upload then

try
〈
U.UploadRO(stup)↔ A

〉
if actual ̸= ⊥ then

for e ∈ actual do
if Known[u′, e] = false then

ActualKey[u′, e]← true
for e ∈ share do

Known[u′, e]← true

Oracle Retrieve

Input: (u, share) ∈ [n]× P(N)
try

(
secrets;⊥

)
←

〈
U.Retrieve(St[u], share)↔ A

〉
Random Oracle

Input: x ∈ {0, 1}∗

if RO[x] = ⊥ then RO[x]←$ {0, 1}κ

return RO[x]

Fig. 5: The CKS-enhanced game GCKS for a CKS-compatible one G = (C, α) and a CKS scheme CKS.
The advantage function α is the same as the one associated with the underlying game G. The adversary
is assumed to not invoke two oracles for the same user u concurrently.

transforms from impossible to trivial to win the moment the CKS-enhanced game provides CKS
ciphertexts to the adversary.

Clearly, this is a contrived game and does not correspond to an application we actually care for. It
shows, however, that we must enforce some level of separation between the application and the CKS
scheme. (For applications we care for, such as SM, this is not an issue as those schemes have not been
designed with the adversarial goal of breaking CKS.) We resort to the random oracle model and allow
the CKS scheme to employ a fresh random oracle on which the game/application cannot depend.13

We believe this to be a good compromise, admitting a broad class of applications to which CKS can
be applied.

Definition 6. For a CKS-compatible game G = (C, α) and a (G,R, E)-CKS scheme CKS, we define
the enhanced CKS game GCKS = (CCKS , α) with the following challenger:
13 While, for instance, a secure messaging protocol to be combined with CKS cannot depend on that random

oracle, the messages sent (which are inputs to the security game) still could.

19



– The challenger CCKS internally runs C and provides all the public interface of C to the adversary
(by forwarding the queries and responses).

– Additionally the challenger accepts the following queries simulating the execution of a CKS scheme:
creating CKS users and appending sets on behalf of those users, as well as delegating and restoring
keys.

– The adversary can moreover corrupt a CKS user, upon which CCKS runs C.Expose(e) for each
epoch e known to the user before returning the user’s CKS state. (This models that, using the
leaked CKS state, the adversary can reconstruct those keys).

– The adversary can interact with the random oracle on which the CKS scheme CKS depends.

A detailed description of CCKS is given in Fig. 5, depicting the overall interaction between CCKS and
an adversary A. We call an adversary A admissible against CCKS if the adversary does not interleave
oracle calls for any user u.14

We refer to Appendix C for further discussion on GCKS. Using this game, we can now define CKS
security for a scheme CKS. Simply put, the following definition requires that adding an execution of
the scheme does not make winning any CKS-compatible game G substantially easier.

Definition 7. A CKS scheme is secure if for any CKS-compatible game G we have that for any
admissible PPT adversary A there exists a PPT adversary A′, and a negligible function negl : N→ [0, 1],
such that

AdvGCKS(A) ≤ AdvG(A′) + negl(κ).

4.4 Integrity

Integrity requires that users either restore their correct key, i.e., the one they outsourced, or output
an explicit error indicating that a key could not be restored. See Fig. 6 for a formal definition of the
integrity game, with the respective assertion in the Retrieve oracle. Let us briefly expand on some of
the additional assertions: First, in the Append oracle the game asserts that a user rejects repeated
appending unless it is the same key. Similarly, in the grant process, the granting user must reject if
they do not know some of the keys, and the receiving party must reject if one of the keys mismatches
a key they already know.

Note that in the case of a user u accepting an injected grant message msg, the game might not
know u’s resulting keys. Instead, the game assigns placeholders Kp, for p ∈ N, that are (globally)
replaced once the keys become known. This allows to enforce consistency even if u further delegates
those keys. Additionally, we remark that we require integrity to hold even if the users’ states are
known to the adversary. This formalizes immediate post-compromise security (PCS) — ensuring that
the PCS guarantees of the CKS scheme are at least as strong as the PCS guarantees of any scheme
for which one intends to deploy CKS.

Definition 8. We say that a CKS scheme CKS satisfies integrity if

Pr
[
CKS-IntA

CKS ⇒ 1
]
≤ negl(κ)

for the game from Fig. 6 and any PPT adversary A.

5 Compact Key Storage Schemes

In this section, we present two CKS schemes. Both of the schemes allow a party to share the entire
communication history efficiently, with the former having constant local storage but linear key-recovery
time, while the latter has both logarithmic local storage and key-recovery time. Additionally, the
latter scheme also allows sharing and erasing arbitrary intervals of one’s storage.
14 It can be assumed that a single user would not engage in a CKS protocol interaction as long as they are

still in an ongoing one.
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Game CKS-IntA
CKS (Integrity)

Main

win← false
n← 0
p← 0
St[·], Secret[·], Granted[·]← ⊥
ACreateUser,Append,Erase,Grant,Retrieve(1κ)
return win

Oracle CreateUser

n← n + 1
St[n]← U.Init(1κ)
return St[n]

Oracle Append

Input: (u, e, k, upload) ∈ [n]× N× {0, 1}κ × {0, 1}
try (St[u], stup)← U.Append(St[u], e, k, upload)
if upload then

try
〈
U.Upload(stup)↔ A

〉
if Secret[u, e] ̸= ⊥ ∧ Secret[u, e] ̸= k

∧ ∀p ∈ N : Secret[u, e] ̸= Kp then
win← true

if ∃p ∈ N : Secret[u, e] = Kp then
for all (u′, e′) s.t. Secret[u′, e′] = Kp do

Secret[u′, e′]← k
else

Secret[u, e]← k
return St[u]

Oracle Erase

Input: (u, share) ∈ [n]× N× P(N)
try

(
St[u];⊥

)
←

〈
U.Erase(St[u], share)↔ A

〉
for e ∈ share do Secret[u, e]← ⊥
return St[u]

Oracle Grant

Input: (u, share) ∈ [n]× P(N)
try

(
msg;⊥

)
←

〈
U.Grant(St[u], share)↔ A

〉
for e ∈ share do

if Secret[u, e] = ⊥ then win← true
Granted[msg]← {(e, Secret[u, e]) | e ∈ share}
return (St[u], msg)

Oracle Accept

Input: (u′, share, msg, upload) ∈ [n]×P(N)×{0, 1}∗×{0, 1}
try

(
St[u′], stup;⊥

)
←

〈
U.Accept(St[u′], share, msg, upload)↔ A

〉
if upload then

try
(
St[u′];⊥

)
←

〈
U.Upload(stup)↔ A

〉
if Granted[msg] ̸= ⊥ then

if share ̸= {e | (e, ·) ∈ Granted[msg]} then
win← true

for (e, k) ∈ Granted[msg] do
if Secret[u′, e] /∈ {⊥, k} then win← true
Secret[u′, e]← k

else
for e ∈ share do

if Secret[u′, e] = ⊥ then
p← p + 1; Secret[u′, e]← Kp

return St[n′]

Oracle Retrieve

Input: (u, share) ∈ [n]× P(N)
try

(
secrets;⊥

)
←

〈
U.Retrieve(St[u], share)↔ A

〉
for e ∈ share do

if Secret[u, e] ̸=secrets(e) ∧ ∀p ∈ N : Secret[u, e] ̸=Kp then
win← true

if ∃p ∈ N : Secret[u, e] = Kp then
for all (u′, e′) s.t. Secret[u′, e′] = Kp do

Secret[u′, e′]← secrets(e)
return St[u]

Fig. 6: The integrity notion of CKS. The values Kp, for p ∈ N, are placeholders that are assumed to be
distinct symbols, i.e., Kp ̸= ⊥, Kp ̸= k for any bitstring k, and Kp ̸= Kq for p ̸= q.

5.1 The Line Scheme

The first scheme is denoted CKSHA for history access. It allows delegating prefixes and efficiently
retrieving consecutive intervals of keys15. More formally, its delegation predicate GHA allows parties
to delegate arbitrary prefixes of the keys they know, and RHA(Known, share) returns true iff share
is a consecutive sequence of epochs for which the party knows all keys. The scheme does not offer
forward secrecy, i.e., it does not allow selectively erasing data.

Recall the high-level overview of the scheme from Section 1.3. In a nutshell, the scheme leverages
convergent encryption (CE) as follows: to outsource a new secret se when having state ste−1 :=
(e− 1, Ke−1, Te−1) (where Ke−1 is a symmetric key used to encrypt the secret for the previous epoch,
and Te−1 is a tag to authenticate the corresponding ciphertext), a party first deterministically derives
Ke := H(se∥Ke−1) to then encrypt the pair under said key as Ce := SE.Enc(Ke, (se∥Ke−1)), for a
suitable symmetric encryption scheme SE. To ensure integrity against a malicious server, the party
moreover computes a tag Te := H(Ce∥Te−1) that is stored as part of the new state ste := (e, Ke, Te)
alongside the key. We dubbed this process “Derive” and the inverse operation “Invert,” which are
repeated for each new secret — see Fig. 2 for a graphical representation.

15 An individual key for epoch e can, for instance, be retrieved as the singleton interval [e, e] or as part of any
interval containing e.
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In the following, we discuss some omitted details such as appending secrets out-of-order, and how
this ties in with the CKS operations such as access delegation. A formal description of the scheme is
presented in Appendix E.1. A formal description of the scheme is presented in the full version.

Protocol state. As described above, the user stores the current CE key and CE tag. When appending
an out-of-order secret, the user just stores the secret as part of its local state for the time being. More
formally, let emax be the largest epoch number such that the user learned all secrets (s1, . . . , semax ). (We
use emax here to distinguish it from the epoch e and secret se input to U.Append.) The protocol state
is then defined as st := (emax, Kemax , Temax , Secret), where Secret[e] stores the secret the user learned for
any e > emax + 1. Let ℓ denote the output length of the hash function. In U.Init, the state is initialized
to emax = 0, K0 = 0ℓ, T0 = 0ℓ, and an empty mapping Secret. The server state stS, on the other hand,
just consists of an (append-only) key-value storage. It maps Te to pairs (Ce, Te−1) consisting of the
associated ciphertext and the tag of the prior epoch.

Outsourcing the keys. Assume the user has a state st := (emax, Kemax , Temax , Secret) and learns the secret
for the next consecutive epoch, i.e., e = emax + 1. Then they invoke the “Derive” process to update
their state and obtain ce. If all secrets have been learned in order, then U.Append is done at this
point. However, it could also be that the user already knows se+1, i.e., Secret[e + 1] ̸= ⊥. In this
case, the algorithm simply runs “Derive” again and erases Secret[e + 1] afterward. This process is
repeated until no further consecutive secret is known; we call this process state compaction. The upload
state stup output by U.Append is then the set of all ciphertexts {ce, . . . , ce′} produced in this process
and U.Upload simply sends stup to the server. Note that for each such ciphertext ce := (e, Ce, Te−1),
S.Upload computes Te := H(Ce∥Te−1) and then stores the mapping from (e, Te) to (Ce, Te). The server
computing the tag themselves is crucial for a malicious party not being able to overwrite honest user’s
ciphertexts.

Whenever U.Append receives a secret for an out-of-order epoch e with e > emax + 1, it just stores
se as part of their local state as Secret[e] := se; nothing gets outsourced to the server at this point.

Retrieving keys. Now assume that a user with state st := (emax, Kemax , Temax , Secret) wants to retrieve
a key for epoch e. There are two cases: First, if e > emax then U.Retrieve just outputs Secret[e],
returning either the secret or an error in case this value has not been set. If e ≤ emax, then the user
needs to recover the key using the help of the server. To this end, the user requests the ciphertexts
(ce, . . . , cemax ) from S.Retrieve and uses the “Invert” procedure to retrieve the keys. Note that, crucially,
this process also works if another party U′ (or various parties) initially has outsourced the ciphertexts.
Furthermore, observe that the user can request those ciphertexts simply by specifying the latest tag
Temax and the number of ciphertexts they need. While the effort is linear in the number of epochs
the user wants to go back, it is (asymptotically) optimal in recovering the keys for the entire suffix
[e, emax].

Delegating access. If a user U1 wishes to delegate access to the keys of epochs in share = {1, . . . , e} to
some other user U2, they can send that user the state (e, Ke, Te). If e < emax, then U1 first recovers this
state using “Invert” and the help of the server, analogous to when retrieving the secrets. Assume in
the following that U2 knows state st′ := (emax

′, Kemax′ , Temax′ , Secret′) for some emax
′ < e (as otherwise

there would be no need for delegation). U2 then first checks the consistency of (e, Ke, Te) with their
local state. If emax

′ > 0, i.e., they have some non-trivial state, then they “Invert” from the received
state until emax

′ and check that they recover the same ciphertext and tag Ke, Te). In addition, for
any emax

′ < e′ ≤ e such that Secret′[e′] ̸= ⊥ they check the consistency along the way and then erase
it from Secret′. If emax

′ = 0, then they invert until the smallest epoch for which Secret′[e′] ̸= ⊥ and
just check consistency with those keys. If all checks succeeded, they set st′ := (e, Ke, Te, Secret′), with
the pruned Secret′. Finally, the further compact their state in case Secret′′[e + 1] ̸= ⊥, potentially
producing an upload state stup for U2.Upload.

Security and correctness. By inspection, we observe that correctness trivially follows. In particular,
the collision resistance of the tagging mechanism (hash function) ensures that the honest server hands
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the parties back the correct ciphertexts — even when malicious parties are present — while the
determinism of the CE scheme further ensures the compactness of the server’s state. Correctness of the
recovered keys then follows from correctness of the CE scheme, which in turn follows from correctness
of the underlying symmetric encryption scheme SE.

Theorem 1. The line scheme CKSHA is correct, i.e., assuming the underlying CE scheme to be correct,
we have for any PPT adversary A

Pr
[
(GHA,RHA, EHA)-CKS-CorrA

CKSHA
⇒ 1

]
≤ negl(κ).

For security, let us first consider integrity. Here, integrity mainly follows by collision resistance
of H, and thus the locally stored T binding the entire history of ciphertexts. Combined with the
correctness of the CE scheme, this ensures that parties recover the correct key (or there is a denial of
service). A proof of the following theorems is presented in Appendix E.2.

Theorem 2. The line scheme CKSHA satisfies integrity, i.e., for any PPT adversary A

Pr
[
CKS-IntA

CKSHA
⇒ 1

]
≤ negl(κ),

if the hash function H is collision resistant and the SE scheme correct.

Finally, consider CKS security. For our analysis, we require the convergent encryption to be
non-committing. We discuss this in Appendix D in more detail. We remark that this stems from the
strong CKS security notion that requires that if an application can tolerate fully adaptive corruption
then adding CKS must preserve this property.16 Notice however, that one-time security is sufficient
for our cause: honest parties encrypt each distinct message with an independent key, as the encryption
keys are deterministically derived as a hash of the ciphertext.

Theorem 3. The line scheme CKSHA is secure, i.e., for any CKS-compatible game G and any
admissible PPT adversary A there exists a PPT adversary A′ such that

AdvGCKS(A) ≤ AdvG(A′) + negl(κ),

if the SE scheme is correct, non-committing, and one-time IND-CPA secure, and the hash function is
modeled as a random oracle.

Efficiency. Our scheme supports efficient delegation of the entire prefix, as it sends a single ciphertext
Ce and tag Te, whose sizes do not depend on the current epoch. For retrieving secrets [i, j], the scheme
needs O(emax− i) basic cryptographic operations if the party is currently in epoch emax. This is optimal
when retrieving the entire suffix and suboptimal when retrieving individual keys. Additionally, the
same number of ciphertexts is needed from the server. The state is of constant size (in the number of
epochs) if the party knows the keys of a consecutive prefix of the epochs. Otherwise, it additionally
contains a number S of (disjoint) seeds. In the best case, appending involves a single CE encryption
and outsourcing a single CE ciphertext, while worst case, it might involve up to S + 1 such operations
and ciphertexts — it is easy to see, however, that amortized it is O(1) encryptions.

Table 1 shows the concrete efficiency of appending the N -th secret to a CKS with N−1 consecutive
secrets stored, with the primitives instantiated as follows. We instantiate H with a hash function
with arbitrary input size and output length ℓ, i.e., H: {0, 1}∗ → ℓ. We envision instantiating the
deterministic one-time non-committing IND-CPA encryption using a hash-based Counter Mode: for
each block of length ℓ, derive a pad by hashing the secret key and a counter, and XOR-ing the resulting
steam with the plaintext.
16 For applications that are selectively secure only, our CKS schemes when instantiating SE with a regular

(deterministic) encryption scheme should suffice.
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# hashes client state size server upload size server state size
line CKS 4 2ℓ + k 3ℓ + k N(4ℓ + k)

interval CKS, N = 2h 4h 2ℓ + k h(3ℓ + k) (N − 1)(5ℓ + k)
interval CKS, N is odd 0 extra ℓ + k 0 unchanged

Table 1: Concrete efficiency of U.Append in our CKS schemes. We consider the cost of adding the
N -th key to a CKS with N − 1 consecutive keys stored. ℓ denotes the hash output length, which is
assumed to be the same as the length of a secret, while k denotes the space necessary to store the
max epoch number, as well as node identifiers in the binary tree for the interval scheme. The first
column refers to the number of invocations of the hash function, each with an input of size up to 3ℓ.
We ignore the (small) overhead of maintaining an efficient dictionary for the server-stored ciphertexts
and only count the space necessary to store keys and values.

Drawbacks. While the above scheme has several benefits — such as its simplicity or having constant
local state and upload bandwidth per appended secret — it has some shortcomings. It does not provide
efficient retrieval of individual keys (taking time (n− j) to recover key j from state/key n) and has a
coarse-grained delegation mechanism being limited to entire prefixes. In particular, it does not allow
a party that has not been part of the CKS from the beginning to contribute, unless that party is
granted access to the entire history first. This limits it to applications where it can be assumed that
all parties know all keys. (There exists a number of applications such as Slack or Keybase where new
group members get access to the entire chat history.)

Finally, even though the delegation of the latest prefix is efficient (the party can just send its
current state) under certain conditions the process of accepting said delegation is not. Assume a
party previously has known secrets 1 to i and at a later stage another party wants to delegate them
access from 1 to j with i≪ j. Such a situation could, for instance, occur if the party has gone offline
for an extended period of time or a device has been presumed lost and then found again. In such a
case there is a subtle attack in which the granting party sends a valid CKS state that is inconsistent
with the accepting party’s prior keys. One might hope that, even if the granting party is malicious,
the accepting party should not lose access to past keys (assuming the server cooperates) while the
accepting party obviously still wants to compact its state. To this end, upon receiving the newer state
the accepting party has to perform O(j − i) computation to verify that their prior state is consistent
with the shared one.

5.2 The Interval Scheme

We now present a scheme called CKSInterval, addressing the aforementioned drawbacks of the CKSHA
scheme. The CKSInterval scheme enables a user Alice — currently located at epoch n — to help
another user Bob to get enough information to retrieve keys in some interval [i, j], where i ≤ j ≤ n.
Furthermore, the scheme allows to efficiently retrieve or erase keys of any interval [i, j]. In particular,
it enables parties to recover secrets they once knew in worst-case logarithmic time and allows for
fine-grained delegation and erasure, efficiently supporting arbitrary intervals of one’s storage.

On a high level, the scheme replaces the iterative Merkle-Damgård-esque approach with a Merkle-
Tree-esque construction. That is, the construction assigns epochs to leaves in a binary tree. Instead of
aggregating the previous state with the new epoch’s secrets, the construction then either aggregates
two secrets (at the leaves) or two states (for other nodes). See Fig. 7 for a graphical overview of the
outsourcing process. More concretely, each node v in the tree has a state stv = (Kv, Tv) consisting of
a CE key and tag assigned. (Of course, the user’s protocol state st will only store the node states for a
minimal set of nodes.) Whenever the protocol knows the state for both children vleft and vright of a
node v, it then derives the state of v mostly analogous to the CKSHA scheme:

Derive
(
stvleft = (Kvleft , Tvleft), stvright = (Kvright , Tvright)

)
:
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Fig. 7: A schematic representation of the Interval Scheme, showing the top half of the tree that
supports four epochs. The solid lines show the “compaction” of the secrets (labeled by their epoch
number) using convergent encryption, resulting in a CE ciphertext sent to the server and ciphertext
and tag for the next level (labeled by the node index). At the leaves, the scheme sets the key to be
equal to the secret (e.g., K000 := s1) and the tag to be 0ℓ.

1. Kv ← H(Kvleft∥Kvright)
2. Cv ← SE.Enc(Kv, (Kvleft∥Kvright))
3. Te ← H(Ce∥Tvleft∥Tvright)
4. Sends cv ← (v, Cv, Tvleft , Tvright) to the server and stores stv ← (Kv, Tv).

For the e-th leaf, corresponding to epoch e, stve = (se, 0ℓ) is set to the secret se and a constant tag.
The corresponding “Invert” procedure then recovers the states of the children of v:

Invert
(
stv = (Kv, Tv), cv = (v, Cv, Tvleft , Tvright)

)
:

1. T ′
v ← H(Cv∥Tvleft∥Tvright);

2. Check T ′
v

?= Tv;
3. (Kvleft∥Kvright)← SE.Dec(Kv, Cv);
4. Output stvleft ← (Kvleft , Tvleft) and stvright ← (Kvright , Tvright).

Note that while non-trivial compaction in the line scheme was only necessary in case of out-of-order
appending of secrets, in the tree whenever a secret is learned for some node v (e.g., for a leaf in
case of U.Append or for an intermediate node as part of U.Accept) then compaction can potentially
happen on the path from v to the root. Finally, observe that even for in-order appending the state of
a party can become logarithmically sized, instead of constant as in the line scheme. In the following,
we describe this state and the overall protocol in a bit more detail — see Appendix F.1 for a formal
description of the scheme.

Protocol state. In the following, we describe the protocol that assumes some upper bound T = 2h on
the number of epochs. Parties therefore store a binary tree τ of height h, with each node v having
associated state stv := (Kv, Tv) consisting of a CE key and tag. For simplicity, we will write v.K and
v.T to denote the respective components of stv. Moreover, for simplicity, we assume that ℓ = κ, and
therefore the output length of the hash function is the same as the length of a secret. (Otherwise,
an appropriate padding needs to be performed to secrets.) In slight abuse of notation, we, therefore,
store ve.K := se and ve.T := 0ℓ at a leaf. The invariant the client state maintains is that on each path
from a leaf to the root at most one node has values assigned. Consider a continuous interval of epochs
Ij = [a, b] ⊆ [T ]. Observe that the minimal set of nodes such that exactly the leaves in Ij can be
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reached from those nodes is of size 2 log(T ). We call this set the cover of Ij , denoted *cover(Ij). If
I1 ∪ · · · ∪ Iη denotes the partition of disjoint epoch intervals for which a party does “know” the secret,
local storage st thus is of size O(η · log(T )).17

The server, on the other hand, for each node v maintains a mapping from tag Tv to a ciphertext
Cv and tags Tvleft and Tvright of the left and right child nodes. Crucially, the server computes Tv :=
H(Cv∥Tvleft∥Tvright) themselves, to prevent malicious insider attacks.

Outsourcing the secrets. When U.Append gets a secret se for epoch e, it takes the e-th leaf ve and
assigns ve.K = se and ve.T = 0ℓ. It then traverses the path from ve to the root. For as long as the
sibling node vsib also has vsib.K assigned, it compacts the state by using “Derive” to compute the state
for the parent node while deleting the one for the children. The upload state stup then contains cv

of all nodes v for which “Derive” has been used to compute the state. U.Upload just sends stup to
the server, which stores the ciphertexts by maintaining the mapping. For each append operation, the
client thus has running time O(log(T )) and sends, if required, the same amount of information to the
server.

Retrieving secrets. Recall that the protocol maintains the following invariant: for every epoch e for
which se has been appended, there exists (exactly) one node v∗ on the path from the corresponding
leaf ve to the root that has a CE key and tag stored. Hence, retrieving se requires walking up the tree
until v∗ is found, and then using “Invert” to recover the CE keys towards to root, for which se = ve.K.
More generally, to recover the secrets of a continuous interval [i, j], U.Retrieve computes *cover([i, j])
and for each v ∈ *cover([i, j]) finds the node v∗ along the path from v to the root that has its state
assigned. From those nodes, all secrets in [i, j] can then be recovered using “Invert” as described
above. This leads to an overall complexity of O((j − i) · log(T/(j − i))), which also corresponds to the
communication complexity with the server.

Delegating access. To delegate access to a continuous interval [i, j] of secrets, U1.Grant sends the states
for all nodes in *cover([i, j]) as msg. Similar to the last paragraph, the algorithm might first have to
re-derive those keys using “Invert” and the ciphertexts from the server. U2.Accept then (if required)
checks the consistency of msg with any secrets in [i, j] they already know. If all checks succeed, they
erase the parts they verified and instead store the states for *cover([i, j]) they received. Finally, they
compact their state, potentially outputting stup.

Note that msg consists of O(log(j− i)) ⊆ O(log(T )) elements. Furthermore, a moment of reflection
shows that the consistency checks by U2.Accept takes at most O(η · log(T )) time, where η refers to
the number of currently stored disjoint intervals.

Erasing keys. To erase a secret se for epoch e, a party needs to erase all states along the path from ve
to the root. To this end, U.Erase finds the node v along this path for which it stores the state. Then it
expands v using “Invert” and the ciphertext cv from the server, erasing the state of v and storing the
one for vleft and vright instead. Then they recurse on the child (e.g., vleft) that is on the path to ve. More
generally, erasing an interval [i, j] can be efficiently implemented in time O((j − i) · log(T/(j − i))).

Security and correctness. Correctness follows analogously to the line scheme by inspection. In
particular, the correctness of the CE scheme implies *recover correctly recovering CE keys and tags
for inner nodes and, finally, secrets on the leaf level. Note that the server indexing ciphertexts by
tag moreover guarantees that each party gets the correct one even if malicious insiders interact with
the server, assuming the hash function used for the tag computation is collision-resistant. This is
summarized in the following theorem.

Theorem 4. The interval scheme CKSInterval is correct if the underlying CE scheme is correct and
the hash function used in CE. Tag is collision resistant.
17 We assume the tree to be compactly represented such that storage grows only in the number of vertices

with assigned properties.
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Security also follows along a similar vein as for the line scheme: tags ensure integrity while
(one-time) IND-CPA security of the CE scheme ensures confidentiality.

Theorem 5. Assuming the CE scheme is correct and one-time IND-CPA secure and modeling H
as a random oracle, the interval scheme CKSInterval satisfies integrity and is secure. That is, for any
CKS-compatible game G, and any admissible PPT adversary A, there exists a PPT adversary A′ such
that

AdvGCKS(A) ≤ AdvG(A′) + negl(κ).

A proof of the theorem is presented in Appendix F.2.

Efficiency. As argued above, all operations run in (poly-)logarithmic time, except for retrieving n
consecutive keys, which has run time O(n · log(T/n)), and accepting a delegation of n consecutive
secrets, which runs in time O(n). The latter further requires a message of size O(log n) to be sent
over a secure out-of-band channel. Communication complexity with the server typically corresponds
to the running time and at each point in time a party stores at most O(log T ) local state.18

When instantiating the primitives in the same way as for the line scheme, Table 1 shows the
concrete efficiency of appending the N -th secret to a CKS with N − 1 consecutive secrets stored in
two cases. First, we consider the scenario of N = 2h, i.e., appending the very last secret while knowing
secrets 1, . . . , N − 1. In that case, U.Append can compact the entire tree into a single state for the
root. Second, we consider the case of appending the secret of an odd epoch, in which case U.Append
cannot compact anything.
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A Additional Preliminaries

Notation. We use N := {1, 2, . . .} and for x, y ∈ N we write [x] := {1, 2, . . . , x} and [x, y] :=
{x, x + 1, . . . , y}. x ← a denotes assigning the value a to the variable x and, for a set S, we write
x ←$ S to denote sampling an element uniformly at random. P(S) denotes the powerset of S and
κ ∈ N the security parameter.

Cryptographic Primitives. We use some very basic cryptographic primitives, such as a length-
doubling pseudo-random generator PRG: {0, 1}κ → {0, 1}2κ, a (one-time) symmetric encryption
scheme SE := (SE.Enc, SE.Dec), and a hash function H: {0, 1}∗ → {0, 1}κ. For encryption we assume
(one-time) IND-CPA security and for the hash function typically assume it to be a random oracle.

Binary Trees. One of our constructions makes use of a (complete) binary tree of height h, having 2h

leaves. We use standard object-oriented notation such as v.parent for tree traversal and manipulation.
Let vroot denote the root node. Then, let the direct path of a leaf v denote the ordered sequence of
nodes from v to vroot. The copath (or sibling path) of v denotes the sequence containing all the sibling
nodes of the direct path. Finally, we denote by the left and right copaths the sequence of nodes when
only considering those elements in the copath that are left children or right children, respectively.

B On CKS-compatible Games

In this section, we expand on the CKS compatibility of various security games. First, we formalize
the intuition that when an application uses an independent instance of a cryptographic primitive per
epoch, that then it suffices to show the CKS compatibility of a single instance. Second, we provide
some further examples of the CKS compatibility of fundamental cryptographic primitives. Finally, we
briefly sketch the CKS comparability of the Signal protocol.

B.1 Single to Many Instances

The examples we consider here are, for simplicity, CKS-compatible games where each epoch behaves
independently. For instance, in the case of IND-CPA secure symmetric encryption, we consider the
CKS-compatible game that for each epoch chooses an independent key and offers a respective challenge
oracle. (More complex games one might be interested in, such as CGKA games, often behave almost
independently, meaning that their epochs behave independently as long as for instance no corruption
occurred.) As a result, we introduce the simplified notion of single-instance CKS compatibility.

Definition 9. We say that a game G1 = (C1, α1) is single-instance CKS-compatible if C provides a
private oracle Keys oracle that outputs a (single) key k ∈ {0, 1}κ or an error ⊥, and an Expose that
leaks the key k. (Those oracles take unary trigger inputs.)

One can show that CKS compatibility is implied by single-instance CKS compatibility, as expressed
in the following two results.

Lemma 4. Let G1 = (C1, α1) denote a single-instance CKS-compatible game for which α1 := 0. Now
consider CKS-compatible game G = (C, α) obtained by the parallel composition — running one instance
of G1 per epoch — which is considered to be won if at least one of the instances is won (and for which
α := 0).

For any PPT adversary A there exists an appropriately modified PPT adversary A′ of roughly the
same running time as A such that

AdvG(A) ≤ N · AdvG1(A′)

where N denotes an upper bound on the number of epochs A interacts with.
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Proof. Consider the reduction A′ that chooses an index i ∈ [N ] uniformly at random. It then internally
runs A and uses its challenge instance for the i-th epoch A interacts with, and emulates the remaining
instances itself.

Clearly, A′ emulates G perfectly towards A′, except for the winning condition. (Observe that G is
won if any instance is won, but the emulated game is only won if the the challenge instance i is won.)
Since however i is chosen uniformly at random, and does not affect the observable behavior of the
emulated game, we have that the instance A wins is equal to i with at least probability 1

N , inducing
the claim.

Lemma 5. Let G1 = (C1, α1) denote a distinguishing single-instance CKS-compatible game, i.e., one
for which the game internally chooses a bit b uniformly at random, is won whenever the adversary
guesses b correctly, and has α1 := 1

2 .
Now consider CKS-compatible game obtained by the parallel composition — running one instance

of G1 per epoch — with all instances sharing the same bit b, and α := 1
2 . For any PPT adversary A

there exists an appropriately modified PPT adversary A′ of roughly the same running time as A such
that

AdvG(A) ≤ N · AdvG1(A′)
where N denotes an upper bound on the number of epochs A interacts with.

Proof. Consider the reduction Ai that interacts with the challenger C1 as follows: It internally runs A.
For epochs 1 to i − 1, it emulates an instance of G1 with b = 0, uses the challenger its interacting
with as the i-th instance, and emulates the remaining epochs e > i with b = 1. We observe that for
i = 1 and G1 using b = 0, the emulated game exactly corresponds to G with b = 0. Analogously, for
i = N and b = 1 it corresponds to G with b = 1. Further, let A′ be the adversary that chooses i ∈ [N ]
uniformly at random and then runs Ai.

Now, let b′ denote the adversary’s guess for b. Using the well-known correspondence of the
distinguishing advantage, and the triangle inequality, we obtain

AdvG(A)
=

∣∣Pr[b′ = 1 | A(1κ)↔ C(1κ) | b = 1]− Pr[b′ = 1 | A(1κ)↔ C(1κ) | b = 0]
∣∣

≤
N∑

i=1

∣∣∣Pr[b′ = 1 | Ai(1κ)↔ C1(1κ) | b = 1]− Pr[b′ = 1 | Ai(1κ)↔ C1(1κ) | b = 0]
∣∣∣

≤ N ·
∣∣∣Pr[b′ = 1 | A′(1κ)↔ C1(1κ) | b = 1]− Pr[b′ = 1 | A′(1κ)↔ C1(1κ) | b = 0]

∣∣∣
= N · AdvG1(A′),

concluding the claim.

B.2 CKS Compatibility of Cryptographic Primitives

Pseudorandom Functions. In the following we focus on the core issue of the testing oracle and
consider primitives with a single secret, the structural example can be obtained by considering one
independent instance of the primitive per epoch. Moreover, we only allow for a single call to the
testing oracle, which is equivalent to many calls up to a polynomial factor. Let us consider a PRF
scheme. Intuitively, any adversary who can extract the PRF key by making simple queries can trivially
distinguish its outputs from uniform random values.

Lemma 6. Let GP RF denote the standard PRF security game that lets the adversary either interact
with the PRF (b = 0) or a uniform random function (b = 1). Let G+

P RF denote the same game that
exposes a testing oracle for the key k. For every PPT adversary A that can win G+

P RF with non-negligible
probability, there exists a PPT adversary B that wins GP RF with non-negligible probability.
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Proof. Consider a hybrid game HP RF that augments GP RF by a trivial testing oracle that always
returns 0. As this oracle can be emulated, winning this game is just as hard as winning the standard
PRF security game GP RF . To see that any PPT adversary A has the same winning probability for
the hybrid as the game G+

P RF with a proper testing oracle, we use the following reduction to GP RF :

– The adversary B runs A internally, forwarding all evaluation queries to the PRF as well as the
respective results.

– Once A calls the testing oracle on k′, B chooses a fresh x̃ that has not been queried yet. It then
queries GP RF on x̃.

– It compare the result ỹ with PRF(k′, x̃). if they match, return b′ = 0 (real), otherwise sample b′

uniformly at random.

Assume A distinguishes G+
P RF and HP RF with probability β. Since the games are equivalent-until-bad,

this means A queries the testing oracle with k′ = k with probability (at least) β. Let γ denote the
probability of the check in the reduction succeeding. If b = 1, then γ is negligible and, therefore, B
guesses b′ = 1 with probability at least 1/2− ϵ, where ϵ ∈ negl(κ). If b = 0, then we know that γ ≥ β
(the check could still succeed even if the key differs e.g. in one bit). The conditional probability of B
correctly guessing b′ = 0 is γ/2 + 1/2 ≥ β/2 + 1/2, leading to a non-negligible overall advantage. ⊓⊔

IND-CPA Secure Encryption. While one-time IND-CPA secure schemes (such as the One Time
Pad) are not necessarily CKS compatible, regular encryption is. Intuitively, if an adversary could
extract a candidate for the secret key after observing n ciphertexts, then they could try to leverage
this guess to break the privacy of one more ciphertext.

Lemma 7. Every symmetric-key encryption scheme SE := (SE.Enc, SE.Dec) satisfying the standard
IND-CPA security GIND-CPA notion for an exponential message space M also satisfies a single-instance
CKS-compatible one G′

IND-CPA for which the challenger works as follows:

– The Encrypt oracle allows for arbitrary many encryptions, while the Challenge oracle allows for a
single challenge with two messages of equal length.

– The Expose and Test oracles work as described by the respective definitions of a CKS-compatible
game.

– Upon submitting the guess b′ for the challenge bit b, the game outputs b = b′ if the key has not
been exposed, and a uniform random winning bit otherwise.

For any PPT adversary A that has non-negligible advantage AdvG′
IND-CPA

(A), there exists an appropriately
modified PPT adversary A′ of roughly the same running time as A that has non-negligible advantage
AdvGIND-CPA(A′).

Proof. Consider a hybrid game G′′
IND-CPA that functions like G′

IND-CPA but for which the Test returns 0
as long as the corresponding key has not been exposed. Afterwards, i.e, once the true key has been
revealed to the adversary, the Test does the proper check. Observe that G′

IND-CPA and G′′
IND-CPA are

game-equivalent, i.e., they behave identical until the adversary queries the Test with the correct key
when it has not yet been exposed. Hence, by the fundamental lemma of game playing, we can bound
the difference of the winning advantages with the probability of triggering this bad event (guessing a
key) in either of the games. (The winning probability of G′′

IND-CPA can then be easily bounded by an
appropriate reduction to IND-CPA.)

We proceed by bounding the advantage of triggering said condition in G′′
IND-CPA. More concretely, we

argue that guessing a key actually implies breaking IND-CPA security, using the following reduction:
Encryption and exposure queries are forwarded to the underlying game. The Test is perfectly emulated
by always returning 0 unless the respective epoch has been exposed — in which case the reduction can
execute the corresponding equality check. To answer a challenge on a pair m0 and m1, the reduction
internally chooses a bit b′′ uniformly at random and submits an encryption query of mb′′ instead. Note
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that the reduction perfectly emulates the challenger of G′′
IND-CPA as in particular using the challenger’s

bit b′′ instead of the underlying game’s bit b does not affect the observable behavior.
Once the adversary finishes the interaction by submitting a guess b′, the reduction proceeds by

submits a challenge m′
0 and m′

1, where the two messages are chosen uniformly at random from the
message space. The reduction then takes all the Test queries and tries to decrypts the respective
challenge ciphertexts c using the submitted key k′. If this results in m′

0, then the reduction guesses
b = 0 for the underlying game; otherwise, it guesses b = 1. It remains to argue about the reduction’s
performance. Assume that the adversary triggers the bad event, i.e., submits a non-trivial guess to
the Test oracle. If b = 0, then by correctness of the encryption scheme c correctly decrypts to m′

0 with
overwhelming probability. If, on the other hand, b = 1 then we argue that SE.Dec(k′, c) ̸= m′

0. To this
end, observe that both k and c are statistically independent of m′

0, as the k′ was submitted before m′
0

was even sampled and the encryption scheme received m′
1 instead as part of the challenge. Hence, if

b = 1 the reduction will submit a guess b′ = 1 with probability 1− 1/M. ⊓⊔

Signature Schemes. Another example of a CKS-compatible game is the signature forgery game.
Intuitively, it is clear that adding a testing-oracle that allows the adversary to verify whether they
correctly guessed the secret key is of no use — if they could guess the key they could also simply forge
a signature.

Lemma 8. Every signature scheme Sig := (Sig.kg, Sig.sign, Sig.vrf) satisfying the standard EUF-CMA
security game GEUF-CMA notion also satisfies a CKS-compatible one G′

EUF-CMA for which the challenger
works as follows:

– The challenger generates a fresh key-pair (spk, ssk) using Sig.kg and returns spk to the adversary.
The secret key ssk is output at the private Keys.

– The Sign oracle signs the provided message m using the secret key.
– The Expose returns the secret key and the Test oracles checks equality of the secret key.
– At the end, when submitting a forgery, it is accepted iff the signature verifies, the message has not

been signed before, and the key has not been exposed.

For any PPT adversary A that has non-negligible advantage AdvG′
EUF-CMA

(A), there exists an appro-
priately modified PPT adversary A′ of roughly the same running time as A that has non-negligible
advantage AdvGEUF-CMA(A′).

Proof. The proof works fairly analogous to the one for the IND-CPA secure encryption one: The
essence of the argument is to show that submitting non-trivial valid Test query returning 1, i.e.,
guessing a secret key, implies winning the basic signature-forgery game. The reduction, that emulates
AdvG′

EUF-CMA
(A) until such a bad event works as follows: Upon each Test(ssk′) query, the reduction

chooses a fresh message m′ (e.g., by sampling a message uniformly at random) then computes
sig′ := Sig.sign(ssk′, m′) and checks whether Sig.vrf(spk, m′, sig′) = 1. If so, the reduction outputs
(m′, sig′) as a forgery, and otherwise continues the execution normally. It is easy to see that by
correctness of the signature scheme, if ssk′ = ssk, then the check will succeed and (m′, sig′) be a valid
forgery with overwhelming probability. ⊓⊔

One Time Pad for Random Messages. The One Time Pad is not CKS compatible, and indeed
deploying our CKS schemes would allow to break privacy in general. When restricted to random
messages, however, the One Time Pad is CKS compatible. To this end we consider variant of CKS
compatibility for multi-stage games.

Lemma 9. Let A = (A1,A2) be a two-stage adversary for which A1 outputs two messages of equal
length m0 and m1, and a leakage L, such that m0 and m1 have high min-entropy given L, i.e., is
unpredictable given the leakage. The one-time IND-CPA game in which (m0, m1) is used as a challenge
and the ciphertext c and L is then passed to A2 who then gets access to a Test oracle before guessing b
is single-instance CKS-compatible.

33



Proof. Submitting a valid guess k′ to the Test oracle implies A2 guessing mb: Since A2 gets c = mb⊕k,
if k′ = k, we can compute c⊕ k′ = mb. Since we assume m0 and m1 to be both unpredictable, it thus
follows that guessing b (based on c) remains hard. ⊓⊔

B.3 CKS Compatibility of Signal

In this section, we give a high-level overview as to why we believe the Signal protocol (and similar
secure messaging protocols) to be CKS compatible. A full-fledged analysis is outside the scope of this
work and is left for future work. We use the modularization and security proof by Alwen et al. [2] as a
reference.

In general, we propose to apply CKS to the symmetric ratchet layer, as this will yield the best
FS/PCS guarantees, for instance allowing to erase individual messages. Alternatively one could also
apply CKS to back up the symmetric keys obtained from the asymmetric ratchet layer, saving slightly
on cloud storage, bandwidth, and computation. This would mean, however, that only all messages
of an asymmetric epoch can be erased at once. Outsourcing the keys of the symmetric ratchet layer
comes with a small caveat on how CKS interacts with Signal’s immediate decryption property. In
principle, CKS assumes that there is one linear sequence of secrets, whereas those keys are indexed by
epoch t and message number i within this epoch. However, note that in Signal each message includes
the total number of messages that the party sent during their last sending epoch. Therefore, we can
nevertheless establish a well-defined linear order (that at times might skip points) without having to
worry about additional messages arriving late.

In summary, we can make the secure messaging game (Fig. 2) from [2] CKS compatible as follows:

– Keys: Introduce the notion of the symmetric ratchet keys to the security game. In the game by
Alwen et al. the double ratchet has been abstracted away for the notion of Secure Messaging. For
the concrete instantiation, those keys however still clearly exist. The same has to be done for the
FS-AEAD abstraction, i.e. Fig. 5, where those keys are actually used.

– Testing oracle: The testing oracle can then allow the adversary to test against those keys, for
each given (t, i) pair.

– Corruption oracle: Add an explicit corruption oracle for the symmetric ratchet keys. Note that
the game obviously can handle those keys leaking, but not at this fine-grained level. Instead, the
existing game allows to corrupt parties. Adding fine-grained corruptions should only be a matter
of slightly tweaking the safety conditions.

Ignoring the testing oracle for now, it should be relatively straightforward to establish that the
Signal protocol is still secure concerning this modified game. One may, therefore, now be tempted to
proceed analogous to our example of one-time authenticated encryption and argue that any successful
(non-trivial) guess can be turned into an attack against the authenticity property.

Unfortunately, one can see that this does not work. The issue is that in the formalization of Secure
Messaging security (Fig. 2) it is assumed that once an i-th message for a given epoch t has been
delivered, then all future injection attempts for (i, t) would be automatically rejected. This is a valid
assumption, in particular as in the formalization the receiver would immediately delete the respective
secret for the sake of FS. This does not imply that Signal is not CKS compatible, but a deficiency in
our (naive) proof attempt. There are two potential solutions. Either one could try to establish the
futility of the testing oracles via a different, cleverer, reduction. Indeed it intuitively seems implausible
as to why an adversary should suddenly be able to guess a secret that has long been erased. It appears
that either the adversary could already have guessed the key before it was deleted, or will never
be able to do so. Formally establishing this property, however, appears challenging. In particular, a
reduction cannot simply “delay” the delivery until the guess was made, to keep the injection valid, as
the guess can depend on the party’s state later in the protocol and not delivering messages may alter
that state.

Alternatively, we propose to instead establish that for the Signal protocol repeated deliveries for
the same epoch t and message i are prevented by the protocol, without having to rely on the key
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being deleted or the repetition explicitly detected. (That is, we propose that the Signal protocol as is
satisfies a stronger definition for which adding the testing oracle becomes easier.) To that end, we
would strengthen FS-AEAD and the SM security game to allow breaking authenticity via repeated
injection attempts. (Note that the state-corruption oracle should still treat those keys as deleted
for the sake of FS.) More specifically, in the FS-AEAD game, the Inject-B oracle should allow to
rewind the receiver’s state. Indeed, one can observe that the FS-AEAD scheme would satisfy this
enhanced game — authenticity simply follows from the authenticity of its underlying AE scheme,
which allows for multiple injection attempts, and not from the erasure of keys. To quote from the
proof of Theorem 5, which establishes FS-AEAD security:

In the third hybrid experiment H3, all AEAD ciphertexts are replaced by random ciphertexts
and any (uncompromised) injections are always rejected. Since in H2 all keys used for the
AEAD scheme are random, the indistinguishability of H3 from H2 follows immediately from
the security of the AEAD scheme.

With a bit of work, one could therefore formally establish Signal’s security with respect to this
modified game. It now remains to show that we can add the key-testing oracle without harm. To this
end, we emulate the testing oracle as follows:

– Upon input guess k′ for epoch and message (t, i), if the symmetric key kt,i for epoch t and message
i has been leaked as part of a corruption, then return k′ = kt,i.

– Otherwise the testing oracle returns 0.

The first case clearly emulates the proper testing oracle faithfully. Hence, any adversary A who can
distinguish the game with the proper testing oracle from the one with the simulated one, must correctly
guess a key that has not been leaked. Showing that any such adversary A can be turned into an
adversary against Signal’s authenticity follows analogously to the one-time authenticated encryption
example from the main body.

C Details on CKS Security

In this section, we describe the CKS-enhanced game GCKS, presented in Fig. 5, in more detail. Note
that Fig. 5 (implicitly) formalizes the challenger CCKS by describing its oracles, with which the
adversary can interact. Furthermore, note that the advantage function α of GCKS is defined to be the
same as the one of G.
Underlying challenger. The adversary A can interact with the underlying challenger C once. Recall
that, as this is an interactive process, the adversary can interleave this interaction with calls to other
oracles whenever control is handed to the adversary. At the end of this interaction, C sets the output
b, which is also the output of the CKS-enhanced game. (In case A chooses not to interact with C or
terminates before the interaction ended, the output defaults to b = 0.)
CKS interaction. While interacting with the underlying challenger C, the adversary can create CKS
users and have them append keys for an epoch e to their state. For this, the adversary can either
have the party append the real key from the CKS-compatible game, i.e., as output by C.Keys(e), or
a key chosen by the adversary. The game keeps track which real keys the user knows as part of the
ActualKey mapping. Note that while the game does expose a Retrieve oracle, this does not return a
key to the adversary; any use of the key is to be contained in the underlying challenger. Instead, this
purely formalizes that the interaction does not reveal information about the keys to the server.
Corruptions. Those keys are then marked as exposed in the underlying challenger C that can then
adjust its behavior — and potentially winning condition — accordingly.
Key delegation. The key delegation process from user u to user u′ is split into two oracles: Grant and
Accept. For the former oracle, there is a leak flag indicating whether the message msg is sent over
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an secure (leak = false) or an insecure (leak = true) communication channel. Hence, if leak is set
to true, the adversary learns msg. Furthermore, it is assumed that this message leaks all the to be
delegated keys and thus all the respective keys are marked as exposed with the underlying challenger
C. (As a consequence, leak = true is also only allowed whenever C permits the exposure of those keys.)
In case of leak = false, the adversary is given a handle h (which is drawn uniformly at random) to
the message msg instead that A can later use to deliver the message to u′.

In the Accept oracle, the adversary can then either input a handle h or a granting message msg.
In the former case, the game looks up the actual granting message msg, as well as for which of the
granted keys correspond to actual keys from C (as opposed to keys injected by the adversary). In
the latter case, of an injected granting message, the game cannot readily determine which keys are
from C — instead it conservatively assumes none to be. (If the game erroneously assumes that a key
is injected this only makes GCKS easier to win, as corruptions might reveal keys without informing
the underlying challenger C. If, conversely, however the game would assume an injected key to be a
real one, the game can become needlessly hard to win, as C might deem certain benign actions to be
erroneously “trivializing” the game. Since we want to argue that GCKS is not easier to win than G, we
thus must err in the first manner.)
FS and PCS. To formalize forward secrecy, the game further allows CKS users to erase certain keys.
After such an erasure, corruption of said user must not aid the adversary in winning the underlying
game and, thus, do not mark those epochs as corrupted anymore. Further, the game also encodes
post-compromise security, as prior corruptions must not influence the security of keys later learned
via either Append or Accept.
The random oracle. Finally, let us remark on the use of the ROM. In the above definition, we assume
the existence of a fresh random oracle for the CKS scheme. That is, the underlying challenger C is
assumed to be independent of the ROM. This allows us circumvent the aforementioned impossibility
result.

D Convergent Encryption

Our constructions make use of Convergent Encryption (CE) as introduced by Douceur et al. [27].
The CE scheme makes use of a one-time secure deterministic symmetric encryption scheme SE :=
(SE.Enc, SE.Dec) and a hash function H. Following the abstraction of Bellare, Keelveedhi, and Risten-
part [10] we define CE as a tuple of deterministic algorithms CE = (CE. Kg, CE. Enc, CE. Dec, CE. Tag):
▶ K ← CE. Kg(m) := H(m) computes a key K based on the message m;
▶ C ← CE. Enc(K, m) := SE.Enc(K, m) encrypts the message under the aforementioned (message-

derived) key;
▶ m← CE. Dec(K, C) := SE.Dec(K, C) decrypts the message;
▶ T ← CE. Tag(C, ad) := H(C∥ad) generates an authentication tag for the ciphertext and some

associated data.19

Remark 1. Note that while we use the syntax of Message Locked Encryption (MLE) [10] the accom-
panying security definition is insufficient for our application. Simply put, [10] enforces messages to
be sampled independent of the hash function, while our use of CE will not only recursively encrypt
ciphertexts, but also let the adversary set part of the message. While Abadi et al. [1] did generalize
MLE to lock-dependent messages, their notion, conversely, assumes a general class of lock-dependent
distributions. Unfortunately, the CE scheme does not satisfy their notion, while their proposed scheme
has to compromise on the integrity notion, clashing with our requirements. We stress that the type of
message distribution required for our work lies somewhere in between the two aforementioned notions,
composed of a part that is uniform and an adversarially chosen component.
19 Note that the abstraction of [10] did not include associated data for CE. Tag.
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Correctness and security. For correctness, we require that

CE. Dec
(

CE. Kg(m), CE. Enc
(
CE. Kg(m), m

))
= m,

for any message m, which is implied by correctness of SE. (Recall that all algorithms are deterministic.)
In terms of security, we require the following properties from CE = (CE. Kg, CE. Enc, CE. Dec, CE. Tag):

1. H will be modeled as a random oracle and, thus, is in particular collision resistant. This implies
that CE. Tag is collision resistant, and satisfies strong tag consistency as introduced in [10] for the
MLE abstraction.

2. The underlying encryption scheme (SE.Enc, SE.Dec) must be one-time IND-CPA secure. That
is, based on a single challenge, of two identical-length messages, an adversary cannot guess the
challenge bit. In contrast to regular IND-CPA security, no encryption oracle is given.

Definition 10 (One-time IND-CPA security). A symmetric encryption scheme SE = (SE.Enc,
SE.Dec) is one-time IND-CPA secure, if∣∣∣∣∣∣∣∣∣Pr

b = b′

∣∣∣∣∣∣∣∣∣
b←$ {0, 1}; K ←$ {0, 1}κ

(stA , m0, m1)← A(1κ)
C ← SE.Enc(K, mb)
b′ ← A(stA , C)

− 1
2

∣∣∣∣∣∣∣∣∣ ≤ negl(κ),

for any PPT adversary A satisfying |m0| = |m1|.

3. The convergent encryption scheme must be non-committing, to which end we assume the underlying
symmetric encryption scheme to be non-committing.

Definition 11 (Non-committing encryption). A symmetric encryption scheme SE = (SE.Enc,
SE.Dec) is non-committing, if there exist two efficient algorithms
▶ C ← SE.Sim1(1κ, |m|) computes a fake ciphertext K based on the security parameter and the

message length |m|;

▶ K ← SE.Sim2(C, m) opens a fake ciphertext to a given message m by outputting a corresponding
key;

such that they produce a ciphertext and key that are indistinguishable from a regular encryption
under a uniform random key. That is,∣∣∣Pr

[
A(K, C)⇒ 1

∣∣ C ← SE.Sim1(1κ, |m|); K ← SE.Sim2(C, m)
]
−

Pr
[
A(K, C)⇒ 1

∣∣ K ←$ {0, 1}κ; C ← SE.Enc(K, m)
]∣∣∣ ≤ negl(κ)

for any PPT adversary A.

Observe that this implies that the CE scheme is non-committing in the programmable random
oracle model (where H(m) is set to be the key output by SE.Sim2 upon opening).

We remark that while non-committing encryption is generally a hard problem, one-time secure non-
committing encryption is satisfied by, for instance, the one-time pad for messages of equal length to
the key. Moreover, in the ROM this can easily be extended to support arbitrarily long messages.
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E Details on the Line Scheme

In this section, we provide further details on the CKSHA scheme for the following set of grant, retrieval,
and erasure predicates:

GHA(know, share) := share ⊆ know ∧ ∃i ∈ N : share = {1, . . . , i},
RHA(know, share) := share ⊆ know ∧ ∃i, j ∈ N : share = {i, . . . , j},
EHA(know, share) := false,

where the first input refers to the set of epochs for which the party knows the secret — i.e., has
learned either through Append or Accept — whereas the latter input refers to the set of secrets the
party want to operate the corresponding operation on.

E.1 A Formal Description of the Scheme

A formal description of the line scheme is presented in Fig. 8, with the appropriate helpers already
presented in Fig. 9. Note that we use the abstract syntax for convergent encryption as introduced in
Appendix D. For simplicity, the description does not include Erase algorithms since the scheme does
not allow for erasure, i.e., E always returns false. Moreover, since G and R enforce that for Grant and
Retrieve the respective shares of secrets recovered is always an interval, the respective methods take
an interval [i, j] as inputs directly.

E.2 Security

Theorem 2. The line scheme CKSHA satisfies integrity, i.e., for any PPT adversary A

Pr
[
CKS-IntA

CKSHA
⇒ 1

]
≤ negl(κ),

if the hash function H is collision resistant and the SE scheme correct.

Proof. First, observe that in the integrity game, Secret[u, e] gets changed at most twice: when it is
initialized and, thus, ⊥ is replaced with either a concrete secret s or a placeholder Kp, and in the
latter case the placeholder can later be replaced by a concrete value. (Recall that CKSHA does not
support erasures.) By inspection of the protocol it is thus easy to see that Secret[u, e] ̸= ⊥ iff the
protocol “knows” key, i.e., iff e ≤ St[u].emax or St[u].Secret[e] ̸= ⊥. Further, we observe that the
winning conditions in the Append and Grant oracles, as well as the first winning condition in the
Accept oracle, are trivially ruled out by corresponding checks in the protocol. It, thus, remains to
argue that the second winning condition in Accept as well as the winning condition in Retrieve cannot
be triggered.

Next, consider a hybrid experiment H1 that works like CKS-IntA
CKSHA

but (a) disables the aforemen-
tioned trivial winning conditions, and (b) additionally keeps track of a mapping Ctxt with Ctxt[u, e]
storing the first (valid) CE ciphertext Ce that user u used for epoch e, i.e., the first ciphertext u
either uploaded (in Append or Accept) or downloaded and accepted (in Retrieve or Accept). Since
this modification does not change the game’s behavior or winning condition, clearly A has the same
advantage.

Second, consider a hybrid experiment H2 that does not use placeholders. Instead, in Accept,
it defines Secret[u′, e] to be the key resulting from decrypting Ctxt[u′, e] instead. (Note that for
CKSHA.Accept to not abort the user must not only have obtained such a ciphertext from the server
but also successfully decrypted it. Further, recall that the decryption is a deterministic process.) We
now observe that this modification can only make the game easier to win A: if this decrypted key
is the one that H1 would later replace the key with, the behavior is unchanged. If it is however a

38



Protocol Line-CKS

Initialization

U.Init

Secret[·]← ⊥
st← (0, 0κ, 0κ, Secret)
return st

S.Init

stS[·, ·]← ⊥
return stS

Appending

U.Append

Input: (st, e, s, upload)
parse (emax, Kemax , Temax , Secret)← st
req emax < e ∧ Secret[e] = ⊥
Secret[e]← s
st← (emax, Kemax , Temax , Secret)
(st, stup)← *compact(st)
if ¬upload then stup ← ⊥
return (st, stup)

U.Upload

Input: stup
send stup to S

S.Upload

Input: stS

receive stup from U
for all (e, C, T ′) ∈ stup do

T ← CE. Tag(C, T ′)
stS[e, T ]← (C, T ′)

return stS

Key retrieval

U.Retrieve

Input: (st, (u, v))
if emax < v then

secrets[·]← ⊥
for e = u, . . . , v do

req Secret[e] ̸= ⊥
secrets[e]← Secret[e]

else
send (emax, Temax , u) to S
receive MS from S
secrets← *recover(st, u, v, MS)

return secrets.

Key retrieval cont.

S.Retrieve

Input: stS

receive MU from U
parse (emax, Temax , u)←MU
MS[·]← ⊥
for e = emax, emax − 1, . . . , u do

(Ce, Te−1)← stS[e, Te]
MS[e]← (Ce, Te−1)

send MS to U

Delegation

U.Grant

Input: (st, i)
parse (emax, Kemax , Temax , Secret)← st
req i ≤ emax
send (emax, Temax , i) to S
receive MS from S
for e = emax, emax − 1, . . . , i + 1 do

try (·, Ke−1, Te−1)← *invert(Ke, Te, MS)
msg← (i, Ki, Ti)
return msg

S.Grant

Input: stS

execute S.Retrieve(stS)

U.Accept

Input: (st, i, msg, upload)
parse (emax, Kemax , Temax , Secret)← st
parse (i′, Ki, Ti)← msg
req i′ = i
if emax ̸= 0 then

z ← emax
else if ∃e ≤ i : Secret[e] ̸= ⊥ then

z ← min{e | Secret[e] ̸= ⊥}
else

z ← ⊥
if z ̸= ⊥ then

send (i, Ti, z) to S
receive MS from S
st′ ← (i, Ki, Ti, Secret)
secrets′ ← *recover(st′, z, i, MS)
for e = i, i− 1, . . . , z do

if Secret[e] ̸= ⊥ then
req Secret[e] = secrets′[e]
Secret[e]← ⊥

if emax ̸= 0 then
parse (·, T ′

emax )←MS[emax + 1]
req T ′

emax = Temax ∧ secrets′(emax) = Kemax

st← (i, Ki, Ti, Secret)
(st, stup)← *compact(st)
if ¬upload then stup ← ⊥
return (st, stup)

S.Accept

Input: stS

execute S.Retrieve(stS)

Fig. 8: The CKSHA scheme. The corresponding helper methods have been defined in Fig. 9.
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Protocol Line-CKS Helpers

*derive

Input: (se, Ke−1, Te−1)
Ke ← CE. Kg(se∥Ke−1)
Ce ← CE. Enc(Ke, (se∥Ke−1))
Te ← CE. Tag(Ce, Te−1)
return (Ce, Ke, Te)

*compact

Input: st
parse (emax, Kemax , Temax , Secret)← st
stup ← ∅
while Secret[emax + 1] ̸= ⊥ do

emax ← emax + 1
(Cemax , Kemax , Temax )← *derive(Secret[emax], Kemax−1, Temax−1)
Secret[emax]← ⊥
stup ← stup ∪ {(emax, Cemax , Temax−1)}

st← (emax, Kemax , Temax , Secret)
return (st, stup)

*invert

Input: (Ke, Te, MS)
parse (Ce, Te−1)←MS[e]
req Te = CE. Tag(Ce, Te−1)
m← CE. Dec(Ke, Ce)
parse m← (se, Ke−1)
return (s, Ke−1, Te−1)

*recover

Input: (st, i, j, MS)
parse (emax, Kemax , Temax , Secret)← st
secrets[·]← ⊥
for e = emax, emax − 1, . . . , i do

try (se, Ke−1, Te−1)← *invert(Ke, Te, MS)
if e ≤ j then secrets[e]← se

return secrets

Fig. 9: The core methods for the CKSHA scheme.

different one, this now means that where H1 would substitute the placeholder H2 will be won directly
before, e.g., failing the Secret[u, e] ̸= secrets(e) check in the Retrieve oracle.

Third, consider a hybrid H3 that upon Accept with an honest grant checks that the accepting
user u′ and the granting user U agree on the history of CE ciphertexts. That is, the adversary wins if
Ctxt[u, e] ̸= Ctxt[u′, e] for some epoch e ∈ share = [i, j]. Clearly, if CKSHA.Accept processes the input,
then they agree on Tj . Since U′ validates the hash chain on the CE ciphertexts and tags, collision
resistance of H thus implies that this check only fails with negligible probability.

Fourth, consider a hybrid H4 that additionally enforces the invariant that, if set, the key resulting
from decrypting Ctxt[u, e] is equal to Secret[u, e], with the adversary winning otherwise. If Ctxt[u, e]
is set upon the user uploading the ciphertext, then the invariant is maintained due to correctness
of the CE scheme. If Ctxt[u′, e] is set as part of Accept, there are two options. First, if Secret[u′, e]
is already set, but Ctxt[u′, e] not, then Append must have been called for an out-of-order epoch, at
which point Secret[u′, e] = St[u′].Secret[e] was trivially satisfied. Since the protocol checks that the
new Ctxt[u′, e] decrypts to St[u′].Secret[e] the invariant is hence preserved. Second, if Secret[u′, e] gets
assigned Secret[u, e], then we know from the invariant introduced in H3 that the parties have the same
ciphertext. Hence, the invariant still holding for the granting party u implies that the invariant is
preserved for u′ as well.

Finally, we argue that triggering either of the two remaining initial winning conditions in H4
happens with at most negligible probability. First, consider the check Secret[u′, e] ∈ {⊥, s} failing,
where s is the value from Secret[u, e]. By our invariants we have however that (1) Ctxt[u, e] = Ctxt[u′, e]
and (2) for both parties the decryption of their respective ciphertexts equals to the key stored in
Secret. Second, consider the check Secret[u, e] = secrets(e) in Retrieve being broken. If secrets(e) is
set by the protocol as St[u].Secret[e], then the check trivially holds, as argued before. If, on the other
hand, the protocol derives the key by retrieving the respective ciphertext and decrypt it, note that
collision resistance implies that the protocol only accepts the same ciphertext as stored in Ctxt[u, e].
Hence, our invariant from H4 implies the check to not fail either. ⊓⊔

Theorem 3. The line scheme CKSHA is secure, i.e., for any CKS-compatible game G and any
admissible PPT adversary A there exists a PPT adversary A′ such that

AdvGCKS(A) ≤ AdvG(A′) + negl(κ),

if the SE scheme is correct, non-committing, and one-time IND-CPA secure, and the hash function is
modeled as a random oracle.

40



Proof. Fix some arbitrary CKS-compatible game G, and an arbitrary PPT adversary A against GCKS.
In the following we construct an adversary A′ against G that has almost the same advantage as A
against their respective games.
A′ internally runs A and forwards its interaction with the challenger C. In addition, A′ emulates

the various CKS oracles towards A. To this end, A′ keeps track of the various variables such as n and
ActualKey[·] of GCKS, except for St[·]. Instead, it keeps track of the following additional state:

– Secret[e] stores the e-th secret from the CKS-compatible game G, once known to the reduction.
– Secret[u, e] stores the secret user u used in epochs e. If u uses a key from the CKS-compatible

game G that is not known to the reduction yet, it uses Ke as a placeholder instead.
– T [u, e] stores the tag the user u used in epochs e.
– K[u, e] stores the respective CE key, if known.
– C[Te−1, se] stores the CE ciphertexts generated when encrypting a user previously having tag Te−1

appends se. Here, se can be a placeholder.

Using that state, A′ emulates the CKS oracles of GCKS as follows:

– CreateUser: Emulates the CKS protocol by setting up an initial state (emax, Kemax , Temax , Secret) =
(0, 0k, 0ℓ, Secret) for an empty mapping Secret.

– Corrupt: Emulates the GCKS oracle by exposing all the epochs the corrupted user knows, learning
the actual keys. For each new key se it learns, it
• sets Secret[e]← se
• replaces Ke with se in Secret[u′, e′] for all u′ and e′.
• copies C[T ′

e−1,Ke] over to C[T ′
e−1, se] for each T ′

e−1 such that the former was defined.
For each user u′ and epoch e, let s1, . . . , se = Secret[u′, 1], . . . , Secret[u′, e] and do the following. If
se is not a placeholder and K[u′, e− 1] is set, but K[u′, e] has not been set, then we now “open”
the fake ciphertext Cu′,e := C[T [u′, e− 1], se]. That is, the adversary A′:
• Sets K[u′, e]← SE.Sim2(Cu,e, (se∥K[u, e− 1]))
• Copies the key to every other user u′′ that uses the same tag and se.
• Programs the ROM s.t. RO[se∥Ku′,e−1] = Ku′,e

Finally, A′ assembles a CKS protocol state as follows:
• computes emax as the smallest e such that Known[u, e + 1] = false
• sets Kemax ← K[T [u, emax − 1], Secret[u, emax]] and Temax ← T [u, emax], respectively.
• for all e > emax such that Known, sets Secret[e]← Secret[u, e]

– Append: A rejects if the user u already knows a key for the given epoch, i.e., if Known[u, e] ̸= ⊥.
If s = ⊥, then set s← Secret[e] in case that is defined, and Ke, otherwise. Set Secret[u, e]← s.
If C[T [u, e− 1], s] is already defined, then find another user U′ such that T [u, e− 1] = T [u′, e− 1]
and s = Secret[u′, e] and set
• T [u, e]← T [u′, e].

Afterwards, define stup := (e, C[T [u, e−1], s], T [u, e−1]) and hand that to A in case upload = true.
Else, generate the ciphertext and tag as follows:
• If s is not a placeholder and K[u, e− 1] has been set before, then generate a regular ciphertext.

That is, set

K[u, e− 1]← RO[Secret[u, e]∥Ku,e−1]
C[T [u, e− 1], s]← CE. Enc(Ku,e, (s∥Ku,e−1))

= SE.Enc(Ku,e, (s∥Ku,e−1))

sampling the random oracle if necessary. Copy the key to any other user that has the same
tag T [u, e− 1] and secret.

• Otherwise, set C[T [u, e− 1], s]← SE.Sim1(1κ, n), where n denotes the combined length of the
appended key, a CE key, and a CE tag.
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• Compute T [u, e] ← CE. Tag(Cu,e, T [u, e − 1]) := RO[Cu,e∥T [u, e − 1]], sampling a uniform
random value for RO if necessary. Copy the key to any other user that has the same tag
T [u, e− 1] and secret.

For any further consecutively known key (e.g., if Known[u, e + 1] ̸= ⊥) repeat the above steps to
outsource the key.

– Grant: For granting access to epochs share = [1, i], A′ first emulates the run of the protocol by
fetching (emax, Temax , i) to the adversary, receiving {(j, Cj)}emax

j=i in return. To emulate the protocol
verifying those ciphertexts, A′ accepts them iff Cj = Cu,j , i.e., iff the server returns the same
ciphertext that user originally uploaded.
If leak = false, A′ then samples a uniform random handle h and records Msgs[h]← (share, U).
That is, instead of recording the granting message msg, it simply records user and the share. Then
it outputs the handle h.
If leak = true, then A′ invokes C.Expose(e) for e = 1, . . . , i and proceeds analogous to the Corrupt
oracle to update K, C, T , and Secret. Finally, it outputs msg = (i, Ku,i, Tu,i).

– Accept: If A delivers a handle h to u′, then A′ emulates the Accept oracle using a simple
consistency check and copying the relevant information. Let U denote the user that shared
share = [i], i.e., Msgs[h] = (share, U).
• A′ rejects the operation if Secret[u, e] ̸= Secret[u′, e], but the latter is set, for any e ≤ i.
• Then copies Secret[u′, e]← Secret[u, e], and analogously for T [u′, e]← T [u, e].
• Analogous to the protocol, A′ then also outsources encryptions for epoch j = i + 1, . . . as long

as Secret[u′, j] is set. To this end, A′ either generates real or fake ciphertexts as described in
the Append oracle.

If A injects a grant message msg = (i, Ki, Ti), the reduction emulates the performing the
consistency checks, if required. That is, it fetches the ciphertexts that allow to decrypt up to
epoch z, where z denotes the smallest epoch for which the party so far knew the secret. If those
checks succeed, it sets T [U, e] and Secret[u, e] for z ≤ e ≤ i. It also populates C[Te−1, se] for all
tags and secrets it learns during that interaction. In case no consistency check is performed, the
reduction simply stores T [U, e].

– Retrieve: The reduction simply simulates the message sent by the corresponding party to the
server. Note that this message contains public information only. If by emulating the protocol, A′

learns new ciphertexts, tags, CE keys, or secrets, populate the maintained state accordingly.
– RO: Upon input x ∈ {0, 1}∗, A′ returns RO[x] if that has already been defined. Otherwise, it

proceeds as follows:
• Try to parse x as se∥Ke−1 (from CE. Kg). If this succeeds, check whether there exists a user U

and a node v such that the query has to be answered consistently and set RO accordingly.
More specifically:

∗ Check that x can be parse as secret and CE key, for Ke−1 to A′.
∗ Then use the Test oracle with input se to see whether se is indeed the correct secret.
∗ If so,A′ ensures everything is consistent by opening Ce (using the non-committing property)

and programming RO[x] to return a key that decrypts Ce consistently. Afterward, return
RO[x].

• If RO[x] was not already defined and did not need programming, sample RO[x] u.a.r. and
return that value.

It remains to argue that this reduction is successful, i.e., the original adversary winning the
CKS-enhanced game with non-negligible probability results in the reduction winning the underlying
game with non-negligible probability.

The main difference are the simulated ciphertexts: whereas in the CKS-enhanced game the adversary
A always receives real ciphertexts, the reduction hands them simulated ones, if the reduction doesn’t
know the message to be encrypted. By the IND-CPA security of the encryption scheme, this is
indistinguishable, since A has no information on the encryption key (which is H(si∥Ki−1) with the
hash modeled as a random oracle). Once A does learn both si and Ki−1, e.g., via corrupting a party,
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the reduction uses the non-committing property of the CE scheme to generate Ki explaining the
ciphertext, and programming H(si∥Ki−1) accordingly. (A only queried the random oracle at this
position with negligible probability.)

Whenever a party fetches ciphertexts from the server, the collision resistance of the tags (computed
as a hash) ensure that they reject everything but the ciphertexts they originally uploaded. As such,
whenever a party grants access to a prefix, the reduction can safely assume that the receiving party
ends up with the same keys as long as the adversary delivers a handle.

If the adversary injects a grant message instead, observe that the message — consisting of an
epoch number, CE key and tag — determines the entire prefix of tags and ciphertexts, given the tags’
collision resistance. Hence, the reduction looking ciphertexts by tag and secret, ensures consistency
even if one party gets injected a grant message that later turns out to be consistent with the state
reached by an honest party (that may have been compromised). ⊓⊔

F Details on the Interval Scheme

In this section, we now consider the CKSInterval scheme for the following set of grant, retrieval, and
erasure predicates:

GInterval(know, share) = RInterval(know, share) = EInterval(know, share)
:= share ⊆ know ∧ ∃i, j ∈ N : share = {i, . . . , j}.

F.1 A Formal Description of the Scheme

A formal description of the line scheme is presented in Fig. 11, with the core helper functions presented
in Fig. 10 and additional ones shown in Fig. 12. Moreover, since G, R, and E enforce that the respective
shares of secrets are intervals, the respective methods take an interval [i, j] as inputs directly.

The scheme works for a bounded number of epochs E = 2h. Parties store a binary tree τ of height
h, with each node v having associated properties v.K and v.T for a CE key and tag, respectively.
(At leaves we abuse v.K to store the epoch’s secret instead.) We assume the tree to be compactly
represented such that storage grows only in the number of vertices with assigned properties.

Protocol Interval-CKS Helpers

*derive

Input: (Kℓ, Tℓ, Kr, Tr)
K ← CE. Kg(Kℓ∥Kr)
C ← CE. Enc(K, (Kℓ∥Kr))
T ← CE. Tag(C, (Tℓ∥Tr))
return (C, K, T )

*compact

Input: v

// Compacts state after learned key of node v
stup ← ∅
v ← v.parent
while v ̸= ⊥ do

vℓ ← v.lChild
vr ← v.rChild
if vℓ.K ̸= ⊥ ∧ vr.K ̸= ⊥ then

(C, v.K, v.T )← *derive(vℓ.K, vℓ.T, vr.K, vr.T )
stup ← stup ∪ {(v.idx, C, vℓ.T, vr.T )}
(vℓ.K, vℓ.T )← (⊥,⊥)
(vr.K, vr.T )← (⊥,⊥)
v ← v.parent

else
v ← ⊥

return stup

*invert

Input: (C, K, T, Tℓ, Tr)
req T = CE. Tag(C, (Tℓ∥Tr))
parse (Kℓ, Kr)← CE. Dec(K, C)
return (Kℓ, Kr)

*recover

Input: (v, M)
// Recover key of node v using server message M
if v.K ̸= ⊥ then return
try *recover(v.parent, M)
parse (C, Tℓ, Kℓ)←M [v.parent.idx]
try (Kℓ, Kr)← *invert(C, v.parent.K, v.parent.T, Tℓ, Tr)
(v.parent.lChild.K, v.parent.lChild.T )← (Kℓ, Tℓ)
(v.parent.rChild.K, v.parent.rChild.T )← (Kr, Tr)

*cover

Input: (v, idxi, idxj)
if idxi ≤ v.minLeafIdx ∧ idxj ≥ v.maxLeafIdx then

return {v}
else if idxi > v.minLeafIdx∨ idxj < v.maxLeafIdx then return ∅
else return *cover(v.lChild, idxi, idxj)

∪ *cover(v.rChild, idxi, idxj)

Fig. 10: The core methods for the CKSInterval scheme.
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We use object-oriented notation such as v.parent, v.lChild, and v.rChild to denote a node’s parent,
as well as left and right children, respectively. Each node furthermore has an index v.idx according
to in-order traversal. A node can be retrieves via its index using τ.nodes[idx]. Leafs are additionally
numbered from left to right, with w = τ.leaves[k] returning the k-th leaf, and w.leafNumber = k,
respectively.

The server for each node maintains a mapping v.data from tag T to a ciphertext C and tags Tℓ

and Tr of the left and right child nodes.

Protocol Interval-CKS

Initialization

U.Init

τ ← new full binary tree of height h, where each
node v has properties (v.K, v.T )

return τ

S.Init

τS ← new full binary tree of height h, where each
node v has mapping v.data[T ] = (C, Tℓ, Tr)

return τS

Appending

U.Append

Input: (τ, e, s, upload)
v ← τ.leaves[e]
v.K ← s
v.T ← 0κ

stup ← *compact(v.parent) // Compact upwards
if ¬upload then stup ← ⊥
return (τ, stup)

U.Upload

Input: stup
send stup to S

S.Upload

Input: τS

receive stup from U
for all (idx, C, Tl, Tr) ∈ stup do

T ← CE. Tag(C, (Tl, Tr))
v ← τS.nodes[idx]
v.data[T ]← (C, Tl, Tr)

return τS

Key retrieval

U.Retrieve

Input: (τ, (i, j))
τ ′ ← clone(τ)
(idxi, idxj)← (τ ′.leaves[i].idx, τ ′.leaves[j].idx)
MU ← ∅
cov← *cover(τ ′.root, idxi, idxj)
for v ∈ cov do

v′ ← *storedAncestor(v)
MU ←MU ∪ {(v.idx, v′.idx, v′.T )}

send MU to S
receive MS from S
secrets[·]← ⊥
for idx ∈ idxi, . . . , idxj do

v ← τ ′.nodes[idx]
if v.isleaf then

try *recover(v, MS)
secrets[v.leafNumber]← v.K

return secrets

Key retrieval contd.

S.Retrieve

Input: τS

receive MU from U
MS[·]← ⊥
for (idx, idx′, T ′) ∈MU do

v ← τS.nodes[idx]; v′ ← τS.nodes[idx′]
MS ←MS ∪ *servePath(v, v′, T ′)
MS ←MS ∪ *serveTree(v, MS[v.idx])

send MS to U

Erasure

U.Erase

Input: (τ, (i, j))
(idxi, idxj)← (τ.leaves[i].idx, τ.leaves[j].idx)
safe← *safeResidual(τ.root, idxi, idxj)
MU ← ∅
for v ∈ safe do

v′ ← *storedAncestor(v)
if v′ ̸= ⊥ ∧ v′ ̸= v then

MU ←MU ∪ {(v.idx, v′.idx, v′.T )}
else

safe← safe \ {v}
send MU to S
receive MS from S
for v ∈ safe do

try *recover(v, MS)
for v ∈ safe do

(v.sibling.K, v.sibling.K)← (⊥,⊥)
while v.parent ̸= ⊥ do

(v.parent.K, v.parent.K)← (⊥,⊥)
v ← v.parent

return τ

S.Erase

Input: τS

execute S.Grant(τS)

Access delegation

U.Grant

Input: (τ, (i, j))
τ ′ ← clone(τ)
(idxi, idxj)← (τ ′.leaves[i].idx, τ ′.leaves[j].idx)
msg, MU ← ∅
cov← *cover(τ ′.root, idxi, idxj)
for v ∈ cov do

v′ ← *storedAncestor(v)
MU ←MU ∪ {(v.idx, v′.idx, v′.T )}

send MU to S
receive MS from S
for v ∈ cov do

try *recover(v, MS)
msg ∪← {(v.idx, v.K, v.T )}

return msg
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Access delegation contd.

S.Grant

Input: τS

receive MU from U
MS[·]← ⊥
for (idx, idx′, T ′) ∈MU do

v ← τS.nodes[idx]; v′ ← τS.nodes[idx′]
try P ← *servePath(v, v′, T ′)
MS ←MS ∪ P

send MS to U

S.Accept

Input: τS

execute S.Grant(τS)

U.Accept

Input: (τ, (i, j), msg, upload)
MU ← ∅
for (idx, K, T ) ∈ msg do

v ← τ.nodes[idx]
for all v′ : v′.descendantOf(v) ∧ v′.K ̸= ⊥ do

MU ←MU ∪ {(v′.idx, idx, T )}
send MU to S
receive MS from S
τ ′ ← clone(τ)
for (idx, K, T ) ∈ msg do

v ← τ ′.nodes[idx]
if *storedAncestor(v) ̸= ⊥ then skip
(v.K, v.T )← (K, T )
for (idx′, ·, ·) ∈MU do

// check consistency
v′ ← τ ′.nodes[idx′]
(K′, T ′)← (v′.K, v′.T )
(v′.K, v′.T )← (⊥,⊥)
try *recover(v′, MS)
req (K′, T ′) = (v′.K, v′.T )
// purge from actual tree
(τ.nodes[idx′].K, τ.nodes[idx′].T )← (⊥,⊥)

for (idx, K, T ) ∈ msg do
v ← τ.nodes[idx]
if *storedAncestor(v) ̸= ⊥ then skip
(v.K, v.T )← (K, T )
stup ← stup ∪ *compact(v)

if ¬upload then stup ← ⊥
return (τ, stup)

Fig. 11: The CKSInterval scheme supporting up to 2h epochs.

Protocol Interval-CKS Helpers

*storedAncestor

Input: v

// Finds ancestor from which to recover.
if v = ⊥ ∨ v.K ̸= ⊥ then return v
else return *storedAncestor(v.parent)

*servePath

Input: (v, v′, T ′)
// Serve the path from v′ down to v, starting with tag T ′

M [·]← ⊥
try (C, Tℓ, Tr)← v′.data[T ]
M [v′.idx]← (C, Tℓ, Tr)
if v ̸= v′ then

if v.descendantOf(v′.lChild) then
try P ← *servePath(v, v′.lChild, Tℓ)

else
try P ← *servePath(v, v′.rChild, Tr)

M ←M ∪ P
return M

*serveTree

Input: (v, (C, Tℓ, Tr))
// Serve the subtree rooted at v
M [·]← ⊥
M [v.idx]← (C, Tℓ, Tr)
if ¬v.isleaf then

M ←M ∪ *serveTree(v.lChild, v.lChild.data[Tℓ])
∪ *serveTree(v.rChild, v.rChild.data[Tr])

return M

*safeResidual

Input: (v, idxi, idxj)
// A minimal cover for that allows to restore all nodes except
for the interval idxi to idxj .
if idxj < v.minLeafIdx ∨ idxi > v.maxLeafIdx then

return {v}
else if idxi ≤ v.minLeafIdx ∧ idxj ≥ v.maxLeafIdx then

return ∅
else

return *safeResidual(v.lChild, idxi, idxj)
∪ *safeResidual(v.rChild, idxi, idxj)

Fig. 12: Additional helper methods for the CKSInterval scheme.
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F.2 Security

Theorem 5. Assuming the CE scheme is correct and one-time IND-CPA secure and modeling H
as a random oracle, the interval scheme CKSInterval satisfies integrity and is secure. That is, for any
CKS-compatible game G, and any admissible PPT adversary A, there exists a PPT adversary A′ such
that

AdvGCKS(A) ≤ AdvG(A′) + negl(κ).

We prove the two properties separately. Overall, the proofs follow the same template as the one of
the line scheme in Appendix E.2. We, thus, mainly highlight the differences.

Lemma 10. Assuming the CE scheme is correct and modeling H as a random oracle, the interval
scheme CKSInterval satisfies integrity.

Proof. Observe that in the integrity game, Secret[u, e] gets changed in at most three places: First,
when it is initialized and, thus, ⊥ is replaced with either a concrete secret s or a placeholder Kp.
Second, in case the placeholder is replaced by a concrete value and, third, upon erasure. Analogous
the respective proof for the line scheme it is, thus, easy to see that Secret[u, e] ̸= ⊥ iff the protocol
“knows” key, i.e., iff *storedAncestor(v) ̸= ⊥ for v = τ.leaves[e]. Further, we observe that the winning
conditions in the Append and Grant oracles, as well as the first winning condition in the Accept oracle,
are trivially ruled out by corresponding checks in the protocol. It, thus, remains to argue that the
second winning condition in Accept as well as the winning condition in Retrieve cannot be triggered.

Next, consider a hybrid experiment H1 that works like CKS-IntA
CKSInterval

but (a) disables the
aforementioned trivial winning conditions, and (b) additionally keeps track of a mapping Ctxt with
Ctxt[u, v] storing the first (valid) CE ciphertext Cv that user u used for that node, i.e., the first
ciphertext u either generated (in Append or Accept) or downloaded and accepted (in Retrieve or
Accept). Upon Erase, the value is reset. This modification does not change the game’s behavior or
winning condition.

Second, consider a hybrid experiment H2 that does not use placeholders. Instead, in Accept,
it defines Secret[u′, e] to be the key obtained by decrypting Ctxt[u′, τ.leaves[e].parent] (and taking
the respective key depending on whether τ.leaves[e] is the left or right child of its parent) instead.
Analogous to the line-scheme proof, we observe that this modification can only make the game easier
to win A, by triggering an assertion instead of first substituting a placeholder.

Third, consider a hybrid H3 that upon Accept with an honest grant checks that the accepting user
u′ and the granting user U agree on the relevant CE ciphertexts of the delegated nodes. That is, the
adversary wins if Ctxt[u, v] ̸= Ctxt[u′, v] for some node v derivable from a node in the cover V the
user sent. Clearly, if CKSHA.Accept processes the input, then they agree on Tv: Since U′ validates the
Merkle-Tree on the CE ciphertexts and tags, collision resistance of H thus implies that this check only
fails with negligible probability.

Fourth, consider a hybrid H4 that additionally enforces the invariant that, if set, the key resulting
from decrypting Ctxt[u, v.parent] is equal to Secret[u, e] for v = τ.leaves[e], with the adversary winning
otherwise. If Ctxt[u, v.parent] is set upon the user generating the ciphertext, then the invariant is
maintained due to correctness of the CE scheme. If Ctxt[u′, v.parent] is set as part of Accept, there
are two options. First, if Secret[u′, e] is already set, but Ctxt[u′, v.parent] not, then Append must have
been called while the sibling’s secret has not been known yet. At which point Secret[u′, e] = v.K was
trivially satisfied. Since as part of Accept, the protocol checks that the new Ctxt[u′, v.parent] decrypts
to v.K the invariant is hence preserved. Second, if Secret[u′, e] gets assigned Secret[u, e], then we know
from the invariant introduced in H3 that the parties have the same ciphertext. Hence, the invariant
still holding for the granting party u implies that the invariant is preserved for u′ as well.

Finally, we argue that triggering either of the two remaining initial winning conditions inH4 happens
with at most negligible probability. First, consider the check Secret[u′, e] ∈ {⊥, s} failing, where s is the
value from Secret[u, e]. By our invariants we have however that (1) Ctxt[u, v.parent] = Ctxt[u′, v.parent]
and (2) for both parties the decryption of their respective ciphertexts equals to the key stored in
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Secret. Second, consider the check Secret[u, e] = secrets(e) in Retrieve being broken. If secrets(e) is
set by the protocol as v.K, then the check trivially holds, as argued before. If, on the other hand,
the protocol derives the key by retrieving the respective ciphertext and decrypt it, note that collision
resistance implies that the protocol only accepts the same ciphertext as stored in Ctxt[u, v.parent].
Hence, our invariant from H4 implies the check to not fail either.

Finally, we remark that erasure does not affect integrity, since the integrity notion does not enforce
consistency past an erasure and erasing is essentially equivalent to the protocol just “forgetting” all
associated state as if it had never learned secrets for the affected periods. ⊓⊔

Finally, we complete by proof by showing the following lemma. The proof, once again, follows
closely the one of the line scheme.

Lemma 11. Assuming the CE scheme is correct and modeling H as a random oracle, the interval
scheme CKSInterval is secure. That is, for any CKS-compatible game G, and any admissible PPT
adversary A, there exists a PPT adversary A′ such that

AdvGCKS(A) ≤ AdvG(A′) + negl(κ).

Proof. Fix some arbitrary CKS-compatible game G, and an arbitrary PPT adversary A against GCKS.
In the following we construct an adversary A′ against G that has almost the same advantage as A
against their respective games.
A′ internally runs A and forwards its interaction with the challenger C. In addition, A′ emulates

the various CKS oracles towards A. To this end, A′ keeps track of the various variables such as n and
ActualKey[·] of GCKS, except for St[·]. Instead, it keeps track of the following additional state:

– It maintains a binary tree τ of height h (mainly used for tree math).
– Secret[e] stores the e-th secret from the CKS-compatible game G, once known to the reduction.
– Secret[u, e] stores the secret user u used in epochs e. If u uses a key from the CKS-compatible

game G that is not known to the reduction yet, it uses Ke as a placeholder instead.
– T [u, v] stores the tag the u used for node v.
– K[u, v] stores the respective CE key, if known.
– C[T ] stores the CE ciphertexts associated with a certain tag.

Using that state, A′ emulates the CKS oracles of GCKS as follows:

– CreateUser: Keeps track of the new user’s existence.
– Corrupt: Emulates the GCKS oracle by exposing all the epochs the corrupted user knows, learning

the actual keys. For each new key se it learns, it
• sets Secret[e]← se
• replaces Ke with se in Secret[u′, e′] for all u′ and e′.

Consider each u′ and each pair of adjacent leaves v.lChild and v.rChild (with joint parent v). Let
sℓ := Secret[u′, v.lChild.leafNumber] and sr := Secret[u′, v.rChild.leafNumber], respectively. If both
secrets are not placeholders, but for their common parent node v, K[u′, v] has not been set, then
we now “open” the fake ciphertext C[v.T ]. That is, the adversary A′:
• Sets K[u′, v]← SE.Sim2(C[v.T ], (sℓ∥sr))
• Copies the key to every other user u′′ that uses the same tag, i.e., T [u′′, v] = T [u′, v].
• Programs the ROM s.t. RO[sℓ∥sr] = K[u′, e]

The reduction A′ then proceeds to open ciphertexts along the path up the tree on the path from v
to the root. That is, for each node v′ on the path, as long as K[u′, v′.lChild] and ceKey[u′, v.rChild]
are both set, it sets

K[u′, v′]← SE.Sim2(C[v′.T ], (K[u′, v′.lChild]∥K[u′, v′.rChild]))

copies the key to every other u′′ using the same tag and programs the ROM.
Once this opening process is concluded for all users u′, A′ assembles a CKS protocol state for U.
That is, it copies K[u, v] and T [u, v] for all nodes v for which U currently stores state.
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– Append: A rejects if the user u already knows a key for the given epoch, i.e., if Known[u, e] ̸= ⊥.
If s = ⊥, then set s← Secret[e] in case that is defined, and Ke, otherwise. Set Secret[u, e]← s.
Let v := τ.leaves[e] and vsib := v.sibling. If the user doesn’t know the secret (placeholder or
actual) for the sibling yet, then we are done. Otherwise, A′ proceeds to compact the two nodes
as follows. If there exists another user U′ that uses the same secrets for those two leaves, then
set T [U, v.parent] := T [U, v.parent] and K[U, v.parent] := K[U, v.parent]. Observe that this implies
C[T [U, v.parent]] now being already defined. Else, generate a fresh ciphertext and tag. Assume
w.l.o.g. that v is the left child, i.e., that e is odd. (The other case is handled analogously.) If
• If neither s nor Secret[u, e + 1] are placeholders, then set

K[u, v.parent]← RO[Secret[u, e]∥Secret[u, e + 1]]
Cv.parent ← CE. Enc(Ku,e, (s∥Ku,e−1))

= SE.Enc(Ku,e, (s∥Ku,e−1))

sampling the random oracle if necessary.
• Otherwise, set Cv.parent ← SE.Sim1(1κ, 2n), where n denotes length of a secret.
• Compute T [u, v.parent] ← CE. Tag(Cv.parent, 02κ) := RO[C∥02κ], sampling the ROM if neces-

sary, and set C[T [u, v.parent]]← Cv.parent.
Emulate the *compact procedure for each node v′ along the path from v.parent to the root as
follows:
• Once the user u is not supposed to know the key for node v′, then stop. Otherwise, repeat the

following steps.
• If both K[u, v′.lChild] and K[u, v′.rChild] are known, then compute the real CE key and tag

K[u, v] and Cv′ .
• Else, set Cv′.parent ← SE.Sim1(1κ, 2ℓ), where this time ℓ denotes length of a CE key.
• Compute

T [u, v′]← CE. Tag(Cv′ , T [u, v′.lChild]∥T [u, v′.rChild])
:= RO[C∥T [u, v′.lChild]∥T [u, v′.rChild]],

sampling the ROM if necessary, and set C[T [u, v′]]← Cv′ .
In case of upload = true, send an according stup to A.

– Grant: For granting access to epochs share = [i, j], A′ first emulates the run of the protocol by
fetching all the required ciphertexts for deriving V = *cover(τ.root, i, j). To emulate the protocol
verifying those ciphertexts, A′ accepts them iff the adversary sends back the same ciphertexts U
initially generated.
If leak = false, A′ then samples a uniform random handle h and records Msgs[h]← (share, U).
That is, instead of recording the granting message msg, it simply records user and the share. Then
it outputs the handle h.
If leak = true, then A′ invokes C.Expose(e) for e = i, . . . , j and proceeds analogous to the Corrupt
oracle to update K, C, T , and Secret. Finally, it outputs an actual grant message msg.

– Accept: If A delivers a handle h to u′, then A′ emulates the Accept oracle using a simple
consistency check and copying the relevant information for its maintained state.
If A injects a grant message msg, the reduction emulates the performing the consistency checks, if
required. (Note that msg contains actual CE keys from which A′ can try to decrypt the ciphertexts
served.) If for any of the nodes v′ that now gets superseded, U actually did not know the real key
yet (but faked a ciphertext) then A′ rejects, as this the probability of A generating ciphertexts
that decrypt to a key unknown to him is negligible. During this process, the reduction also
populates T [U, ·], K[u, ·] and C[T [U, ·]] as appropriate. In case no consistency check is performed,
the reduction simply stores T [U, v] and T [U, v] for each node v contained in the grant message.

– Retrieve: The reduction simply simulates the message sent by the corresponding party to the
server. Note that this message contains public information only. If by emulating the protocol, A′

learns new ciphertexts, tags, CE keys, or secrets, populate the maintained state accordingly.
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– Erase: Upon erasure, the reduction emulates any re-derivation of remaining state by either checking
that ciphertexts match to one stored in C[T [u, v]] (if the reduction has seen the corresponding)
or actually trying to decrypt and verify tags (in case v was part of an injected granted subtree).
If those checks succeed, the reduction purges Secret[u, e] for all involved epochs, and T [u, v] and
K[u, v] for all involved nodes v.

– RO: Upon input x ∈ {0, 1}∗, A′ returns RO[x] if that has already been defined. Otherwise, it
proceeds as follows:
• Try to parse x as se−1∥se or Kv.lChild∥Kv.rChild, for the respective cases.

If this succeeds, there exists a user U and a node v such that the query has to be answered
consistently to match CE. Kg and set RO accordingly. More specifically:

∗ If K[u, v.lChild] = Kv.lChild and K[u, v.rChild] = Kv.rChild, then open Cv using the non-
committing property to obtain a consistent Kv and set RO[x] = Kv.

∗ If se−1 and se are the secrets used for an even e (as determined by the Test oracle, if
necessary), then open C of the node v whose children epochs e− 1 and e are. This yields
Kv that consistently explains Cv as encryption of se−1 and se. Set RO[x] = Kv.

• If RO[x] was not already defined and did not need programming, sample RO[x] u.a.r. and
return that value.

The argument as of why this reduction is successful works analogous to the one for the line
scheme. In a nutshell, by the IND-CPA security of the encryption scheme, the fake encryptions are
indistinguishable from proper ones, and the non-committing property ensures that we can program
the random oracle for CE. Kg to retroactively “explain” any opening once the respective message is
known. Note in particular that our encryption is not circular but only encrypts up the tree.

The game furthermore ensures that users having consistent information also produce consistent
ciphertexts. This is critical as the CE scheme is deterministic while the “faking” algorithm isn’t. Using
tags as unique identifiers for various state works due to the H (modeled as a ROM) being collision
resistant. ⊓⊔
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