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ure Coin-FlippingYevgeniy DodisMIT�April 26, 2000Abstra
tColle
tive Coin-Flipping is a 
lassi
al problem where n 
omputationally unbounded pro
es-sors are trying to generate a random bit in a setting where only a single broad
ast 
hannel isavailable for 
ommuni
ation. The proto
ol is said to be b(n)-resilient if any adversary that 
an
orrupt up to b(n) players, still 
annot bias the 
oin to some desired out
ome almost 
ertainly.The problem is extensively studied for the 
ase of non-adaptive adversaries who have to de
idewhi
h players to 
orrupt before the proto
ol starts. In parti
ular, it is well-known that the opti-mum resilien
e threshold is n=2 in this 
ase. However, none of these proto
ols is resilient againstan adaptive adversary who 
an 
orrupt just a single player in the 
ourse of the exe
ution. Infa
t, Ben-Or and Linial [BL90℄ 
onje
tured that the adaptive adversary is mu
h more powerfulthan the non-adaptive adversary. More spe
i�
ally, that the optimal resilien
e threshold foradaptive adversaries is only O(pn) (whi
h is a
hieved by a simple "majority" proto
ol).We give strong eviden
e towards this 
onje
ture by showing that no bla
k-box transformationfrom any stati
ally se
ure 
oin-
ipping proto
ol 
an yield an adaptively se
ure proto
ol toler-ating !(pn) players, so it is impossible to beat the simple majority proto
ol in this way. Theresult is proven by redu
ing the question in hand to the analysis of a novel imperfe
t randomsour
e of independent interest. This imperfe
t random sour
e generalizes and uni�es two well-known imperfe
t random sour
es: the SV-sour
e of S�antha-Vazirani [SV86℄ and the bit-�xingsour
e of Li
htenstein-Linial-Saks [LLS89℄. While from ea
h of these sour
es it is easy to extra
ta "somewhat random" bit, we show this this is no longer possible for the generalized sour
e.
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1 Colle
tive Coin-FlippingThe Setting. Colle
tive Coin-Flipping in the full-information model is a 
lassi
al problem in-trodu
ed by Ben-Or and Linial [BL90℄, where n 
omputationally unbounded pro
essors are tryingto generate a random bit in a setting where only a single broad
ast 
hannel is available for 
om-muni
ation. As usual, we assume that some subset of the parties 
an be faulty or mali
ious, andwe would like our proto
ol to be \resilient" against the faulty players (whi
h we de�ne pre
iselylater). Taking the worst 
ase s
enario, we assume that all the faulty parties are 
oordinated by a
entral adversary A, who 
an 
orrupt up to b out of n players. We 
all su
h an adversary b-bounded.The 
omputation pro
eeds in rounds, in whi
h ea
h pro
essor broad
asts a message to the otherpro
essors. The 
ru
ial 
ompli
ation is that the network is assumed to be asyn
hronous within around and is syn
hronized only in between the rounds. For example, players 
annot 
ip a 
oin bybroad
asting a random bit and taking their ex
lusive OR: the last player to talk 
an 
ompletely
ontrol the output. Again taking the worst 
ase s
enario, we assume that in ea
h round �rst Are
eives all the messages broad
ast by the honest players, and only then de
ides whi
h messagesto send on behalf of the bad players. Finally, we assume that A never violates the proto
ol ina manner that 
an be dete
ted (for example, if a faulty pro
essor has to send a random bit, hedoes so; however, the bit need no be random). The output of the proto
ol is some pre-agreeddeterministi
 fun
tion of the messages ex
hanged over the broad
ast 
hannel.The Goal. As we said, the obje
tive of 
olle
tive 
oin-
ipping is for the players to agree on arandom bit. Given a bit � generated by some random experiment, we de�ne its fairness 
 � 12 tobe the minimum of the probability that � = 0 and that � = 1, and 
all su
h a bit 
-fair. Thus,
onstant bit is 0-fair while a random bit is 12 -fair. When talking about 
oin-
ipping proto
ols,we usually talk about a family a proto
ols parametrized by the number of players, n. Havingthis in mind, a 
oin-
ipping proto
ol � is said to be weakly b(n)-resilient if for any b(n)-boundedadversary � produ
es a 
oin whi
h is 
0-fair, where 
0 is a �xed (possibly very small) 
onstantindependent of n. Su
h a 
oin is 
alled slightly random. � is said to be strongly b(n)-resilient if forany b(n)-bounded adversary � produ
es a (12 � o(1))-fair 
oin. Su
h 
oin is 
alled almost random.Traditionally, the \standard" de�nition of resilien
e for 
oin-
ipping is that of weak resilien
e, sothis is the notion that we will use, unless we state otherwise.1Type of Adversary. So far we have been very vague about the type of adversary that we have.The only thing we spe
i�ed about it, is that it 
oordinates the faulty players and 
an make themdeviate in any manner undete
ted by the honest players. However, we have not talked about howand when the player be
omes faulty. Most of the papers in the full-information model assume and
ru
ially use the fa
t that the adversary A is stati
 (or non-adaptive), i.e. it de
ides on whi
h bparties to 
orrupt before the proto
ol starts. The honest player do not know whi
h b players weresele
ted by A, but the resulting 
oin has to be slightly random for any �xed set of b players. Asomewhat more realisti
 and mu
h more powerful type of an adversary is an adaptive adversary.This adversary 
an listen to all the 
ommuni
ation and 
orrupt up to b players anywhere in the
ourse of the exe
ution. As we will see, this indeed seems to give an adaptive adversary a lot ofpower over the stati
 adversary.Coin-Flipping with Stati
 Adversaries. The 
ase of stati
 adversaries has been extensivelystudied and is understood very well by now. Histori
ally, 
oin-
ipping proto
ols are divided intoone-round/one-bit proto
ol and general (many-round/many-bit) proto
ols.1In fa
t, sin
e our main result is an impossibility result, it will be
ome only stronger if we 
onsider strong fairness.1



In the one-round/one-bit proto
ols ea
h player i is supposed to send a single bit xi, and theresulting 
oin is some deterministi
 fun
tion f(x1; : : : ; xn). Su
h proto
ols deserve su
h a spe
ialattention be
ause of their simpli
ity (they are given by a boolean fun
tion f : f0; 1gn ! f0; 1g) andthe 
onne
tion to \in
uen
e of variables" on boolean fun
tions [KKL89℄. If f de�nes a b(n)-resilientproto
ol, it itself is 
alled b(n)-resilient. Ben-Or and Linial [BL90℄ de�ned an \iterated majorityof 3" fun
tion that is resilient against 
(nlog3 2) � 
(n0:63) players. Ajtai and Linial [AL93℄ non-
onstru
tively showed that there exist 
(n= log2 n)-resilient fun
tions. Unfortunately, there is notmu
h potential in improving this result, sin
e Kahn, Kalai and Linial [KKL89℄ used a beautifulargument to show that there are no !(n= log n)-resilient fun
tions.In 
ontrast, general (stati
ally se
ure) 
oin-
ipping proto
ols 
an a
hieve mu
h better resilien
e.Histori
ally, all su
h proto
ols �rst ele
t a single representative player (
alled a leader), who then
ips the �nal 
oin by itself. If the probability that the leader is non-faulty is lower bounded by a
onstant 
0 (independent of n) for any b(n)-bounded adversary, then the fairness of the resulting
oin is at least 
0=2, yielding a weakly b(n)-resilient 
oin-
ipping proto
ol. The intermediate leaderele
tion (where the players are trying to sele
t a non-faulty leader2) is by itself very importantand, as we said, has been typi
ally 
onsidered instead of solving a seemingly easier 
oin-
ippingproblem.3The �rst interesting leader ele
tion (and thus, 
oin-
ipping) proto
ol was given by Saks [S89℄,who designed a very simple \baton passing" algorithm whi
h he showed was 
(n= logn)-resilient(Ajtai and Linial [AL93℄ improved the analysis of Saks to show that baton passing is in fa
t strongly
(n= log n)-resilient). Saks also observed that no leader ele
tion and 
oin-
ipping proto
ol 
ouldbe n=2-resilient (formal proof appears in [BN℄). The question of a
hieving 
(n)-resilien
e wasaÆrmatively resolved by Alon and Naor [AN93℄. Using an elegant, but non-
onstru
tive \randomtree" proto
ol, they showed the existen
e of an n=4-resilient leader ele
tion proto
ol.4 Addingseveral \tri
ks", they moved the resilien
e threshold to (13�Æ)n (for any Æ > 0). However, Boppanaand Narayanan [BN℄ showed that these tri
ks were not ne
essary and the \random tree" proto
olby itself is (12 � Æ)n-resilient. This result showed that the optimal resilien
e of stati
 
oin-
ipping(and leader ele
tion) is n=2.From this point on, the resear
h in stati
ally se
ure 
oin-
ipping and leader ele
tion was fo
usingon making 
onstru
tive and/or more eÆ
ient leader ele
tion and 
oin-
ipping proto
ols [ORV94,RZ98, F99℄. This 
ulminated in a re
ent paper of Feige [F99℄ who gave 
onstru
tive, extremelysimple and eÆ
ient (12 � Æ)n-resilient 
oin-
ipping and leader ele
tion proto
ol taking log� n +O(1=Æ) rounds with ea
h player sendingO(log n) bits per round (improving and simplifying previousproto
ols of [RZ98℄ with similar parameters).A lot is also known on the optimal dependen
e 
(b) of the fairness of the 
oin and the numberb of faulty players. Namely, 
(b) = 12 � �( bn). The upper bound 
(b) � 12 � 
( bn) was elegantlyshown by Ben-Or and Linial [BL90℄. The lower bound 
(b) � 12 � O( bn) was proved in a series ofpapers for larger and larger values of b: by Ben-Or and Linial [BL90℄ for b = O(n0:63), by Ajtaiand Linial [AL93℄ for b = O(n= log n) and, �nally, by Alon and Naor [AN93℄ for all b. Noti
e thatthe upper bound implies that there are no strongly 
(n)-resilient 
oin-
ipping proto
ols, while thelower bound implies that there is \no limit" for strongly o(n)-resilient proto
ols. (This is one of2We noti
e right away that, unlike 
oin-
ipping, leader ele
tion makes no sense against adaptive adversaries: theadversary 
an always 
orrupt the leader at the end of the proto
ol.3Feige [F99℄ re
ently showed the \
onverse", i.e. that any b(n)-resilient 
oin-
ipping proto
ol 
an be eÆ
ientlytransformed into a b(n)-resilient leader ele
tion proto
ol. Thus, in the stati
 setting leader ele
tion and 
oin-
ippingare \equivalent".4Alon and Naor [AN93℄ and later Cooper and Linial [CL95℄ also gave very 
ompli
ated but 
onstru
tive O(n)-resilient proto
ols with truly tiny 
onstants in front of n.2



the reasons why weak resilien
e is typi
ally 
onsidered.)To summarize, stati
ally se
ure 
oin-
ipping is very well understood by now, the optimal re-silien
e threshold is n=2, and all the best proto
ols (whi
h are quite simple and eÆ
ient) ele
t asingle leader who 
ips the �nal 
oin.Coin-Flipping with Adaptive Adversaries. First we remark that all the best stati
ally se
ure
oin-
ipping proto
ols are not even 1-resilient against adaptive adversaries. Indeed, all of them�rst ele
t the leader, so 
orrupting the leader allows the adversary to 
ompletely �x the 
oin. Moregenerally, the whole philosophy of most stati
ally se
ure proto
ols is not appli
able here, as theseproto
ols try to aggressively eliminate players (without signi�
antly 
hanging the fra
tion of faultyplayers).Adaptive adversaries were already 
onsidered in the original paper of Ben-Or and Linial [BL90℄.In parti
ular, they observed that the following simple \majority" proto
ol a
hieves �(pn)-resilien
e.Ea
h player sends a random bit, and the �nal 
oin is the majority bit. Here any 
pn players (forsmall enough 
) do not a�e
t the proto
ol, sin
e with probability 1 � o(1) the majority will bedetermined anyway. Adaptivity does not help here sin
e in order to bias the 
oin to 1 (similarly for0) it does not really matter whom and when to 
orrupt. Any set B of b players will do: the optimaladversarial strategy for these players is to de
lare that their random bits are all 1. Surprisinglyenough, this simple proto
ol is the best known adaptively se
ure 
oin-
ipping proto
ol! In fa
t,Ben-Or and Linial [BL90℄ 
onje
tured that this proto
ol is indeed optimal.Conje
ture 1 ([BL90℄) Majority is the optimal 
oin-
ipping proto
ol against adaptive adver-saries. In parti
ular, the maximum threshold that 
an be tolerated is O(pn).This 
onje
ture, if true, would imply that adaptive adversaries are mu
h more powerful thanstati
 adversaries for the problem of 
olle
tive 
oin-
ipping. The only result addressing this 
onje
-ture is a very ni
e paper by Li
htenstein, Linial and Saks [LLS89℄. By looking at another questionthat we will dis
uss later (for a di�erent reason), they derived along the way the following result,that seems to strongly support the 
onje
ture above.Theorem 1 ([LLS89℄) If ea
h player is allowed to broad
ast at most 1 bit (possibly, taking nrounds overall), the most resilient adaptively-se
ure 
oin-
ipping proto
ol is indeed the majorityproto
ol (whi
h tolerates �(pn) faults).The theorem above already shows some strong separation between stati
 and adaptive adver-saries. Re
all that the result of Ajtai and Linial [AL93℄ says that there are 
(n= log2 n)-resilientfun
tions. In other words, there are 
(n= log2 n)-resilient 
oin-
ipping proto
ols where ea
h playersends one bit (even in a single round) whi
h are se
ure against stati
 adversaries. The above resultsays that no fun
tion (e.g., the fun
tion of Ajtai and Linial) f : f0; 1gn ! f0; 1g, even if we spreadit in any way over n rounds, 
an be more than O(pn)-resilient against adaptive adversaries!However, Theorem 1 supports Conje
ture 1 mu
h less than it seems to. Indeed, restri
ting ea
hplayer to send at most 1 bit seems like a huge limitation. We saw that it was very limiting even forstati
ally se
ure proto
ols (re
all, no fun
tion 
an be more than O(n= log n)-resilient by the resultof [KKL89℄, and there are general n=2-resilient stati
ally se
ure proto
ols [BN, ORV94, RZ98, F99℄).For adaptively se
ure proto
ols, sending at most one bit seems parti
ularly restri
tive sin
e lastplayers typi
ally have mu
h more \in
uen
e" in this 
ase, and it seems quite 
on
eivable thatthis unproportional in
uen
e 
an be mitigated by having players send many bits (e.g., in manyround-robin 
y
les). 3



To summarize, adaptively se
ure 
oin-
ipping is mu
h less understood than its stati
 
ounter-part, there seems to be some indi
ation that adaptive adversaries are mu
h more powerful thanstati
 adversaries, but there is little formal eviden
e supporting this 
laim.2 Our Approa
h and Main Impossibility ResultBla
k-Box Redu
tions. We look at the problem of 
onstru
ting adaptively se
ure 
oin-
ippingproto
ols from a di�erent perspe
tive. Namely, assume we are given a proto
ol � whi
h is knownbe \good" against stati
 adversaries (we will be more pre
ise in a se
ond). We ask the question ifit is possible to transform � in a \bla
k-box" way so as to obtain a \somewhat good" adaptivelyse
ure proto
ol �. To 
apture the intuition that we are really obtaining � from �, we do not allowthe player to send any messages outside those they send in �, but allow them to run � sequentiallyas many times as they wish. Of 
ourse, one might try to let the players run some sub-proto
ols inbetween running �, but then it is very hard to say that we are really using � and do not, say, runa brand new proto
ol in the middle and ignore everything that happens in �. Thus, � 
an run �any number of times times D, and get some 
oins x1; : : : ; xD, some of whi
h might not be very fairsin
e we ran � against an adaptive adversary. To 
orre
t against this, players in � try to applysome fun
tion f : f0; 1gD ! f0; 1g to x1; : : : ; xD to produ
e the �nal 
oin. This leads us to thefollowing natural de�nition.De�nition 1 Let D be any integer and f : f0; 1gD ! f0; 1g be any fun
tion. We let �(D; f;�)(often we omit �) be the proto
ol where players sequentially run the proto
ol � D times, obtain
oins x1; : : : ; xD, and output f(x1; : : : ; xD) as the resulting 
oin. The 
lass f�(D; f;�) j D � 1; f :f0; 1gD ! f0; 1gg is 
alled the 
lass of bla
k-box transformations of �.The (False) Hope. The intuitive reason why bla
k-box transformations look very promising isthe following. Assume that � is b(n)-resilient and we wish to 
onstru
t an adaptively b(n)-resilient�(D; f;�). Ignoring the question of eÆ
ien
y, we 
an make D arbitrarily large 
ompared to b(n)and n (e.g., 22n if we so wish). Assume now A 
an adaptively 
orrupt up to b(n) players. Let ustake the worst 
ase, and assume that whenever A 
orrupts even a single player in the middle of �i(the i-th run of �), he 
ontrols xi. But this 
an happen at most b(n)� D times. And if A does not
orrupt a player in the middle of �, we know from the stati
 se
urity of � that the 
oin is at leastslightly random. Thus, at most b� D of the xi's are really biased, the remaining D� b of xi's areat least slightly random (maybe even almost random). So it seems like there should not be a bigproblem to design a fun
tion f that would be able to \ignore" this \minis
ule" number b of \�xed"bits, and extra
t just a single somewhat random bit from the remaining (D � b) \good" bits. Wewill show, perhaps even surprisingly, that this hope is unfortunately false for any interesting settingof parameters. In parti
ular, one 
annot beat the simple majority proto
ol in this way.Adaptive Adversary for a Bla
k-Box Transformation. The de�nition of a bla
k-box trans-formation views the proto
ol � as \one pie
e" that is simply being run several times. Even thoughgiven a parti
ular � (and D and f), we will end up with a parti
ular proto
ol �(D; f;�) and 
antalk about it being adaptively b(n)-resilient, it is more natural to let the adaptive adversary A for� perform \meta-operations" on the entire run of ea
h � (
onsistent with the stati
 se
urity of �).Namely, (1) A 
an de
ide not to 
orrupt any players during the run of �, and then the fairnessof the resulting 
oin is what is a
hieved by �, or (2) A 
an de
ide to 
orrupt one or more playerduring the run of �, and then we do not know anything about the resulting 
oin, and, therefore,have to assume the worst (i.e., A 
an �x the 
oin). We make this more formal.4



Assume that given a �xed set B of faulty players, � produ
es a 
�(B)-fair 
oin for any stati
adversary who 
orrupts B at the beginning, and let 
�(b) = minjBj=b 
�(B) be the best that ab-bounded stati
 adversary 
an a
hieve. Let us denote by �i the i-th run of �, and by xi theresulting 
oin. As before, A is 
alled b-bounded if he 
orrupts at most b players overall. However,now we assume that A (the adversary for �(D; f;�)) has the following 
apabilities:(A) If at the beginning of �i the set of 
orrupted players is B and A de
ides not to 
orrupt newplayers during �, the resulting 
oin xi is 
�(B)-fair, but A 
an set the probability of xi = 0anywhere in the interval [
�(B); 1� 
�(B)℄.(B) If A de
ides to 
orrupt at least one new player during the exe
ution of �i, he 
an set theresulting 
oin xi to any value.We justify assumptions (A) and (B) in two ways. First of all, we are talking about bla
k-boxredu
tions. In other words, we do not know and do not want to assume anything more about �than what is given to us by the fun
tion 
�(B). Thus, if A does not 
orrupt new players inside�i, we know that Pr(xi = 0) 2 [
�(B); 1 � 
�(B)℄, but we 
annot assume anything more, so weassume that A 
an set Pr(xi = 0) anywhere in this interval. Similarly, on
e A 
orrupts a playerinside �i, nothing 
an be said about the behavior of the resulting 
oin, so we again have to assumethe worst 
ase.The other justi�
ation 
omes from the fa
t that all best non-adaptively se
ure 
oin-
ippingproto
ols (e.g., [AN93, ORV94, RZ98, F99℄) essentially satisfy both of these assumptions.5 As-sumption (B) be
ause they always ele
t the leader, so 
orrupting the leader allows the adversaryto 
ontrol the 
oin. And assumption (A) be
ause these proto
ols are a
tually symmetri
 in 0 and1 and by making faulty players be \less and less faulty", they 
an indeed a
hieve essentially anyprobability inside the spe
i�ed interval.Main Result. Our main result is the following theorem, whi
h states that using bla
k-box re-du
tions one 
annot signi�
antly beat the simple majority proto
ol, giving further support toConje
ture 1.Theorem 2 For any family of 
oin-
ipping proto
ols �, there is no bla
k-box transformation re-sulting in an adaptively !(pn)-resilient family of proto
ols �(D; f;�).We also remark that the adaptive adversaries we will use to prove this result satisfy 
onsiderablyweaker assumptions than (A) and (B). For example, we will only use the extremes 
�(B) and(1� 
�(B)) (even for some parti
ular B) for assumption (A).6 As for assumption (B), we will onlyuse the fa
t that if A wants to 
ompletely 
ontrol the 
oin, he 
an do so by 
orrupting just some(rather than any) one player. Some further relaxations will be 
lear from the proof we present, butthe point we are making is that our main result is somewhat surprising and 
ertainly non-trivialeven without any of these relaxations. Indeed, in our informal intuition above (of why bla
k-boxredu
tions look very promising), assumptions (A) and (B) did not seem to 
reate any problems, soeven with these assumptions it is quite interesting to see why the intuition was wrong.5In fa
t, it is easy to 
he
k that our main Theorem 2 holds on a \
on
rete level" if we repla
e � with any of theseproto
ols.6Essentially, we are just ruling out the possibility that the stati
 adversary 
an in
uen
e the bit towards 0, but
annot do (almost) the same for 1. 5



3 Redu
tion to Imperfe
t Random Sour
esWe redu
e the proof of Theorem 2 to the analysis of a novel imperfe
t random sour
e (IRS). Assume�(D; f;�) is adaptively 2b(n)-resilient. We 
onstru
t the following 2b(n)-bounded adversary for� satisfying properties (A) and (B). Let b = b(n), 
 = 
�(b) and let B be the set of playersof 
ardinality b a
hieving 
�(B) = 
�(b) = 
. Before �1 starts, A 
orrupts all the players inB. Therefore, from now on in ea
h of the D invo
ations of �, A 
an set the 0-probability of xianywhere in at least the interval [
; 1 � 
℄. As A will later 
orrupt more players, this interval 
anonly expand, but our parti
ular A will not use it.7 If A de
ides to follow rule (B), he will 
orrupta single player and set the 
orresponding bit xi to the value he wants. Therefore, sin
e � 
laims tobe 2b-resilient, A 
an use rule (B) exa
tly b times.Hen
e, we redu
ed the behavior of A to the following. For i = 1 : : : D, the adversary A 
angenerate xi given x1; : : : ; xi�1 using one of the following rules:(A') Set xi to 0 with any probability inside the interval [
; 1� 
℄.(B') Set xi to any value A desires. However, this rule 
an be used at most b times.Thus, we 
an view our adversary A as an imperfe
t random sour
e that emits D history depen-dent weakly random bits a

ording to rules (A') and (B'), and 
an view our fun
tion f : f0; 1gD !f0; 1g as the bit-extra
tion pro
edure trying to extra
t a single slightly random bit for any su
hsour
e A.De�nition 2 Call any A obeying rules (A') and (B') above a (
; b;D)-imperfe
t random sour
e,or (
; b;D)-IRS. Given f : f0; 1gD ! f0; 1g, we let� q(
; b;D; f;A) be the fairness of the 
oin f(x), where x = x1; : : : ; xD was produ
ed by A.� q(
; b;D; f) = minA q(
; b;D; f;A) (taken over all (
; b;D)-IRS A).� q(
; b;D) = maxf q(
; b;D; f) (taken over all f : f0; 1gD ! f0; 1g).Thus, q(
; b;D) is the best fairness of a 
oin that 
an be extra
ted from any (
; b;D)-IRS. Similarto 
olle
tive 
oin-
ipping, we say that one 
an extra
t a slightly random bit if q(
; b;D) = 
(1),and an almost perfe
t bit if q(
; b;D) = 12 � o(1).We will talk more about the relation of our IRS to two 
lassi
al IRS of [SV86, LLS89℄, but letus right away state one of our main impossibility results for our IRS.Theorem 3 q(
; b;D) � 2(2� 2
)b (1)In parti
ular, if b � (12 � 
) = !(1), then q(
; b;D) = o(1), i.e. it is impossible to extra
t a slightlyrandom bit.The amazing fa
t about Equation (1) is that it does not depend on the number of generatedbits D! In other words, more generated bits do not help for a given 
 and b. Tra
ing ba
k to theadaptive 
oin-
ipping, on
e we de
ided to a
hieve adaptive 2b(n)-resilien
e, there is fundamentallimitation on how fair we 
an make the resulting 
oin, irrespe
tive of how many times we run thebla
k-box proto
ol �. In other words, our informal intuition was wrong, when we 
laimed that we7In fa
t, A that we 
onstru
t will always set the 0-probability of xi to either 
, or to (1� 
), and no other values.6



should be able to \over
ome" any number b of 
ompletely biased bits when having an overwhelmingmajority of (D � b) slightly random bits.Before moving ba
k to our imperfe
t random sour
e, we right away apply Theorem 3 to establishthe impossibility of bla
k-box redu
tions given by Theorem 2. Re
all that we 
on
luded that itis impossible to obtain a weakly adaptively 2b-resilient �(b;D;�) if it is impossible to extra
t aslightly random bit from a (
; b;D)-IRS, where 
 = 
�(b). From the upper bound of Ben-Or andLinial [BL90℄ that we mentioned in Se
tion 1, we know that for any 
oin-
ipping proto
ol � and anyb, some b players 
an bias the 
oin to have fairness at most 12 �
( bn). Thus, 
 = 
(b) � 12 �
( bn),i.e. b(12 � 
) = 
(b2=n). By Theorem 3, it is impossible to extra
t a slightly random bit wheneverb2=n = !(1), i.e. b = !(pn), establishing Theorem 2.84 Analysis of the Imperfe
t Random Sour
eIn the remainder of the paper, we dis
uss our new random sour
e, relate it to earlier imperfe
t ran-dom sour
es, and analyze its properties (in parti
ular, prove Theorem 3), whi
h are of independentinterest.4.1 Bit-Fixing Sour
e of Li
htenstein, Linial and Saks [LLS89℄Li
htenstein, Linial and Saks [LLS89℄ 
onsidered the 
ase of 
 = 12 , i.e. essentially A 
an only userule (B'). Thus, there is a sequen
e of D truly random bits, b of whi
h 
an be deterministi
ally�xed by A. This sour
e is 
alled bit-�xing. As usual, the question is whether we 
an extra
t atleast one slightly random random bit from this sour
e. Noti
e, that if we let f to be the majorityfun
tion, we 
an tolerate b = O(pD) sin
e any 
pD bits (for small enough 
onstant 
) do notin
uen
e the resulting majority with probability 1� o(1). Remarkably enough, Li
htinstein, Linialand Saks [LLS89℄ a
tually showed that this is the best bit extra
tion possible. Namely,Theorem 4 ([LLS89℄) q(12 ; 
1pD;D) = 12 � o(1), while q(12 ; 
2pD;D) = o(1) (for some 
1 and
2). Moreover, majority is the best bit-extra
tion fun
tion f .Noti
e that this result implies Theorem 1 we mentioned earlier. Indeed, in the 
oin-
ippingproto
ols honest player send truly unbiased 
oin 
ips, while dishonest players send arbitrary bits.Thus, we have exa
tly the sour
e in the above theorem, ex
ept adversary A 
annot make arbitraryinterventions, he 
an only intervene if the player is faulty. However, when ea
h player sends atmost 1 bit (i.e, n bits are sent overall) A 
an indeed intervene arbitrarily and we get Theorem 1.Unfortunately, the reasoning does not extend when players send more than 1 bit. Thus, using
ompletely di�erent reasoning, our approa
h and that of [LLS89℄ 
oin
identally redu
ed di�erentproblems at hand about adaptive 
oin-
ipping to similar looking IRS.As a side note, a random fun
tion f : f0; 1gD ! f0; 1g is a terrible bit-extra
tion fun
tion forthe bit-�xing sour
e even for b = !(1), sin
e with high probability the �rst (D � b) bits do not �xf , so A 
an simply wait and set the last b bits to �x f to either 0 or 1. Another terrible fun
tion(even for b = 1) is any parity fun
tion: A 
an �x it by �xing the last bit of this parity.To summarize, when 
 = 12 we 
an tolerate b = O(pD), and the majority is the best su
hfun
tion. However, a random fun
tion will not do the job even if b = !(1).8If we want to extra
t almost random bit, it is impossible to do it if b = 
(pn).
7



4.2 Slightly-Random Sour
e of S�antha and Vazirani [SV86℄S�antha and Vazirani [SV86℄ looked at the 
ase b = 0, i.e. A 
an only use rule (A'). Thus, A 
anset Pr(xi = 0 j x1 : : : xi�1) anywhere within [
; 1 � 
℄. This sour
e is sometimes referred to as theslightly-random sour
e or also SV -sour
e.On a negative side, S�antha and Vazirani showed that one 
annot extra
t ~
-nontrivial bits forany ~
 > 
. Thus, the adversary A 
an always make sure that the resulting bit f(x1; : : : ; xD) is notbetter than any of the individual bits xi. On the positive side, there are many f 's that produ
e
-fair bits, for example f(x1; : : : ; xD) = xi (for any i), or, more generally, any non-trivial parityfun
tion of the input bits. Thus,Theorem 5 ([SV86℄) q(
; 0;D) = 
. Thus, one 
an extra
t a slightly random bit i� 
 = 
(1).Noti
e, similarly to our Theorem 3, the number of bits D does not help. However, it is 
om-pletely trivial to extra
t a slightly random bit (just output x1) if 
 = 
(1). In fa
t, Boppana andNarayanan [BN96℄, following the ideas of Alon and Rabin [AR89℄ and elegantly extending theirte
hniques, showed mu
h more.Theorem 6 ([AR89, BN96℄) For any (
onstant) 
 > 0 there exists a 
onstant 
0 > 0 su
hthat with probability exponentially 
lose to 1, a random fun
tion f : f0; 1gD ! f0; 1g satis�esq(
; 0;D; f) � 
0.Thus, a vast majority of fun
tions extra
t a slightly random bit from any SV -sour
e. Un-fortunately, majority is not one of these fun
tions. Indeed, if the adversary always sets the 1-probability of the next bit to be 1 � 
, the resulting bit will be 1 with probability 1 � o(1). Infa
t, Alon and Rabin [AR89℄ showed that majority is the worst bit-extra
ting fun
tion. Namely,q(
; 0;D;majority) � q(
; 0;D; f), for any f .Hen
e, if b = 0, a random fun
tion is a good bit extra
tor, while the majority is the worst.4.3 Our Combined Sour
eWe see that (
; b;D)-sour
e generalizes both of the bit-�xing and the SV-sour
es (whi
h roughly
orrespond to using only one of rules (A') or (B')). While for the interesting settings of parameters(e.g., b = O(pD) for bit-�xing, and 
onstant Æ > 0 for SV), we 
an extra
t slightly random bitsfrom both of these sour
es, the fun
tions a
hieving this are drasti
ally di�erent. For the bit-�xingsour
e the best fun
tion was majority, and a random fun
tion (or any parity fun
tion) was terrible,while for the SV-sour
e a random fun
tion was good (and any parity fun
tion is optimal), whilethe majority was the worst. So best extra
tor be
omes the worst and vi
e versa! One may wonderif it is indeed possible to 
ombine \the best of two worlds" and extra
t a slightly random bit fromour 
ombined sour
e. Unfortunately, Theorem 3 says that this is impossible for essentially anyinteresting setting of parameters. The most striking su
h setting, perhaps, is b = !(1) and any
onstant 
 < 12 . If we interpret b = !(1) as b!1, this says that no matter how large we make D(given b), it is still impossible to extra
t even a single slightly random bit when 
 < 12 .We now state our results more pre
isely. In what follows from here on, 
 will never 
hange, sowe omit it from all the notation. Note that given the extra
tion fun
tion f , the optimal adversarydoes the following. First A tries (in his mind) to minimize the probability that the resulting 
oin� = 0, then he does the same with � = 1, and then 
hooses the smaller of the above. Therefore, itis more 
onvenient for us to analyze A that, given f , tries to avoid a parti
ular �, say � = 0. Inthis 
ase, however, the su

ess of A will 
ru
ially depend on how biased towards 1 the fun
tion f8



is: if f � 0, nothing 
ould be done, while if f � 1, nothing needs to be done. This motivates thefollowing de�nition.De�nition 3 Given f : f0; 1gD ! f0; 1g, denote by Ones(f) = jfx 2 f0; 1gD s.t. f(x) = 1gj. Welet p(t;D; b) = maxf minA Pr(f(x) = 0)where the maximum is taken over all f : f0; 1gD ! f0; 1g with Ones(f) = t, and the minimum istaken over all adversaries A produ
ing x = x1 : : : xD and satisfying rules (A') and (B'). In otherwords, we restri
t ourselves to extra
ting fun
tions having t preimages of 1, and see how biasedtowards 1 the adversary of our sour
e 
an make the resulting 
oin.In the terminology of [LLS89℄, we 
an de�ne the language L asso
iated with f as L = fx jf(x) = 1g. Then we 
an view our adversary as trying to for
e x 2 L. The quantity p(t;D; b) tellsus how the probability of failure (x 62 L, i.e. f(x) = 0) of the adversary over the worst possiblelanguages L (over D-bit strings) of 
ardinality t.Theorem 7 p(t;D; b) � 2Dt � 1(2� 2
)b (2)We noti
e that t=2D is simply the fra
tion of x su
h that f(x) = 1. Thus, Equation (2) says forany f : f0; 1gD ! f0; 1g, we 
an upper bound the probability of adversary's failure to �x f(x) = 1by a fun
tion depending only on the density(f) def= Ones(f)=2D, i.e. only the fra
tion of \ones" off matters! Sin
e any fun
tion either has a majority of \ones" or \zeros", by repla
ing, if ne
essary,0 and 1 we 
an assume that Ones(f) � 2D�1, i.e. 2D=t � 2. This immediately implies Theorem 3.In fa
t, to make the 
oin not "-fair, it suÆ
es for the adversary to have the number of interventionsb = O( 11�2
 ) � log(1" ). We now prove Theorem 7.Proof: The statement is true for 
 = 12 or b = 1, sin
e p(�; �; �) � 1 � 2D=t, so assume 
 < 12 andb � 1. Let a = t=2D be the fra
tion of \ones" of f , and de�ne g(a; b) = 1a(2�2
)b . We need to showthat p(t;D; b) � g(a; b) for any D � 1, 1 � b � D and 0 � t � 2D. We prove this by indu
tion onD. For D = 1, p(0; 1; b) = 1 < 1 = g(0; b), and p(1; 1; b) = p(2; 1; b) = 0 � g(a; b) (here we usedb � 1, so that we 
an take the bran
h leading to 1). Assume now the 
laim is true for (D� 1) andwe want to show it for D.Take any f su
h that Ones(f) = t. Let f0 : f0; 1gD�1 ! f0; 1g be the restri
tion of f whenx0 = 0. Similarly for f1. Let ` = Ones(f0) and r = Ones(f1). Clearly, `+ r = t. Without loss ofgenerality assume ` � r (if not, we reverse ` and r everywhere in the proof). Given su
h f , ourparti
ular adversary A will 
onsider two options: either he will use rule (B') (he 
an do it sin
ewe assumed b � 1) and �x x0 = 0, redu
ing the question to that of analyzing the fun
tion f0 withOnes(f0) = ` on D � 1 variables and also redu
ing b by 1, or he will use rule (A') making the0-probability of x0 equal to 1 � 
 and leaving the same b. By the de�nition of fun
tion p(t;D; b),we know that in the �rst 
ase the failure probability of A will be at most p(`;D � 1; b� 1), and inthe se
ond 
ase it will be at most 
 � p(r;D � 1; b) + (1� 
) � p(`;D� 1; b). Given f , our adversarywill 
hoose the best (i.e., the smallest) of these two quantities. Sin
e the 
hoi
e of ` � r su
h that`+ r = t is outside of our 
ontrol, we will take the maximum over all su
h 
hoi
es and obtain thefollowing re
urren
e.p(t;D; b) � max0�r�t=2`=t�r min [p(`;D � 1; b� 1) ; 
 � p(r;D � 1; b) + (1� 
) � p(`;D � 1; b)℄ (3)9



Let `=2D�1 = a(1 + �) and r=2D�1 = a(1 � �), where 0 � � � min(1; 1=a � 1) � 1 (sin
e`+ r = t = a � 2D and ` � r). Using our indu
tive assumption on (D � 1), we getp(t;D; b) � max0���1min (g(a(1 + �); b� 1); 
g(a(1 � �); b) + (1� 
)g(a(1 + �); b)) ?� g(a; b) (4)Re
alling the de�nition of g, it thus suÆ
es to show thatmax0���1min� 1a(1 + �)(2 � 2
)b�1 ; 
a(1� �)(2� 2
)b + 1� 
a(1 + �)(2 � 2
)b� � 1a(2� 2
)b() max0���1min�2� 2
1 + � ; 
1� � + 1� 
1 + �� � 1To show the last equation, we see when it is the 
ase that 2�2
1+� = 
1�� + 1�
1+� , i.e. the expressionsunder the min are equal. It is not hard to see that this happens when � = (1 � 2
). We now
onsider two 
ases.� Case 1. Assume � � 1 � 2
. Then min�2�2
1+� ; 
1�� + 1�
1+�� = 2�2
1+� and it suÆ
es to showthat 2�2
1+� � 1. But it is easy to see that the latter is exa
tly equivalent to our assumption on�, so it holds.� Case 2. Assume � � 1 � 2
. Then min�2�2
1+� ; 
1�� + 1�
1+�� = 
1�� + 1�
1+� and it suÆ
es toshow that 
1�� + 1�
1+� � 1. But this is again exa
tly equivalent to our assumption on �, so itholds.4.4 Expe
ted Number of Interventions to Fix the Out
omeFinally, we analyze another property of our IRS. Assume that rather than having at most b appli
a-tions of rule (B') and trying to minimize the fairness of the 
oin, the adversary tries to �x the 
ointo some value he desires (with probability 1) and wants to minimize the expe
ted number of \in-terventions", i.e. appli
ations of rule (B') (while rule (A') 
an be used \for free"). In other words,given an extra
tion fun
tion f , A 
omputes the expe
ted number of interventions to for
e 0, thandoes the same for 1, and 
hooses the smaller of the two. We let v(
;D) be this smallest expe
tednumber of interventions taken over the worst possible extra
tion fun
tion f : f0; 1gD ! f0; 1g.Theorem 8 v(
;D) � O� 11� 2
� (5)In parti
ular, if 
 < 12 , a 
onstant expe
ted number of interventions suÆ
e irrespe
tive of D!We again see a similar trend to Theorem 5 and Theorem 3: large number of repetitions D doesnot help. In other words, our \
ombined" random sour
e gives mu
h more power to the adversarythan one would imagine: if (
onstant) 
 < 12 and no matter how large is D, a super-
onstantnumber of interventions b makes it impossible to extra
t a slightly random bit, and a 
onstantexpe
ted number of interventions suÆ
es to �x the bit no matter what extra
tion fun
tion we use.We also remark that Theorems 3 and 8 about our IRS are 
omplimentary to ea
h other (i.e. onedoes not imply the other), even though both suÆ
e to establish our main Theorem 2. Indeed, wealready saw that Theorem 2 follows from the 
laim that b(12 �
) = !(1)) q(
; b;D) = o(1) (whi
hwas immediate from Theorem 3). But this 
laim also follows from Theorem 8 by applying Markov's10



inequality and getting that b = O(1=("(1 � 2
)) suÆ
es to make q(
; b;D) � ", whi
h gives theneeded b(12 � 
) = !(1)) q(
; b;D) = o(1).Similarly to the proof of Theorem 3, it is more 
onvenient to analyze A that always for
es aparti
ular out
ome (say, 1) with probability 1 and tries to minimize the number of interventions b.We again 
onsider extra
tion fun
tions f with Ones(f) = t and omit 
 from the notation below.De�nition 4 We let e(t;D) = maxf minA E[b℄where the maximum is taken over all f : f0; 1gD ! f0; 1g with Ones(f) = t, the minimum istaken over all adversaries A following rules (A') and (B') and ne
essarily produ
ing x = x1 : : : xDsatisfying f(x) = 1, and E[b℄ stands for the expe
ted number of appli
ations of rule (B') by A(taken over the random 
hoi
es involved in using rule (A')). In other words, we restri
t ourselvesto extra
ting fun
tions having t preimages of 1, and see how many interventions A needs on averageto ensure f(x) = 1.In the terminology of [LLS89℄, we 
an de�ne the language L asso
iated with f as L = fx jf(x) = 1g. Then we 
an view our adversary as trying to ensure that x 2 L with the smallestnumber of interventions. The quantity e(t;D) tells us this expe
ted number of interventions that Aover the worst possible languages L (over D-bit strings) of 
ardinality t. In order to state a boundon e(t;D), we need the following easily veri�ed analyti
al lemma.Lemma 1 For any 0 < 
 < 12 the equationz 1
 + 1 = 2 � z 1
�1 (6)has a unique solution z
 2 (1; 2). In addition, z
 is a 
ontinuous de
reasing fun
tion of 
 su
h thatlim
!0 z
 = 2, lim
! 12 z
 = 1, log2 z
 = �(1 � 2
), and for all 1 � w � z
 we have w1=
 + 1 �2 � w1=
�1.Theorem 9 e(t;D) � logz
 �2Dt � = log2(2D=t)log2 z
 = O� 11� 2
� � log(2D=t) (7)Again, Equation (7) says for any f : f0; 1gD ! f0; 1g, we 
an upper bound the expe
ted numberof interventions to for
e f(x) = 1 by a fun
tion depending only on the density(f) = Ones(f)=2D,i.e. only the fra
tion of \ones" of f matters! Sin
e any fun
tion either has a majority of \ones"or \zeros", by repla
ing, if ne
essary, 0 and 1 we 
an assume that Ones(f) � 2D�1, i.e. 2D=t � 2.This immediately implies Theorem 8. We now prove Theorem 9 using almost the same te
hniquewe used in Theorem 7.Proof: Let a = t=2D be the fra
tion of \ones" of f , z = z
 and de�ne h(a) = logz(1=a). Weneed to show that e(t;D) � h(a) for any D � 1 and 0 � t � 2D. We prove this by indu
tion on D.For D = 1, e(0; 1) =1 = h(0), and e(1; 1) = 1 � logz 2 = h(12 ) (sin
e z � 2, and here a = 12) ande(2; 1) = 0 = h(1). Assume now the 
laim is true for (D � 1) and we want to show it for D.Let f , f0, f1, r, ` have the same meaning they had in the proof of Theorem 7. In fa
t, ouradversary A will be the same as well! In other words, he will 
onsider spending one intervention toset x0 = 0 versus saving the intervention and making the 0-probability of x0 equal to 1 � 
. Theonly di�eren
e is that in the setting of Theorem 7 A 
ould \run out" of his b interventions and also11



minimized a di�erent quantity p(t;D; b) with di�erent initial 
onditions, while in our 
ase A willuse an extra intervention if this pays o�. We get the following re
urren
e.e(t;D) � max0�r�t=2`=t�r min [e(`;D � 1) + 1 ; 
 � e(r;D � 1) + (1� 
) � e(`;D � 1)℄ (8)= max0�r�t=2`=t�r ( e(`;D � 1) + min [ 1 ; 
 � fe(r;D � 1)� e(`;D � 1)g ℄ ) (9)Let `=2D�1 = a(1 + �) and r=2D�1 = a(1 � �), where 0 � � � min(1; 1=a � 1) � 1 (sin
e`+ r = t = a � 2D and ` � r). Using our indu
tive assumption on (D � 1), we gete(t;D) � max0���1 ( h(a(1 + �)) + min [ 1 ; 
 � fh(a(1 � �))� h(a(1 + �))g ℄ ) ?� h(a) (10)Re
alling the de�nition of h, it thus suÆ
es to show thatmax0���1� logz 1a(1 + �) + min� 1 ; 
 � logz 1 + �1� � � � � logz 1aIt will now be 
onvenient to make a 
hange of variable and let � = 
�1
+1 for some 
 � 1 (this is alwayspossible be
ause 0 � � � 1). Noti
ing that logz(1=a) 
an
els, 1�� = 2=(
+1), 1+� = 2
=(
+1),(1 + �)=(1 � �) = 
 and 1 = logz z, we get that it suÆ
es to show thatmax
�1 � logz 
+ 12
 +min [ logz z ; 
 � logz 
 ℄ � � 0 ()max
�1 � 
+ 12
 �min [z; 

 ℄ � � 1We now make the �nal 
hange of variable, letting 
 = w1=
 . Then it suÆ
es to show thatmaxw�1  w1=
 + 12w1=
 �min [z; w℄ ! � 1 (11)To show the last equation, we 
onsider two 
ases.� Case 1. Assume w � z. Then min[z; w℄ = w and it suÆ
es to show w1=
 + 1 � 2w1=
�1,whi
h follows from Lemma 1 sin
e 1 � w � z by our assumption.� Case 2. Assume w � z. Then min[z; w℄ = z and it suÆ
es to show (w1=
 + 1)z � 2w1=
 ,whi
h is the same as w1=
 � z=(2� z). But sin
e z = z
 is the solution to Equation (6), it iseasy to see that z=(2� z) = z1=
 , so it suÆ
es to show w1=
 � z1=
 , whi
h is the same as ourassumption w � z.To summarize the properties of our \
ombined" imperfe
t random sour
e, we have shown thatit gives too mu
h power to the adversary, perhaps more than one would expe
t.5 Con
lusionsWe have seen that Theorems 1 and 2 give very di�erent eviden
es in support of Conje
ture 1.However, the status of 
oin-
ipping with adaptive adversaries is still open and it would be veryinteresting to resolve it. 12
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