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Abstract9

The question of building the most efficient tn-to-n-bit collision-resistant hash function H from a10

smaller (say, 2n-to-n-bit) compression function f is one of the fundamental questions in symmetric11

key cryptography. This question has a rich history, and was open for general t, until a recent12

breakthrough paper by Andreeva, Bhattacharyya and Roy at Eurocrypt’21, who designed an elegant13

mode (which we call ABR) achieving roughly 2t/3 calls to f , which matches the famous Stam’s bound14

from CRYPTO’08. Unfortunately, we have found serious issues in the claims made by the authors.15

These issues appear quite significant, and range from verifiably false statements to noticeable gaps16

in the proofs (e.g., omissions of important cases and unjustified bounds). We were unable to patch17

up the current proof provided by the authors. Instead, we prove from scratch the security of the18

ABR construction for the first non-trivial case t = 11 (ABR mode of height 3), which was incorrectly19

handled by the authors. In particular, our result matches Stam’s bound for t = 11. While the20

general case is still open, we hope our techniques will prove useful to finally settle the question of21

the optimal efficiency of hash functions.22
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1 Introduction31

The Merkle-Damgård construction [3, 7] is a sequential construction which is used in MD5,32

SHA-1 and SHA-2 and many other hash functions. On the other hand, the Merkle tree [6]33

is a parallel construction that is used in hash-based signatures (of interest due to their34

post-quantum security), version control systems such as git, and cryptocurrencies such as35

Ethereum. It is well known that the Merkle-Damgård construction and the Merkle tree are36

collision-resistant provided so are the compression functions. The number of compression37

function calls is (essentially) the same for both constructions. When we use 2n-to-n-bit38

compression functions, we can process t blocks of messages by making t or (t− 1) calls to39

the compression function.40

Although both of these widely used constructions are rather efficient, and only rely on the41

collision-resistance of the compression function, practical compression functions are believed42

to have more properties than mere collision resistance. As such, it is interesting to study the43

question of designing the most efficient way to build a t-to-1 collision-resistant hash function,44
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11:2 Revisiting Collision and Local Opening Analysis of ABR Hash

even if modeling the compression function as ideal (i.e. a random oracle). In particular, to see45

whether the classical Merkle-Damgård and Merkle tree constructions can be improved under46

such idealized modeling. This question has received a lot of attention from the cryptography47

community, which we survey below.48

Lower Bound on the Number of Calls. We start with lower bounds (i.e., attacks).49

In [2], Black et al. formally analyze the security-efficiency trade-off of compression functions,50

showing that a 2n-to-n-bit compression function making a single call to a fixed-key n-bit block51

cipher can not achieve collision resistance. Later Rogaway and Steinberger [9] generalized52

the result for permutation-based hash. For a general hash function based on a compression53

function, Stam [11] conjectures a lower bound on the number of compression function calls.54

In particular, a collision with at most 2n(λ−(t−0.5)/r) queries on a t-to-1 block hash function55

can be found after making r calls to λ-to-1 block compression functions. Equivalently, for56

optimal birthday security, the number of hash calls must be at least r ≥ (2t− 1)/(2λ− 1).57

This bound is popularly known as the Stam’s bound. Stam has shown the bound for some58

cases under a uniformity assumption. Later by Steinberger [12] and by Steinberger, Sun and59

Yang [13], a formal proof of the Stam’s bound is shown.60

Hence, for the most widely studied case of λ = 2, we have a lower bound r ≥ (2t− 1)/3,61

leaving a factor 1.5 efficiency gap when compared to the Merkle-Damgård and Merkle trees.62

Upper Bound on the Number of Calls. For the upper bounds, much of earlier work63

concentrated on the setting of the “non-compressing” case of λ = 1, and often focused on64

the case of small t (e.g., t = 2), implicitly suggesting that — once the 2-to-1 function is65

built, — one should do further extensions with either Merkle-Damgård and Merkle trees.66

For example, Shrimpton and Stam [10] proposed a 2-to-1 compression function based on67

three calls of non-compressing function, which matches Stam’s bound for λ = 1 and t = 2.68

Rogaway and Steinberger [8] designed similar results when the non-compressing primitive is69

an invertible permutation, which they also showed is optimal for this setting [9].70

For general (large) t, Mennink and Preneel [5] also considered the non-compressing71

case λ = 1 and proposed an elegant tree-based mode of operation making (2t− 1) calls to72

the non-compressing round function, which matches Stam’s bound. Unfortunately, they73

could only prove below-birthday security of 2n/3 queries for this construction. They also74

conjectured that the construction achieves optimal birthday security 2n/2, but could only75

prove it for a very restricted special-case attacker. These attacks make all their random76

oracle calls “layer-by-layer” (as opposed to in any order). As acknowledged by the authors,77

the simplifying assumption significantly helps with the proof of this special case and appears78

to be with a great loss of generality. In fact, they presented evidence that their existing79

analysis is unlikely to work for proving optimal security against unrestricted attackers.80

Recently, two papers have appeared to tackle the compressing case λ = 2. In [4], Dodis81

et al. optimally settled the case t = 5, by introducing the T5 construction that processes82

five n-bit message blocks using three 2n-to-n-bit compression function calls, which matches83

Stam’s bound for t = 5 and λ = 2. Further, they suggested extending the T5 construction84

to a larger value of t using either Merkle-Damgård or Merkle trees. In both cases, they85

already achieve non-trivial saving compared to the earlier efficiency of these modes (equal to86

t compression calls): both variants now make roughly 3t/4 calls to the compression functions.87

Still, once t > 5, this does not match the current lower bound of 2t/3 calls. [4] also mentioned88

a natural, but more aggressive, variant of this extended construction for the case of Merkle89

trees. However, they remark that this construction — even if proven collision-resistant90

(which is open), — would lose the efficient “local opening” properties of their simpler tree91
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construction with 3t/4 compression calls. Namely, one can no longer open one message92

block by only opening O(log t) internal values in the tree (as any such opening cannot have93

birthday security, despite satisfying correctness).94

Finally, a breakthrough result of Andreeva, Bhattacharyya and Roy at Eurocrypt’21 [1]95

have claimed to settle the general case in the affirmative. They proposed a hash function ABRl96

based on a perfect binary tree of height l. The hash ABRl can process t = (2l +2l−1−1) blocks97

with r = (2l − 1) calls of compression functions. This matches Stam’s bound r ≥ (2t− 1)/3.98

Somewhat interestingly, the ABR construction looks very similar to the tree construction of99

Mennink and Preneel [5] from non-compressing primitives, except all the compression calls100

at the leaf level now have an extra input (due to λ = 2 instead of λ = 1), while the internal101

calls to the compression function can also process an extra input, but using a slightly trickier102

rule involving two simple XOR operations. So, at least in the intuitive sense, the authors103

must have resolved the difficulty of [5] of dealing with general adversaries, for a construction104

very similar to the one of [5].105

As an additional bonus feature, the work of [1] even claimed that the ABRl mode also has106

attractive local opening properties, at the expense of slightly longer proof length (2l instead107

of l of Merkle trees), but still having only l compression calls to verify such local opening.108

Are We Done? Unfortunately, we have found serious issues in many claims made by the109

authors of [1], whom we call ABR hereafter. These issues appear quite significant, and range110

from verifiably false statements to noticeable gaps in the proof (e.g., omissions of important111

cases and unjustified bounds). Unfortunately, at this stage, we are unable to fix these issues112

in any simple way.113

1.1 Our Results114

Our results can be roughly divided into 3 categories:115

(1) explicit refutation of some claims made by [1];116

(2) serious technical issues in the proof provided by [1];117

(3) a correct (but very different from [1]) proof for the for the ABR3 construction (i.e. t = 11118

and r = 7), which is incorrectly handled by ABR.119

We detail these below.120

Local Opening Insecurity of ABR. As we mentioned, ABR proposed a very efficient121

local opening for ABRl. It opens about 2l blocks and makes l calls to verify. However, we have122

shown that a collision pair of the verification function can be found in O(2n/2l) queries, which123

is significantly below birthday security already for l = 2. Hence, the suggested local opening124

can be broken in the above complexity. Moreover, we have shown that any non-trivial local125

opening of ABRl satisfying a “by-pass verification” property (which is a natural class of126

openings that seems to include any natural opening one can think of) is broken below the127

birthday bound. For example, even opening (t− 1) out of t inputs cannot be birthday-secure,128

where t = 2l + 2l−1− 1 = 2Ω(l). In contrast, previous tree-like constructions (e.g., [4]) achieve129

birthday security with logarithmic opening length O(l). This is discussed in Section 4.130

There are two surprising aspects to this mistake. First, our attack is completely standard131

(using standard generalized birthday attack [14]). Second, the local opening subsection in the132

ABR-paper does not even mention anything about security, only focusing on the correctness133

of the opening. We found this quite surprising.134

Mistakes with the Main Proof. While the local opening mistake above is indisputable,135

the technical mistakes in the main collision resistance proof of ABR are harder to explain in136
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11:4 Revisiting Collision and Local Opening Analysis of ABR Hash

detail (at least in the Introduction, before the technical notation is developed). They are also137

harder to state with conviction, since they often do a combination of the following pitfalls:138

(a) involve imprecise statements,139

(b) state a bound which might be true, but which appears completely non-obvious to us (to140

the extent of being the most difficult part of the proof);141

(c) point to an “analogous” earlier case, but we fail to see why the previous argument142

generalizes;143

(d) state some bound which appears to be correct only if one makes some restricting assump-144

tion on the attacker (but no such assumptions are made by the authors, who claim a fully145

general result!);146

(e) silently omitting an important special case of the proof (i.e., the proof is non-exhaustive).147

The totality of these issues make the proof presented by [1] at best unverifiable, and at worst148

incorrect. In particular, we still believe that the end result is correct, but fixing it would149

require a substantially harder proof.150

At a very high level, the correct collision analysis for a tree-based function like ABRl151

is complex mostly due to the adaptive nature of queries, and the queries made to different152

layers in the tree might not come in monotone order (i.e., may not be in order of the level of153

the nodes). Indeed, this is precisely the reason why the earlier birthday security result of154

Mennink and Preneel [5] only held for “in order” adversaries. Fortunately, the outputs of the155

leaf nodes can be given beforehand, as the input of those has no role in finding a collision.156

More formally, we can make a simple argument to force the attacker “evaluate” the first157

layer compression calls before any of the subsequent calls as follows. We give the attacker q158

random outputs (where q is the total number of queries made by the attacker) at the very159

beginning, but allow the adversary to arbitrarily label the corresponding input values at any160

point in the game. This is fine, since those input values do not participate in any other161

computation, but now all the outputs in the first layer are known before a single compression162

call is made to the lower layers. This allows for relatively simple analysis for the special case163

l = 2, and the authors of [1] indeed start with the correct analysis of this special case.1164

Unfortunately, this argument completely fails after the first layer. (Indeed, handling this165

case will be one of the most difficult parts of our analysis, when we provide a correct proof166

for l = 3 in this paper.) In particular, we see the following high-level issues with the proof167

presented by [1] for l ≥ 3. (More lower-level issues are discussed in Section 5.3 in the paper.)168

1. ABR claimed a relation between collision and the number of computable hash outputs169

(termed as load). We will show in Section 5.4 that the relation is not true in general170

by giving a counterexample. This seems to hold for ABR if queries to the root node are171

performed at the end (which is the case for ABR2). However, it seems non-obvious to us172

why a similar relation holds when the adversary makes out-of-order queries.173

2. We have also found issues while bounding load. ABR consider “input multi-collision”174

for every node up to O(n). However, due to the multiplicative nature of the number of175

multi-collisions as one goes down in the tree, we find that O(ni) multi-collision must176

be considered for the nodes at the i-th level. This would degrade the bound for load177

claimed by ABR, and invalidate the claimed birthday security at the end (unless the178

1 Another correct proof for t = 5 (corresponding to tree depth l = 2) was made for the T 5 compression
function by [4]. Interestingly, the authors did not notice the simplifying non-adaptivity argument above,
and had to work relatively hard to handle out-of-order queries (e.g., it involved a careful expectation
analysis and applying Markov’s inequality; see proof of Proposition 5 in [4], which is over a page). This
shows that handling out-of-order attackers is indeed highly non-trivial.
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number of levels i is constant, in which case one can hide the extra ni bound in the179

“O-tilde”-notation). This will be discussed in Step 1 of Section 5.3.180

3. In fact, even if the load analysis is somehow fixed, ABR seem to consider the last query181

happens in the final node (or at the node where the load is considered). This is effectively182

equivalent to in order adversaries, but does not seem to be the case for general attackers.183

See Step 2 of Section 5.3.184

4. Moreover, both messages of a collision pair can be generated due to a single query response185

(termed as twin collision pair). ABR completely ignore this case. This is discussed in186

detail in the last paragraph of Section 5.3.187

We leave a more detailed explanation of these (and other issues (a)-(e)) later in the paper.188

Collision Analysis of ABR3. On a positive, our main technical result shows that the189

ABR3 construction for t = 11 indeed achieves birthday security (roughly n5q2/2n, where q190

is the number of compression function queries) with an optimally small number of r = 7191

compression calls (see Section 6). While forming only the first step in recouping the incorrect192

results of [1], we are optimistic that our approach could be extended to finally settle the193

general case correctly. For example, compared to best known correct proofs for t = 5 (e.g.,194

ABR2 from [1], or the T5 compression function from [4]), we can no longer assume that the195

second layer calls to the compression function are made before all the third-layer calls, which196

is the main (unresolved) difficulty in the work of [5], and one of the key mistakes in the197

analysis of [1] (as we explained above). Thus, our proof is the first which handles non-trivial198

“out-of-order” adversaries correctly.199

We also hope our proof of ABR3 provides a sharp contrast to the flawed proof of [1], even200

for this special case. For example, we already mentioned handling general “out-of-order”201

adversaries. In a different vein, we also consider the twin-collision analysis for ABR3 which is202

completely missing from [1]. This analysis requires a non-trivial multi-collision analysis on a203

sum of our compression functions, and we also need to bound some other failure events to204

analyze the non-twin collision security of ABR3. None of these arguments appeared in [1].205

2 Security Definitions206

2.1 Notations207

We call elements of {0, 1}n blocks. A k-to-r (block) function or random oracle has domain208

{0, 1}kn and range {0, 1}rn. We write the set [k] = {1, 2, . . . , k}. A partial function τ from D209

to R is a subset τ ⊆ D×R such that for every x ∈ D, there are at most one y with (x, y) ∈ τ .210

We define domain dom(τ) := {x : ∃y, (x, y) ∈ τ} and range ran(τ) = {y : ∃x, (x, y) ∈ τ} of a211

partial function τ . We use the shorthand notation A ∪ x and A \ x to denote A ∪ {x} and212

A \ {x} respectively. For any q-tuple xq, we define mc(xq) = maxa|{i : xi = a}|. For two213

lists L1 and L2, we define mc(L1 ⊕ L2) = maxa|{(i, i′) : Li ⊕ Li′ = a, Li ∈ L1, Li′ ∈ L2}|. It214

can be similarly extended for xor of more than two lists.215

2.2 Generic Hash Mode216

Let Hf be a t-to-1 hash function which uses an n-bit compression function (i.e. λ-to-1217

compression function f for some λ > 1) as an oracle. Note that a mode can use more than218

one compression functions f1, . . . , fr. However, as we analyze in the random oracle model,219

independent random oracles can be obtained from a single random oracle with a little bit220

larger domain by using the standard domain separation method. In this paper, we only221

consider fixed-length input and also assume r is the same for all messages. Moreover, the222

ITC 2022



11:6 Revisiting Collision and Local Opening Analysis of ABR Hash

hash function calls fi on i-th call and so the domains of every call are separated by domain223

separation. We also denote the family f := (fi : i ∈ [r]) by f and we call λ-to-1 r r.o.224

(random oracle). We denote τH(M | f) := {((1, x1), y1), . . . , ((r, xr), yr)} where xi denotes225

the input of i-th call of its oracle tuple while computing Hf (M) and yi = fi(xi) := f(i, xi).226

A λ-to-1 transcript τ is a partial function from [r]× {0, 1}λn to {0, 1}n. For a λ-to-1 r r.o.227

f , we have228

∀(i, x) ̸∈ dom(τ), y ∈ {0, 1}n, Prob(f(i, x) = y | τ ⊆ f) = 2−n.229

▶ Definition 1 (transcript-based hash computation). Given a partial function τ ⊆ f , let230

Hτ = {(M, Hf (M)) : τH(M | f) ⊆ τ} be a partial hash function. In other words, Hτ consists231

of all pairs (M, z) such that Hf (M) can be computed by simply using the transcript τ and z232

is the final value. The elements of the set dom(Hτ ) are called τ -computable messages. As233

τ ⊆ f , we must have Hτ ⊆ Hf .234

2.3 Collision Game235

LetA be an adversary having oracle access of f which makes q queries to each fi adaptively. As236

we assume an unbounded time adversary, there is no loss in assuming that A is deterministic.237

Thus, the i-th query (xi, vi) of A depends on τ i−1 (the transcript of query-responses after238

(i−1) queries). After the query-response phase, A returns a pair of distinct messages (M, M ′)239

such that both M, M ′ are transcript-computable. We say collH holds if Hτ (M) = Hτ (M ′),240

called a computable collision pair. We define Advcoll
Hf (A) := Pr(collH).241

▶ Definition 2 (cross collision). Let H and H′ be two hash functions. A cross-collision τ -242

computable pair is a pair (M, M ′) (not necessarily distinct) such that Hτ (M) = H
′τ (M ′). We243

denote collτH,H′ := {M ∈ dom(Hτ ) : ∃M ′, Hτ (M) = H
′τ (M ′)}.244

2.4 Local Opening245

We now define the local opening security of a hash function output (viewed as a commitment246

of a message). Given a hash function mode Hf , a local opening Openf for H maps a pair247

(M, i) to π = (mi, i, π′) (called proof) where M = (m1, m2, . . . , mc) is a message (a tuple of248

blocks) and i ∈ [c] is an index.249

Correctness of Local Opening. There is an efficient function Verf such that for all250

message M , all index i, Verf (Openf (M, i), Hf (M)) = 1.251

Security of Local Opening. In the local opening security, the adversary wins if it252

produces an output h corresponding to two contradicting local openings for some position i.253

▶ Definition 3 (local opening advantage). Let H be a hash function and Open be a correct254

local opening for H with verification function Ver. For any adversary A, we define the local255

opening advantage as256

Advlocal
H (A) = Pr

[
Ver(i, m, π, h) = Ver(i,m′, π′, h) = 1, m ̸= m′

257

| (i, m, m′, π, π′, h)← Af
]

258
259

By-Pass Hash Computation. We say that H has a by-pass computation (Hi : i ∈ [c])260

corresponding to a local opening Open if for all M , i ∈ [c],261

Hf
i (Openf (M, i)) = Hf (M).262
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In other words, given a proof (output of the Open) and the message block for the index (for263

which the proof is produced), we can compute the hash output of the message (without264

knowing the other blocks of the message). The verification algorithm simply checks whether265

the hash value computed through the by-pass hash is the same as what was committed266

before. As f is treated as an oracle, it is natural to assume that for all M and for all i,267

τOpen(M, i | f) ∪ τHi
(Openf (M, i) | f) = τH(M | f).268

We now define the inter-collision advantage for by-pass computation Hi as269

Advcoll∗
Hi

(A) = Pr
[

Hi(m, π) = Hi(m′, π′) and m ̸= m′ | (m, π, m′, π)← Af
]
.270

271

Thus, it is the same as the collision game, except that the adversary needs to find a collision272

pair for which m ≠ m′. Suppose A finds a collision pair ((m, π), (m′, π′)) for Hi, and let273

h = Hi(m, π). Then A can commit h and later on, it can successfully open for either of two274

messages m and m′ as required. Now we make the following simple observation275

Advlocal
H (q′) = max

A
max

i
Advcoll∗

Hi
(A). (1)276

277

The above observation (see [4] for details) helps us to reduce the local opening security to278

inter-collision security problem for the by-pass hash family.279

2.5 Stam’s Tradeoff between Security and Performance280

Stam’s bound states that there always exists a collision attack with at most 2n(λ−(t−0.5)/r)
281

queries on a t-to-1 block hash function making r calls to λ-to-1 block compression functions.282

3 Re-introduction of the ABR Hash due to [1]283

We first start by defining a generalized tree hash structure, and then re-introduce the ABR284

Hash as a special tree hash, as opposed to introducing as it is in [1]. This is because we feel285

some things have not been properly defined by the authors there, and these issues need to286

be addressed properly.287

A full binary tree (FBT) is a binary tree in which every node v other than the leaves has288

two children, denoted as vL (left child) and vR (right child). A perfect binary tree (PBT) is a289

full binary tree in which all the leaf nodes are at the same level (called height of the tree).290

▶ Example 4 (perfect binary tree of height l). Let l be a fixed positive integer and T be291

a perfect binary tree of height l over all vertices (j, b), j ∈ [l], b ∈ [2l−j ] with (l, 1) being292

the root. For every two vertices (j, b) and (j + 1, ⌈b/2⌉), we associate an edge. We call293

(j−1, 2b−1) and (j−1, 2b) the left and right child of (j, b) respectively. Note that T = T(l,1).294

3.1 Some Notations and Definitions on Binary Trees295

For a binary tree F , let LF and V (F) denote the set of leaf nodes and all nodes of F296

respectively. Any non-leaf node is called an intermediate node. For a non-root intermediate297

node v of F , we consider the following two full binary trees:298

1. Fv: the full binary sub-tree rooted at v.299

2. F−v: the sub-tree (F \ Fv) ∪ v.300

ITC 2022



11:8 Revisiting Collision and Local Opening Analysis of ABR Hash

u

v

Figure 1 In this figure, Fv is the sub-tree rooted at v, i.e. the union of the red and blue sub-trees,
F−v is the black sub-tree, and Fv−u is the red sub-tree.

For a tree F , and a vertex v of F , we write Vv, Lv and V ∗
v to denote the set of all nodes, leaf301

nodes and intermediate (non-leaf) nodes respectively for the tree Fv. For any u ∈ V ∗
v \ v, we302

write Fv−u = (Fv \ Fu) ∪ u. We write Vv−u to denote the set of vertices of Fv−u. For the303

sake of notational simplicity we ignore the suffix v when v is the root. In this section we only304

consider trees of the form Fv and Fv−u. Refer to Figure 1 for a pictorial representation.305

To each node v ∈ V of a perfect binary tree T , an independent 2-to-1 block compression306

function (modeled as a random oracle) fv is assigned. We use the notation f to denote the307

collection of random oracles {fv : v ∈ T }.308

▶ Definition 5 (message for tree hash). A message m for any full binary sub-tree F of a309

perfect binary tree T having the same root is a function m : V (F)→ {0, 1}n ∪ {0, 1}2n such310

that for all u ∈ LF ∩ LT , m(u) ∈ {0, 1}2n, otherwise, m(u) ∈ {0, 1}n. A complete message311

m is a message at the root of T .312

Thus, for every leaf node of F (which is also a leaf node of the perfect binary tree), we313

associate 2n bit messages. For all other vertices, we associate an n bit message. We write314

MF to denote the set of all messages for F . We simply write Mv and Mv−u instead of MTv
315

and MTv−u respectively.316

For a message m for Tv (also called m at the node v), and u ∈ Vv, we write m|u = m|Tu
,317

the message restricted to Tu. Similarly, we write mL := m|vL and mR := m|vR . We also318

write m|v−u→h to denote a message for Tv−u which is same as the restricted function m|Tv−u
,319

except at u, where it assigns h (instead of m(u)). In the context of our work, this basically320

means we replace the message m(u) at node u by the intermediate hash output of Tu, the321

tree rooted at u, and consider the message for the remaining tree, Tv−u.322

▶ Definition 6 (Generalized Tree Hash). Let F be a full binary sub-tree of a perfect binary323

tree T and let m ∈MF . For every v ∈ F , we associate an intermediate hash output Ov and324

an intermediate input Iv recursively as follows:325

1. v ∈ LF \ LT , |m(v)| = n: Ov = m(v) and there is no input,326

2. v ∈ LF ∩ LT , |m(v)| = 2n: Ov = fv(m(v)), Iv = m(v),327

3. otherwise: |m(v)| = n and we define328

Iv =
(
OvL ⊕m(v), OvR ⊕m(v)

)
, and Ov = fv(OvL ⊕m(v), OvR ⊕m(v)) ⊕ OvR .329

Oω is the final hash output corresponding to F where ω is the root of F . We also call Iω330

final input.331

Let us see what this means. If F = T , the above definition implies that for a leaf node v,332

the message at v, which itself is the input, is 2n bits long, and the output is just fv(m(v)),333

where fv is the 2-to-1 block compression function attached to it, and for an intermediate334
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Figure 2 ABR of height 3

node, the message is n bits long, and the input and output are as defined above. If F is335

a proper sub-tree of T , then there might exist vertices, which are leaves of F , but not of336

T . For such a vertex v, the message is n bits long, and the message itself is considered the337

output of the vertex. This vertex doesn’t have any input.338

The ABR Hash Function. The ABR hash is the hash output based on a perfect binary339

tree T of height l. In terms of Definition 6, the case F = T corresponds to a ABR tree, and340

the final hash output is the ABR hash. Thus, ABRl hash is a (2l + 2l−1 − 1)-to-1 block hash341

function, l > 1. We refer to Figure 2 for a pictorial view of ABR with l = 3. For a trivial342

tree F = {w}, with a message m(ω) ∈ {0, 1}2n, F(m) = fω(m).343

We write Hτ (m) and inτ (m) to denote the transcript based hash and the final input344

respectively, whenever defined for the message m for a tree F . If Hτ (m) is defined we call345

m τ -computable or simply computable message. We write ⊥ to mean that it is undefined.346

Note that a tree is uniquely determined from the message. We write domτ
v and domτ

v−u to347

denote the set of all computable messages at v and for Tv−u respectively. Similarly, we write348

ranτ
v and ranτ

v−u to denote the set of all computable hashes at v and for Tv−u respectively.349

The size of the set ranτ
v , called load at v, is denoted as Lτ,v.350

4 Local Opening Analysis of ABR Hash Function351

In section 3, we have defined hash function based on a tree F for a message over the tree F .352

In this section, we consider a variant of the message function and a hash function for the353

variant message. This is required to properly define the local opening of the ABR tree.354

Message for a Full Binary Tree. Let F be a full binary tree and L ⊆ LF . Let355

MF,L be the set of all functions m : V (F)→ {0, 1}n ∪ {0, 1}2n such that for all v ∈ LF \ L,356

m(v) ∈ {0, 1}2n and for all other vertices v, m(v) ∈ {0, 1}n. We call m a message (or a357

message function) for F .358

▶ Definition 7 (Generalized Tree Hash, a variant). Let m ∈ML,F be a message function for359

F . For every v ∈ F , the intermediate hash output Ov is defined recursively as follows:360
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1. v ∈ L, |m(v)| = n: Ov = m(v),361

2. v ∈ LF \ L, |m(v)| = 2n: Ov = fv(m(v)), Iv = m(v),362

3. v ̸∈ LF : we define363

Iv =
(
h1 ⊕m(v), h2 ⊕m(v)

)
and Ov = fv(h1 ⊕m(v), h2 ⊕m(v))⊕ h2,364

where h1 = OvL and h2 = OvR .365

The hash output corresponding to F is defined as Ff (m) := Oω where ω is the root of F .366

We also call Iω := Ff
in(m) final input. It is clear from the definition that for any node v ̸∈ L,367

Ff
v (m|v) = Ov and Ff

v,in(m|v) = Iv.368

Visualizing the tree is not difficult. As an example, when F = ABR3, we have Figure 2,369

where L is a subset of the leaf nodes, say (1, 1) and (1, 2). We now define local opening of370

the Generalized Tree Hash.371

▶ Definition 8. Let m be a message for a perfect binary tree T . For any full binary sub-tree372

F and a set LF \ LT ⊆ L ⊆ LF , we define a message m′ := Openf
F,L(m) ∈MF,L for F as373

follows.374

1. v ∈ L: m′(v) = T f
v (mv).375

2. Otherwise: m′(v) = m(v).376

Now, we first analyze the local opening security of ABRl proposed by [1] and then show377

that no non-trivial opening of ABR can achieve birthday bound security.378

4.1 Local Opening Analysis of ABR Hash due to [1]379

We describe the by-pass hash corresponding to the message block m1 for ABRl. It is based380

on the full sub-tree F consisting of nodes {(i, 1) : i ∈ [l]} ∪ {(i, 2) : i ∈ [l − 1]} and381

L = {(1, 2), (2, 2), . . . , (l − 1, 2)}. Refer to Figure 3. Note that the number of blocks in382

OpenF,L(m) is 2l, and in the sub-tree F corresponding to OpenF,L(m), the number of calls383

to underlying compression function f is l. According to Stam’s bound, there exists a collision384

attack with at most 2n/2l queries. We give an attack that matches this bound.385

Let I(i, 1) = (ui,1, vi,1) be the input of fi,1 and let yi,1 be the output. Let hi,2 be the386

message for node (i, 2). Let hi,1 = yi,1 ⊕ hi−1,2 for i > 1 and h1,1 = y1,1. Then, hi,1 is the387

output at node (i, 1). Also, let mi,1 be the message associated with a non-leaf node (i, 1).388

We wish to find a collision at the output of node (l, 1), i.e. we need to find two messages m′
389

and m′′ for F such that F(l,1)(m′) = F(l,1)(m′′). Given any message for F , the output at390

node (l, 1) is given by hl,1.391

Note that h1,1 = f1,1(u1,1, v1,1). After computing hi−1,1, we proceed to compute hi,1.392

We note that hi−1,2 is a message block for F . The input at node (i, 1), I(i, 1) = (hi−1,1 ⊕393

mi,1, hi−1,2 ⊕mi,1) = (ui,1, vi,1) and the output at node (i, 1) is:394

hi,1 = fi,1(I(i, 1))⊕ hi−1,2 = fi,1(ui,1, vi,1)⊕ hi−1,2395

= fi,1(ui,1, vi,1)⊕ ui,1 ⊕ vi,1 ⊕ hi−1,1396

= gi,1(ui,1, vi,1)⊕ hi−1,1397
398

where gi,1(ui,1, vi,1) = fi,1(ui,1, vi,1)⊕ui,1⊕ vi,1. By induction, the final hash computation is399

hl,1 = gl,1(ul,1, vl,1)⊕ gl−1,1(ul−1,1, vl−1,1)⊕ . . .⊕ g1,1(u1,1, v1,1).400
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Figure 3 A specific local opening of ABR3.

Since the functions fi,1 are random and independent so are gi,1’s. Thus hl,1 is the XOR of l401

random functions. Thus, a collision is expected at node (l, 1) with 2n/2l queries. One can402

also apply a generalized birthday attack with complexity 2n/(1+⌈log 2l⌉).403

Now, let us look at the target collision resistance of the above local opening of ABRl.404

Target Collision Resistance describes the ability of an adversary to find a second pre-image405

for a fixed message. Target collision resistance has many practical applications. For example,406

if a client sends a file F to the server and then wants the server to send part of the file Fi407

along with a proof of correctness then, as long as the server does not control the choice of408

the file F , the server would need to find a targeted collision to break security and reveal an409

incorrect value F ′
i .410

Here, for a fixed message m, the final hash computation hl,1 is fixed. Hence, for target411

collision resistance we wish the XOR of l random functions to collide with this value of hl,1.412

This collision is expected with 2n/l queries.413

4.2 Decomposition of ABR Hash414

Now we decompose ABR hash computation on T through a full binary proper sub-tree F415

sharing the same root and a set L.416

▶ Lemma 9 (decomposition lemma for any full binary tree). For all full binary sub-tree F of417
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a perfect binary tree T and a set of nodes LF \ LT ⊆ L ⊆ LF , we have418

T f = Ff ◦ Openf
F,L.419

Proof. Let m be a message for T . T f (m) represents the hash output based on the perfect420

binary tree T . For any node v of T , the restricted message over Tv is mv. Hence, T f (m)421

computes T f
v (mv) for all nodes v ∈ T .422

For any full binary sub-tree F of T , m′ = Openf
F,L is defined as above. For any v ∈ L:423

m′(v) = T f
v (mv). We calculate the hash outputs for the restricted messages on these nodes424

first. Since for all other v ∈ F , m′(v) = m(v), and F is a sub-tree of T , Ff (m′) actually425

computes T f
v (mv) for all v ∈ F \ LF . Thus, Ff ◦ Openf

F (m) also computes T f
v (mv) for all426

nodes v ∈ T and produces the same output T f (m). ◀427

If F = T and L = ∅ then Openf
F,L(m) = m. For any other proper local opening we428

cannot ensure birthday bound security. We prove the following theorem:429

▶ Theorem 10. No non-trivial opening of ABR can achieve birthday bound security.430

Proof. Stam’s bound states that there exists a collision attack with at most 2n(λ−(t−0.5)/r)
431

queries on a t-to-1 block hash function making r calls to λ-to-1 block compression functions.432

We have λ = 2. If we want to achieve 2n/2 collision security, t ≤ 1.5r + 0.5. In other words,433

if t > 1.5r + 0.5, then we have a collision attack with query complexity 2 n
2 (1−δ/r), δ :=434

t− 1.5r − 0.5.435

For ABR of height l, we have t = 2l + 2l−1− 1 and r = 2l− 1. This satisfies t = 1.5r + 0.5,436

and it is optimal. We show that for any non-trivial opening OpenF,L of ABR, F satisfies437

t > 1.5r +0.5. Let us consider the simplest non-trivial opening, corresponding to L = {(1, 1)}.438

Then, for m = (m1, m2, m′), where m1, m2 are the first two message blocks and m′ is the439

remaining part, OpenF,L(m) = (f1,1(m1, m2), m′). Then, t = 2l + 2l−1 − 2, and r = 2l − 2440

(f1,1 is not called). This satisfies t > 1.5r + 0.5. If OpenF,L consists of only one sub-tree441

computation of height h, then for F , we have t = (2l + 2l−1 − 1)− (2h + 2h−1 − 1) + 1 and442

r = 2l − 2h, which satisfies t > 1.5r + 0.5.443

A general opening OpenF,L of ABR may consist of more than one complete sub-tree444

computation. Let the number of complete sub-tree computations in OpenF,L be k, and for445

each 1 ≤ i ≤ k, let hi be the height of the i-th sub-tree. Then, for F , we have446

t = (2l + 2l−1 − 1)−
k∑

i=1
(2hi + 2hi−1 − 1) + k, r = (2l − 1)−

k∑
i=1

(2hi − 1).447

It can be easily seen that t > 1.5r + 0.5. Thus, no non-trivial opening of ABR can achieve448

birthday bound security. ◀449

5 Collision Analysis of ABR hash450

In this section, we first define certain items which will be required to analyze the collision.451

▶ Definition 11 (input multi-collision). For any x ∈ {0, 1}n, let MCτ
v(x), called input multi-452

collision set at v (with x as input multi-collision value), denote the set of all messages m at453

v with inτ (m) = x. also, let454

mcτ
v(x) = |MCτ

v(x)|, mcτ
v = max

x∈{0,1}n
mcτ

v(x).455

When v is the root node, we skip the notation v.456
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We define the newly generated messages and the hashes at a node v due to addition of the457

query-response (x, y) to the transcript τ as458

Newτ
v(x, y) := domτ∪(x,y)

v \ domτ
v , NewHτ

v(x, y) := ranτ∪(x,y)
v \ ranτ

v .459

Clearly, NewHτ
v(x, y) = Hτ∪(x,y)(Newτ

v(x, y)) (image set of Hτ∪(x,y) for the domain Newτ
v(x, y)).460

Note that x need not be queried at v. However, to have a new computable message, x should461

be queried at some node, say u, in Tv. Analyzing the behavior of the set Newτ
v(x, y) (or its462

size) is easy when u = v or when u is one of the children of v. However, it becomes more463

complex when u is far away from v.464

Case u = v: Newτ
v(x, y) = MCτ

v(x) (and does not depend on y) and we call these messages465

freshly generated immediate messages.466

Case u ∈ Tv \ v: The newly generated messages at v is467

Newτ
v(x, y) = {m|v : inτ (m|u) = x, m|v−u→h ∈ domτ

v−u, h = y ⊕ Hτ (m|uR)}.468

So, we have Ey(|Newτ
v(x, y)|) =

mcτ
u(x)× |domτ

v−u|
2n

.469

Now we discuss how the size of the computable message space |domτ
v−u| can be written470

when u is one of the children or grandchildren of v.471

▶ Example 12. Suppose u = vR. In this case,472

Newτ
v(x, y) ={m|v : inτ (mR) = x, y = Hτ (mRR)⊕ Hτ (mL)⊕ x1 ⊕ x2,473

| (v, (x1, x2)) ∈ dom(τ), m(v) = x1 ⊕ Hτ (mL)}.474
475

So, Ey(|Newτ
v(x, y)|) ≤

mcτ
vR

(x)× |ranτ
vL
| × |τv|

2n
, where τv denotes the set of elements in the476

transcript of the form ((v, x), y).477

▶ Example 13. In the previous case, we could write the expectation of number of newly478

generated messages in terms of input multi-collision and range size of tree hash. Now, we479

consider u = vRR, i.e. u is a grandchild of v. Refer to Figure 4. Let h = y ⊕ Hτ (mRRR). First,480

let us look at |domτ
v−vRR

|.481

|domτ
v−vRR

| ={m|v : H1 ⊕ h = x′
1 ⊕ x′

2, H2 ⊕ y′ ⊕ h = x′′
1 ⊕ x′′

2 ,482

| H1 = Hτ (mRL), H2 = Hτ (mL), (vR, (x′
1, x′

2), y′), (v, (x′′
1 , x′′

2), ∗) ∈ τ}.483
484

Note that this implies H1 ⊕H2 ⊕ ȳ′ = x′′
1 ⊕ x′′

2 , where ȳ′ = x′
1 ⊕ x′

2 ⊕ y′. Thus,485

|domτ
v−vRR

| = mc(ranτ
vL
⊕ ranτ

vRL
⊕ f̄vR)× |τv|,486

where f̄vR(u1, u2) = u1 ⊕ u2 ⊕ fvR(u1, u2). Hence,487

Ey(|Newτ
v(x, y)|) ≤

mcτ
vRR

(x)×mc(ranτ
vL
⊕ ranτ

vRL
⊕ f̄vR)× |τv|

2n
.488

Adversary and Its Queries. Let Lv denote the lists of all responses of fv, for all leaf node489

v. We can assume that these lists are given to the adversary at the beginning of the game.490

This is without loss of generality as the inputs to fv’s have no role in the collision event.491

However, this is not true for all intermediate nodes (the non-leaf nodes) and so adaptivity492

of intermediate nodes must be considered. We assume that an adversary makes exactly q493
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Figure 4 The graph of Tv−u when u is the rightmost grandchild of v.

queries to each node. Let q′ := qr denote the total number of queries where r = |V ∗| and494

V ∗ is the set of non-leaf or intermediate nodes. Let Qv denote the set of query numbers495

for the node v, v ∈ V ∗. So for all non-leaf node v, |Qv| = q. Let (xi, yi) denote the i-th496

query-response pair made to the node vi. So given transcript τ i−1 (transcript after (i− 1)497

queries), the distribution of y is uniform over {0, 1}n. For notational simplicity, we use simply498

i in a superscript instead of τ i (the transcript after i-th query) in all above notations defined499

so far. For example, Hi(m) denotes the transcript based hash of m where the transcript is τ i.500

We write Newi
v instead of Newτ i−1

v (xi, yi), which represents the set of all newly generated501

computable messages at node v immediately after obtaining i-th query-response. We also502

ignore the superscript τ i completely when we all the queries have been made, i.e. i = q′. For503

example, we write mcv(x) instead of mcτ
v(x), when τ is the final transcript, obtained at the504

end of all the queries.505

For any computable message m at v, we write Fin(m) := i to encode the final query506

index after which m is computable.507

For all m for which mL, mR are τ -computable, we define Fin∗(m) = i such that508

max{Fin(mL), Fin(mR)} = i, (i.e. immediately after i-th query the final-input for the509

message m is computable).510

5.1 Steps of Collision Analysis511

Proper Internal Collision. We say that a proper internal collision happens at512

v = (j, b) for a transcript τ if for some distinct messages m, m′ at v, (i) Hτ (m) = Hτ (m′), (ii)513

inτ (m) ̸= inτ (m′), and (iii) no collision happens for Hτ
u for all u ∈ V (Tv), u ̸= v. By using514

standard reduction, a collision of ABR must have proper internal collision at some node. So515

it is sufficient to bound the probability of a proper internal collision at the root node of ABR516

as Hv is identical to ABRs where s denotes the level of the node v. We write coll := colll to517
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denote the proper internal collision at the root node of T of height l. The probability of518

collision of ABRl can be then bounded as
∑

i≤l 2l−i Pr(colli).519

Now, there are two types of collision which can happen for any proper collision at the520

root. Let us consider the i-th query. This query itself can generate two new computable521

messages for which the collision occurs. This is the first type of collision. Also, the hash522

output of one among the new computable messages generated by the i-th query can match523

with one of the hash outputs generated by the previous queries. We formalize them here:524

▶ Definition 14 (types of collision). We call a collision pair (M, M ′) twin at the i-th525

query, i ∈ [q′] if M, M ′ ∈ Newi. In this case ini
vi

(M) = ini
vi

(M ′) = xi, where vi is the526

node where the i-th query is made.527

The collision pair is called non-twin at the i-th query if exactly one of M and M ′ is a528

member of Newi, and the other message is τ i−1-computable.529

We write colli to denote that the proper internal collision happens at the i-th query.530

Moreover, if it is a twin-collision (or non-twin collision) we denote the event as colli,tw (or531

colli,ntw respectively). Thus,532

coll =
⋃

i∈[q′]

(
colli,ntw ∪ colli,tw

)
.533

It is easy to see that twin-collision at the root node is not possible as a collision at the right534

child of the root node is necessary. In notation, colli,tw = ∅, whenever vi = ω.535

5.1.1 Non-Twin Collision Analysis536

For any non-root, non-leaf node v, we consider cross-collision between H−v and Hω. Let CCi
v537

denote the set of all pairs (m, m′) such that (i) m is a complete message, m′ is a message538

for T−v and (ii) Hi(m) = Hi
−v(m′). Now, a non-twin collision can happen at the i-th query539

(to the node vi) if freshly generated hash of a message at vi matches with the vi-th message540

block of m′ for a cross-collision pair (m, m′) of CCi−1
v . Thus,541

Pr(colli,ntw) ≤ mci−1
v (xi)× |CCi−1

v |
2n

. (2)542

Now, if v = ω then the freshly generated hash at the root node is a hash. So, we have,543

Pr(colli,ntw) ≤ mci−1
ω (xi)× L

2n
. (3)544

5.1.2 Twin Collision Analysis545

For any non-root, non-leaf node v and δ ∈ {0, 1}n \ {0n}, let Cδ,v, called δ-collision, denote546

the set of all pairs (m, m′) such that Hτ
−v(m) = Hτ

−v(m′) and m(v) ⊕m′(v) = δ. We have547

seen that no twin collision possible at the root node. We define a set548

∆i = {Hi−1(mR)⊕ Hi−1(m′
R) : m, m′ ∈ MCi−1

vi
(xi)}.549

Now,550

Pr(colli,tw) ≤
∑

δ∈∆ mci−1
v (xi)× |Ci−1

δ,v |
2n

. (4)551

Note that the size of ∆ can be at most (mci−1
v (xi))2.552

Thus, we have seen a collision analysis requires to bound the following random variables.553
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1. mci−1
v (xi) for all i (and so for all nodes v),554

2. L: load of the hash,555

3. |domi−1
−v |: load for T−v which is required to bound the load L,556

4. |Ci−1
δ,v |: size of δ-collision, and557

5. |CCi−1
v |: size of cross-collision.558

In the following subsection, we present the collision analysis of ABR2 in which we only need559

the input multi-collision and load (which is also bounded in terms of input multi-collision).560

We also present a collision analysis of ABR3 for which the above terms are present.561

5.2 Collision Analysis of ABR2 by ABR562

As discussed above, we can assume that all queries to the compression functions at the leaf563

node have been made beforehand and let q denote the number of queries to each oracle. Let564

L1,L2 be two lists of outputs of the leaf node functions and let ω := (2, 1) denote the root565

(the only non-leaf node for T of height 2). Note that the proper collision at height 1 is the566

same as the collision of the lists L1,L2. The proper collision at a leaf node can happen with567

probability at most q2/2n.568

So, we now consider collision at the root (2, 1). For this, we now define a bad event mcω569

that mcq
ω > n. Equivalently, the event can be expressed as mc(L1 ⊕ L2) > n. Note that we570

do not have any non-leaf node other than root node. So, the load for hash values L can be571

upper bounded as nq, given that mcq
ω does not hold. Moreover, cross-collision and δ-collision572

is also not possible as we do not have any non-leaf, non-root node. Now, it is well known that573

Pr(mc(L1 ⊕ L2) > n) ≤ q2

2n
574

(see [1] for details). Thus, the collision probability is bounded by (n2+2)q2

2n .575

5.3 Collision Analysis of ABRh, h ≥ 3 by [1]576

The proof of [1] is divided into two main parts: (i) bounding the load and (ii) bounding proper577

collision probability in terms of the load. ABR fix a parameter ρ (which is chosen to be n + 1,578

however, the exact value is not relevant to our discussion). Let Li,v =
∑

j≤i,j∈Qv
|NewHi

v|579

represent the total number of generated hash values at v after all i queries. If there is no580

collision (which is true while we consider proper internal collision), Li,v is same as the size of581

the set |domi
v|. To bound load, ABR considered the following bad events (in our notations):582

1. bad1,v: mcq′

v > ρ at v. Let bad1 := ∪vbad1,v.583

2. bad2,v: Lq′,v ≥ ρq. Let bad2 := ∪vbad2,v.584

Given bad1, bad2 do not hold, clearly L ≤ 2ρq.585

5.3.1 Step-1: Bounding Pr(bad1)586

Let bad1,≤i = ∪(j,b):j≤ibad1,v. So it is sufficient to bound Pr(bad1,(j,b) ∧ ¬bad1,<j). Let us587

fix a query x at v = (j, b). Now, ABR implicitly claimed the following:588

Claim 1 [1]: If MCq′

(j,b)(x) ⊇ {m1, . . . , mρ} then in(j−1,2b)(mi,R)’s are distinct.589

We note that this claim is not correct. As there can be ρ multi-collision at node (j−1, 2b),590

each query can potentially give at most ρ multi-collision at node (j, b). Hence we can have ρ2
591

multi-collision at node (j, b). Thus, a corrected version of the above claim requires to revise592

the parameter ρ depending on the level. So, we may redefine bad1,(j,b): mcv > ρj which593
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could solve the issue. This is a fixable minor issue (but will have an impact on the claimed594

bound).595

Now to continue with the bound, let us assume that MCq′

v (x) ⊇ {m1, . . . , mρ} such that596

in(mi,R)’s are distinct and x = (a, b). So we can choose ρ query indices out of q queries to597

v2 := vR in
(

q
ρ

)
ways. For any such choices of ρ tuple (i1, i2, . . . , iρ) (all queried to v2), we598

have599

Pr(f(xi1)⊕ H(m1,RR) = b, . . . , f(xiρ
)⊕ H(mρ,RR) = b) = 2ρq

2nρ
600

as there ρq many choices of H(mi,RR) values (as we assume the load at vRR is less than 2ρq).601

However, the above is true when we consider the cases where Fin∗(mi) = ji where vji = v2602

for all i. The most important case in which the input multi-collision is contributed due to603

the final queries which are not on right child is not considered in the proof by [1].604

5.3.2 Step-2: Bounding Pr(bad2)605

Let bad2,≤i = ∪(j,b):j≤ibad2,v. So it is sufficient to bound606

Pr(bad2,(j,b) ∧ ¬bad1,<j ∧ ¬bad1 ∧ ¬coll).607

The main idea to bound the above probability is to bound the expected number of newly608

generated hash at v = (j, b) over all queries. Then the bad event probability can be bounded609

by applying Markov’s inequality. We have already seen that610

Ey(|Newi
v| | τ i−1) =

mcτ
vi

(xi)× |domi
v−vi
|

2n
.611

Moreover, we have shown that bounding |domi
v−vi
| becomes more complex when vi is neither612

v nor a child of v (see Example 13). [1] tried to argue in a different way. ABR showed a613

bound expectation of load due to all queries of its children (see Example 12). Then, they614

continued this argument for two levels up (i.e. for the queries on grandchildren as we consider615

in Example 13). However, they did not analyze this case properly. In particular, they did616

not consider to bound the mc(ranτ
vL
⊕ ranτ

vRL
⊕ f̄vR). Finally, they claimed the general case617

by using induction which is clearly unverifiable.618

5.3.3 Step-3: Proving Collision in terms of Load619

ABR stated that as analyzed for ABR2, given (i) no collision for all primitive, (ii) ¬bad1,≤l620

and (iii) ¬bad2,≤l, the proper internal collision probability at the root node is E(L2)/2n
621

where L is the total number computable hash values.622

There is a fundamental gap in the high level of the proof. As ABR did not explain anything623

supporting his claim, we show that this statement is not true in general. In particular, we624

show (in the next subsection) a hash mode based on 2-to-1 compression function whose load625

is at most q2 (for any q-query adversary), however, a collision can be found in O(n) queries.626

So the above claim cannot be made in general.627

5.3.4 Missing Step: Twin-Collision Analysis628

We find that the twin-collision analysis of the ABR hash is missed completely. The bound629

for δ-collision is not obvious and it requires bounding the probability of some more bad630

events. In the following section, we have analyzed ABR3 in which the twin-collision analysis631
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requires a bad event dealing with the multi-collision of xor of random oracle compression632

function outputs for two distinct inputs. We do not know any method to bound the number633

of cross-collision pairs for a general height tree.634

5.4 Relationship between Load and Collision Probability635

A hash function with a high load is unlikely to be collision-resistant. For example,636

xor(x1, . . . , xr) = f1(x1)⊕ · · · ⊕ fr(xr) has load 2r after 2 queries to each oracle fi. It is easy637

to see that the hash function xor is not collision-resistant. Let r = n. Then, after making638

two queries to each function, we have sufficiently many computable messages. It is then very639

easy to find computable collision pairs by solving a linear system of equations. In general, if640

the load becomes the order of 2n/2 then one may expect a collision. However, the converse641

need not be true. In other words, we have a hash function where load can not be high, but642

still, a collision pair can be generated efficiently.643

5.4.1 Example of Collision Insecure Hash Functions with Low Load644

Let MDf be the MD hash which takes n blocks and initial value is also replaced by645

one message block (so exactly n − 1 calls of f is required). We define MDf
n(M) =646

MDf1(M)∥ · · · ∥MDfn(M) which is n2-to-n2 hash function. Now we define a hash function647

H(M1, M2) for M1, M2 ∈ {0, 1}n2 :648

1. Let (C1, C2) = (MDf
n(M1)⊕M2, MDg

n(C1)⊕M1) (two round LR construction which is649

invertible).650

2. Let h1, . . . , hn be 2n-to-n functions. The final hash output is defined as h1(x1)⊕ · · · ⊕651

hn(xn) where C1∥C2 = x1∥ · · · ∥xn, xi ∈ {0, 1}2n.652

Note that we cannot compute (C1, C2) for more than q2 messages assuming there is no653

collisions in f and g functions. So, L(q) ≤ q2 for any q-query adversary.654

A Collision Attack. Now, we construct a collision finding algorithm for the above hash.655

It first finds collision pair for xor function h1⊕ · · · ⊕hn (can be achieved easily by making 2n656

queries altogether). Let (C, C ′) be a collision pair. We can easily invert C and C ′ to obtain657

M and M ′ respectively. Clearly, (M, M ′) is a computable collision pair.658

6 Analysis of ABR of height 3659

In this section, we show that the ABR3 construction achieves birthday security. In particular,660

we prove the following theorem:661

▶ Theorem 15 (collision theorem for ABR3). For any adversary A making at most q queries662

to each compression function modeled to be random oracle, we have663

Advcoll
Hf (A) ≤ 6n5q2 + 3n4q2 + 2n4q + 2n2q2 + 13q2

2n
. (5)664

665

Let L1,L2,L3,L4 be the four lists of size q each corresponding to the outputs of666

f1,1, f1,2, f1,3, f1,4 respectively. We can assume that these lists are given to the adver-667

sary at the beginning of the game. This is without loss of generality as the inputs to f1,i’s668

are independent from the rest of the transcripts. Also, for ease of notation, from now on669

we denote f2,1 by f1, f2,2 by f2 and f3,1 by f3. If the input to any of the functions is670

u = (u1, u2), we define u⊕ = u1 ⊕ u2. Also, if f3(u) = v, then we define f̄3(u) = u⊕ ⊕ v. As671

f3 is a random oracle, the output distributions of f̄3 are uniform and independent. Let Qj672
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L1 L2 L3 L4

m1 m2

+ + + +

f1 f2

+ +

+ +
G1 G2

m3

f3

u1 u2

f3(u)
+

H

Figure 5 ABR3 according to our new notation when the query u = (u1||u2) is made to f3.

be the set of queries to fj . We assume |Qj | = q for j = 1, 2, 3. Also, let Qi
j denote the set of673

queries to Qj up to the i-th query (including the i-th one). Let G1 = O(2,1) denote the set of674

intermediate hash outputs at node (2, 1) and G2 = O(2,2). Let H denote the set of final hash675

outputs of ABR3. Refer to Figure 5 for a pictorial representation. We follow the general676

approach as described before. We have already shown the collision bound for ABR2 and so it677

is sufficient to bound proper collision at the root for ABR3.678

As we have seen above, the collision analysis requires us to bound some random variables.679

We first define some bad events to bound these random variables.680

▶ Definition 16 (list collision). The first bad event we consider is:681

B0: There exists a collision in at least one of the lists L1, L2, L3, L4, {f1(u) : u ∈ Q1},682

{f2(u) : u ∈ Q2}, {f3(u) : u ∈ Q3}.683

Since f is modeled as a random function, the collision probability in any of the lists is at684

most q2/2n. Hence, Pr(B0) ≤ 7q2/2n.685

▶ Definition 17 (bad event on input multi-collision). We define the following bad events:686

B1: mc(L1 ⊕ L2) > n, or mc(L3 ⊕ L4) > n,687

B2 : mc(G1 ⊕ G2) > n2.688

We now state some simple observations related to input multi-collision:689

1. Given that B1 does not hold, mc(2,1), mc(2,2) ≤ n and so |G1|, |G2| ≤ nq.690

2. Given that B2 does not hold, mc(3,1) ≤ n2 and so L(3,1) ≤ n2q.691

3. Note, |dom(T−(2,1))|, |dom(T−(2,2))| ≤ nq2. So, E(L(2,1)),E(L(2,2)) ≤ n2q3/2n. By692

Markov’s inequality, Pr(L > 3n2q) ≤ 2q2/2n (3n2q because we include L(3,1) as well).693

4. By using a similar argument as we applied for multi-collision, we have Pr(B1) ≤ 2q2/2n.694

5. Now, given that B1 does not hold and B2 holds, there must exist at least n distinct inputs695

to f2 leading to n2 input multi-collision. So, we can similarly prove Pr(B2) ≤ q2/2n.696

We say that badmc holds if either B1 or B2 happens, or L > 3n2q. Then, from above,697

Pr(badmc) ≤ 3q2/2n. We now define bad events which would be used to bound cross-collision.698

▶ Definition 18 (bad event on cross-collision). We define the following bad events:699

ITC 2022



11:20 Revisiting Collision and Local Opening Analysis of ABR Hash

B3: |{(G2, f3(u), H) : G2 ⊕ f3(u)⊕H = 0; G2 ∈ G2, u ∈ Q3, H ∈ H}| > 3n4q.700

B4: |{(G1, f̄3(u), H) : G1 ⊕ f̄3(u)⊕H = 0; G1 ∈ G1, u ∈ Q3, H ∈ H}| > 3n4q.701

We say that badcc holds if any one of the above happens.702

If the i-th query is made at f2, an intermediate hash output G2 generated at this level703

due to this query can match with a query u already done to f3 to generate a final hash704

output H which was already previously generated by the first i− 1 queries. The event B3705

implies that the number of such triplets (G2, f3(u), H) is more than 3n4q. B4 has a similar706

implication when we consider G1 instead of G2.707

▶ Lemma 19. Pr(badcc ∧ ¬badmc) ≤ 2q2/2n.708

Proof. Pr(mc(G2⊕ ran(f3)) > n2) ≤ q2/2n. The proof is similar to that of event B2. Hence,709

for a fixed H ∈ H, we have710

Pr[|{(G2, f3(u), H) : G2 ⊕ f3(u)⊕H = 0; G2 ∈ G2, u ∈ Q3}| > n2] ≤ q2/2n.711

Now, there are 3n2q choices for H. Therefore, Pr(B3∧¬badmc) ≤ q2/2n. A similar argument712

works for B4. Hence,713

Pr(badcc ∧ ¬badmc) ≤ 2q2/2n. ◀714

Given that badcc does not hold, |CC(2,1)| ≤ 3n4q (or |CC(2,2)| ≤ 3n4q respectively). We715

finally define bad events which would be used to bound δ-collision pairs.716

▶ Definition 20 (bad event on δ-collision). We define the following bad event:717

B5: mc(f̄3(u)⊕ f̄3(u′)) > n.718

We say that badδ holds if the above happens.719

▶ Lemma 21. Pr(badδ) ≤ q2

2n .720

Proof. Since f3(u) is random, f̄3(u) = f3(u)⊕ u⊕ is also random. Therefore, bounding B5721

is similar to bounding B1. ◀722

Given that badδ does not hold, |Cδ| ≤ n. Let bad = B0 ∪ badmc ∪ badcc ∪ badδ. Then,723

Pr(bad) ≤ 13q2

2n .724

6.1 Collision Analysis725

We assume that bad does not hold. Since coll =
⋃

i∈[q],v∈V \L

(
colli,ntw

v ∪ colli,twv

)
, we need to726

bound colli,ntw
v and colli,twv for v = (2, 1), (2, 2), (3, 1). In the following lemmas, we bound727

them, assuming bad does not occur. We already know that colli,tw(3,1) does not occur.728

▶ Lemma 22. Pr(colli,ntw
(3,1) |¬bad) ≤ 3n4q

2n .729

Proof. As seen above in equation 3, Pr(colli,ntw
(3,1) ) ≤

mci−1
(3,1)(xi)× L

2n
.730

Given ¬bad, mc(3,1) ≤ n2 and L ≤ 3n2q. Hence, Pr(colli,ntw
(3,1) |¬bad) ≤ 3n4q

2n
. ◀731

▶ Lemma 23. Pr(colli,ntw
(2,1) |¬bad) ≤ 3n5q

2n .732
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Proof. As seen above in equation 3, Pr(colli,ntw
(2,1) ) ≤

mci−1
(2,1)(xi)× |CCi−1

(2,1)|
2n

.733

Given ¬bad, mc(2,1) ≤ n and |CC(2,1)| ≤ 3n4q. Hence, Pr(colli,ntw
(2,1) |¬bad) ≤ 3n5q

2n
. ◀734

▶ Lemma 24. Pr(colli,ntw
(2,2) |¬bad) ≤ 3n5q

2n .735

Proof. This proof is similar to that of the previous lemma.736

Pr(colli,ntw
(2,2) ) ≤

mci−1
(2,2)(xi)× |CCi−1

(2,2)|
2n

.737

Given ¬bad, mc(2,2) ≤ n and |CC(2,2)| ≤ 3n4q. Hence, Pr(colli,ntw
(2,2) |¬bad) ≤ 3n5q

2n
. ◀738

▶ Lemma 25. Pr(colli,tw(2,1)|¬bad) ≤ n4

2n .739

Proof. As seen above in equation 4, Pr(colli,tw(2,1)) ≤
∑

δ∈∆ mci−1
(2,1)(xi)× |Ci−1

δ,(2,1)|
2n

.740

Given ¬bad, mc(2,1) ≤ n, |∆| ≤ (mci−1
(2,1)(xi))2 ≤ n2 and |Cδ,(2,1)| ≤ n. Hence,741

Pr(colli,tw(2,1)|¬bad) ≤ n4

2n
. ◀742

▶ Lemma 26. Pr(colli,tw(2,2)|¬bad) ≤ n4

2n .743

Proof. This proof is similar to that of the previous lemma.744

Pr(colli,tw(2,2)) ≤
∑

δ∈∆ mci−1
(2,2)(xi)× |Ci−1

δ,(2,2)|
2n

.745

Given ¬bad, mc(2,2) ≤ n, |∆| ≤ (mci−1
(2,2)(xi))2 ≤ n2 and |Cδ,(2,2)| ≤ n. Hence,746

Pr(colli,tw(2,2)|¬bad) ≤ n4

2n
. ◀747

From the above lemmas, we have748

Pr(coll|¬bad) ≤
∑

i∈[q],v∈V \L

Pr(colli,ntw
v |¬bad) + Pr(colli,twv |¬bad) ≤ 6n5q2 + 3n4q2 + 2n4q

2n
.749

Therefore, Pr(coll) ≤ Pr(coll|¬bad) + Pr(bad) ≤ 6n5q2 + 3n4q2 + 2n4q + 13q2

2n
.750

Note that we have bound the proper collision probability at the root for ABR3. Since751

B0 does not occur, collision does not occur at the leaf node. As seen in section 5.2, the752

probability that proper collision occurs at node (2, 1) (resp. (2, 2)) is bounded above by n2q2

2n .753

Hence, the theorem is proved.754

7 Conclusion755

In this paper, we revisit the collision security of the ABR hash. We found that there is a756

serious gap in the analysis of collision security. Some missing and important cases have also757

been identified. In this paper, we have shown collision security for level 3. Several new bad758

events have been identified in ABR3 which were not considered for the general hash. We759

leave the collision security analysis open for general hash. Thus, the optimality of Stam’s760

bound remains open for an arbitrary domain hash.761

We have also found that the ABR hash cannot have any non-trivial local opening which762

can give birthday bound security. This shows a limitation in terms of applications in local763

opening. In particular, the efficient local opening proposed by [1] can be broken in O(2n/2l)764

query complexity.765
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