
REVIEW CONTENTS

Welcome
Guidelines for Authors

Volume 1: 2009-2010
Volume 2: 2011-2012
Volume 3: 2013-2014
Volume 4: 2015-2016
Volume 5: 2017-2018

OTHER RESOURCES

Electronic Media Group

Electronic Media Review
The postprint publication of AIC's Electronic Media Group

Introducing ‘Code Resituation’: Apply-
ing the Concept of Minimal Interven-
tion to the Conservation Treatment of
Software-based Art

Deena Engel and Joanna Phillips

The Electronic Media Review, Volume Five: 2017-2018

ABSTRACT

This paper proposes a new treatment method for the conservation of software-based art that was

developed as part of the research collaboration between the Guggenheim Conservation Department and

the Department of Computer Science at New York University. The new treatment method, termed “code

resituation” by the authors, is designed to serve artworks for which code intervention is necessary to

restore the artwork’s functionality. Traditional code migration, as practiced by computer programmers,

includes the deletion and replacement of non-functional original code. Intended behaviors and discernible

output of an artwork would be recreated by means of contemporary programming languages, aiming for

the most elegant and efficient programming solutions currently available. This migration approach, the

authors argue, has the potential to strip an artwork of some or all traces of the artist’s hand. The artist’s

choice of programming language, artistic expression as seen through nuances in the source code and

algorithmic detail, code annotations, and unrealized drafts can all be lost in code migration.

Code resituation, instead, aims to preserve the original artist’s code, or significant parts of it, while adding

restoration code to reanimate defunct code to full functionality. With the development of this new

treatment approach, the authors apply the established conservation principle of minimal intervention to

the treatment of software-based art. The new method of code resituation was successfully tested on two

artworks from the Guggenheim collection, which were treated in the course of the Guggenheim’s initiative

“Conserving Computer-based Art” (CCBA).

KEYWORDS: code resituation, code migration, minimal intervention, software-based art, computer-based

art, conservation ethics, time-based media conservation, media conservation, conserving computer-

based art, CCBA

INTRODUCTION

A software-based artwork’s appearance and functional behaviors are determined by its underlying code.

The proper, artist-intended execution of this code is often dependent on a specific hardware and software

environment. If these dependencies irretrievably fail owing to technological obsolescence or breakdown,

the work itself may require conservation intervention on its code level. This is especially true in cases in

which emulation or virtualization of the artwork’s environment does not result in satisfying execution of

the work’s behaviors, such as speed, color, or movement. In these cases, code migration can be a powerful

treatment option: the original code is translated into a different, contemporary technology or

programming language to recreate the work’s behaviors precisely, based on the functional rules laid out in

the original code.

From a conservation standpoint, however, code migration has to be regarded as a radically invasive

treatment. Even if the migration takes place only in the restoration version of an artwork, leaving the

original version untouched, the migrated version will replace the original in the context of an exhibition or

other display of the work. From here on, the audience will experience only the migrated version. As the

authors established in their previous research, original code—although mostly hidden from the viewer—

can carry important meanings that are worthy of preservation (Engel and Phillips 2019). The artist’s (or

delegate programmer’s) individual choice of technologies, programming languages, or coding style is

evidence of an artist’s practice and expression; studying the original code and its annotations offers deep

insight into an artwork’s genesis and history of restorations. These layers of meaning are easily

eliminated when code is migrated, as programmers tasked to repair software are commonly not concerned

with the preservation of original code. To prevent or minimize this loss of meanings when conducting a

code migration, the authors identified a new treatment approach they termed, “code resituation,” which

allows preservation or even reanimation of defunct original code, including its algorithms.

This new practice of code resituation supports a widely acknowledged conservation principle, “minimal

intervention,” which demands that “any conservation treatment should be kept to a minimum” (Munoz

Viñas 2005, 188). Introducing established conservation ethics and practice guidelines (AIC 1994) to the

examination and treatment of software- and computer-based art has been a central goal of this cross-

disciplinary research. Since 2014, Guggenheim conservation staff and New York University (NYU)

computer scientists have been collaborating to cultivate the intersection between art conservation and

computer science to develop best practices for the examination, documentation, and treatment of

software- and computer-based artworks (Guggenheim Blogs 2016; Guggenheim Blogs 2017; Engel et al.

2018; Guggenheim Blogs 2018; Engel and Phillips 2019). Code resituation was developed and tested during

the treatment of two case studies—both web artworks—from the Guggenheim collection, Shu Lea

Cheang’s Brandon (1998–1999) and John F. Simon Jr.’s “Unfolding Object” (2002). Both works required

code migration from their Java applets to other programming and markup languages because they were no

longer supported in contemporary web browsers and less invasive strategies, such as emulation, did not

prove to be a treatment option in both cases (Engel et al. 2018; Guggenheim Blogs 2018).

WHAT DOES MINIMAL INTERVENTION MEAN HERE?

Across the many specialties of cultural heritage conservation, the notion of minimal intervention is widely

accepted and applied to guide conservation and restoration treatments of all kinds. “Its application means

that, among all the methods and materials that can be used to address a condition problem, the best

choice is the one that alters the object as little as possible” (Appelbaum 2007, 302). Respect for the

original calls for limited interference, as every treatment of an object poses risks and can have negative

side effects. For example, by introducing consolidants into the original structure of a painting,

unforeseeable long-term changes can be introduced. For software-based pieces, risks of invasive code

treatments can include the introduction of unsustainable technologies or the misinterpretation of

intended functional and aesthetic behaviors. Minimal intervention as a principle strives to support the

removability of treatments and thereby the future retreatability of artworks. It intends to not only

preserve the legibility of the original but also the traces of an artwork’s histories of production, use,

display, appreciation, and repair.

In spite of its undoubted usefulness as a concept, the limits of minimal intervention have been critically

discussed in conservation theory (Villers 2004; Muñoz Viñas 2009). Two main points of critique are the

vagueness and subjectivity of the term “minimal” and the unjustified optimism that treatment

reversibility is actually achievable even in the case of minimal interventions. In his article “Minimal

Intervention Revisited,” Muñoz Viñas provokingly concludes that “the only truly minimal intervention

would actually be leaving the sheet [of paper] alone. In a practical (but also precise) sense, minimal

intervention means no consequential intervention at all” (Muñoz Viñas 2009, 49). He acknowledges that

every intervention comes with a sacrifice and moves to interpret the term “minimal intervention” as

“minimal meaning loss,” for it is “the decreased ability of the object to transmit some messages, whether

social, ideological, aesthetic or scientific, that we really care about” (Muñoz Viñas 2009, 55). Of course, in

the case of software- and computer-based art, “leaving the work alone” would likely not minimize the

intervention; on the contrary, if a critical time window for intervention is missed, for example, while a

certain decompiler software is still available, doing nothing can well mean to actively and irretrievably

lose a work. Here, proactive and timely intervention offers a better chance of navigating and limiting the

loss of meanings.

Minimal intervention informs treatment choices in both qualitative (methodological) and quantitative

(treatment expansion) dimensions. It demands that treatments be limited to the actual damage (where

possible) and not extend to intact, undamaged areas of the artwork. For example, before the notion of

minimal intervention guided treatment choices in paintings conservation, even small tears in the canvas

were commonly treated by lining the entire painting with a second canvas and thereby exposing

undamaged areas of the painting to adhesives, pressure, and possibly heat. While this measure stabilized

the tear, it also commonly introduced a host of negative side effects, such as the accelerated aging of the

original canvas, altered craquelure patterns, or flattening of impasto in the paint layer. Today, with

minimal intervention in mind, the treatment of the same damage would focus only on the tear instead of

the entire painting. In order to enable such local treatments, new methods, such as the thread-by-thread

tear-mending technique (Heiber 1996), have been invented.

As in paintings conservation, damage in software-based art rarely affects the entire artwork at once but

rather occurs locally, in parts of the underlying code. Rather than seeing a software-based work fail all at

once, it is more likely that support for specific built-in functions or other aspects of a programming

language is deprecated over time, causing only parts of the artwork to fail or malfunction. This means

that, in many cases, the restoration of the work’s behaviors and functions requires treatment intervention

only in parts of the original artist-created code. This finding has prompted the research team to

investigate whether treatment methods could be developed that allow programmers and conservators to

minimize the invasiveness of code migration by targeting only the damaged areas and not recoding the

entire artwork. It was the goal of this research to identify an approach that would allow the preservation of

significant parts of the original code, including its specific coding style and the artist’s original

algorithms, even in cases in which the artwork had to be migrated from one programming language to

another.

A PROGRAMMER’S APPROACH

Minimal intervention is an approach that is not intuitive to programmers. Professional source code

development prioritizes efficiency and effectiveness over attention to authorship and authenticity (Engel

and Phillips 2019). From a programmer’s perspective, code updates or changes are best handled in an

automated way, that is, by writing a program or script that is designed to render the changes into the

source code files that require revision. If code changes for a migration cannot be automated, a

programmer might next evaluate the cost versus benefits of rewriting the code entirely, in which case the

choice of the new technology or programming language would rest on an evaluation of the efficiency,

accuracy, and cost of moving forward. Any code that is salvaged from an earlier version would be a result,

not a goal, of the migration. Well-written production software is modularized and parameterized so that,

ideally, updates to specific functions or other aspects of the software can be addressed individually

without impact on the program as a whole. Artist-programmers, however, are not held to the same

standards as commercial software programmers. Similarly, conservators base decisions on a different set

of standards than programmers use for standard and commercial software maintenance. The expected

result for both approaches is that all software is expected to run as designed to meet the goals and

requirements that were initially stated, but the decision path in arriving at this point can be very different

for works of software-based art in comparison with commercial software.

Fig. 1. Screenshot of Shu Lea Cheang’s Brandon, 1998–1999 (2005.44). Interactive networked code (HTML, Java, JavaScript, and server
database). The work is publicly accessible at http://brandon.guggenheim.org. Courtesy of the Solomon R. Guggenheim Museum.

APPLYING MINIMAL INTERVENTION TO TWO CODE
MIGRATIONS

In the course of this research, two legacy web artworks in the Guggenheim collection, 20 and 16 years of

age, were treated to restore their functional and aesthetic behaviors. Both treatments required code

migration from one technology or programming language to another because their original code included

Java applets and deprecated HTML tags that are no longer supported by contemporary web browsers. Code

intervention was the preferred treatment method, as more conservative methods, such as emulation, had

to be ruled out in these specific cases after extensive prototyping and testing failed to produce the desired

results for a successful restoration. Detailed accounts of the treatments of both web artworks—Shu Lea

Cheang’s Brandon (1998-1999) and John F. Simon Jr.’s Unfolding Object (2002)—are published elsewhere

(Guggenheim Blogs 2017; Engel et al. 2018; Guggenheim Blogs 2018; Engel and Phillips 2019).

Fig. 2. Screenshot of John F. Simon Jr.’s Unfolding Object, 2002 (2002.16). Interactive networked code (Java applet with server database and
servlets). The work is publicly accessible at http://unfoldingobject.guggenheim.org. Courtesy of the Solomon R. Guggenheim Museum.

PRESERVING THE ORIGINAL CODING STYLE

Brandon, a sprawling, interactive web artwork with dozens of pages and pop-up windows (Guggenheim

Collection Online, n.d., Cheang), featured so-called <blink> tags to make text flash on and off. Modern

browsers no longer recognize the <blink> tag, and before the restoration of Brandon, blinking words

across the site displayed as static text only.

In Brandon’s original HTML coding, all text between two blink tags was animated to blink; in the example

featured in figure 3, the text Answer yes or no would blink.

Fig. 3. Screenshot of Brandon’s original HTML coding, showing the <blink> tag that was used
to make words blink. Courtesy of the Solomon R. Guggenheim Museum.

Without minimal intervention in mind, the treatment approach here would have been to deactivate this

defunct original HTML coding and rewrite the blinking functionality entirely, for example, by using CSS

style sheets or the programming language JavaScript. However, with minimal intervention in mind, the

project programmer Emma Dickson kept the original HTML coding active and untouched and wrote a

JavaScript function outside of the artist’s code that would tell the program to “go and find the old blink

tags in the original HTML, and animate the text between two blink tags to make them blink again” (fig. 4).

This way, the original HTML coding could be retained and with it the artist’s coding style and expression.

Other defunct elements in Brandon were treated in similar ways: wherever possible, the original code was

retained and reanimated with additional external restoration code.

Fig. 4. Screenshot of Brandon’s restoration code: a JavaScript function written by the project programmer, Emma Dickson, searches for the
deprecated <blink> tags in the original HTML and reanimates the text between them. Courtesy of the Solomon R. Guggenheim Museum.

PRESERVING ORIGINAL ALGORITHMS

The web artwork Unfolding Object allows users to unfold an “object” with mouse clicks and create their

own artwork online (Guggenheim Collection Online, n.d., Simon). The lines inside the unfolded pages

indicate the previous engagement of other users with these same unfolding pages. Unfolding Object’s visual

design, colors, color gradation, the shapes of its pages, and the way that the pages unfold are all based on

artist-created algorithms.

An algorithm is a set of functional steps that can be formally defined and thus repeated with the same

results each time. To create software-based works, artists use programming languages to express their

algorithms. In the history of mathematics, algorithms date back to the Ancient Greeks. Writing and

studying algorithms is one of many creative processes in mathematics and computer science. The same

can be said of visual artists working with software. Original algorithms can be regarded as evidence of an

artist’s creative practice and expression that he or she applied to produce the design and functional

behaviors of an artwork.

To illustrate how algorithms determine artwork behaviors, the management of Unfolding Object’s

changing colors serves as a good example. Depending on the time of day, the object and its background are

assigned different colors. When the piece is first accessed by a user (fig. 5), an algorithm (fig. 6) is

triggered that identifies the time of the internal clock of a user’s computer and selects the appropriate

color of the “object” as measured by hue. In another calculation, the background color is assigned by

devising a near, but not exact, opposite or complementary color. Both of these colors are then rendered

into RGB values for display.

Fig. 5. (left) The opening page of John F. Simon Jr.’s Unfolding Object, 2002, before interaction by the user. Courtesy of the Solomon R.
Guggenheim Museum.

Fig. 6 (right) An excerpt in the Java source code that shows the algorithm that determines the color selections of John F. Simon
Jr.’s Unfolding Object, 2002, when opened by a user. Courtesy of the Solomon R. Guggenheim Museum.

Given the significance of artists’ original algorithms, one treatment goal for Unfolding Object’s code

migration was to preserve Simon’s original algorithms, even if parts of the artwork’s Java code had to be

migrated to the browser-supported programming language JavaScript.

INTRODUCING CODE RESITUATION

A key principle that enables the preservation of original algorithms and other sections of original code in

the course of code migration is the fact that an algorithm or other code excerpt can often run functionally

unaltered in a variety of programming languages. This meant for the code treatment of Unfolding Object

that instead of deleting or deactivating the original Java code and rewriting the artwork behaviors in

JavaScript, it was possible to retain Unfolding Object’s original algorithms and other relevant code sections

and integrate them into the restoration code. In other words, excerpts of the original Java code were

resituated into the context of the new JavaScript restoration code. In turn, the new JavaScript code was

tailored to support (and in parts to complement or compensate for) the functionality of the original code

segments so that their calculations and functions remain active in the context of the new restoration code.

The authors named this procedure code resituation.

To accomplish code resituation, the first step is to clone the artwork’s entire original source code. This

clone becomes the restoration version of the piece: all code treatments occur in the restoration version

only, leaving the original untouched. In the next step, the local damages that require treatment, defunct

lines or blocks of code are identified. New code is inserted into the restoration version to translate defunct

features from the original programming language so that the functionality of the destination

programming language mimics the functionality of the original programming language. For example, in

the case of Unfolding Object’s defunct Java applet, new JavaScript code was inserted so that arrays (a simple

data structure containing multiple values) would behave as they do in Java. At the same time, original

algorithms and other code sections remained unaltered where possible or only minimally altered where

changes to the syntax were necessary to restore their functionality. The activation of the original code was

supported by writing external JavaScript functions while retaining the original naming conventions so

that the new code would be consistent with the original with respect to variable, function, file, and other

names and their intended execution. When practicing code resituation, it is important to clearly delineate

the original code from the restoration code. This is done by annotating the code (Guggenheim Blogs 2017;

Engel et al. 2018; Engel and Phillips 2019). Original artist comments were retained unchanged in the

restoration source code and new comments in the code were added to identify the treatment

interventions.

The choice of programming language can prove essential to accomplishing code resituation. In earlier

research, criteria were developed to guide the decision-making on selecting a programming language for

migrating a work of software- or computer-based art (Engel and Phillips 2019). Finding a newer version

of the same programming language or environment should be prioritized over migrating the piece to an

entirely different programming language. If migration to a different programming language cannot be

avoided, a programming language should be selected that is similar in syntax and structure to the original.

In both cases, consideration is needed to confirm the availability of analogous functions, libraries, and

configuration options. From a programming perspective, the language selection must also support all of

the systems and functional requirements needed for the specific artwork.

For Unfolding Object’s code resituation, JavaScript was selected as the restoration language, because it is

sustainable, widely supported, well-suited to the web, and well documented. Moreover, the artwork’s

original Java and JavaScript share many similarities in their structure and syntax. For example, both

languages use curly braces to denote blocks of code, semicolons as statement terminators (to determine

the end of a line of code) and double slashes for single-line comments. These similarities allowed the

project programmer Karl Toby Rosenberg to avoid or minimize code changes when resituating segments

of Unfolding Object’s original Java into the context of JavaScript (figs. 7 and 8).

Fig. 7. (left) Screenshot of the original Java source code in John F. Simon Jr.’s Unfolding Object, 2002. This excerpt renders the opening
image, before interaction by the user. Courtesy of the Solomon R. Guggenheim Museum.

Fig. 8. (right) Screenshot of the same excerpt as in fig. 7, here resituated into the context of JavaScript. The project programmer, Karl Toby
Rosenberg, had to apply only minimal changes to the code excerpt in order to render it functional again. Courtesy of the Solomon R.
Guggenheim Museum.

However, even similar languages can feature differences that have to be accounted for during code

resituation. In the treatment of Unfolding Object, the project programmer needed to manage the difference

in how Java and JavaScript handle floating point numbers, which are numbers with decimal values. It was

necessary to simulate the way that floating point numbers are handled in Java so that the results of

numeric calculations in JavaScript would remain consistent with those of the original Java. Similar to the

treatment approach for Brandon’s <blink> tags, the programmer solved this problem by writing external

functions in JavaScript.

Other differences that require compensation when migrating code from one programming language to

another include the availability of specific programming tools and code libraries. In the case of Unfolding

Object, Java and JavaScript’s different underlying code libraries rendered the graphics in different ways:

the artist used the default graphics library in Java for the original artwork, which features a sharp image

where each pixel can be seen individually, resulting in staircase-like steps in the pixelation of diagonal

lines (fig. 9). In contrast, JavaScript’s default graphics library, Canvas 2D, renders pixelated lines blurry to

smooth the staggering effect (fig. 10). In order to recreate Unfolding Object’s pixelated graphics with the

JavaScript restoration code, the programmer implemented an alternative customized code library using

WebGL 1.0 (fig. 11).

Fig. 9. (left) Screenshot of the original artwork featuring a sharp image where each pixel can be seen individually, resulting in staircase-like
steps in the pixelation of diagonal lines. Courtesy of the Solomon R. Guggenheim Museum.

Fig. 10. (middle) When using JavaScript’s default graphics library, Canvas 2D, the edges of shapes and lines are blurred. Courtesy of the
Solomon R. Guggenheim Museum.

Fig. 11. (right) After the replacement of JavaScript’s default library with custom WebGL 1.0, the restoration code programmed by Karl Toby
Rosenberg faithfully recreates the pixelated look of the original artwork. Courtesy of the Solomon R. Guggenheim Museum.

Almost the entire section of Unfolding Object’s code that generates the unfolding pages in response to the

user’s mouse clicks can be resituated in this way from Java to JavaScript. The concept of code resituation

allowed a “copy and paste” approach as a way to migrate much of the source code from Java into

JavaScript while handling the language differences within the restoration code.

CONCLUSION: CODE RESITUATION, AN APPROXIMATION

The newly developed treatment method of code resituation allowed much of Unfolding Object’s original

code to be retained, including its original algorithms and other evidence of the artist’s creative expression.

By integrating and activating sections of the original, the procedure of code resituation clearly minimizes

the intervention, especially if compared with a straightforward code migration that deletes or deactivates

original code. However, some of the original code will still be lost or altered when migrating an artwork

from one programming language to another. The process of creating a fully functional restoration version

can, in some cases, resemble an act of interpretive translation.

The extent to which this interpretation is close and “true” to the original cannot be easily quantified and

will always remain an approximation. While the lack of objective assessability may be hard to accept

within the established conservation world, subjectivity is identified and discussed as a given parameter in

minimal intervention (Muñoz Viñas 2009) and is integral to the conservation of other forms of variable

contemporary art in which interpretation is required each time they are installed or performed.

In search of other applications of the concept of approximation that would perhaps justify and support an

approach of interpretive translation, the authors looked outside of conservation and found an area of

scholarship and practice in cultural heritage that offers many parallels to code migrations for

conservation: literary translation. In the field of literary translation, writers translate poetry, prose, and

dramatic texts from one natural language to another. In many cases, translators are also notable writers in

their own right, such as Friedrich Schiller’s translation of Shakespeare’s Macbeth into German and Samuel

Taylor Coleridge’s translation of Schiller’s Wallenstein into English, among many others. Interpretation

cannot be avoided in literary translation, but that does not devalue the result. Sometimes a “freer” or

creative interpretation is necessary to approximate the tone of the language or the expression of an

author.

The field of literary translation offers a scholarly and practical framework that could inform the further

development and refinement of code resituation practices. The professional field of literary translation

includes a code of ethics for translators (Landers 2001); the concept of “linguistic” integrity, which is

analogous to the concept of respecting the artist’s intent and preserving the artist’s hand; and an accepted

practice on the frequency of repeating translation for a given work. Literary translation regards itself as a

means to experience a work in an authentic way. Sometimes, translations have to be updated to continue

to serve this purpose. For example, a late 19th century translation of a Tolstoy novel would sound outdated

to our ears today—new and updated translations are published regularly of important and well-known

works. A further parallel to explore between literary translation and code migration is the role of the living

author and the author’s relationship with the translator, which can be analogous to that of a conservator

working with a living artist.

Against the background of literary translation, code resituation can be regarded as an effective tool to

minimize the need for extensive interpretation by embedding and activating original code. To speak in

literary terms, code resituation cites the original, marks the citation, and contextualizes the citation with

interpretative language. This interpretation may become temporary, as future conservators and

programmers continue to maintain the artwork for the enjoyment of future generations.

ACKNOWLEDGMENTS

The authors would like to thank the artists Shu Lea Cheang and John F. Simon Jr. for their support of this

research. Further thanks go out to Jonathan Farbowitz, the Fellow of the Conservation of Computer-based

Art at the Solomon R. Guggenheim Museum; the programmer of the Brandon Restoration, Emma Dickson;

and the programmer of the Unfolding Object restoration, Karl Toby Rosenberg.

We would further like to thank our colleagues who took time to review this publication: Professors Ernest

Davis and Craig Kapp, Department of Computer Science, Courant Institute of Mathematical Sciences, New

York University; Prof. Glenn Wharton, Department of Museum Studies, New York University; and Lena

Stringari, Deputy Director and Chief Conservator at the Solomon R. Guggenheim Museum.

The CCBA initiative at the Guggenheim is supported by the Carl & Marilynn Thoma Art Foundation; the

New York State Council on the Arts with the support of Governor Andrew Cuomo and the New York State

Legislature; Christie’s; and Josh Elkes.

REFERENCES

AIC (American Institute for Conservation of Historic and Artistic Works). 1994. “Our Code of Ethics.”

www.conservation-us.org/ethics (accessed 10/19/18).

Appelbaum, B. 2007. Conservation treatment methodology. London: Elsevier Butterworth-Heinemann.

Engel, D. and J. Phillips. 2019. “Applying conservation ethics to the examination and treatment of

software- and computer-based art.” Journal of the American Institute for Conservation 58 (3): 180-195.

Engel, D., Hinkson, L., Phillips, J., and M. Thain. 2018. “Reconstructing Brandon (1998–1999): A cross-

disciplinary digital humanities study of Shu Lea Cheang’s Early Web Artwork.” Digital Humanities

Quarterly. 12 (2). www.digitalhumanities.org/dhq/vol/12/2/000379/000379.html (last accessed

09/26/2018).

Guggenheim Blogs. 2016. “How the Guggenheim and NYU are conserving computer-based art—Part 1.”

Blog entry by Caitlin Dover, October 26, 2016. www.guggenheim.org/blogs/checklist/how-the-

Search … !

https://www.culturalheritage.org/membership/groups-and-networks/electronic-media-group
http://resources.culturalheritage.org/emg-review/
http://brandon.guggenheim.org/
http://brandon.guggenheim.org/
http://www.conservation-us.org/ethics
http://www.digitalhumanities.org/dhq/vol/12/2/000379/000379.html
http://www.guggenheim.org/blogs/checklist/how-the-guggenheim-and-nyu-are-conserving-computer-based-art-part-1

Electronic Media Review Proudly powered by WordPress

Blog entry by Caitlin Dover, October 26, 2016. www.guggenheim.org/blogs/checklist/how-the-

guggenheim-and-nyu-are-conserving-computer-based-art-part-1 (accessed 10/1/18).

Guggenheim Blogs. 2016. “How the Guggenheim and NYU are conserving computer-based art—Part 2.”

Blog entry by Caitlin Dover, November 4, 2016. www.guggenheim.org/blogs/checklist/how-the-

guggenheim-and-nyu-are-conserving-computer-based-art-part-2 (accessed 08/1/18).

Guggenheim Blogs. 2017. “Restoring Brandon, Shu Lea Cheang’s early web artwork.” Blog entry by J.

Phillips, D. Engel, E. Dickson, J. Farbowitz, May 16, 2017. www.guggenheim.org/blogs/checklist/restoring-

brandon-shu-lea-cheangs-early-web-artwork (accessed 08/1/18).

Guggenheim Blogs. 2018. “The Guggenheim Restores John F. Simon Jr.’s Early Web Artwork Unfolding

Object.” Blog entry by J. Phillips, D. Engel, J. Farbowitz, and K. Rosenberg, Nov. 19, 2018.

www.guggenheim.org/blogs/checklist/the-guggenheim-restores-john-f-simon-jr-early-web-artwork-

unfolding-object (accessed 05/09/19).

Guggenheim Collection Online. N.d. “Cheang. Shu Lea Cheang, Brandon.”

www.guggenheim.org/artwork/15337 (accessed 10/11/18).

Guggenheim Collection Online. N.d. “Simon. John F. Simon Jr., Unfolding Object.”

www.guggenheim.org/artwork/10702 (accessed 10/11/18).

Heiber, W. 1996. “Die Rißverklebung.” Zeitschrift für Kunsttechnologie und Konservierung. 10 (1): 117–147.

Landers, C. E. 2001. “Appendix: Ethical questions in literary translation.” In Literary translation: a practical

guide. Channel View Publications. ProQuest Ebook Central.

https://ebookcentral.proquest.com/lib/nyulibrary-ebooks/detail.action?docID=3007729 (accessed

10/19/18).

Muñoz Viñas, S. 2005. Contemporary theory of conservation. London: Elsevier Butterworth-Heinemann.

Muñoz Viñas, S. 2009. “Minimal intervention revisited.” In Conservation principles, dilemmas and

uncomfortable truths, ed. A. Richmond and A. Bracker. London: Elsevier Butterworth-Heinemann. 47–59.

Villers, C. 2004. “Post minimal intervention.” The Conservator. 28 (1): 3–10.

CONTACT INFORMATION

Deena Engel

Clinical Professor

Director, Program in Digital Humanities and Social Science

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

251 Mercer Street, Room 404

New York, NY 10012

212-998-3131

deena.engel@nyu.edu

http://cs.nyu.edu/~deena/

Joanna Phillips

Formerly: Senior Conservator, Time-based Media

Solomon R. Guggenheim Museum, New York

Currently: Director, Conservation Center Düsseldorf

Ehrenhof 3a

D-40479 Düsseldorf, Germany

+49 (0) 211 89 92436

joanna.phillips@duesseldorf.de

/

http://resources.culturalheritage.org/emg-review/
http://www.guggenheim.org/blogs/checklist/how-the-guggenheim-and-nyu-are-conserving-computer-based-art-part-1
http://www.guggenheim.org/blogs/checklist/how-the-guggenheim-and-nyu-are-conserving-computer-based-art-part-2
http://www.guggenheim.org/blogs/checklist/restoring-brandon-shu-lea-cheangs-early-web-artwork
http://www.guggenheim.org/artwork/15337
http://www.guggenheim.org/artwork/10702
https://ebookcentral.proquest.com/lib/nyulibrary-ebooks/detail.action?docID=3007729
mailto:deena.engel@nyu.edu
http://cs.nyu.edu/~deena/
mailto:joanna.phillips@duesseldorf.de

