

Representations of Commonsense Knowledge

Ernest Davis
Courant Institute for Mathematical Sciences

Morgan Kaufmann Publishers, Inc.
San Mateo, California

Sponsoring Editor *Michael B. Morgan*
Production Editor *Sharon E. Montooth*
Cover Designer *Joy Dickenson*
Copyeditor *Linda Medoff*
Compositor/Artist *Technically Speaking Publications*

Credits:

Figure 6.17: Dana H. Ballard/Christopher M. Brown, *Computer Vision*, copyright 1982, p. 250. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.

Figure 6.20: This figure first appeared in the journal, *Artificial Intelligence* published by North-Holland Publishing Co., Amsterdam. © 1981 by North-Holland Publishing Co. It is reprinted here by permission of the publisher.

Figure 7.8: This figure first appeared in *Artificial Intelligence In Engineering Journal, Computational Mechanics Publications*. The article in which it appeared is "A Logical Framework for Commonsense Predictions of Solid Object Behavior," by Ernest Davis, pp. 125-140.

Morgan Kaufmann Publishers, Inc.

Editorial Office:
2929 Campus Drive, Suite 260
San Mateo, CA 94403

© 1990 by Morgan Kaufmann Publishers, Inc.

All rights reserved

Printed in the United States of America

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—with-
out the prior written permission of the publisher.

94 93 92 91 5432

Library of Congress Cataloging-in-Publication Data

Davis, Ernest.

Representations of commonsense knowledge / Ernest Davis.
p. cm. -- (Morgan Kaufmann series in representation and
reasoning, ISSN 1046-9567)

Includes bibliographical references and index.

ISBN 1-55860-033-7

1. Artificial intelligence. 2. Common sense. 3. Reasoning.

I. Title. II. Series.

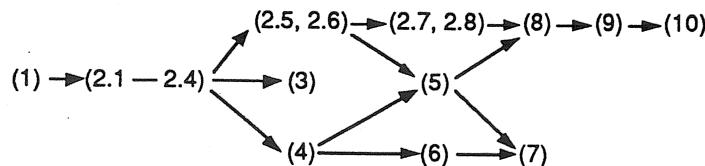
Q335.D37 1990

006.3--dc20

90-41289

CIP

Dedication


To my parents
Philip and Hadassah Davis

Preface

A major problem in artificial intelligence is to endow computers with commonsense knowledge of the world and with the ability to use that knowledge sensibly. A large body of research has studied this problem through careful analysis of typical examples of reasoning in a variety of commonsense domains. The immediate aim of this research is to develop a rich language for expressing commonsense knowledge, and inference techniques for carrying out commonsense reasoning. This book provides an introduction and a survey of this body of research. It is, to the best of my knowledge, the first book to attempt this.

The book is designed to be used as a textbook for a one-semester graduate course on knowledge representation. (Drafts of chapters have been used for courses at New York University, Brown, and Yale.) The one absolute prerequisite is that the student be familiar with the notation and the meaning of the predicate calculus (first-order logic). A review of the predicate calculus is given in Section 2.3, but too briefly to be useful to the student who is not already familiar with it. It is not necessary that the student be familiar with either metalogic (topics such as soundness and completeness) or with computational logic (topics such as Skolemization and resolution). It will be very helpful if the student has had a general course in AI, though more for general motivation than for specific content. Mathematical sophistication is also an asset, particularly in reading Chapters 3, 4, and 6.

The following diagram shows the interdependence of chapters:

Additional dependencies of individual sections are indicated in the text. These dependencies should not be taken too seriously; in particular, the reader who finds Chapter 2 heavy going should not, on that account, be discouraged from reading the rest of the book.

Exercises are provided at the end of each chapter. Difficult exercises are marked with an asterisk. Instructors assigning starred exercises should keep in mind that they vary quite widely in difficulty, length, and the degree of prior knowledge, particularly mathematical knowledge, that they require. Some of the exercises contain results of

moderate interest that are not mentioned elsewhere in the text; the reader, therefore, may find it worth his while to glance through them even if he has no intention of working them out.

When I began work on this book in early 1985, the subject of domain-specific representations was somewhat obscure. The existing textbooks barely treated the issue, and almost no significant collections of papers had been published. The student or teacher was therefore obliged to search through journals, conference proceedings, technical reports, and unpublished papers to collect the important work in the area; and he had to form his own synthesis of the many different outlooks and techniques. The field was also small. When I planned this book, I thought I could survey virtually the entire relevant AI literature.

All this has changed spectacularly in the last five years. New textbooks, particularly [Charniak and McDermott 1985] and [Genesereth and Nilsson 1987] treat domain-specific representations at considerable length. Numerous collections of research papers, both on knowledge representation generally and on various subareas, have been published in book form, greatly simplifying the student's literature search.

At the same time, research in the area has expanded explosively. More than half the AI papers cited in the bibliography of this book were first published in 1985 or later. Today, a comprehensive bibliography would be a very substantial undertaking and a comprehensive survey would be nearly impossible.

Nonetheless, I feel that this book serves important functions. The student who has completed this book will be able to read any but the most narrowly technical paper published in the area. The researcher studying commonsense representations can find here a rich vocabulary of primitives presented within an integrated framework, and a collection of domain axioms and techniques that supports a variety of nontrivial commonsense inferences. The integration achieved here of theories of various commonsense domains makes it possible to get an overall view of how much commonsense reasoning can currently be expressed in computational terms. Compared to the powers of human commonsense reasoning, of course, we are just scratching the surface, but I think that we have made enough progress to be optimistic.

Three important omissions should be noted:

1. Domain-independent architectures for knowledge representations: semantic nets, production systems, logic programming, and so on.
2. Representations of knowledge based on linguistic considerations.

3. "Scruffy" representation of human interactions, particularly those developed by Roger Schank and his students.

The first two categories are omitted for the usual reasons: lack of time, energy, and knowledge, and a personal judgment that these issues were not central to the purposes of this book. In the case of the first category, I also felt that the subject was well covered in other texts. This is certainly not the case (as far as I know) for linguistically derived representations; a systematic survey of these would be of great value, but it is outside my personal competence.

The omission of Schankian representations is more serious. It is, in fact, a substantial disappointment to me; one of my original purposes in this book was to show how "scruffy" representation could be incorporated into a "neat" theory. In the event, however, I found this integration very hard to achieve. The problem is not so much technical; it is not difficult, using Procrustean methods, to squeeze Schankian primitives into neat categories. Rather, it is a problem of conflicting criteria in choosing primitives and inference rules. I still feel that this integration is one of the major problems in knowledge representation, but I have not found any satisfactory solution. (Section 9.5 gives a short account of Schank's categorization of goals; Appendix 10.A gives a summary of conceptual dependency.)

My friends and colleagues have been extraordinarily generous in helping me with suggestions, criticisms, and encouragement. Above all, I thank Drew McDermott, who taught me most of what I know about AI; and Leora Morgenstern, who read every draft of every chapter, and whose suggestions and comments pervade the text. Thanks also to

Sanjaya Addanki	S. Bhasker	Ron Brachman
Pasquale Caianiello	Eugene Charniak	Joey Davis
Philip Davis	Tom Dean	Sam Fleischacker
Hector Geffner	Benjamin Grosof	Pat Hayes
Jerry Hobbs	Leo Joskowicz	Ken Klein
Tomas Ksiezyk	Larry Manevitz	Chris Riesbeck
Yoav Shoham	John Sterling	Arthur Walker
Dan Weld		

The writing of this book has been supported in part by NSF grants numbers DCR-8402309, DCR-8603758, and IRI-8801529.

Finally, I thank my family for their support and encouragement. Most of all, thanks to Bianca, for her patience and love.

Contents

Preface	vii
List of Tables	xvi
List of Figures	xix
List of Named Axioms	xxii
1 Automating Common Sense	1
1.1 Knowledge Bases	3
1.2 Methodology	4
1.3 Implementation	12
1.4 The Role of Natural Language	14
1.5 The Role of Logic	16
1.6 Incomplete and Uncertain Knowledge	18
1.7 Vagueness	19
1.8 Indexicals	20
1.9 Commonsense Reasoning in Artificial Intelligence	21
1.10 Philosophy	22
1.11 Mathematics and Commonsense Reasoning	24
1.12 References	25
2 Logic	27
2.1 Logical Systems and Languages	28
2.2 Propositional Calculus	31
2.3 Predicate Calculus	35
2.3.1 Syntax of Predicate Calculus	36
2.3.2 Tarskian Semantics	38
2.3.3 Other Issues in First-Order Logic	43
2.4 Standard First-Order Notations and Theories	47
2.5 Operators on Sentences	52
2.6 Extensional Operators	56
2.7 Modal Logic	59

2.7.1	Possible-Worlds Semantics	66
2.7.2	Direct Use of Possible Worlds	72
2.7.3	Individuals and Modality	74
2.8	Syntactic Theories	76
2.8.1	Strings	77
2.8.2	Paradoxes of Self-Reference	83
2.9	Appendix A: Natural Deduction	86
2.10	References	89
2.11	Exercises	92
3	Plausible Reasoning	95
3.1	Nonmonotonic Logic	101
3.1.1	Nonmonotonicity	101
3.1.2	Domain-Independent Rules	103
3.1.3	Circumscription	109
3.1.4	Default Theory	115
3.1.5	Preferred Models	118
3.2	Classical Probability Theory	119
3.2.1	Bayes's Formula	123
3.2.2	Possible-Worlds Semantics	125
3.3	Statistical Inference	125
3.3.1	Frequency	126
3.3.2	Independence	127
3.3.3	Independent Evidence	128
3.3.4	Maximum Entropy	131
3.3.5	Sampling	135
3.3.6	Domain-Specific Knowledge	137
3.3.7	Conclusion	138
3.4	References	140
3.5	Exercises	141
4	Quantities and Measurements	145
4.1	Order	147
4.2	Intervals	148
4.3	Addition and Subtraction	154
4.4	Real Valued Scales	156

4.5	More Arithmetic	157
4.6	Parameters; Signs; Monotonic Relations	159
4.7	Derivatives	164
4.8	Mode Transition Networks	166
4.9	Qualitative Differential Equations	173
4.10	Orders of Magnitude	178
4.11	References	181
4.12	Exercises	182
5	Time	187
5.1	Situations	187
5.2	Events	192
5.3	Temporal Reasoning: Blocks World	193
5.4	The Frame Problem and the Ramification Problem	198
5.5	The Frame Problem as a Plausible Inference	209
5.6	Branching Time	212
5.7	The STRIPS Representation	215
5.8	Situation Calculus	217
5.9	Real-Valued Time	219
5.10	Complex States and Events	220
5.11	Control Structures	225
5.12	Modal Temporal Logic	229
5.13	Tracking the Present Moment	233
5.14	References	237
5.15	Exercises	238
6	Space	241
6.1	Spatial Inferences: Examples	248
6.1.1	Set Operations on Regions	248
6.1.2	Distance	249
6.1.3	Relative Position	249
6.1.4	Containment and Fitting	255
6.1.5	Abutment and Overlapping	258
6.1.6	Motion	261
6.1.7	Surface Differential	263
6.1.8	Other Predicates	263

6.2	Knowledge Structures	264
6.2.1	Occupancy	264
6.2.2	Constructive Solid Geometry	270
6.2.3	Boundary Representation	274
6.2.4	Topological Route Maps	278
6.2.5	Configuration Spaces	282
6.2.6	The Roller Coaster	287
6.3	Appendix A: Coordinate Transformations	294
6.4	Appendix B: Going Through	302
6.5	References	305
6.6	Exercises	308
7	Physics	311
7.1	The Component Model	312
7.2	Qualitative-Process Theory	321
7.3	Rigid Solid Objects	328
7.4	Liquids	342
7.5	Physical Agents	346
7.6	References	347
7.7	Exercises	349
8	Minds	351
8.1	Propositional Attitudes	355
8.2	Belief	356
8.2.1	Axioms for Belief	358
8.2.2	Possible Worlds	365
8.2.3	Syntactic Formulation	367
8.3	Degree of Belief	370
8.4	Knowledge	373
8.5	Knowing Whether and What	378
8.6	Minds and Time	381
8.6.1	Situations and Possible Worlds	383
8.7	Perceptions	386
8.8	Realistic Models of Mind	388
8.9	References	390
8.10	Exercises	392

9 Plans and Goals	395
9.1 Plans as Sequences of Primitive Actions	397
9.1.1 TWEAK—a Nonlinear Planner	401
9.2 Extensions	409
9.3 Plans and Goals as Mental States	413
9.3.1 Knowledge of Plans and Goals	415
9.3.2 Knowledge Needed for Plan Execution	417
9.3.3 Planning and Acting	423
9.3.4 Reactive Planning	425
9.3.5 Characteristic Goals	427
9.4 References	431
9.5 Exercises	432
10 Society	435
10.1 Common Knowledge	436
10.2 Multiagent Plans	439
10.3 Communication	440
10.3.1 Locutionary Descriptions	441
10.3.2 Illocutionary Speech Acts	442
10.3.3 Sample Verification of a Plan of Influence	445
10.4 Ethics	448
10.5 Possession	450
10.6 Appendix A: Conceptual Dependency	450
10.7 References	453
10.8 Exercises	455
Bibliography	457
Glossary	481
Index of Names	501
General Index	507

List of Tables

1.1 Proof in the Family Microworld	9
2.1 Axioms for the Propositional Calculus	34
2.2 Proof in the Propositional Calculus	35
2.3 Axioms for First-Order Logic	39
2.4 Axioms of Equality	43
2.5 Axioms of Set Theory with Ur-Elements	49
2.6 Boolean Operators on Sets	50
2.7 Axioms of Modal Logic	62
2.8 Use of the "apply" Function	79
2.9 Nonlogical Symbols for a Syntactic Theory	80
2.10 Proof in Natural Deduction	90
4.1 Axioms of Ordering	147
4.2 Relations Among Intervals	153
4.3 Axioms for Differential Space	155
4.4 Axioms of Multiplication	157
4.5 Problem Specification for Scales	162
4.6 Arithmetic of Signs	163
4.7 Differences of Arithmetic Functions	164
4.8 Applying the Sign Calculus	165
4.9 Axioms for Monotonic Dependence	166
4.10 Inference with Derivatives	167
4.11 Axioms of Derivatives	167
4.12 Rules for Mode Transitions	172
4.13 Dynamics of the Spring System	174
4.14 Axioms for QDE's	176
4.15 Modes of the Spring System	178
4.16 Constructing an Envisionment Graph for the Scales	179
5.1 Nonlogical Symbols for the Blocks World	195
5.2 Blocks-World Axioms	196
5.3 Statement of Blocks-World Problem	200

5.4	Frame Axioms: Framing by Events and Fluents	201
5.5	Frame Axioms: Framing Primitive Fluents By Events . .	204
5.6	Frame Axioms: Framing Primitive Events	207
5.7	Nonoccurrence of Extraneous Events	208
5.8	Yale Shooting Problem	211
5.9	Axioms of Chronicles	213
5.10	Formulation of Blocks-World Problem	214
5.11	The Blocks-World in STRIPS	218
5.12	Sample Axioms for Continuous Reasoning	221
5.13	Axioms for Multiprocessor Scheduling	222
5.14	Blocks-World State Coherence Axioms: Set Notation .	224
5.15	Axioms on Compound Events	226
5.16	Axioms for Primitive-Event Components	230
5.17	Syntax of Modal Temporal Logic	232
5.18	A Modal Temporal Logic	234
5.19	Tense Operators	235
5.20	Some Modal Blocks-World Axioms	236
6.1	Sorts of Geometric Entities	247
6.2	Primitives for Relative Position Example	251
6.3	Constants for Relative-Position Example	252
6.4	Constraints in Relative-Positions Example	253
6.5	Equations for Relative-Positions Example	254
6.6	Axioms for the Shoe-Sock Example	259
6.7	Specifications for the Shoe-Sock Example	260
6.8	CSG Generic Shape	274
6.9	MERCATOR Representation	276
6.10	Primitives in TOUR	281
6.11	World State in TOUR	282
6.12	Qualitative Representation of the Track in Figure 6.29 .	292
7.1	Primitives for Scales	316
7.2	Axioms for Scales	317
7.3	Problem Description of Example Scale	317
7.4	Equations of Scales	318
7.5	Nonlogical symbols for Qualitative-Process Theory .	323

7.6	Nonlogical Symbols for Heat Flow Example	324
7.7	Axioms for Heat-Flow Example	325
7.8	Problem Specification for Heat-Flow Example	327
7.9	Prediction in QP Theory	329
7.10	Nonlogical Symbols for Point-Object Dynamics	336
7.11	Axioms for the Dynamics of a Point Object	337
8.1	Axioms of Belief	359
8.2	Inference Rules for Implicit Belief	360
8.3	Proof Using the Modal Theory of Belief	365
8.4	Axioms of Belief in Terms of Possible Worlds	368
8.5	Rules for Belief: Syntactic Form	371
8.6	Axioms of Knowledge	375
8.7	Axioms Relating Knowledge and Belief	376
8.8	Axioms of Belief and Knowledge Over Time	383
8.9	Sample Inference of Agent's Knowledge of the Future .	384
9.1	Register Swapping in TWEAK	408
9.2	Task-Reduction Axioms	412
9.3	Inferring Beliefs from Plans	418
9.4	Sample RAP	427
9.5	Axiomatic Partial Characterization of a RAP	428
10.1	Axioms of Common Knowledge	438
10.2	Speech Act Categories	441
10.3	Axioms for Illocutionary Acts	444
10.4	Axioms for Ethical Predicates	449
10.5	Axioms of Possession	451
10.6	Primitive Action Types in CD	452
10.7	Causal Connectives in CD	453
10.8	CD Representation of a Story	454

List of Figures

1.1	Theory structure	7
1.2	Family trees	11
2.1	Possible worlds	68
4.1	Inequalities as a DAG	148
4.2	Interval relations	149
4.3	Interval in a Partial Ordering	150
4.4	Scales	159
4.5	Pendulum	168
4.6	Mode Transition Networks	170
4.7	Mode Sequence for Spatial Curve	171
4.8	Two Pendulums	173
4.9	Block on a Spring	174
4.10	Envisionment Graph	177
4.11	Instantaneous Sequence of Events	177
4.12	Partial Orders as Sequences and Splits	183
5.1	Blocks World	194
5.2	Blocks-world example	199
5.3	Graph of situations and events	219
5.4	Tic-Tac-Toe Board	240
6.1	Two representations for a single shape	244
6.2	Criteria of approximation	245
6.3	Example Scenario: Calvin and his socks	248
6.4	Geometry of bedroom	250
6.5	Inside of an open box	256
6.6	Shape of shelf	257
6.7	Contact through a thin point	261
6.8	A common extended abutment implies an overlap	262
6.9	An occupancy array	264
6.10	Matching shapes in a simple occupancy array	265
6.11	False evaluation of intersection	266

6.12	Occupancy array with partial/full occupancy	266
6.13	Loss of knowledge due to motion	267
6.14	Disjunction in occupancy arrays	267
6.15	Rotation applied to a Occupancy Array	268
6.16	Occupancy Array and Rigid Mapping	269
6.17	Quad tree	270
6.18	A human as the union of cylinders	271
6.19	Normalized set operations	272
6.20	Generalized Cylinders	273
6.21	MERCATOR representation	277
6.22	Maps matched by MERCATOR	279
6.23	World state in TOUR	280
6.24	Configuration of a joint	283
6.25	Meshed gears	284
6.26	Configuration space of a disk	285
6.27	Configuration space in quasi-static environments	286
6.28	Cart on a roller coaster	288
6.29	Track in NEWTON	290
6.30	Quadrants of directions	291
6.31	State transitions in NEWTON	294
6.32	Angle representations for a direction	296
6.33	Noncommutativity of three-dimensional rotations	299
6.34	Euler angles. $P_1 = X_1 - Y_1$ plane. $P_2 = X_3 - Y_3$ plane.	301
6.35	Going through and coming back	303
6.36	Divided neighborhood	304
6.37	Positive and negative threadings	305
7.1	Scale	314
7.2	Schematic of scale	315
7.3	Constants of scale	319
7.4	Boiling water in a can	321
7.5	Kinematic systems	333
7.6	Dynamic systems	335
7.7	Point object in a funnel	339
7.8	Varying dimensionality of force	341
7.9	Predicates “bulk” and state “solid_coating”	344

7.10 Liquid in a cavity	346
9.1 Partially determined bindings	399
9.2 Invalid partial plan	400
9.3 Successive states of the TWEAK planner	404
9.4 Hierarchy of tasks	425

List of Named Axioms

PROP.1 – 9: Propositional calculus	34
FOL.1 – 13: First-order logic	39
EQL.1 – 2: Equality	43
SET.1 – 7: Set theory	49
MODAL.1 – 13: Modal logic	62
ORD.1 – 3: Ordering	147
DIFF.1 – 6: Differential space	155
MULT.1 – 6: Multiplication	157
SSUM.1 – 3: Set summation	158
BEL.1 – 2: Delta operator	160
SGN.1 – 3: Signs	164
MON.1 – 5: Monotonic dependence	166
DRV.1 – 5: Derivatives	167
MODE.1 – 5: Mode transitions	172
QDE.1 – 2: Qualitative differential equations	176
NEG.1 – 6: Infinitesimal (negligible) quantities	180
BW.1 – 18: Blocks world	196–197
FRA.1 – 9: Frame axioms: Framing by events and fluents	201–203
FRB.1 – 7: Frame axioms: Framing primitive fluents by events	204–205
FRC.1 – 7: Frame axioms: Framing primitive events	207–209
BR.1 – 3: Chronicles in branching time	213
BW.3 – 9: Blocks-world state-coherence axioms using set notation	224
CE.1 – 7: Compound events	226, 228
EP.1 – 6: Compound events from primitive components	230
MTIME.1 – 10: Modal temporal logic	234–235
BW.3 – 5, 15–18: Blocks-world axioms in modal notation	236
SC.1 – 9: Scales	317
HF.1 – 11: Heat flow	325–326
SO.1 – 5: Solid objects: Kinematics	332
PO.1 – 19: Point object: Kinematics and dynamics	337–338
LI.1 – 14: Liquids	342–345
BEL.1 – 14: Belief (modal formulation)	359–360
BEL.1 – 8: Belief (possible-worlds formulation)	368
BEL.1 – 14: Belief (syntactic formulation)	371–372

DBEL.1 – 7: Degree of belief	373
KNOW.1 – 6: Knowledge	375
KB.1 – 5: Knowledge and belief	376
KW.1 – 2: Knowing what and whether	379
BT.1 – 3: Knowledge and belief over time	383
PERC.1 – 2: Perception	388
PL.1 – 3: Plans and goals	398, 409, 411
KPG.1 – 7: Knowledge of plans and goals	415–416
KPS.1 – 8: Knowledge preconditions	419–422
RAP.1 – 6: Reactive plan	428
CK.1 – 5: Common knowledge	438
IL.1 – 8: Illocutionary acts	444
ETH.1 – 5: Ethics	449
POS.1 – 4: Possession	451