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FORMAC MEETS PAPPUS 

SOME OBSERVATIONS ON ELEMENTARY ANALYTIC 
GEOMETRY BY COMPUTER 

ELSIE CERUTTI and P. J. DAVIS, Brown University 

1. Introduction. One of the truly great advances in mathematics was the 
algebraization of geometry via the notion of a coordinate system. The broad 
outlines of this program were indicated in the "Discours de Ia methode" of 
Rene Descartes (1637) while the essential features were grasped, although not 
made explicit, by Pierre de Fermat. There is no doubt that Descartes regarded 
his invention as a universal method, and he wrote that it removed geometry as 
much from its previous condition as the orations of Cicero were removed from 
simple ABC's. 

The method of Descartes is frequently regarded by students and by teachers 
as a "machine" into which one feeds the hypotheses of certain geometric situa
tions and which is guaranteed to "grind out" the desired conclusions given suffi
cient patience on the part of the problem solver. However, it is no denigration 
of Descartes to assert what also has long been known: that many elementary 
situations give rise to impossibly long and tedious algebraic computations, and 
hence the universal method which replaces brains by brawn founders upon the 
rock of limited human patience and endurance. Ways around are then sought; 
these include clever coordinate systems, special transformations, determinants, 
other methods of abridged notation, special devices, constructions, tricks, etc., 
etc. Several of these devices have subsequently become of prime importance in 
their own right. 

The object of the present paper is to describe what happens when these 
difficulties are deliberately met broadside and overcome by making use of the 
symbolic manipulation possibilities of electronic computers. The problem to 
which we have applied Descartes' method is a classic theorem of Pappus. The 
language in which we tackled the problem was FORMAC, and the machine was 
an IBM 360/50 at Brown University with 256 K (K = 1,024) bytes of core stor
age. As of Summer 1968, this is considered to be medium-sized storage. 

Phillip Davis received his Harvard PhD in 1960 under Ralph Boas. He has taught at Harvard, 
MIT, American University, Maryland, and his present university, Brown. He has had extensive 
industrial :md government experience including five years as Chief, Numerical Analysis Section, 
),! ational Bureau of Standards; also he was a Guggenheim Fellow in 1956-57. His extensive work in 
numerical analysis and applied mathematics includes the books Lore of Large Numbers (1961), 
Interpolation and Approximation (1963), Mathematics of Matrices (1964), Approximate Numerical 
Integration (with P. Rabinowitz, 1967), and 3.1416 and All That (with W. Chinn, 1969). Professor 
Davis received the 1960 Award in Mathematics of the Washington Academy of Sciences and the 
MAA Chauvenet Prize in 1963. 

Elsie Cerutti is Manager of User Services, Brown Computer Lab. She was formerly Program
mer at RIAS and trained at Purdue. Editor. 
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FIG. 1 

2. The Theorem of Pappus. Pappus of Alexandria (c. 320 A.D.) was one of 
the last significant mathematicians of antiquity. There are a number of theorems 
which bear his name, but the one we have in mind is as follows. 

Let l1 and l2 be two straight lines in the plane. On l1 take three points P1. P •• P 6 

arbitrarily and on l2 take three points P 3 , P 2, P 6 arbitrarily. Now connect up the 
points in the criss-cross fashion indicated in the figure. Let the points of intersection 
of the three criss-crosses be designated by P1 , PJ, PK, respectively. Then, Pr, PJ, and 
PK are collinear. 

This beautiful theorem (see Figure 1), it turns out, is basic to certain investi
gations in the foundations of projective geometry. (If Pappus' theorem holds in 
a projective plane, then the plane is isomorphic to a projective plane over a 
field.) The interested reader can find information on ancient methods of proof 
(seep. 289 in [7]). A modern analytic proof can be found on p. 81 of [4]. 

The program of the present paper is to assign coordinates to P1. · · · , Pe, to 
solve for the intersections Pr, P;, PK in terms of those coordinates and then 
simply to verify by algebra that the points Pr, P;, PK are, in fact, collinear. 

3. Details of the Method. We shall assign general (letter) coordinates to the 
points. We shall try insofar as possible not to take advantage of the projective 
group nor of the group of rigid motions or dilations. This, following a remark of 
Professor Ulf Grenander, can be described as "the method of artificial stupidity" 
and is to be contrasted with current studies in Computer Science called "arti
ficial intelligence." We did not wholly succeed in this. For reasons explained 
later we used a rigid motion to place the configuration in a simple position. We 
shall employ the usual rectangular coordinates, although, effectively, we will be 
using homogeneous coordinates in that we have arranged our computations so 
that no divisions occur. 
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The first formula we need to work out is the point of intersection of a simple 
criss-cross (Figure 2). 

(X2, Y2) 

(Xl, Yl) 

FIG. 2 

Let two lines be determined by (X1, Y1), (X2, Y2) and (X3, Y3), (X4, Y4). 
The point of intersection is given by 

(3.1) 

where 

X 1 = NI/DI, Yr = MI/DI, 

NI = Y2 X3 Xl - Y4 X3 Xl - X4 Y2 Xl + X4 Y3 Xl - X3 X2 Yl 

+ X4 X2 Yl + Y4 X3 X2 - X4 Y3 X2, 

(3.2)* MI = Y3 Y2 Xl - Y4 Y2 Xl - Y3 X2 Yl + Y4 X2 Yl - Y4 X3 Yl 

+ X4 Y3 Yl + Y4 Y2 X3 - X4 Y3 Y2, 

DI = Y3 Xl - Y4 Xl - X3 Yl + X4 Y1 - Y3 X2 + Y4 X2 + Y2 X3 

- X4 Y2. 

Similar formulas pertain to the points PJ and PK. 
Formulas listed with an asterisk (*) were derived by the computer. The interested 

reader is invited to check them by whatever means he has at his disposal. 
Notice that each coordinate Xr, Yr is the ratio of two sums of 8 monomials 

in the variables X1, Y1, etc. 
The second formula we need is the condition that three points Pr: (Xr, Y1), 

PJ: (XJ, YJ), PK: (XK, YK) be collinear. This condition is 

Xr Yr 1 

(3.3) XJ YJ 1 = 0. 

XK YK 1 

In this paper, determinants are only employed as a shorthand for their brute 
expansions. 

We can use (3.1) to rewrite this as 

(3.4) 

NI/DI 

NJ/DJ 

NK/DK 

MI/DI 1 

MJ/DJ 1 = 0, 

MK/DK 1 
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or as 

(3.5) 

FORMAC MEETS PAPPUS 

(DI)(DJ)(DK) 

NI MI DI 

NJ :'\1} DJ = 0. 

NK MK DK, 

[October 

Call the determinant part of (3.5) DE. Thus, DE is the sum of six terms of 
the form (NI)(MJ)(DK), etc. Each of the NI, MJ, etc. is the sum of eight 
monomials in the Xi, Yi, and so (NI) (MJ) (OK) will consist of (at most) 8 X 8 X 8 
= 512 monomials. The determinant DE will consist of (before possible reduc
tions) 6X512 =3,072 monomials. (To put this figure in some perspective, 
recall that the complete expansion of an nXn determinant consists of n! terms.) 
It now should be clear why a broadside attack on Pappus' Theorem is tedious. 

4. Machine Proof of Pappus' Theorem. FORMAC is a computing system 
that provides the capability of doing nonnumerical manipulation as well as 
numerical calculation. The interested reader may consult references [8] and [9] 
for details. The system consists of a preprocessor program and the PL/1 com
piler. The preprocessor translates the FORMAC program into a PL/I program 
which in turn calls various FORMAC routines at execution time. The PL/1 
compiler is that program which translates the PL/1 language into machine 
language. 

Numerical calculation can be done either in floating point arithmetic or in 
rational arithmetic. For example, 2 X (3/10) can either be computed as .6 or as 
the rational number 3/5. Some of the algebraic capabilities of FORMAC are 
expansion of products of sums, substitution of one expression for another, sym
bolic differentiation, and automatic simplification. Simplification of symbolic 
expressions by computer is by no means a trivial task. It requires explicit pro
gramming of such simple transformations as x 1~x, y+O~y. xy-yx~o. In 
addition, the program must run through every expanded algebraic expression 
and combine like terms. A special version of FORMAC would be required to 
deal with noncommutative multiplication. 

The nonnumeric features of FORMAC that were most essential in the 
Pappus program were expansion of products and automatic simplification of 
products. This simplification is crucial to the economy of memory space. The 
computer form of these expansions required a considerable amount of core stor
age. In our memory of 256 K bytes, the Pappus program itself required only 35 
sta.tements or about 11,000 bytes. The FORl\IAC system required about 134,000 
bytes leaving approximately 117,000 bytes for the algebraic paper work. In the 
IBM 360, one byte '"ill hold one symbolic (i.e., alphabetic or numeric) character. 

A FORMAC program was written which accepted the symbolic coordinates 
of the points P1, · · · , P 6 as input and criss-crossed them in the following order: 
P1P2 with PaP4, P 1P6 with PaPe, P4P6 with P2Pe. Call the three points of inter
section Pr, PJ, PK the Pappus points for P1. · · · , P&. The program then com
puted the determinant DE in terms of the symbolic coordinates of P 1, • • • , P 6 • 
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We now assume that the lines 11 and~ are parametrized as follows: 

(4.1) {
x = ct 

l2: 
y =at+ b. 

The input to our Pappus program was therefore 

X1 = Tl Yl = 0 

X2 = CT2 Y2 = B + AT2 

X3 = 0 Y3 = B 
(4.2) 

X4 = T4 Y4 = 0 

X5 = CT3 YS = B + AT3 

X6 = T6 Y6 = 0. 
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The above simplifications were adopted after it was found that using six general 
points on two arbitrary lines caused core space to be exceeded. The output 
(after 4.52 minutes of execution time which included compile and preprocessor 
time) was 

(4.3)* DE= 0. 

As a curiosity, we have reproduced in ( 4.4) * one of the six terms in the 
determinant DE. It should be observed that special selection of the coordinates 
and other cancellations and simplifications have reduced the number of mono
mials to 41 from a possible 512. 

Pl = B1 A T2 C Tl T6 T3 T4 + B1 A2 T2 2 C Tl T6 T3 T4 

+ 2 B2 A2 T2 Tll T6 T3 T4 - B4 T2 C2 T6 T3 T4 

+ B1 A T22 C2 T6 T3 T4 + B' T2 C2 T1 T3 T4 

- B1 A T22 C2 T1 T3 T4 - 2 B2 A2 T2 Tl T62 T3 T4 

- 2B3 A T2 C T62 T3 T4 + B3 A T2 C T1 1 T3 T4 

- B2 A1 T2 2 C TP T3 T4 + B' T2 C Tl T6 T4 

+ B3 A T22 C T1 T6 T4 + B3 A T2 T1 2 T6 T4 + B' T22 C2 T6 T4 

- B' T2 2 C2 Tl T4 + B A3 T2 TP T6 T3 2 T4 

- B1 A T2 C2 T6 T32 T4 + B3 A T2 C2 Tl T3 2 T4 

(4.4)* - B A1 T2 Tl T62 T32 T4- B2 At T2 C T62 T3' T4 

+ B2 .V T2 C Tl' T32 T4 - B3 A T2 Tl T62 T4 - B' T2 C T62 T4 
- B3 A T22 C TP T4 + B2 A1 T2 T1 T6 T3 T41 

+ B A1 T22 Tl T6 T3 T42 + B1 A T2 C T6 T3 T42 

+ B2 A1 T2 2 C T6 T3 T41 - B3 A T2 C T1 T3 T42 

- B1 A1 T22 C T1 T3 T41 - Bt A2 T2 TP T3 T42 

- B A1 T22 TP T3 T42 + B1 A T2 T1 T6 T42 

+ B2 A1 T22 Tl T6 T42 + B4 T2 C T6 T42 

+ B1 A T21 C T6 T42 - B4 T2 C T1 T42 - B3 A T22 C T1 T42 

- B1 A T2 TP T41 - B1 A1 T21 TP T42• 
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5. Pascal's Theorem. The theorem of Pappus is a special case of the more 
general theorem of Blaise Pascal: if a hexagon is inscribed in a conic then the inter
sections of opposite sides of the hexagon are collinear. This theorem was discovered 
in 1640 when Pascal was 16. An immense literature has grown up around this 
so-called "mystic hexagram." For example, six given points will (in some order) 
determine sixty different hexagrams. If these points lie on a conic, sixty Pascal 
lines will be determined. These lines fall into twenty groups of three, each group 
passing through a common point. These twenty points lie by fours on fifteen 
lines, three of the lines going through each point. See, e.g., G. Salmon, Appendix. 
Pascal was himself reputed to have derived four hundred other theorems from 
his theorem. 

A broadside attack on Pascal by FORMAC might go like this: Parametrize 
the conic in some way, e.g., take the ellipse x =a cost, y = b sin t and then take 
the six points P; on the ellipse as x; =a cost;, y; = b sin t;, i = 1, 2, · · · , 6. Now 
use the program to form the Pappus points for P 1 and then form DE. FORMAC 
has the capability of dealing with sin and cos symbolically, and can be instructed 
to reduce by using sin2 x = 1-cos2 x. 

A second possibility is to use y= (b/a)va 2 -x2 and take P 1: (x;, y1) where 
y1 = (b/a)ya2 -xf. FORMAC also has fractional power capabilities. 

Neither of these approaches succeeded with our 256K memory. (In Summer, 
1968, the storage of the Brown computer was increased to 512 K. This was still 
insufficient.) The message "no more free list space available" was received before 
the second intersection point PK was computed. An indirect machine approach 
to Pascal will be indicated shortly. 

6. New Geometrical Theorems by Machine. By leaving a little slack in the 
situation, one can come up with new theorems or generalizations of old theo
rems. For example, let us not require that P 1, • • • , P 6 lie on two straight lines 
but compute, quite generally, DE and DI, DJ, DK for arbitrary positions of 
Ph · · ·, P 6• Since DE/DIDJDK=2 times the signed area of the triangle 
PrPJPK, we can obtain a complete formula for this area and hence the possibility 
of deriving theorems. The following theorem was obtained after an inspection 
of the machine print out. 

THEOREM.* Let Ph · · · , P 6 be six points in the plane and let Pr, PJ, PK be 
their three Pappus points in the order previously adopted. Consider P1, · · · , P5 to 
be fixed while P 6 is variable. The locus of points P& such that the signed area <T of 
the Pappus triangle PrP JPK is a constant is a conic. If <T = 0 then the conic passes 
through Ph · · · , P 5• As <T varies, the conic varies in a pencil of conics. 

Proof. The analytic condition for the constancy of the Pappus area is 

(6.1) 

(6.2) 

DE/DIDJDK = u = constant, or 

DE- uDIDJDK = 0. 

We used the following input to the Pappus program: (a simple rigid motion 
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does it) 

X1 = 0, Yl = 0; X2 = F, Y2 = G; X3 = P, Y3 = E; 

X4 = A, Y4 = 0; XS = H, YS = K; X6 = B, Y6 = C 

Single letter variables are preferable to subscripted variables insofar as the 
storage requirements are less. Now we have 

(6.3)* 

(6.4)* 

DE = - E1 P K H A C + P1 G2 K H A C + E2 P B K A C 
- P2 G2 B K A C - E2 G B H2 A C + E G1 B H1 A C 
+ E2 G F H2 A C - E P G2 H2 A C + P1 G B K1 A C 
- E P B K1 A C - P2 G F K1 A C + E P f2 K1 A C 
+WFKH~C-P~KH~C+WGBH~C 

-E~BH~C-WGFH~C+EP~H~C 

-WFBK~C+P~BK~C+EFB~~C 

- P G B K1 A2 C + P G F K2 A2 C - E P F K1 A1 C 
+ E2 G B1 K H A - E G2 B2 K H A - E1 G F B2 K A 
+ E P G2 B2 K A + E G F B2 K2 A - E P G B2 K1 A 
-PGKHAO+EPKHAO+PGFKAO 
-EGFWAO+EPGWAO-EPPKAO 
- E F K H A2 C2 + P G K H A2 C2 + E G F H A1 C1 

- E P G H A2 C2 - P G F K A1 C1 + E P F K A2 C1 

-WGBKH~+E~BKH~+WGFBK~ 

- E P G2 B K A2 - E G F B K2 A2 + E P G B K2 A2 

DID JDK = 2 G B K H A C - G F K H A C - P G K H A C - E G F H A C 
- E2 F H A C + E P G H A C + P G2 H A C - E F B K A C 
+ P G B K A C + E P F K A C - P2 G K A C + E G H2 A C 
+ G2 H1 A C + 2 E F B K H C - 2 P G B K H C + P G F K H C 
-EPFKHC+PGKHC-EPKHC-EGH~C 

- G2 H A2 C - G B K A2 C + P G K A2 C + E G F H2 C 
+ E2 F H2 C - E P G W C - P G2 H2 C - E G B K H A 
-~BKHA+EGFKHA+P~KHA+WGFHA 

- E P G2 H A + E G F B K A - P G2 B K A - E P G F K A 
+ P2 G2 K A - E G2 W A + G F B K2 A + P G B K1 A 
- P G F K2 A - G B2 K2 A - E G F B K H 
-WFBKH+EPGBKH+P~BKH+WPKH 

-P~KH+EFHAO-PGHAO-GWAO 

+ G H A2 C2 - E F H2 C2 + P G H2 C2 + E G2 H A2 + G1 B K A1 

-P~K~-WGFW+EP~W-PGFB~ 

+EPFB~-PGB~+EPB~+PGF~ 

- E F B2 K2 + P G B2 Kl - E P P K1• 

Now note that for fixed P 11 • • ·, P5 and variable P 6, DE-oDID]DK is a linear 
combination of two quadratic forms in the coordinates of P 8• 

This theorem was derived after an inspection of a machine print out and this 
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process can be described as computer assisted theorem derivation. 
Notice that the quadratic form DE is such that when two points P;, P; coin

cide, the form reduces to 0. Therefore, DE= 0 represents the condition that P; 
i = 1, · · · , 6 lie on a conic. But DE is the computed collinearity determinant of 
the three Pappus points. Hence, this computation demonstrates plainly that 
collinearity of the Pappus points is equivalent to the six original points P; lying 
on a conic. Thus we have a form of Pascal's theorem. DE is, of course, the 6X6 
determinant 

0 0 0 0 0 1 

f2 G2 FG F G 1 
p2 E2 PE p E 1 

(6.5) DE=-
A2 0 0 A 0 1 

H2 K2 HK H K 1 

Bz C2 BC B c 1 

We consider yet another problem: what are the conditions that the Pappus 
points Pr, PJ. PK form a right angled triangle with right angle at PJ? The 
conditions are 

(6.6) 

or 

(MJ/DJ) - (MI/DI) 

(NJ/DJ) - (NI/DI) 

(NJ/DJ) - (NK/DK) 

(MJ/DJ) - (MK/DK) 

(6.7) S = (MJ·DI- DJ·MI)(MJ·DK- DJ·MK) 

+ (NJ·DI- DJ·NI)(NJ·DK- NK·DJ) = 0. 

From (3.2), the number of monomials implicit in the left hand side of (6. 7) is 
2·(8·8+8·8)(8·8+8·8)=2 15 =32768, which again indicates the enormous 
build-up of the formal algebra corresponding to very simple geometrical opera
tions. This kind of storage requirement may saturate memories of moderate 
size, and some simplifications may be in order. Again, we take P1 at the origin 
and P 4 on the x-axis by means of the input 

X1 = 0, Y1 = 0; X2 = F, Y2 = G; X3 = D, Y3 = E; X4 =A, Y4 = 0; 

XS = H, YS = K; X6 = B, Y6 = C. 

The introduction of the three zeros will reduce the Pappus points as follows: 
Nl, Ml=1 monomial, 01=3 monomials; NJ, MJ=2 monomials; OJ, MK=4 
monomials; NK, DK=6 monomials. 

The number of monomials implicit in the left hand side of (6. 7) is therefore 
reduced to 

(2·3 + 4·1)(2·6 + 4·4) + (2·3 + 4·1)(2·6 + 6·4) = 640. 



1969] FORMAC MEETS PAPPUS 903 

Even with a computer at one's disposal, transformations and shorthand notations 
may therefore be sought to reduce storage requirements and to interpret the output. 
The race against then! buildup of determinants cannot be won by the computer 
alone operating in the crude mode outlined. 

The final computation output (combined and simplified) was 

(6.8)* S = approximately 300 monomials each of degree 10. 

The first three monomials listed were 

- E 2Df2BKHAC + D 3 G2BKHAC + E 2f2B 2KHAC-

A (human) scan of the output for S yields the following computer assisted 
theorem. 

THEOREM.* Let Pt. · · · , P 6 be six points in the plane and Pr, PJ, PK be their 
Pappus points. Let P1, · · · , P. be fixed while P 6 is variable. The locus of points 
Po such that P1PJ is perpendicular to PJPK is a cubic curve. 

7. What Constitutes a Proof in Mathematics? The reader who is not used 
to thinking about mathematics in terms of machine work may object to the 
claim that the printout 

DE= 0 

constitutes a proof of Pappus' Theorem. What if the programming was errone
ous? What if the initial data were false? What if there was a machine malfunc
tion? What if the programmer, in a moment of pique, simply programmed the 
computer to type out DE= 0, and let it go at that? 

These are certainly valid objections. Similar objections, hO\vever, can be 
raised with conventional proofs. One aspect of a mathematical proof is that it 
consists of a finite string of symbols which must be recognized one by one and 
processed either by a person or by a machine or by both. Now symbols must 
have physical traces on paper, in the brain, or elsewhere, and cannot be repro
duced and recognized with perfect fidelity. Human processing is subject to such 
things as fatigue, limited knO\vledge or memory, and to the psychological desire 
to force a particular result to "come out." 

The splicing together of several theorems may cause difficulty. A colleague 
tells the following story. He received a paper for refereeing which was written 
by a competent mathematician. The conclusion of the paper seemed to our 
colleague to be intuitively erroneous. He therefore checked the details of the 
proof. The details seemed to be in order. He was forced to conclude, there
fore, that there was probably an error in one of the theorems used in the paper, 
but not proved in the paper. The author's references led him to a theorem in a 
well-known book in probability theory. In this book, the cited theorem was 
printed erroneously. The words 'closed set' and 'open set' had inadvertently 
been interchanged. 

This sort of story is unfortunately common. A former editor of the Math-
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ematical Reviews once remarked (in a moment of jest) that he thought that SO% 
of the mathematical papers published contained theorems that were in some 
degree in error. Suppose the figure were only 1%? 

What recourse do we have? For machine proofs as well as conventional 
proofs, one can (a) run the program several times, (b) inspect the program, (c) 
invite other people to inspect the program or to write and run similar programs. 
In this way, if a common result is repeatedly obtained, one's degree of belief 
in the theorem goes up. Iterated over an interval of years, this process can con
verge to theor(;'ms whose degree of crt'dibility is high. 

These considerations lead us to a position-which is rarely discussed in works 
on the philosophy of mathematics and which is very unpopular-that a mathe
matical proof has much in common with a physical experiment; that its validity 
is not absolute, but rests upon the same foundation of repeated experimentation. 

8. Prospects for Computer Discovery in Elementary Analytical Geometry. 
It set'ms clear from the present work that all one's favorite theorems of elemen
tary geometry are capable of brute analytic proof by computer within reasonable 
computing times, given high-speed memories of moderate capacities. We have 
also given several examples of theorem formation with an assist from the com
puter. The theorems derived are of the conventional sort in elementary geome
try; whether or not they appeal to the reader or whether they can be regarded 
as a minor exercise \vhich can be given simple conventional proof is somewhat 
beside the point here. 

A more interesting question is whether by means of the present method, the 
computer-mathematician combination can generate new theorems in elementary 
geometry which will ultimately be of historical significance. While voyages into 
the future are a risky parlor game, we should like to suggest that the answer to 
the question as stated is "no." (We do not assert this for other areas of pure or 
applied mathematics.) 

Our reasoning is by historical parallel. Let us consider the contribution of 
the method of Descartes to geometry. It is no misreading of the history of 
geometry to state that the method of Descartes, for all its power, and all its 
ability to handle problems in classical geometry in a deterministic way, did not 
contribute substantially to the stock of geometrical theorems of the classical 
type. The method of Descartes began to take wing when the method, i.e., the 
algebra, was freed from the visual, spatial, or deductive goals of classical geome
try. To put it in other terms: the means of analytic geometry replaced the ends 
of classical geometry. (This is a frequent historical process in mathematics and 
one of the authors (Davis) hopes shortly to present some descriptions and specu
lations on it. The current cliche "the medium is the message" is an aspect of this 
process.) Only in this way were the immense and beautiful structures of alge
braic geometry raised. 

By the same token, it is unlikely that the computer will contribute substan
tially either to classical geometry or to algebraic geometry in terms of the origi-
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nal goals of these subjects. However, if the characteristic means of the computer 
can supersede these goals-whether the means are to be found in computer 
languages or in combinatorial power or in heuristic power is not clear-then a 
genuinely new subject of historical significance can emerge. The Descartes of 
computer geometry must point an identifying finger firmly at these means. 
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ON NEWTON'S INEQUALITY FOR REAL POLYNOMIALS 

J. N. WHITELEY, University of Melbourne 

1. Introduction. The result of Newton on the coefficients of real polynomials 
with all roots real, namely 

2 

A. Ar-1Ar+1 
-----~----
(n - r + 1) (n - r) 

where the polynomial is given in the form 

n Ar 
Pn(Z) = L: -zn-r 

r=O r! 

is well known. There is an elegant and short proof of this, depending on Rolle's 
Theorem, in [1 ]. \Vhat is not generally known however, and not as easy to prove 
(although the ideas involved are still completely elementary), is that there 
exists a dual to Newton's Inequality. In it the zeros of the real polynomial must 


