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Project Description

1. Automated Commonsense Physical Reasoning: Significance
and Applications

A fundamental part of human experience is the interaction with physical materials of many
different kinds: rigid solids, non-rigid solids of many different kinds (e.g. cloth, string, rubber
bands, springs, and so on), liquids and gasses. The rich pre-scientific understanding of these
materials acquired by every child at an early age is critically important, both because it enables
a person to deal effectively, in daily life and in more specialized activities, with a world full of
these materials, and because this fundamental physical understanding serves as a grounding for
more sophisticated knowledge of many kinds. The implementation of this body of knowledge in
an intelligent knowledge base and the analysis of the knowledge that would be entailed in this
implementation would have immense value for many different purposes:

Robotics: An autonomous robot that needs to deal flexibly and sensibly with an uncontrolled
environment needs to understand how the environment behaves and how it reacts to his actions.
This includes robots that work in a household; in complex and unpredictable industrial setting;
in unusual and distant environments (undersea, Mars, etc.); and in hospitals.

Automated instruction: Interactive instructional computer programs could be made much
more powerful and effective if they could draw on this body of commonsense physical knowledge.
These could potentially be instructional programs for consumers (e.g. for using a sewing machine
or for applying first aid); for students, especially in physical science courses; or for workers.

Product and process design: The knowledge base could be used to design or validate tools
and techniques for using these tools.

Science knowledge base: An ambitious long-term project, called Project Halo, is underway
to encode scientific knowledge in a knowledge base, the Digital Aristotle [40, 41] In the first stage
of this project, knowledge-based systems were developed that achieved about the mean human
score on questions about balancing chemical equations and pH levels from the high-school AP
chemistry test. The second stage, currently nearing completion, has focused on developing tools
to aid domain experts to develop knowledge bases for answering questions from the AP physics,
chemistry, and biology tests [4]. However, the subject matter in both stages was carefully chosen to
avoid issues of spatial reasoning and of commonsense reasoning ([40] and personal communication).
But these issues obviously cannot be evaded forever if the project is to attain any reasonable
coverage.

Text/diagram understanding: Descriptions of physical processes and mechanisms written
for human readers use a sophisticated combination of natural language text and pictorial diagrams.
Automated systems that could interpret these at a deep level would be of great value, both for
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applications which process these texts for the benefit of a human reader, such as document retrieval
or machine translation, and for those that use the texts as a knowledge source for a computer-
centered activity, such as robotics or CAM. But achieving deep understanding of these documents
requires a correspondingly deep understanding of the domain.

Grounding for science and mathematics: Experiences of simple physical interactions are
a major epistemological grounding for the understanding of basic physical science and mathemat-
ics, directly (concepts of physical science correspond to elements of experience); as explicanda
(scientific theories explain commonsense experience); as metaphors (e.g. imagining atoms as hard
balls); and as contrasts (e.g. understanding the differences between atoms and hard balls).[26]

Testbed for knowledge representation research: Elementary physical reasoning is a
testbed for research in knowledge representation and automated reasoning that is appealing,
easily understood, and remarkably rich. It involves many of the central issues of knowledge repre-
sentation, including taking knowledge that is “intuitive” and hard to verbalize, and representing
it explicitly; integrating commonsense and expert knowledge, spatial and symbolic knowledge,
deterministic and probabilistic knowledge; and reasoning at multiple levels of abstraction.

Thus, a fully-developed theory of commonsense physical reasoning and its relation to spatial
reasoning would be a central conceptual infrastructure in the achievement of robust intelligence in
programs for many different kinds of applications and in the development of a cognitive theory of
the understanding of science and mathematics; and a important source of insight and experience
that can be applied to the development of automated reasoners for other domains.

2. The SOPHY project

In 2005 we began work on a long-term research project, called SOPHY, to develop a knowledge-
based system for automated reasoning about simple high-school level chemistry experiments. We
have thus far developed a representation and a theory that can support qualitative reasoning
about a number of basic physical substances and processes: loading solid objects, or pouring
liquids into an open container and carrying them in the container [22, 21]; burning fuel in a closed
container; and passivizing a metal by exposure to oxygen [29]. (In passivization, a thin layer of
oxide is formed on the surface of a metal; since the oxide is chemically inert, the rest of the metal
remains unchanged.)

The next stage of the project will focus on extending these theories to further kinds of phys-
ical materials and processes and developing methods for plan verification and plan expansion
(section 3). The direction of theoretical analysis will be informed by and grounded in the domain-
knowledge needs of the task of of interpreting natural language and diagrammatic descriptions of
lab experiments in course assignments. (section 4).

3. Integrating Commonsense and Scientific Reasoning

Consider the experiment shown in figure 1. Potassium chlorate (KClO3) is heated in a test tube,
and decomposes into potassium chloride (KCl) and oxygen. The gaseous oxygen expands out of
the test tube, goes through the tubing, bubbles up through the water in the beaker, and collects
in the inverted bottle over the the water. Once the bubbling has stopped, the experimenter raises
or lowers the bottle until the level of the top of water inside and outside the bottle are equal. At
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Figure 1: Collection of Gas over Water. From [3], fig. 10.15, p. 372.

this point, the pressure in the bottle is equal to atmospheric pressure. Measuring the volume of
the gas collected over the water, and correcting for the water vapor which is mixed in with the
oxygen, the experimenter can thus measure the amount of oxygen released in the decomposition.

This experiment is summarized in the formula 2KClO3 → 2KCl+3O2, but that, clearly, is only
the tip of the iceberg. A real understanding of the experiment involves understanding how the
success of the experiment corresponds to the structure of the set-up. Achieving this understanding
requires having some basic knowledge about solids, liquids, and gasses, and their interactions;
how these interactions are affected by the shapes and spatial relations of the objects involved;
and how the physical set-up reflects the abilities of the human experimenter to manipulate the
objects involved and to perceive the progress of the experiment.

Our general objective is to develop a knowledge base encoding the basic knowledge of the
dynamics of solids, liquids, and gasses needed to understand simple physics and chemistry experi-
ments such as this one. This includes the experimental set-up shown in figure 1 and various devices
for controlling the movement of solids, liquids, and gasses, ranging from simple devices such as
open and closed boxes, open and closed fluid containers, and pipes, to somewhat more sophisti-
cated devices such as doors, valves, stopcocks, and simple pumps, manometers, and barometers.

3.1. Variants and directions of inference

The adequacy of our representation and our inference techniques will be demonstrated by its
ability to understand variants of the system and to make inferences in different directions.

Variants are greater or lesser modifications of the system which may make no change in its
behavior, a small change, or completely alter its behavior [16]. The ease with which a theory
can be extended to deal with simple variants is its elaboration tolerance [55]. For instance, an
elaboration tolerant theory of the decomposition experiment might be expected to be able to
answer such questions as:

What would happen: If the bottle had a hole in its bottom? If it had a hole in the
side, below the level of the water in the pan? If it were right-side up and the tubing
entered the bottle through the open top? If it were cubical rather than cylindrical? If
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it were not graduated? If it were painted black? If it were the size of a thimble? If the
end of the tube were below the opening of the bottle rather than inside the bottle? If
the end of the tube were in the pan but outside the bottle? If the tube were blocked?
If it were miles long? If the pan were empty? If the water in the pan and the bottle
were replaced by milk, honey, loose gravel, or solid granite?

A knowledge-based system should also be able to employ the same knowledge to carry out
different kinds of inferences, where different kinds of information are given and demanded. This is
indeed one of the major objectives in using a knowledge-based system rather than an task-specific
algorithm. In this domain, directions of inference include:
• Plan projection. Given the starting state of a physical system and containing an agent (or
agents) and a plan of action for that agent, determine whether the plan is executable and what
its effect will be. An important special case is autonomous projection, in which an inanimate
physical system evolves on its own, with no agent. A variant is comparative projection: how
a change in the conditions of a problem affects the outcome. For example: the denser the liquid
in a barometer, the lower the column of liquid will be. The smaller the hole in a container, the
more slowly liquid will leak through.
• Planning, plan completion, plan modification. Given the starting state of a physical
system containing an agent, and a task to be carried out, find a plan of action. Given a partial
plan specification or a buggy plan, modify it to be a correct, complete plan.
• Explanation/diagnosis. Given the behavior of a system, determine its physical structure.
For instance, if liquid is observed to be leaking slowly from the bottom of a container, infer that
there is a small hole. If, in the experiment, the substance has melted but no gas is bubbling
through the water, infer that there is either a leak or a blockage.
• Safety (unattainability). The purpose of many physical system is to ensure that specific
states cannot be attained. An object in a closed box cannot come into contact with objects
outside the box. An agent outside a locked door cannot go through the door.

This project will focus primarily on plan projection and plan completion; however, the knowl-
edge base will be designed so as to support other directions of inference.

3.2. Physical theory

We will use a simplified physical theory — it will be complex and challenging enough! Our theory
models solids, liquids, and gasses. Solid objects are modelled as strictly rigid in shape. Liquids
are taken to be incompressible. We ignore such issues as viscosity, surface tension, adhesion, and
cohesion. We assume that a closed system of gasses in a container rapidly attains a uniform
equilibrium which satisfies ideal gas law and the law of partial pressures. Our focus, at least in
the short term, is on dynamics; other aspects of the physics involved will be dealt with in an ad
hoc way, sufficient to deal with the particular example.

Our model of action is that one or more solid objects are directly controlled by the agent,
and that the agent can either move them along a desired trajectory, or use them to exert a force
against an object that is in contact. The objects being controlled may either be the robot’s own
manipulators or, more abstractly, the tools he is working with; for example, a robot can either
think of moving its hand so as to pick up a beaker, or, more abstractly, it can think simply of
moving the beaker, without envisioning its hand.
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3.3. Partial Geometric Specification

The most important difference between the SOPHY project and all but a handful of the many
existing programs that do physical projection is that we focus on cases where the problem char-
acteristics, especially the geometry, are specified only partially or abstractly. That is, almost all
physical reasoning programs that deal with geometry at all assume that precise geometric and
material characteristics are given in the problem specification. Given such precise boundary con-
ditions, the programs can then make precise predictions. In many important applications, the
geometric knowledge is not complete; it derives either from inexact and partial perception (e.g.
significant parts of the objects involved are occluded); or from natural language text, which is
rarely geometrically complete; or from schematic diagrams, which often show topology but are
often (deliberately) incorrect otherwise; or from inference (e.g. from previously observed physical
behavior). Partial geometric specifications also arise when one is reasoning inference about all
objects in a class rather than a single object, or about a system that is in the process of being
designed and has not yet been fully specified.

3.4. Abstracting transitory states

The behavior of physical systems often goes through highly complex transition states before
setting into a state of equilibrium. For instance, when liquid is poured into a container, its shape
and motion while being poured is extremely complicated and unstable with respect to small
perturbations, whereas its final state – sitting at rest at the bottom of the container under a
horizontal top surface – is extremely simple. There are three standard methods of projection for
this problem: first, to ignore these transitional states altogether, and posit atomic transitions
from one equilibrium state to the next; second, to view the pouring as a process that continuously
reduces the volume in one container and increases it in the other, with no account of how this
is mediated; and third, to use partial differential equations or simulation to trace the way in full
detail through all the intermediate stages. The first two, though often useful abstractions, are too
abstract for many kinds of commonsense reasoning (e.g. predicting what happens if an object is
placed into the stream of liquid); the third is unusable in the context of commonsense reasoning,
since it requires precise information of geometry, timing, and material characteristics, and it gives
output that is too detailed, unreliable, and unstable. What we need is a representation and a
mode of reasoning somewhere between the second and the third; that constrain the behavior
during transitions, so that one can be sure that nothing too strange is happening, while not
requiring that this behavior be worked out in full detail

We have already developed a number of different physical domain theories of this kind, that
support making qualitative predictions over extended time to be made based on qualitative spa-
tial and physical specifications: loading objects into a box, and carrying objects in an open box,
even if the objects inside the box may shift while this is happening [22]; carrying liquids in an
open container and pouring liquids from one container to another [21]; burning a fuel in a closed
container, and passivizing a metal by exposure to oxygen [29].

4. Deep domain knowledge for text understanding
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Developing an automated system with a deep understanding of texts that describe physical sys-
tems and processes will require a correspondingly deep domain theory. We plan to study this
issue by carrying out a careful analysis of a small selection of such texts and determining how
difficulties in their interpretation could be addressed using domain knowledge. For instance, a
preliminary examination of the online experimental description “The Decomposition of Potassium
Chlorate” [45] reveals many places where correct interpretation depends on domain knowledge.
(Note: the experimental set up here is not the same as in figure 1 above.) The following instances
are typical:
• Step 1 of the procedure is “Record the atmospheric pressure from the laboratory barometer.”
In fact, this step need not be first; it can be carried out at any stage.
• Step 2 states, “Caution, KClO3 is a very strong oxidizing agent. . . . Do not let this substance
contact paper or the rubber stopper in the test tube of the apparatus.” In fact, this constraint
applies throughout the duration of the experiment, but is primarily a concern during step 6, in
which the substance is poured into the test tube, and step 7, in which the test tube is manipulated.
• Step 10 states, “Place the glass tube (connected to the hose) back into the beaker”. In fact this
means, “Take the glass tube that is connected at one end to the hose, and put the other end into
the beaker, maintaining the connection to the hose at the first end.”

Examples of this kind occur on practically every line of the document [27]. Moreover, the
diagram is, of course, a two-dimensional projection of a temporal snapshot of the experiment;
reconstructing the actual three-dimensional structure and the relation of the snapshot to the
temporally extended execution of the procedure calls on both physical reasoning and the text.

These do not at all reflect actual flaws in the write-up, which, after all, is addressed to human
students and not to robots. The point is that making this text usable by an automated system
requires a lot of plan elaboration, plan repair, and disambiguation that cannot be met using
superficial techniques but inescapably requires deep reasoning.

Our short-term objectives for this part of the project are to analyze and categorize as com-
pletely as possible the interpretive cruxes of this kind that arise in a few sample texts and di-
agrams; to characterize the kinds of domain knowledge and reasoning that would be needed to
resolve these cruxes; to show how this domain knowledge, or part of it, can be inferred from the
knowledge base; and to analyze the issues involved in accessing this knowledge in the process of
text interpretation

I do not want to put forward unrealistic expectations for the relevance of this domain knowl-
edge analysis for a practical interpretation system; the histories of KR and NLP are littered for
proposals for knowledge-based text analysis that seemed great on paper but never materialized.
Nonetheless, there has recently been significant progress in this direction, drawing on the exis-
tence of very large knowledge bases such as CYC, the immense textual corpuses that can be drawn
from the Web, and progress in information extraction techniques; see for example [5, 6] on the
use of Cyc for question answering and for disambiguation, and [1] for an overview of the use of
knowledge-based system in question answering.

5 The state of the SOPHY project

We began the SOPHY project five years ago, building on previous work on the representation
of commonsense physical knowledge. We have thus far made substantial progress on formalizing
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commonsense knowledge about the dynamics of solids, liquids, and gasses including phase change
and chemical reactions. The next steps are to extend the scope of the domain theories; to use
proof verification software to verify sample inferences; and to begin work on the task of interpret-
ing lab assignments.

5.1. Work completed: Boxes

We developed a logical theory capable of supporting the inference that an agent can move a
collection of objects from one location to another by loading them one by one into a box and
then carrying the box to the destination [22]. The theory consists mostly of first-order axioms,
augmented by two non-monotonic rules that serve to exclude certain scenarios that are highly
implausible but not absolutely impossible. Some notable features of this theory are:

• We define a semantics of plans, and prove the validity of the plan,
{ repeat until (all the cargo objects are in the box)

load some object into the box;
carry the box to the destination }

The plan semantics required here differs from standard semantics for planning languages,
because the space of actions includes all possible motions satisfying some basic smoothness
constraints.

• The specifications for the starting state give only qualitative information about the shapes
of the box and the cargo objects, and the number of cargo object. The plan specifications
give only qualitative information about the motions involved in loading the objects and in
carrying the box.

• As described in section 3.4, the theory supports the inference that the objects remain in the
box while being loaded and while the box is being carried, without a detailed analysis of
their motions or the forces on them. This can be done even if the objects settle into place
while being loaded, or rattle around in the box while it is carried.

• The theory covers a number of significant variants, including using a box with a lid, carrying
objects in a milk crate (a box with small holes) and putting one box inside another.

5.2. Work completed: Liquids

We developed a logical theory for qualitative reasoning about carrying liquids in closed and open
containers and pouring liquids from one container to another [21]. Like the theory of boxes,
this supports reasoning from qualitative specifications of shape and motion; it supports reason-
ing about extended time without detailed specification of behavior over differential time; and it
supports a number of different variants including carrying a liquid in a closed container; carrying
liquids in an open container; using a container formed by the combination of several solid objects;
causing a liquid to overflow by dropping pebbles into a pitcher; and, to some extent, pouring
liquid over arbitrarily shaped solid objects.

5.3. Work completed: Ontology of matter
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We carried out an extensive comparison of seven ontologies for matter in terms of their suitability
for representing eleven different kinds of physical laws and physical behavior [28]. Specifically,
the ontologies we considered were the model of atoms and molecules with statistical mechanics;
models of spatio-temporal fields, with either points, regions, or histories; models of continuous
moving material in terms of chunks of matter, with or without point particles; and a hybrid
theory that combines atoms and molecules, chunks of matter, and continuous fields, using each
where appropriate. The physical concepts and scenarios were part/whole relations among bodies
of matter; additivity of mass; motion of a rigid solid object; continuous motion of fluids; fixed
mass proportions and spatial continuity at chemical reactions; conservation of mass at chemical
reactions; gasses in a container attaining equilibrium; the ideal gas law and the law of partial
pressures; liquid at rest in an open container; carrying liquid in an open container; the constant
availability of oxygen for reactions in an atmosphere; and surface passivization of metals. Our
conclusion was that overall, the field model with histories and hybrid model are the best suited
to these kinds of problems though neither is unproblematic. Of course, the hybrid model must
be carefully constructed to make sure that the different viewpoints are mutually consistent.

5.4. Work completed: Chemical experiments

We have developed a logical theory in which two simple chemical experiments can be represented
and reasoned about qualitatively: the burning of solid fuel in a closed container, and the pas-
sivization of the surface of a metal by exposure to the atmosphere [29]. In this theory, we use the
hybrid representation of the ontology of matter described above.

The theory supports inferences such as the following. In the first experiment:
• If there is too little oxygen in the container, then some of the fuel will remain unburned. If
there is little fuel and plenty of oxygen, then some of the oxygen will remain unused.
• If the contact between the fuel and the atmosphere is broken at the points where combustion is
taking place — for instance the fuel is doused with water — then the combustion will stop.
• If a chunk of fuel remains connected and solid, then its constituent atoms maintain a constant
relative position. (Note, by contrast, that if a chunk becomes split, then the parts may move
relative to one another.)
• The gaseous chemical products of the reaction spreads rapidly throughout the container. Once
combustion stops, they soon become uniformly spread throughout the atmosphere in the container.
• The combustion process cannot generate a new internal cavity inside the fuel. It can expand an
internal cavity, either by burning through to the cavity from the outside, or by burning it on the
inside; but the latter is possible only if there is oxygen in the internal cavity and the combustion
can be ignited.

In the second experiment, suppose that the part of the surface that is exposed to the atmo-
sphere changes over time; for example, the bottom of metal bar is in an oil bath while the top part
is exposed to the atmosphere, and the bar rotates during the course of the experiment. Then: • If
a part of the surface is exposed to the atmosphere, then it immediately is passivized and remains
passivized.
• Any part of the interior of the metal, and any part of the surface that is never exposed to the
atmosphere, is not passivized.
• The passivization of the surface of a metal bar does not measurably change the concentration
of oxygen in the container. However, if the container is filled loosely with metal filings, which
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passivize, then that may measurably reduce the concentration of oxygen.

5.5. Work in progress: More complex scenarios

The next major step is to extend our analysis to cover a broader range of physical processes.
For example, representing the experiment shown in figure 1 requires at least a partial theory of
heat; a theory of pressure; and theories of gas movement of various kinds including bubbling,
evaporation, and the behavior of an inverted beaker of gas over liquid.

One issue that arises very often in this kind of reasoning is the problem of ignoring negligible
quantities. For instance, the evaporation of water into the gas in the beaker is negligible as re-
gards the water level in the basin, though it is significant in computing the vapor pressure inside
the beaker. The evaporation of water from the basin into the open air is negligible over the time
period of the experiment, but would be important if the apparatus were left for a month. The
qualitative calculus of the kind of order-of-magnitude reasoning is well understood (e.g. [61]); but
there are few formal attempts to integrate it with a rich physical theory.

5.6. Future work: Verification of reasoning

The object-level proofs of inferences in these domains that we present in [22, 21, 29] are long and
hand-constructed, and draw on powerful mathematical theories of geometry and real analysis.
Constructing these proofs automatically is far beyond the state of the art. Therefore, as a first
step toward general automated reasoning, we will attempt the much easier task of verifying the
proofs, using a high-powered proof-verifier such as Isabelle/HOL [60]. The hope here is that a
large library of lemmas can be built up that can be substantially reused from one variant problem
to another, and from one direction of inference to another. Conversely, this would provide a
new and quite different testbed for proof verification which might be of interest to that commu-
nity. Another potential application of the proof structures developed here could be explanation
generation; a natural language explanation could, in part, follow the structure of the formal proof.

5.7. Future Work: Interpretation of Laboratory Assignment

As a specific application of the domain theory, we will address the problem of automating the
interpretation of laboratory assignments, elaborating the texts and images in the assignments to a
fully fleshed-out form that could be executed by a robot. Over the short term, we certainly do not
plan to address either the issues of natural language processing faced in interpreting the text, the
issues of vision faced in interpreting the image, or the issues of robotics faced in physically carrying
out the experiment. Rather, we will take as input logicized translations of the information in the
text and image and deliver as output an abstracted high-level specification of the robot control.
At a later stage of research, it may be possible to interface this to actual NLP and vision front
ends, and a robotic or animated back end.

Of course, even this truncated task involves many difficult problems:
• Plan completion and plan repair. As discussed above, the plans as stated in the assignments
are always incomplete, and, taken literally sometimes buggy. In order to be actually executed,
they need to be completed and repaired.
• Diagrammatic interpretation. The diagrams are both over-specified, in that they show
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specific dimensions and spatial relations that need not be met exactly, and schematic, in that
they omit actual features that are necessarily present in the real set-up but would be merely dis-
tracting if shown in the diagram. In using the diagram to guide the physical set up, it is therefore
necessary to incorporate both information from the text and from domain knowledge.
• Disambiguation. Ambiguities in the text and in the diagram can be resolved using domain-
specific knowledge.

6. Evaluation

Numerical evaluation, based on percentage of success over a preselected corpus of example tasks,
is not very meaningful for a project like SOPHY, which is really a first exploration of issues in
representation and reasoning over a largely unstudied domain. One could perhaps preselect mea-
sures of success associated with the specific task of interpreting lab assignments, but formulating
such measures is a substantial task in itself, and seems unproductive, for a number of related
reasons. First, the formulator would necessarily be the researcher himself, so it could not be
an independent measure. The project does not address a specific end-user application, so these
measures do not reflect any immediate real-world payoff (e.g. dollars saved). SOPHY is not in
competition with any other project on this task, so there is no issue of comparative degree of
success. Finally, at this stage of our understanding, it is impossible foresee what aspects of the
task are feasible or most important, so evaluation in terms of a predefined measure could easily
either miss the progress that is made, or exaggerate its significance.

Rather, at this stage of research, meaningful evaluation can only be a qualitative and ret-
rospective consideration of the progress made in the conceptual analysis of the domain and the
task.

The chief criteria for progress in the representational analysis are:
• Scope and extensibility. How broad is the range of physical phenomena, of qualitative in-
formation, and of the kinds of inference that the theory will support? Does the theory seem to
be easily extensible to broader ranges?
• Coherence and clarity. Is the viewpoint of the theory coherent? Is the meaning of the
symbols clear? Can other researchers use the representation correctly?
• Fruitfulness. Will the conceptual framework be useful in other domains and applications?

The chief criteria for progress in the automated verification project are:
• Scope: What kinds of inferences are able to be verified automatically?
• Ease of use: How much human labor is involved in verifying an inference?
• Multiple use: Can proof structures developed for one inference be used in another, or must
each inference be worked out from scratch?
• Insight: The domain here is rather different from most of the applications of proof verifiers
(mostly mathematics or program verification). Does this work make any useful suggestions as to
the design of proof verifiers?

The chief criteria for progress in the interpretation task are:
• Scope: What aspects of the interpretation task are in principle characterized by the theory
developed, and what lies outside the theory?
• Implementation: What parts of the interpretation task are implemented, and how accurate
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and efficient is the implementation?
• Front and back end interface: How large and how difficult is the gap between the real text
and image input and to the real robotic control output and the specifications used and output
generated by the theory or implementation?

7. Related Work

The previous research relevant to this proposal falls mostly into two categories, which have not
previously interacted much: work on rule-based approaches to commonsense physical reasoning;
and work on algorithmic approaches to physical reasoning. For a more extensive review see [20].
There is also some relevant recent work in the ontology of chemistry and the philosophy of chem-
istry.

7.1. Rule-based physical reasoning

This is a comparatively small body of research. It was initiated by Pat Hayes’ “Naive Physics
Manifesto” [43], which proposed a large-scale project of encoding naive physics in an axiomatic
system, deferring the problems of effective implementation. Hayes provided an extensive instance
of his project in the “Ontology for Liquids” [44], which constructed an ontology and an axiomatic
system for reasoning about liquids.

Prior to beginning work on SOPHY, I developed a number of theories of this kind: an axiomatic
system supporting the inference that a small marble dropped inside a large funnel will come out
the bottom [7]; axiomatizations [8, 9] of the qualitative reasoning in ENVISION [33] and QP
[38]; a pair of ontologies, with axiomatizations, for reasoning about cutting solid objects [11];
and an ontology for continuous branching time, needed for modelling an agent that controls a
manipulator [13]. I also wrote a couple of methodological papers: a discussion of the infinitary
problems that arise in axiomatizing physical theories [10] and a review of methodology in this
field, with a discussion of the pros and cons of various approaches and an analysis of the major
difficulties that are encountered [16].

Sandewall [64] developed a logical description of a microworld of point objects moving along
surfaces. The chief focus of this work was integrating non-monotonic logic with temporal logic.
Three researchers [54, 57, 65] worked on the problem, posed by me [56], of axiomatizing reasoning
about an egg being cracked into a bowl The papers are independent; each presents a separate
axiomatization. The Halo project [40] is discussed in the introduction above.

7.2. Solid Object Physics

There are many AI systems that carry out computations of one kind or another about the physical
interactions of solid objects.

The use of configuration spaces for kinematic analysis of mechanisms was first put forward
by Faltings [36] and Joskowicz [48]. Subsequent work has improved the algorithms and found a
wide range of applications [62, 52]. Joskowicz and Sacks [50] determined that a large fraction of
the mechanisms enumerated in a standard encyclopedia of mechanisms can be explained purely
in kinematic terms.
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Simulators for the behavior of solid objects using a full dynamic theory have been developed
in the context of computer-aided engineering [69] and AI [42] These carry out a exact simulation
of behavior given exact geometric specifications of the objects involved. Sacks and Joskowicz [63]
present an algorithm that efficiently carries out dynamic simulation for two-dimensional assemblies
using configuration spaces to expedite the problem of collision detection.

The works in solid object physics most relevant to SOPHY are the studies of qualitative
reasoning about the behavior of physical systems. The first projects of this kinds were NEWTON
[32], which gave a qualitative analysis of the behavior of a point object on a roller-coaster track,
and FROB [37], which analyzed the behavior of point objects in among two-dimensional obstacles.

Programs such as [36, 59, 62] took a configuration space that had been computed exactly from
exact shape descriptions, divided the configuration space into significant regions, and thus were
able to compute qualitative properties of the systems from the relations between these regions.
[39] and [67] extend this approach with a qualitative representation of forces and motions, and
thus producing a system for qualitative dynamic prediction.

Other directions for the study of qualitative reasoning include studies of kinematic reasoning in
cases where the shapes of the objects involved are known only to within a given tolerance [51, 15],
and studies of abstraction techniques that can be applied to solid object kinematics [59, 14].

7.3. Reasoning about Fluids

The major study of qualitative reasoning about fluents is by Kim [53]. The program described
here does qualitative prediction (“envisionment”) for physical systems of liquids and gasses in
solid containers; it can handle basic instances of many of the systems described in section 1.
The spatial language combines topological predicates with order relations on vertical height. The
envisionment algorithm begins by dividing a given situation into separate physically significant
regions (a “place vocabulary”) and then using a form of qualitative reasoning to carry out a
qualitative prediction.

Johnston and Williams [46, 47] have developed a simulation program for the egg-cracking
problem discussed above; this requires integrating models of rigid objects, of cracking as a pro-
cess operating on rigid objects, and of liquids (the internals of the egg).

7.4. Ontology and Philosophy of Chemistry

A major effort at constructing an ontology (in the technical sense) of chemicals and their properties
is being undertaken in the ChEBI project [35, 34, 2]. This project and ours encounter some of
the same representational problems in characterizing chemicals and their behavior. As more
knowledge of chemistry is built into SOPHY, it may be possible to draw on the information in
the ChEBI database.

Some work in philosophy of chemistry considers formal analysis of chemistry at the mesoscopic
level and its relation to chemistry at the molecular level, in ways that bearing on our conceptual
analysis (e.g. [58]).

8. Strengths of the Proposal
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I have been working in the areas of commonsense physical reasoning and qualitative spatial rea-
soning for twenty years, and have published extensively in these areas. I have written a textbook
on commonsense reasoning [8] with an extensive discussion of spatial and physical reasoning. I
have also supervised one doctoral thesis [49] in the area of physical reasoning.

The project will be much enriched by ties and communication with other ongoing projects
at NYU and elsewhere. The large research endeavors at Courant in modelling and simulation
and in computational geometry, which involve both the computer science and the mathematics
departments, are sources of much inspiration and information as to more mainstream approaches
to physical and spatial reasoning. I can also draw on the expertise of the NYU research group
in program verification — Clark Barrett, Ben Goldberg, and Patrick Cousot — in dealing with
automated logical inference of all kinds.

I have also had very helpful email discussions with Vinay Chaudhri, who is leading the Halo
project at SRI. He has generously made available to me the content and the interface for their
knowledge base, which should be an extremely valuable resource in the development of SOPHY.

9. Broader Impact

As discussed in the introduction, the chief impact of this work is in the long term. The project is a
first step toward a general knowledge base that could be used in autonomous robotics; automated
science instruction; tools for planning, design, and verification of laboratory experiments and
tools; and a knowledge base of scientific knowledge. It is also an exploration in a new and rich
domain of automated proof verification, plan completion, and plan repair techniques.

The short term impact of the project includes:
• The training of doctoral students. Over my career I have supervised nine doctoral students,
who are now working at such places as IBM Watson Labs, Microsoft Research, Hebrew University,
and ISI. I certainly hope to continue this.
• Dissemination of knowledge beyond the immediate research community. I am working on a
book [26] addressed to a semi-popular audience, on the subject of how commonsense physical and
spatial knowledge interacts with formal mathematical calculations. This will draw on many of
issues that I have studied in my research.

10. Results from Recent NSF-supported Research

Grant: “Automating Commonsense Reasoning for Elementary Physical Science,” NSF IIS-
0534809, $328,877, 2/06-1/09.

During the past five years of NSF support, my associates and I have carried out in-depth
studies in three general areas of commonsense reasoning: physical reasoning; qualitative spatial
reasoning; and reasoning about multi-agent planning and communication. Our research group
has also carried out research in automated planning in domains with continuous change; and a
number of techniques for for improved retrieval of web documents.

Another substantial educational project is that I developed a new course, “Mathematical Tech-
niques for Computer Science Applications”, an introductory course in linear algebra, probability,
and statistics for computer science masters students, and I am currently writing a textbook [25].
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Physical Reasoning

Our studies of physical reasoning have led to the following results, described in section 5:

1. The analysis of commonsense reasoning about loading objects into boxes and carrying objects
in boxes.

2. The analysis of commonsense reasoning about carrying liquids in containers and pouring liquids
between containers.

3. The analysis of two simple chemical experiments: burning a fuel in a closed container, and the
passivization of a metal.

4. Detailed comparison of a number of different ontologies for matter in terms of their suitability
for inference about simple physical and chemical processes.

Spatial Reasoning

5. An analysis of the expressivity of the first-order language allowing quantification over regions,
and containing the one predicate, “Closer(x,y,z)” (region x is closer to y than to z). We have
shown that any relation that is analytical and invariant under orthogonal transformations can be
expressed in this language. Roughly speaking, the language is capable of expressing essentially
all the concepts in standard mathematical geometry and analysis. [19].

6. An analysis of a number of techniques for reconstructing spatial regions from sample points,
and a proof that, under specified conditions, the reconstructed region is “close” to the true region,
under a number of different definitions of “closeness.” [24]

7. An analysis of the use of transition graphs in reasoning about continuous spatial change. We
give general definitions of different categories of transition graph for a partition of a topological
space. We prove that the class of paths through the graphs is elementary equivalent to the class
of continuous paths through the space, relative to a specified first-order language. We show how
this theory can be applied in real-world domains such as rigid objects, strings, and liquids [23].

Multi-agent plans and communication

8. A new, highly expressive, language of informative communications, that allows an agent to
communicate almost any property of the current situation, defined in terms of logical combinations
of conditions that hold currently, held in the past, or will hold in the future, including facts about
agents’ knowledge and facts about other communicative acts [17, 18]. We have proved that this
theory is consistent with a large class of physical theories, and that it avoids both the liar paradox
and the “unexpected hanging” problem.

9. Leora Morgenstern and I have developed a new, highly expressive, theory of multi-agent
planning. This extends the very general notion of a plan and of plan correctness developed in
[12] and the theory of informative communications described in (5) above to include a similarly
expressive theory of requests. We have shown that this theory is supports validation of a simple
sample multi-agent plan, and that it is consistent [31].

Planning with Continuous Time

10. Ji-Ae Shin [66] implemented a planner that solves problems in domains that involve con-
tinuously changing numerical fluents. Her technique is to compile these problems into Boolean
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combinations of linear constraints and propositional atoms; to use LPSAT [70] an existing con-
straint engine, to find a solution to the constraints; and then to interpret the solution as a plan.
We have proved that the planner is sound and complete.

Web Search Engines

11. Ziyang Wang developed and tested a system that monitors a local web site for new information
and presents it to the user [68].

Development of human resources

One student has completed a doctorate under my advisement within the last five years: Ziyang
Wang, “Incremental Web Search: Tracking Changes in the Web.” May 2006.

I am currently advising another student, Paul Bethe, who is writing a master’s thesis on
aspects of computer bridge.

Publications:

E. Davis. “Knowledge and Communication: A First-Order Theory.” Artificial Intelligence, vol.
166 nos. 1-2, 2005, pp. 81-140.

E. Davis. “Mathematics as Metaphor: Review of Where Mathematics Comes From, by George
Lakoff and Raphael Nuñez.” Journal of Experimental and Theoretical Artificial Intelligence, vol.
17, no. 3, 2005, pp. 305-315.

E. Davis. “The Expressivity of Quantifying over Regions.” Journal of Logic and Computation,
vol. 16, 2006, pp. 891-916.

E. Davis. “Physical Reasoning.” In The Handbook of Knowledge Representation, F. van Harmelen,
V. Lifschitz, and B. Porter (eds.), Elsevier, Oxford, 2008, to appear.

E. Davis. “Pouring Liquids: A Study in Commonsense Physical Reasoning.” Artificial Intelli-
gence, vol. 172, 2008, pp. 1540-1578.

E. Davis. “How Does a Box Work? A Study in the Qualitative Dynamics of Solid Objects.”
Artificial Intelligence. To appear.

E. Davis. “Preserving Geometric Properties in Reconstructing Regions from Internal and Nearby
Points.” Submitted to Discrete Computational Geometry.

E. Davis. “Ontologies and Representations of Matter.” In preparation

E. Davis “The Logic of Fire: Representing the Kinematics of Chemical Reactions.” In preparation.

E. Davis and L. Morgenstern. “A First-Order Theory of Communication and Multi-Agent Plans.”
Vol. 15, No. 5, 2005, pp. 701-749.

J. Shin and E. Davis. “Processes and Continuous Change in a SAT-Based Planner.” Artificial
Intelligence, vol. 166 nos. 1-2, 2005, pp. 194-253.

Z. Wang, “Incremental Web Search: Tracking Changes in the Web.” NYU Ph.D. thesis, May
2006.
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