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1 Introduction

A fundamental part of human experience is the interaction with physical materials of many different kinds:
rigid solids, non-rigid solids of many different kinds (e.g. cloth, string, rubber bands, springs, gels, and so
on) liquids and gasses. The rich pre-scientific understanding of these materials acquired by every child at
an early age is critically important, both because it enables a person to deal effectively, in daily life and
in more specialized activities, with a world full of these materials, and because this fundamental physical
understanding serves as a grounding for more sophisticated knowledge of many kinds.

The implementation of this body of knowledge in an intelligent knowledge base and the analysis of the
knowledge that would be entailed in this implementation would have immense value for many different
purposes:

Robotics: An autonomous robot which needs to deal flexibly and sensibly with an uncontrolled envi-
ronment containing these materials needs to understand them. This would include robots that work in a
household; robots that work in complex and unpredictable industrial setting; robots that work in unusual
and distant environments (undersea, Mars, etc.); and robots that work on medical applications (in order
to understand the materials of the body and of the medical tools.)

Automated instruction: Interactive instructional computer programs could be made much more
powerful and effective if they could draw on this body of commonsense physical knowledge. These could
potentially be instructional programs for consumers (e.g. for using a sewing machine or for applying
emergency first aid); for students, especially in physical science courses; or for workers.

Product and process design: The knowledge base could be used to design or validate tools con-
structed out of these materials, tools that operate on these materials, and techniques for using such tools.

Science knowledge base: An ambitious long-term project, called Project Halo, is underway to encode
scientific knowledge in a knowledge base, the Digital Aristotle (Friedland et al. 2004a, 2004b). The first
stage of this project encoded the knowledge in about a chapter’s worth of an introductory college chemistry
textbook (Brown, LeMay, and Bursten 2000) and achieved a fair degree of success; the three competing
systems developed achieved about the mean human score on questions in the area from the high school
AP chemistry test. However, the subject matter in this first stage was carefully chosen to avoid the issues
of spatial reasoning and of commonsense reasoning (Friedland et al. 2004a). But these issues obviously
cannot be evaded forever if the project is to attain any reasonable coverage.

Grounding for science and mathematics: Experiences of simple physical interactions are a major
epistemological grounding for the understanding of basic physical science and mathematics, directly (con-
cepts of physical science correspond to elements of experience); as explananda (scientific theories explain
commonsense experience); metaphorically (e.g. imagining atoms as hard round balls); and as contrasts
(e.g. understanding the differences between atoms and hard round balls.) A first attempt at studying the
grounding of mathematics in physical experience is in (Lakoff and Nuñez, 2001); however, their account is
flawed and inadequate (see my review in (Davis, 2005b)).

Testbed for knowledge representation research: The domain of elementary physical reasoning
is a testbed for research in knowledge representation and automated reasoning that is appealing, easily
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understood, and remarkably rich. It involves many of the central issues of knowledge representation,
including:

• Taking knowledge that is “intuitive” and hard to verbalize, and representing it explicitly.

• Integrating commonsense and expert knowledge; spatial and symbolic knowledge; deterministic and
probabilistic knowledge.

• Reasoning at multiple level of abstraction.

Thus, a fully-developed theory of commonsense physical reasoning and its relation to spatial reasoning
would be a central conceptual infrastructure in the achievement of robust intelligence in programs for many
different kinds of applications and in the development of a cognitive theory of the understanding of science
and mathematics; and a important source of insight and experience in the development of automated
reasoners for other domains.

2 Proposed Project

Our proposed project (named SOPHY) is to develop a knowledge base encoding basic knowledge about
the physics of solids, liquids, and gasses. Our specific target is to express most of the macroscopic-level
knowledge and reasoning (as opposed to the knowledge and reasoning at the molecular/atomic level) in
chapter 10 of the freshman chemistry textbook Chemistry: The Central Science (Brown, LeMay, and
Bursten 2000).1

The examples in this chapter illustrate seven different devices and experimental set ups: mercury
barometers, closed end manometers, open end manometers, Boyle’s U-tube experiment, gas collection over
water, gas in a piston, and containers of gas joined with a stopcock. To these, we plan to add some further
simple devices: boxes, shelves, doors, locks, jars, pipes, valves, and simple pumps.

The adequacy of our representation and our inference techniques will be demonstrated by the ability to
carry out different types of reasoning, using more and less complete physical specifications and at higher
and lower levels of abstraction, over these examples and variants of these examples.

3 Variants

As we have argued in (Davis 1998), the degree to which a reasoner understands a physical system is well
tested by its ability to understand variants of the system: greater or lesser modifications of the system which
may make no change in its behavior, a small change, or completely alter its behavior. (Similarly McCarthy
(1997) has proposed the idea of elaboration tolerance as a measure of the adequacy of a representational
system.) For example, in example 6 of a gas in a piston, one might ask how the behavior of the system
would change if:

1. The piston had a small dent or bump in its top or bottom surface.

2. The piston had a small hole drilled through it from top to bottom.

3. The piston had a small hole drilled through it with both outlets on the bottom.

4. The cylinder were conical (a) narrowing inward; or (b) widening inward.

1This particular textbook was chosen because it was the one used in the Halo project.
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5. The cylinder were open at the end opposite the piston.

6. The cylinder had a hole in the side.

7. The gas were replaced by a liquid.

8. The gas were replaced by a solid.

9. The cylinder contained some solids, of specified shapes and initial configuration, in addition to gas.

10. The system was placed horizontally rather than vertically.

11. The cylinder had a piston at each end.

Similarly, at the outset of the project, we will define several hundred variants of our sample scenarios
(Davis 2005c). If our system can reason about all of them, it will have attained a substantial measure of
flexibility.

4 Types of reasoning

We plan to support four fundamental types of reasoning over these physical systems:

1. Plan projection. Given the starting state of a physical system and containing an agent (or agents)
and a plan of action for that agent, determine whether the plan is executable and what its effect will
be. An important special case is autonomous projection, in which an inanimate physical system
evolves on its own, with no agent.

2. Comparative projection. How a change in the conditions of a problem affects the outcome. For
example: the denser the liquid in a barometer, the lower the column of liquid will be. The smaller
the hole in a container, the more slowly liquid will leak through.

3. Planning. Given the starting state of a physical system containing an agent, and a task to be carried
out, find a plan of action that will accomplish the task.

4. Safety (unattainability). The purpose of many physical system is to ensure that specific states
cannot be attained. An object in a closed box cannot come into contact with objects outside the box.
An agent outside a locked door cannot go through the door. This is an issue that is rarely addressed
in AI planning systems; most “complete” planners, when given a planning problem with no solution,
generally go into an infinite loop, looking for longer and longer plans. (They are “complete” in the
sense that if a plan exists, they will eventually find one.) It is, however, an important objective in
the verification of software systems and computer security, so there may be techniques developed for
those applications that can be used here.

We do not at all intend to come up with complete algorithms for any of these reasoning tasks; rather,
we plan to develop methods that work over some class of interesting simple cases.

5 Material properties

We will use a simplified physical theory, just rich enough to support reasoning about the examples listed in
section 2 — it will be complex and challenging enough! (The sketch below should be taken as approximate;
it may prove to change the details.)
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Material exists in three states: Solid, liquid, and gas. Solid objects are modelled as strictly rigid in
shape. Different objects and different parts of a single object may be made of different materials; different
materials differ in their density (perhaps also in other properties). The coefficient of friction between any
two solid objects is taken to be 1/3 in all cases.

Liquids are taken to be incompressible (or perhaps infinitesimally compressible). We ignore such issues
as viscosity, surface tension, adhesion, cohesion and mixtures. Different types of liquids are assumed to
differ in their density; we assume that in an equilibrium state these will strictly separate out.

Gasses are taken to be ideal gasses. In an equilibrium state, a gas fills a topologically bounded region
whose boundaries are all surfaces of solid objects, liquids, and the outer limits of the atmosphere. Different
gasses may have different densities; however, it is assumed that, in an equilibrium state, any two gasses
within a closed region mix uniformly. The pressure within a gas is a continuous function of space; in an
equilibrium state, pressure is constant within a closed region.

Temperature changes continuously in space throughout a material; it may change discontinuously where
two objects come into contact. Each material has a fixed thermal conductivity and thermal capacity; thus,
temperature takes some finite time to propagate. Solid objects do not expand under heating (since they
are rigid); liquids have a fixed coefficient of thermal expansion; gasses obey the ideal gas law. We shall not
be much concerned with any kind of accurate modelling of thermal disequilibrium. We assume that there
are objects (e.g. hot plates) whose temperature can be changed as a result of a mechanical motion; this is
the hook an agent can use to change the thermal state of a system.

All experiments are assumed to be carried out in a small-scale terrestrial setting with a constant
gravitational field, with the earth below and the atmosphere above.

Nature, in our theory, does not abhor a vacuum; e.g. the top of a barometer, above the level of the
mercury, is assumed to be a true vacuum.

We omit many phenomena that are well-known and understood even within a commonsense under-
standing such as phase change; mixtures and solutions; and non-rigidity of solid objects. The above will
be more than enough to deal with.

6 Partial Geometric Specification

The most important difference between the SOPHY project and all but a handful of the vast numbers of
existing programs that do physical projection is that we focus on cases where the problem characteristics,
especially the geometry, are specified only partially or abstractly. That is, almost all physical reasoning
programs that deal with geometry at all assume that precise geometric and material characteristics are
given in the problem specification. Given such precise boundary conditions, the programs can then make
precise predictions. In many important applications, however, geometrical specifications are not given,
either because

• Perception gives only partial information (e.g. significant parts of the objects involved are occluded.)

• The geometrical information has been inferred (e.g. from perceived physical behavior.)

• The geometrical information derives from natural language text, which rarely gives complete geo-
metrical specifications; or from diagrams, which are often (deliberately) topologically correct but not
otherwise geometrically precise.

• One wishes to make an inference about all objects in a class, not just about individual objects.
E.g. one wants to infer that standard air pressure cannot support more than 39 inches of mercury,
regardless of the shape of the column.
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• One wishes to reason about the behavior of a physical system while one still in the middle of designing
that system, and before one has fully specified the geometry of the objects.

Our aim is to develop reasoning engines that can use geometrical specifications across a wide range of
detail and precision:

1. Exact. E.g. “The piston is a right circular cylinder 3 cm in radius and 2 cm thick. The interior of
the cylinder is a right circular cylinder, 3 cm in radius and 6 cm long.”

2. Within tolerance. E.g. “The piston is as in (1) but may have dents or bumps on the top or bottom
surface up to 0.2 cm in depth.”

3. Constrained in dimension or shape. E.g. “The interior of the physical cylinder is a geometric
generalized cylinder. The horizontal cross section CH is constant and roughly circular; specifically,
it is convex, it contains a circle of radius 2.9 cm and is contained in a circle of radius 3.1 cm. The
vertical axis is between 2 cm and 3 cm long. The piston is a generalized cylinder that fits tightly
around the piston; the axis of the piston is between 6 cm and 8 cm.”

4. Purely qualitative. E.g. “The piston fits tightly inside the cylinder. The piston can move uniformly,
with one degree of freedom, relative to the cylinder, within a fixed range. In each attainable position
the union of the cylinder and piston is a shell containing a closed cavity. The volume of the cavity
changes monotonically with the position of the piston.”

Moreover, different parts of an object can be described at different levels of detail or abstraction. The same
levels of description apply to representing the relative positions of different objects.

Since calculating with exact geometrical descriptions is very well understood, and reasoning with purely
topological description has been fairly extensively studied (Randell, Cui, and Cohn, 1992; Kim, 1993) and
generally supports only rather weak physical conclusions, our focus will be to work with the middle levels
of representation: spatial representations that are not precise, but give some metric and shape information
beyond the purely topological. Again, we are not looking for complete algorithms (reasoning with partial
geometric specifications is almost always badly intractable or undecidable in the worst case) but rather
looking for partial methods that give useful results in simple examples.

The representation of an action can generally be at the same level of abstraction as the given shape
description or at a higher level but, generally, not at a lower level. For example, it makes sense to specify
that the hand goes into a box whose shape is given precisely, but it is not useful to specify an exact
trajectory for a hand among objects that are specified only in terms of their topological relations.

7 Abstracting transitory states

The behavior of physical systems often goes through highly complex transition states before setting into
a state of equilibrium. For instance, when liquid is poured into a container, its shape and motion while
being poured is extremely complicated and unstable with respect to small perturbations, whereas its final
state – sitting at rest at the bottom of the container under a horizontal top surface – is extremely simple.
There are three standard methods of projection for this problem: first, to ignore these transitional states
altogether, and posit atomic transitions from one equilibrium state to the next; second, to view the pouring
as a process that continuously reduces the volume in one container and increases it in the other, with no
account of how this is mediated; and third, to use partial differential equations or simulation to trace the
way in full detail through all the intermediate stages. The first two, though often useful abstractions,
are too abstract for many kinds of commonsense reasoning (e.g. predicting what happens if an object is
placed into the stream of liquid); the third is unusable in the context of commonsense reasoning, since it
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requires precise information of geometry, timing, and material characteristics, and it gives output that is too
detailed, unreliable, and unstable. What we need is a representation and a mode of reasoning somewhere
between the second and the third; that constrain the behavior during transitions, so that one can be sure
that nothing too strange is happening, while not requiring that this behavior be worked out in full detail

8 Manipulation and Action

Our base level model of action is that one or more solid objects are directly controlled by the agent, and
that the agent can either move them along a desired trajectory, or use them to exert a force against an
object that is in contact. The objects being controlled may either be the robot’s own manipulators or,
more abstractly, the tools he is working with; for example, a robot can either think of moving its hand so
as to pick up a beaker, or, more abstractly, it can think simply of moving the beaker, without envisioning
its hand.

9 Abstraction

There are many different kinds of abstraction that can be applied to these kinds of physical scenarios and
physical problems (Davis, 2000d). Several kinds of abstraction have been mentioned above. Some further
examples include:

• A jar with a tight lid can be abstracted as a single object with an internal cavity as long as nothing
occurs that will take off the lid. Or the jar and its contents can be further abstracted as a single solid
mass with no internal cavity if one is not concerned with the behavior of the contents within the jar
or with features like the moment of inertia.

• A simple hinged valve can represented in full detail, giving the shapes of the object parts involved in
constructing the hinge. Or the hinge can be abstracted as a constraint that the valve is connected to
the frame along a fixed axis. Or the entire valve can be further abstracted as an abstract condition
of either being closed or open.

• Dimension reduction: The behavior over time of a three dimensional systems can often be adequately
characterized in terms of a fixed three dimensional structure plus a collection of one-dimensional
time-varying parameters; or, in many cases, still more abstractly, as a fixed two- or one-dimensional
structure plus a collection of one-dimensional time-varying parameters.

These abstractions can be applied independently. An effective reasoner needs to be able to choose the
appropriate abstractions, to reason at any level of abstraction, to understand high-level reasoning in terms
of the low-level theory and vice versa, and to combine high-level and low-level reasoning together.

10 Difficult issues avoided

By focussing on scenarios from simple physics experiments, the SOPHY project will be able to avoid several
of the most difficult issues in commonsense physical reasoning including reasoning with uncertainty and
reasoning about ensembles of solid objects, such as chains or heaps. Controlled experiments in physics
tend to be set up, when possible, to avoid situations with uncertain outcomes. Ensembles don’t happen to
arise in the experimental set ups we are considering.
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11 Research plan

Our plan of research is two-pronged; working on algorithms and implementation for the simpler and better
understood parts of the problem, and working on theory, particularly representation and inference, for the
more abstract and less well-understood parts of the problem. The key parts of our theory and system are
as follows:

Theoretical:

1. A representation language capable of expressing the knowledge and the problems in this domain.
Since, in this project, we are avoiding probabilistic reasoning and reasoning about ensembles, and
intensional operators don’t arise much in physical domains, first-order logic without set theory should
suffice. Ontologically, we will take time to be real-valued and space to be Euclidean space. A major
aspect of the design of this language (indeed, of the entire SOPHY project) is to design the spatial
sub-language so that it is expressive enough to support the problems we need but restrictive enough
to permit efficient inference for simple problems.

2. A set of rules, expressed in the representation language (1), sufficient to capture the knowledge we
want to express and to justify the inferences we want to carry out.

3. A meta-level theory of abstraction that characterizes the use and relation of multiple levels of ab-
straction. There is an extensive AI literature on abstraction (Ellman and Giunchiglia, 2005), both
domain-independent (e.g. Nayak and Levy, 1995; Giunchiglia et al., 1997) and specific to physical
reasoning (e.g. Choueiry, Iwasaki, and McIlraith, 2005; Davis, 1995a) that we can draw upon; but
the new domain will undoubtedly raise new issues and demand new techniques, at both levels.

4. Algorithms for the tasks of projection, comparative projection, planning, and safety evaluation.

Implementational:

5. A knowledge base implementing the rules in (2). We will probably use an existing open-source
knowledge base architecture, such as Otter (Kalman, 2001), supplemented with special purpose
modules.

6. Meta-structures over the knowledge base (5) that express the meta-theory of abstraction (3).

7. Implementation of the algorithms (4).

8. Explanation generation. Since the algorithms are operating over a knowledge base, it should be
possible to generate a crude explanation in the form of a proof structure.

9. User interface.

It is difficult to project how fast the various parts of this will progress, but an approximate (probably
overly optimistic and overly systematic) time line for the next seven years might be as follows:

6/05-5/06: Develop domain axiomatization.
Develop knowledge-base projection algorithm for base level of abstraction.

6/06-5/08: Encode the knowledge base, and implement projection.
Develop theory of abstraction.

6/08-5/10: Implement levels and techniques of abstraction.
Develop algorithms for planning, safety.

6/10-5/12: Implement planning, safety.
Extension, evaluation, and tuning of implementation.
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12 Evaluation

The SOPHY project will be evaluated in two ways. First, to what extent can it solve problems associated
with the physical systems discussed in section 2, and the variants enumerated in (Davis, 2005c)? Second,
to what extent does it represent the knowledge in the relevant parts of the texbook (Brown, LeMay, and
Bursten, 2000)? Both of these can be given roughly numerical measures, by enumerating a set of problems
to be solved and of individuated facts to be expressed. Obviously, though, these numerical measures cannot
be taken very seriously, or treated as experimentally reproducible results, given the inherent vagueness of
what it means to “solve a problem” and to “express knowledge” and of the individuation of “pieces of
knowledge” in the textbook; the arbitrary nature of the collection of variants; the fact that no wall has
been set up between the training set and the test set on either of these measures; and the fact that the
evaluator will be the same as the system designer (myself). An additional limitation of the second measure
is that merely representing a domain fact in a knowledge base does not by any means guarantee that
that fact can be used effectively in inference. On the other hand, since there is (as far as I know) no one
else working on any task remotely comparable, there is no great need for a precise numerical method to
compare the quality of the result.

Why not, one might ask, use the kind of evaluation measure used for the Halo (Friedland et al. 2004a)
project? The Halo project has developed a very systematic method of evaluation — one of the most
systematic and careful that has ever been applied to work in knowledge-based reasoning — which has
received deservedly much favorable attention. The measure is the success rate on answering questions from
the relevant section of the advanced placement high school chemistry exam, both in finding the correct
answer, and in explaining the answer. The three competing KR teams were presented with a training set of
problems, and then their systems were tested on a separate, previously unseen, test set drawn from the same
corpus. The grading of the answers was done by an independent set of domain experts. The translation
of the English language AP questions into the input formalism was done by the system designers, but
overseen by the administrators of Halo.

However, this kind of measure is not really suitable to the subject matter and objectives of the SOPHY
project; and gearing the project to address this kind of measure will divert it from the central problems that
need to be solved. The AP exam was designed, after all, to test human high school students’ knowledge of
chemistry. Leaving aside the difficult and much debated question of how effectively the AP test does that,
or of how effectively any test of this kind can do that, obviously this is a quite different undertaking than
evaluating a computer system’s knowledge of chemistry. The starting points are different. For the human
test-takers, one can assume linguistic competence, the ability to read a diagram, and in general, the ability
to apply commonsense reasoning to problems and to connect the course teachings to a commonsense un-
derstanding of the world. For a computer system, one cannot assume any of this; one can assume, however,
that unlike humans, they do not make errors in calculations or in following fully specified procedures and
that they can easily master arbitrary quantities of rote memorization. Since the AP test is designed to test
humans, it focuses on those aspects of understanding chemistry that are particularly difficult for humans
and not the aspects that are particularly difficult for computers. Therefore, using the AP test as measure
for computer systems tends to exaggerate how well they understand chemistry.

Even in the Halo project, whose subject matter, as mentioned above, was specifically chosen to avoid
the issues of qualitative reasoning, spatial reasoning, and commonsense reasoning, there is a substantial
difference between what is needed to solve the AP problems and what would be needed to support a general
purpose reasoner over the same domain. It is notable, for instance that the Ontoprise knowledge base (I
have not looked carefully at the others) managed to avoid using any kind of temporal representation or
temporal reasoning; they represent a chemical reaction, such as O2 +2H2→2H2O, just as an uninterpreted
binary relation between the left and right side, with no notion that the right side is later in time than
the left side. Thus, it would not be possible, using this representation, for a reasoner to reason that after
the reaction, the products of a reaction are available and can be used for something else, but the reagents
are gone, and can no longer be used. Apparently, the AP exam never tests this; it seems safe to say
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that even quite poor human chemistry students understand that much about reactions. Clearly, though,
it is a central aspect of temporal reactions and when one wishes to reason about chemical reactions in a
setting larger than answering AP questions, it will not be possible to avoid it. The limitations of using AP
questions in the SOPHY domain are much more severe, as the SOPHY domain was specifically chosen to
involve the issues of qualitative, spatial, and commonsense reasoning.

As for the protocol with training set, test set, and external evaluators, we have nothing like the resources
to do such a thing, and there would be little point anyway. The Halo project was large and very well funded
with three competing knowledge representation teams. Careful evaluation was of critical importance so
that the comparative strengths and weaknesses of the different teams could be compared. SOPHY will be
just me and maybe a graduate student; we cannot hire the external experts, and there is no comparison
to be carried out in any case.

13 Related Work

The previous research relevant to this proposal falls mostly into two categories, which have not previ-
ously interacted much: work on rule-based approaches to commonsense physical reasoning; and work on
algorithmic approaches to physical reasoning.

13.1 Rule-based physical reasoning

This is a comparatively small body of research. It was initiated by Pat Hayes’ “Naive Physics Manifesto”
(1979), which proposed a large-scale project of encoding naive physics in an axiomatic system, deferring the
problems of effective implementation. Hayes provided an extensive instance of his project in the “Ontology
for Liquids” (1985), which constructed an ontology and an axiomatic system for reasoning about liquids.

After this exciting start, the field languished. Schmolze (1986) presented a rather shallow set of axioms
for a number of commonsense physical domains.

In (Davis 1988) I developed a large axiomatic system for the solution of a single problem in solid object
dynamics; showing that a small marble dropped inside a large funnel will come out the bottom. This work
was justly criticized as requiring a large number of axioms to produce a single conclusion, with little to
suggest that the axioms can be applied or that the technique can be generalized beyond the particular
example or that the long proof could be constructed automatically.

I continued work on axiomatizing a variety of physical domains. (Davis 1990, chap 7) gave a complete
axiomatization of the reasoning in the ENVISION program (de Kleer and Brown 1985) and partial axiom-
atizations of QP theory (Forbus 1985), of solid object kinematics, and dynamics and of liquids. (Davis
1992a) fixed and completed the axiomatization of QP theory. (Davis 1992b) discusses infinitary problems
that arise in axiomatizing a variety of domains, chiefly physical ones. (Davis 1993) presented two ontologies,
with axiomatizations, for reasoning about cutting solid objects. (Davis 1994) gives a theory of continuous
branching time, which integrates a standard branching time ontology of action choice with the continuous
model of time needed for physical reasoning. (Davis 1998) reviews work in this field, with a discussion of
the pros and cons of various approaches and an analysis of the major difficulties that are encountered. It
also contains, incidentally, a partial axiomatization of the behavior of string.

Sandewall (1989) developed a logical description of a microworld of point objects moving along surfaces.
The chief focus of this work was integrating non-monotonic logic with temporal logic.

Three researchers — Lifschitz (1997), Morgenstern (1997, 2001), and Shanahan (1997, 2004) — pub-
lished work on the problem, posed by me, (Miller and Morgenstern 1998) of axiomatizing reasoning about
an egg being cracked into a bowl. The papers are independent; each presents a separate axiomatization.
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The problem encompasses so many different types of physical interactions that an complete treatment
cannot feasibly be attained, so these papers are necessarily only preliminary studies. They do, however,
make many interesting observations about the domains and suggestions for directions of axiomatization.

The Halo project (Friedland et al. 2004) is discussed extensively above.

13.2 Reasoning about Fluids

The classic study of reasoning about liquids in the AI literature is Hayes (1985) “Ontology for Liquids”,
discussed above. This constructs a language for representing liquids and presents a taxonomy of simple
kinds of behavior. Projection is carried out using constraints that describe how histories of different kinds
can be fit together. However, the language, particularly the spatial language, is not clearly defined, and
the physical analysis does not come close to handling all cases.

The other major study2 is that of (Kim 1993). The system described here does qualitative prediction
(“envisionment”) for physical systems of liquids and gasses in solid containers; it can handle basic instances
of many of the systems described here in section 2. The spatial language combines topological predicates
with order relations on vertical height. The envisionment algorithm begins by dividing a given situation
into separate physically significant regions (a “place vocabulary”) and then using a form of qualitative
reasoning (see section 13.4) to carry out a qualitative prediction. Kim’s work is by far the closest to
SOPHY in the literature. We hope in SOPHY to go beyond it chiefly (a) by using a much richer spatial
vocabulary. (As far as I can tell, Kim’s system is unable to deduce that one can pour out of a beaker
by tilting it or even to express the notion of tilting a beaker); (b) by incorporating multiple levels of
abstraction; (c) by addressing tasks other than projection.

13.3 Solid Object Physics

There are many systems that carry out computations of one kind or another about the physical interactions
of solid objects. A complete survey would be far beyond the scope of this proposal; we can here only sketch
a few major threads.

Most of the work on solid objects physics has worked entirely within the kinematic theory, which consists
of the three laws that objects are rigid, that they move continuously, and that two objects do not overlap.
It turns out that these three constraints suffice for the analysis of many interesting systems, particularly
mechanical systems with few degrees of freedom. In almost kinematic calculations, the program starts
with exact geometric specifications of the objects involved. It next computes the configuration space; that
is, the space of positions in which the objects do not overlap. The particular problem to be solved, such
as prediction or motion planning, is then computed from the configuration space. This basic outline was
first put forward in (Faltings 1987) and (Joskowicz 1987). Subsequent work has improved the algorithms
and found a wide range of applications (e.g. Sacks and Joskowicz 1993; Joskowicz and Taylor 1996). Of
particular interest to the issue of evaluation is the survey carried out in (Joskowicz and Sacks 1991) which
determined that a large fraction of the mechanisms enumerated in a standard encyclopedia of mechanisms
can be explained purely in kinematic terms.

Simulators for the behavior of solid objects using a full dynamic theory have been developed in the
context of computer-aided engineering in projects such as (Wehage and Haug 1982) and in the context of
AI in (Gelsey 1995). These carry out a exact simulation of behavior given exact geometric specifications of
the objects involved. (Sacks and Joskowicz 1998) presents an algorithm that efficiently carries out dynamic
simulation for two-dimensional assemblies using configuration spaces to expedite the problem of collision

2I thank Ken Forbus for bringing this to my attention. This excellent work, which was apparently never published other

than as a doctoral thesis, deserves to be much more broadly known.
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detection. WHISPER (Funt 1980) simulated dynamic behavior of two-dimensional systems of solid objects
in a occupancy array representation.

The works in solid object physics most relevant to SOPHY are the studies of qualitative reasoning
about the behavior of physical systems. The first projects of this kinds were NEWTON (de Kleer 1977),
which gave a qualitative analysis of the behavior of a point object on a roller-coaster track, and FROB
(Forbus 1980), which analyzed the behavior of point objects in among two-dimensional obstacles.

Programs such as (Faltings 1987), (Nielsen, 1988), and (Sacks and Joskowicz 1993) took a configuration
space that had been computed exactly from exact shape descriptions, divided the configuration space into
significant regions, and thus were able to compute qualitative properties of the systems from the relations
between these regions. (Forbus, Nielsen, and Faltings 1991) extended this approach with a qualitative
representation of forces and motions, and thus producing a system for qualitative dynamic prediction.

The work of Stahovich, Davis, and Shrobe (2000) is similar in spirit to (Forbus, Nielsen, and Faltings
1991), but much more elegant and systematic. This program does qualitative simulation for planar systems
of objects, each of which moves with one degree of freedom under the “quasi-static” assumption that the
inertia of objects is negligible as compared to the driving forces and frictive (dissipative) forces, and that
collisions are inelastic. The input to the program is a representation of the “qc-space”, which gives, for
each pair of interacting objects, a qualitative description of the configuration space of the feasible (non-
overlapping) positions and the contact positions of the two objects. (The paper vaguely states that the
qc-space can be computed from an informal sketch of the mechanism, but it is not at all clear how this is
to be done.) The possible qualitative behaviors of the mechanism is then predicted in terms of trajectories
through qc-space, using rules for balancing forces.

Other directions for the study of qualitative reasoning include (1) studies of kinematic reasoning in
cases where the shapes of the objects involved are known only to within a given tolerance (Joskowicz,
Sacks, and Srinivasan 1997; Davis 1995b); (2) studies of abstraction techniques that can be applied to solid
object kinematics (Nielsen 1988; Davis 1995a).

13.4 Qualitative Reasoning

Qualitative Process (QP) theory (Forbus 1985) defined a language for characterizing the behavior of phys-
ical systems in terms of the interaction of processes and gave an algorithm for qualitative prediction
(“envisionment”) based on the sign of the derivatives of key quantities. The QSIM (Kuipers, 1985, 1994)
and ENVISION (de Kleer and Brown 1985) systems defined similar calculi, but with a less specific physical
framework. A great deal of work was done in the late 80’s and early 90’s extending and applying these
theories; for example, Weld (1988a, 1988b) developed two methods for comparative projection in a QSIM
setting. However, the inherent restriction to systems whose state is characterized by one-dimensional
parameters and whose dynamics is characterized by the sign of derivatives soon proved to be a serious
limitation.

13.5 Other related work

Extensive work on qualitative geometric languages — particularly topological relations, but also other
kinds of geometric relations — has been been within the qualitative spatial reasoning research community
(see the survey in Cohn and Hazarika 2001). However, these languages are mostly either too weak to
support much significant physical inference; too restrictive to be applied to the range of problems we wish
to consider; or too unrestricted to give any guidance for practical spatial representations (e.g. the first-order
language over regions with topological relations and a measure of distance). In (Davis, 1997) I proposed a
constraint language with a rich collection of spatial primitives; I still think this general direction is correct,
but it needs a lot of special purpose inference rules to make it run. Also of interest is the large collection
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of spatial primitives in OpenCyc (OpenCyc); I have not been able to get any information about the power
of the associated inference engine.

14 Strengths of the Proposal

I have been working in the areas of commonsense physical reasoning and qualitative spatial reasoning for
twenty years, and have published extensively in these areas. I have written a textbook on commonsense
reasoning (Davis 1990) with an extensive discussion of spatial and physical reasoning. I have also supervised
one doctoral thesis (Joskowicz 1988) in the area of physical reasoning.

The project will be much enriched by ties and communication with other ongoing projects at NYU and
elsewhere. The large research endeavors at Courant in modelling and simulation and in computational
geometry, which involve both the computer science and the mathematics departments, are sources of much
inspiration and information as to more mainstream approaches to physical and spatial reasoning. I can also
draw on the expertise of the NYU research group in program verification — Clark Barrett, Ben Goldberg,
and Amir Pnueli — in dealing with automated logical inference of all kinds.

15 Broader Impact

As discussed in the introduction, the chief impact of this work is in the long term. The project is a first step
toward a general knowledge base that could support automonous robotics; automated science instruction;
tools for planning, design, and verification of laboratory experiments and tools; and a knowledge base of
scientific knowledge.

The project will also have impact in the short term:

• The training of doctoral students. At the moment, one doctoral student is working with me, on an
unrelated topic (web search); but over my career I have graduated roughly one doctoral student every
two and one half years, and I am hopeful of finding a student or two to work on SOPHY.

• The production of a public electronic resource. The knowledge base and the reasoning engines will
be published on the web when they attain reasonably stable states.

• Dissemination of knowledge beyond the immediate research community. I am working on a book,
addressed to a semi-popular audience, on the subject of how commonsense physical and spatial
knowledge interacts with formal mathematical calculations. This will draw on many of issues that I
have studied in my research.

16 Results from Recent NSF-supported Research

Grants

“Physical and Spatial Reasoning across Multiple Scales,” NSF IRI-9625859, $236,000, 8/96-8/99.

“Qualitative Reasoning about Loosely Constrained System of Solid Objects” NSF IIS-0097537, $289,000,
6/01-5/04.

During the last five years of NSF support, we have carried out in-depth studies in three general areas of
commonsense reasoning: physical reasoning; qualitative spatial reasoning; and reasoning about multi-agent
planning and communication. Our research group has also carried out research in automated planning in
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domains with continuous change; automated planning for the placement of resources in a network; and a
number of techniques for for improved retrieval of web documents.

Physical Reasoning

Our studies of physical reasoning have led to the following results:

1. A detailed methodological study (Davis 1998) of the strengths and weaknesses of the microworlds
approach to the conceptualization of commonsense physical domains, and its relation to the “cluster”
approach proposed by Hayes (1979).

2. A taxonomy and analysis of the types of abstraction used in commonsense reasoning about solid
objects (Davis 2005d).

Spatial Reasoning

3. A study, carried out with N.M. Gotts and A.G. Cohn, of the constraint language over the geometric
primitives RCC8 + Conv. RCC8 contains the binary topological predicates, “A = B”, “A is a non-
tangential partial part of B”, “A is a tangential partial part of B,” “A overlaps B,” “A is in external
contact with B,” and “A is disconnected from B” and their inverses. “Conv(A)” is the predicate “A is
convex.” We derived tight bounds on expressivity — two regions are distinguishable in the language
if and only if they are not related by an affine transformation — and tight bounds on computability
— the decision problem is exactly as hard as the decision problem for a set of algebraic constraints
of comparable size over the reals. (Davis, Gotts, and Cohn 1999)

4. An algorithmic analysis of sets of constraints of the form “The distance from A to B is much less than
the distance from C to D.” We show that such constraint sets, and a number of natural extensions,
are solvable in polynomial time. We also show that the first-order language over such constraints is
decidable. (Davis 1999a)

5. An analysis of the qualitative properties of continuous shape transformations, where “continuous” is
interpreted relative to four different metrics over regions. (Davis 2001a)

6. An analysis of the expressivity of the first-order language allowing quantification over regions, and
containing the two predicates, “C(x,y)” (regions x and y are connected) and “sphere(x)” (region x
is a sphere). We have proven that this theory is extraordinarily expressive and contains, roughly
speaking, most of the properties of regions that have been defined in the literature of geometry.
(Davis 2005e).

Multi-agent plans and communication

7. A new, highly expressive, language of informative communications, that allows an agent to express
almost any property of the current situation, defined in terms of logical combinations of conditions
that hold currently, held in the past, or will hold in the future, including facts about agents’ knowledge
and facts about other communicative acts. (Davis, 2004; 2005a). We have proven that this theory
is consistent with a large class of physical theories, and that it avoids the “unexpected hanging”
problem.

8. Leora Morgenstern (IBM Watson Labs) and I have developed a new, highly expressive, theory of
multi-agent planning. This subsumes the very general notion of a plan and of plan correctness
developed in (Davis, 1994) and the theory of informative communications described in (7) above and
extends these to include a similarly expressive theory of requests. We have shown that this theory
is strong enough to support validation of a simple sample multi-agent plan, and that it is consistent
(Davis and Morgenstern, 2004).
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Planning with Continuous Time

9. Ji-Ae Shin (Shin, 2004; Shin and Davis, 2004 and 2005) implemented a planner that solves problems
in domains that involve continuously changing numerical fluents. Her technique is to compile these
problems into Boolean combinations of linear constraints and propositional atoms; to use LPSAT
(Wolfman and Weld, 1999), an existing constraint engine, to find a solution to the constraints; and
then to interpret the solution as a plan. We have proven that the planner is sound and complete.

Planning for Component Placement in a Network.

10. Tatiana Kichkaylo (2005) developed two planners for placing software components on a network to
achieve a specified goal, subject to constraints on CPU power and network bandwidth. The Sekitei
system (Kichkaylo, 2003; Kichkaylo, Ivan, and Karamchti, 2003) uses a combination of constrained
forward propagation and regression. It can efficiently find plans over networks with hundreds of nodes.
The GPPS system (Kichkaylo 2004) plans deployment of software components and file transfers for
grid architectures.

Web Search Engines

11. Ziyang Wang is a doctoral student in the area of web mining and the analysis of link structures.
He has proposed a modification to the PageRank algorithms that gives a higher value to an in-link
from a distant page as compared to an in-link from a closely related pair, and shown in a number of
test cases that this gives better results (Wang, 2003). His doctoral thesis deals with the problem of
monitoring a local web site for new information, and presenting this to the user.

Development of human resources

Four doctoral students have been associated with this research project within the last five years.

Tamir Klinger, “Adversarial Reasoning: A Logical Approach for Computer GO.” January 2001.

Ji-Ae Shin, “TM-LPSAT: Encoding Temporal Metric Planning in Continuous Time.” May
2004.

Tatiana Kichkaylo, “Creation of component-based applications by planning.” December 2004

Ziyang Wang, Web mining, expected to complete May 2006.

It should be noted that Shin and Kichkaylo are women, an underrepresented category in computer science.

Publications:

E. Davis. “The Naive Physics Perplex.” AI Magazine, Winter 1998, Vol. 19. No. 4. pp. 51-79.

E. Davis. “Order of Magnitude Comparisons of Distance.” Journal of AI Research, vol. 10, 1999, pp.
1-38.

E. Davis. “Guide to Axiomatizing Domains in First-Order Logic.” In Electronic Newsletter on Reasoning

about Actions and Change, Issue 99002. 1999.

E. Davis. “Metrics on Regions and Continuous Shape Deformation.” Fundamenta Informaticae, 2001, vol.
46, pp. 31-54.

E. Davis. “Knowledge Representation.” In The International Encyclopedia of the Social and Behavioral

Sciences Neil J. Smelser and Paul B. Baltes (eds.) Elsevier Science Pubs., Oxford, 2001.
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E. Davis. “Two Machine Learning Textbooks: An Instructor’s Perspective,” Artificial Intelligence, 2001,
vol. 131, pp. 191-198.

E. Davis. “A First-Order Theory of Communicating First-Order Formulas.” Principles of Knowledge

Representation and Reasoning, 2004.

E. Davis. “Knowledge and Communication: A First-Order Theory,” Artificial Intelligence, to appear.

E. Davis. “Mathematics as Metaphor: A review of Where Mathematics Comes From, by G. Lakoff and R.
Nuñez,” Journal of Experimental and Theoretical Artificial Intelligence, to appear.

E. Davis. “The Expressivity of Quantifying over Regions.” In preparation.

E. Davis. “Abstraction in Commonsense Physical Reasoning: A Taxonomy.” In preparation.

E. Davis, N.M. Gotts, and A.G. Cohn “Constraint Networks of Topological Relations and Convexity.”
CONSTRAINTS, 1999, Vol. 4 No. 3, pp. 241-280.

E. Davis and L. Morgenstern, “Progress in Formal Commonsense Reasoning,” Artificial Intelligence, 2004,
vol. 153, pp. 1-12.

E. Davis and L. Morgenstern. “A First-Order Theory of Communication and Multi-Agent Plans.” Journal

of Logic and Computation, to appear.

T. Kichkaylo. “Planning with Arbitrary Monotonic Resource Functions,” ICAPS-2003.

T. Kichkaylo. “Planning for Grid Applications with Explicit Reservations,” ICAPS-2004.

T. Kichkaylo. Construction of Component-Based Applications by Planning, Ph.D. Thesis, NYU Comp.
Sci. Dept., 2005.

T. Kichkaylo, A. Ivan, and V. Karamcheti. “Constrained Component Deployment in Wide-Area Networks
using AI Planning Techniques.” IDPDS-2003.

T. Klinger. “Adversarial Reasoning: A Logical Approach to Computer Go.” Ph.D. Thesis, NYU Comp.
Sci. Dept, 2000.

J. Shin. “TM-LPSAT: Encoding Temporal Metric Planning in Continuous Time.” Ph.D. Thesis, NYU
Comp. Sci. Dept., 2004.

J. Shin and E. Davis. “Continuous Time in a SAT-Based Planner.” AAAI-04.

J. Shin and E. Davis, “Processes and Continuous Change in a SAT-based Planner,” Artificial Intelligence,

to appear.

Z. Wang. “Improved Link-Based Algorithms for Ranking Web Pages.” NYU Tech. Report #TR2003-846,
2003.
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