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Abstract

This paper presents a theory of informative communications among agents that allows a

speaker to communicate to a hearer truths about the state of the world; the occurrence of events,

including other communicative acts; and the knowledge states of any agent — speaker, hearer,

or third parties — any of these in the past, present, or future — and any logical combination

of these, including formulas with quantifiers. We prove that this theory is consistent, and

compatible with a wide range of physical theories. We examine how the theory avoids two

potential paradoxes, and discuss how these paradoxes may pose a danger when this theory are

extended.
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1 Introduction

In constructing a formal theory of communications between agents, the issue of expressivity enters
at two different levels: the scope of what can be said about the communications, and the scope of
what can be said in the communications. Other things being equal, it is obviously desirable to make
both of these as extensive as possible. Ideally, a theory should allow a speaker to communicate to a
hearer truths about the state of the world; the occurrence of events, including other communicative
acts; the knowledge states of any agent — speaker, hearer, or third parties; any of these in the past,
present, or future; and any logical combination of these. This paper presents a theory that achieves
pretty much that.

A few examples of what can be expressed, together with their formal representation:

1. Alice tells Bob that all her children are asleep.

∃Q occurs(do(alice,inform(bob,Q)),s0,s1) ∧
∀S holds(S, Q) ⇔
[∀C holds(S,child(C,alice)) ⇒ holds(S,asleep(C))].

2. Alice tells Bob that she doesn’t know whether he locked the door.
∗The research reported in this paper was supported in part by NSF grant IIS-0097537. The work described here

comes out of and builds upon a project done in collaboration with Leora Morgenstern, stemming from a benchmark
problem that she proposed.
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∃Q occurs(do(alice,inform(bob,Q)),s0,s1) ∧
∀S holds(S, Q) ⇔

[∃SA k acc(alice,S, SA) ∧
∃S1A,S2A S1A < S2A < SA ∧

occurs(do(bob,lock door),S1A, S2A)] ∧
[∃SA k acc(alice,S, SA) ∧

¬∃S1A,S2A S1A < S2A < SA ∧
occurs(do(bob,lock door),S1A, S2A)].

3. Alice tells Bob that if he finds out who was in the kitchen at midnight, then he will know
who killed Colonel Mustard. (Note: The interpretation below assumes that exactly one person was
in the kitchen at midnight.)

∃Q occurs(do(alice,inform(bob,Q)),s0,s1) ∧
∀S holds(S, Q) ⇔

∀S2 [S2 > S ∧
∃PK ∀S2A k acc(bob,S2, S2A) ⇒

∃S3A S3A < S2A ∧ midnight(time(S3A)) ∧ holds(S3A,in(PK,kitchen))] ⇒
[∃PM ∀S2B k acc(bob,S2, S2B) ⇒

∃S3B,S4B S3B < S4B < S2B ∧ occurs(do(PM ,murder(mustard)),S3B, S4B)].

4. Alice tells Bob that no one had ever told her she had a sister.

∃Q occurs(do(alice,inform(bob,Q)),s0,s1) ∧
∀S holds(S, Q) ⇔

¬∃S2,S3,Q1,P1 S2 < S3 < S ∧
occurs(do(P1,inform(alice,Q1)),S2, S3) ∧
∀SX holds(SX, Q1) ⇒ ∃P2 holds(SX ,sister(P2,alice)).

5. Alice tells Bob that he has never told her anything she didn’t already know.

∃Q occurs(do(alice,inform(bob,Q)),s0,s1) ∧
∀S holds(S, Q) ⇔

∀S2,S3,Q1

[S2 < S3 ≤ S ∧
occurs(do(bob,inform(alice,Q1)),S2, S3)] ⇒
∀S2A k acc(alice,S2, S2A) ⇒ holds(S2A, Q1).

These representations works as follows: The expression “do(AS,inform(AH, Q))” denotes the
action of speaker AS informing AH that fluent Q holds in the current situation. The content Q here
is a generalized fluent , that is, a property of situations / possible worlds. Simple fluents are defined
by ground terms, such as “in(mustard,kitchen).” In more complex cases, the fluent Q is characterized
by a formula “∀S holds(S, Q) ⇔ α(S)” where α is some formula open in S. (Equivalently, Q could
be defined using the lambda expression Q=λ(S)α(S).)

The above examples illustrate many of the expressive features of our representation:

• Example 1 shows that the content of a communication may be a quantified formula.

• Example 2 shows that the content of a communication may refer to knowledge and ignorance
of past actions.

2



• Example 3 shows that the content of a communication may be a complex formula involving
both past and present events and states of knowledge.

• Examples 4 and 5 show that the content of a communication may refer to other communi-
cations. They also show that the language supports quantification over agents and over the
content of a communication, and thus allows the content to be partially characterized, rather
than fully specified.

If we wish to reason about such informative actions — e.g. to be sure that they can be executed
— then we must be sure, among other conditions, that the fluent denoting the content of the action
exists. This requires a comprehension axiom that asserts that such a fluent exists for any such
formula α. Comprehension axioms often run the risk of running into analogues of Russell’s paradox,
but this one turns out to be safe. We will discuss two paradoxes that look dangerous for this theory,
but the theory succeeds in side-stepping these. One of these is the well-known “unexpected hanging”
paradox. To make sure that there are no further paradoxes in hiding that might be more destructive,
we prove that our theory is consistent, and compatible with a wide range of physical theories.

We should note at the outset the limitations of our theory. The theory deals only with informa-
tive acts (and not, for example, with requests) and assumes that the following conditions are true
and universally known: If AS communicates Q to AH , then

1. AS knows that Q is true at the time that he initiates the communication.

2. From the time that he initiates the communication, AS knows that he is carrying out a
communication; he knows that the content is Q; and he knows that the recipient is AH .

3. Similarly, when the communication is complete, AH knows that he has received a communi-
cation; he knows that the content was Q; and he knows that the sender was AS.

4. When the communication is complete, AS knows that the communication is complete and AH

knows the time at which the communication was initiated.

The paradigmatic example of a form of communication satisfying conditions 2, 3, and 4 is direct
speech. Another example could be mail, assuming that

• All messages are time-stamped with the time of sending, and signed by the sender.

• There is a universally known maximal delay D between the time of sending and the time of
receiving a message. (”Receiving” here means the time when the hearer reads the message,
not the time that it arrives in his mailbox.)

In this case, if we define a communication to be “complete” at the time of sending plus D, then the
above conditions are met.

Many aspects of the theory can be applied to communications that do not meet condition (4),
but I have not been able to find a plausible axiomatization of this more general case that I can
prove to be consistent. Also, I cannot prove that the theory is consistent unless time is taken to be
discrete. These are discussed forther in section 8.

The paper proceeds as follows: Section 2 reviews the theories of time and of knowledge, which
are not new here. Section 3 presents our language and axioms of communication. Section 4 illustrates
the power of the theory by showing how it supports three example inferences. Section 5 describes
two apparent paradoxes — a paradox analogous to Russell’s paradox and the “unexpected hanging”
paradox — and explains why these do not cause inconsistencies in the theory. Section 6 gives the
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Figure 1: Axiom T.9

statement of Theorems 1 and 2, which assert that the theory is internally consistent and compatible
with a wide range of physical theories. Section 7 discusses related work. Section 8 discusses open
problems and summarizes our conclusions. Appendix A gives the proofs of theorems 1 and 2.

2 Framework

We use a situation-based, branching theory of time; an interval-based theory of multi-agent actions;
and a possible-worlds theory of knowledge. This is all well known, so the description below is brief.

2.1 Time and Action

We use a situation-based theory of time. Time can be either continuous1 or discrete, but it must be
branching, like the situation calculus. The branching structure is described by the partial ordering
“S1 < S2”, meaning that there is a timeline containing S1 and S2 and S1 precedes S2. It is
convenient to use the abbreviations “S1 ≤ S2” and “ordered(S1, S2).” The predicate “holds(S, Q)”
means that fluent Q holds in situation S.

Each agent has, in various situations, a choice about what action to perform next, and the time
structure includes a separate branch for each such choice. Thus, the statement that action E is
feasible in situation S is expressed by asserting that E occurs from S to S1 for some S1 > S.

Following (McDermott 1982), actions are represented as occurring over an interval; the predicate
occurs(E, S1, S2) states that action E occurs starting in S1 and ending in S2. However, the whole
theory could be recast without substantial change into the situation calculus extended to permit
multiple agents, after the style of (Reiter, 2001).

Table ?? shows the axioms of our temporal theory. Throughout this paper, we use a sorted
first-order logic with equality, where the sorts of variables are indicated by their first letter. The
sorts are clock-times (T ), situations (S), Boolean fluents (Q), actions (E), agents (A), and actionals
(Z). (The examples at the beginning of this paper use some terms of other sorts ad hoc; these are
self-explanatory.) An actional is a characterization of an action without specifying the agent. For
example, the term “puton(blocka,table)” denotes the actional of someone putting block A on the
table. The term “do(john, puton(blocka,table))” denotes the action of John putting block A on the
table. Free variables in a formula are assumed to be universally quantified.

Our theory does not include a representation of what will happen from a given situation as

1As will be discussed below, I cannot prove the theory consistent for continuous theories of time except in special
cases; however, nothing in the form of the representation or in the axioms is inherently unusable in or inconsistent
with a continuous model of time.
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Primitives:

T 1 < T 2 — Time T 1 is earlier than T 2.
S1 < S2 — Situation S1 precedes S2, on the same time line. (We overload the < symbol.)
time(S) — Function from a situation to its clock time.
holds(S, Q) — Fluent Q holds in situation S.
occurs(E, S1, S2) — Action E occurs from situation S1 to situation S2.
do(A, Z) — Function. The action of agent A doing actional Z.
Definitions:

TD.1 S1 ≤ S2 ≡ S1 < S2 ∨ S1 = S2.

TD.2 ordered(S1, S2) ≡
S1 < S2 ∨ S1 = S2 ∨ S2 < S1.

TD.3 feasible(E, S) ⇔ ∃S2 occurs(E, S, S2).

Axioms:

T.1 T 1 < T 2 ∨ T 2 < T 1 ∨ T 1 = T 2.

T.2 ¬[T 1 < T 2 ∧ T 2 < T 1].

T.3 T 1 < T 2 ∧ T 2 < T 3 ⇒ T 1 < T 3.
(Clock times are linearly ordered)

T.4 S1 < S2 ∧ S2 < S3 ⇒ S1 < S3. (Transitivity)

T.5 (S1 < S ∧ S2 < S) ⇒ ordered(S1, S2).
(Forward branching)

T.6 S1 < S2 ⇒ time(S1) < time(S2).
(The ordering on situations is consistent with the orderings of their clock times.)

T.7 ∀S,T1 ∃S1 ordered(S, S1) ∧ time(S1)=T 1.
(Every time line contains a situation for every clock time.)

T.8 occurs(E, S1, S2) ⇒ S1 < S2.
(Events occur forward in time.)

T.9 [occurs(E, S1, S2) ∧ S1 < SX < S2 ∧ SX < SY ] ⇒
∃SZ ordered(SY, SZ) ∧ occurs(E, S1, SZ).
(If action E starts to occur on the time line that includes SY , then it completes on that time
line. (Figure ??))

Table 1: Temporal Axioms
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opposed to what can happen. This will be important in our discussion of the paradox of the
unexpected hanging.

2.2 Knowledge

As first proposed by Moore (1980,1985a) and widely used since, knowledge is represented by iden-
tifying temporal situations with epistemic possible worlds and positing a relation of knowledge
accessibility between situations. The relation k acc(A, S, SA) means that situation SA is accessible
from S relative to agent A’s knowledge in S; that is, as far as A knows in S, the actual situation
could be SA. The statement that A knows φ in S is represented by asserting that φ holds in ev-
ery situation that is knowledge accessible from S for A. As is well known, this theory enables the
expression of complex interactions of knowledge and time; one can represent both knowledge about
change over time and change of knowledge over time.

Again following Moore (1985a), the state of agent A knowing what something is is expressed by
using a quantifier of larger scope than the universal quantification over accessible possible worlds.
For example, the statement, “In situation s1, John knows who the President is” is expressed by
asserting that there exists a unique individual who is the President in all possible worlds accessible
for John from s1.

∃X ∀S1A k acc(john,s1,S1A) ⇒
holds(S1A,president(X)).

For convenience, we posit an S5 logic of knowledge; that is, the knowledge accessibility relation,
restricted to a single agent, is in fact an equivalence relation on situations. This is expressed in
axioms K.1, K.2, and K.3 in table ??. Three important further axioms govern the relation of time
and knowledge.

K.4. Axiom of memory: If A knows φ in S, then in any later situation, he remembers that he knew
φ in S.

K.5. A knows all the actions that he has begun, both those that he has completed and those that
are ongoing. That is, he knows a standard identifier for these actions; if Bob is dialing (212)
998-3123 on the phone, he knows that he is dialing (212) 998-3123 but he may not know that
he is calling Ernie Davis. At any time, A knows what actions are feasible for him now.

K.6 Knowledge accessibility relations do not cross in the time structure. I have not found any
natural expression of this axiom, but certainly a structure that violated it would be a very
odd one. (Figure ??.) In a discrete theory of time, axiom K.6 is a consequence of the axiom
of memory K.4, as we shall show in theorem 3 below. (Knowledge accessibility relations that
violate this condition have sometimes been used in the literature for agents who do not satisfy
the axiom of memory.)

The theory includes a forms of common knowledge, restricted to two agents. Agents A1 and
A2 have shared knowledge of φ if they both know φ, they both know that they both know φ and
so on. We represent this by defining a further accessibility relation, “sk acc(A1, A2, S, SA)” (SA is
accessible from S relative to the shared knowledge of A1 and A2). This is defined as the transitive
closure of links of the form k acc(A1, ·, ·) together with links of the form k acc(A2, ·, ·). (Of course,
transitive closure cannot be exactly defined in a first-order theory; axioms K.7 and K.8 define an
approximation that is adequate for our purposes.)

6



Primitives:

k acc(A, SA, SB) — SB is accessible from SA relative to A’s knowledge in SA.
sk acc(A1, A2, SA, SB) — SB is accessible from SA relative to the shared knowledge of

A1 and A2 in SA.

Axioms

K.1 ∀A,SA k acc(A, SA, SA).

K.2 k acc(A, SA, SB) ⇒ k acc(A, SB, SA)

K.3 k acc(A, SA, SB) ∧ k acc(A, SB, SC) ⇒
k acc(A, SA, SC).
(K.1 through K.3 suffice to ensure that the knowledge of each agent obeys an S5
logic: what he knows is true, if he knows φ he knows that he knows it; if he doesn’t
know φ, he knows that he doesn’t know it.)

K.4 [k acc(A, S2A, S2B) ∧ S1A < S2A] ⇒
∃S1B S1B < S2B ∧ k acc(A, S1A, S1B).
(Axiom of memory: If agent A knows φ at any time, then at any later time he
knows that φ was true.)

K.5 [occurs(do(A, Z),S1A, S2A) ∧ S1A ≤ SA ∧
ordered(SA, S2A) ∧ k acc(A, SA, SB)] ⇒
∃S1B,S2B occurs(do(A, Z),S1B, S2B) ∧
S1B ≤ SB ∧
[S2A < SA ⇒ S2B < SB] ∧
[S2A = SA ⇒ S2B = SB] ∧
[SA < S2A ⇒ SB < S2B] ∧
[S1A = SA ⇒ S1B = SB]
(An agent knows which actions he has completed, which actions he has begun, and
which actions are now feasible.)

K.6 ¬∃A,S1A,S1B,S2A,S2B

S1A < S2A ∧ S1B < S2B ∧ k acc(A, S1A, S2B) ∧ k acc(A, S2A, S1B).
(Knowledge accessibility links do not cross in the time structure (Figure ??).)

K.7 sk acc(A1, A2, SA, SB) ⇔
[k acc(A1, SA, SB) ∨ k acc(A2, SA, SB) ∨
sk acc(A1, A2, SB, SA) ∨
sk acc(A2, A1, SA, AB) ∨
∃SC sk acc(A1, A2, SA, SC) ∧ sk acc(A1, A2, SC, SB)].
Definition of sk acc as a equivalence relation, symmetric in A1, A2, that includes
the k acc links for the two agents A1, A2.

K.8 (Induction from k acc links to sk acc links.) Let Φ(S) be a formula with a free
situational variable S. Then the closure of the formula

[∀AS,AH [[∀SA,SB φ(SA) ∧ k acc(AS, SA, SB) ⇒ φ(SB)] ∧
[∀SA,SB φ(SA) ∧ k acc(AH, SA, SB) ⇒ φ(SB)]] ⇒
[∀SA,SB φ(SA) ∧ sk acc(AS, AH, SA, SB) ⇒ φ(SB)].

Table 2: Axioms of Knowledge

7



Axiom K.6 prohibits this structure.

Time
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Figure 2: Axiom K.6

3 Communication

We now introduce the function “inform”, taking two arguments, a agent AH and a fluent Q. The
term “inform(AH, Q)” denotes the actional of informing AH that Q; the term “do(AS,inform(AH, Q))”
thus denotes the action of speaker AS informing AH that Q. Our theory here treats “do(AS,inform(AH, Q))”
as a primitive actions; in a richer theory, it would be viewed as an illocutionary description of an
underlying locutionary act (not here represented) — the utterance or writing or broadcasting of a
physical signal.

We also add a second actional “communicate(AH)”. This alternative characterization of a
communicative act, which specifies the hearer but not the content of the communication, enables us
to separate out physical constraints on a communicative act from contentive constraints. Thus, we
allow a purely physical theory to put constraints on the occurrence of a communication, or even to
posit physical effects of a communication, but these must be independent of the information content
of the communication.

We posit five axioms of communication, summarized in table ??. Some of these are straight-
forward; others much less so. We discuss them below in increasing order of complexity. We also
put forward a sixth axiom, a frame axiom for ignorance, but its status is much more dubious, for
reasons that we will discuss.

3.1 Relation between informing and communication

Axiom I.1: Any inform act is a communication.
occurs(do(AS,inform(AH, Q)),S1, S2) ⇒
occurs(do(AS,communicate(AH)),S1, S2).

Axiom I.2: If a speaker AS can communicate with a hearer AH , then AS can inform AH of some
specific Q if and only if A knows that Q holds at the time he begins speaking.

feasible(do(AS,communicate(AH)),S1)] ⇒
[∀Q feasible(do(AS,inform(AH, Q)),S1) ⇔

[∀S1A k acc(AS, S1, S1A) ⇒ holds(S1A, Q)]]

By virtue of these two axioms, the preconditions for an AS informing AH that Q are just that
it is feasible for AS to communicate to AH and that AS knows that Q is true. The content Q may
not affect the feasibility in any other way. Axiom I.1 further guarantees that any other physical
constraints over communications, such as the duration of a communication or its physical effects
must apply also to inform acts; that is, that the physical characterisitics of any inform act must
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I.1 Any inform act is a communication.
occurs(do(AS,inform(AH, Q)),S1, S2) ⇒
occurs(do(AS,communicate(AH)),S1, S2).

I.2. If a speaker AS can communicate with a hearer AH , then AS can inform AH of some specific
Q if and only if A knows that Q holds at the time he begins speaking.

feasible(do(AS,communicate(AH)),S1)] ⇒
[∀Q feasible(do(AS,inform(AH, Q)),S1) ⇔

[∀S1A k acc(AS, S1, S1A) ⇒ holds(S1A, Q)]]

I.3. If AS informs AH of Q from S1 to S2, then in S2, AH knows that AS has informed him of
Q.

∀S1,S2,S2A [occurs(do(AS,inform(AH, Q)),S1, S2) ∧ k acc(AH, S2, S2A)] ⇒
∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A) ∧ k acc(AH, S1, S1A).

I.4. If AS informs AH of Q1 over [S1, S2] and the shared knowledge of AS and AH in S1 implies
that holds(S1, Q1) ⇔ holds(S1, Q2), then AS has also informed AH of Q2 over [S1, S2].
Conversely, the two actions “do(AS,inform(AH, Q1))” and “do(AS,inform(AH, Q2))” co-occur
only if Q1 and Q2 are related in this way.

occurs(do(AS,inform(AH, Q1)),S1, S2) ⇒
[occurs(do(AS,inform(AH, Q2)),S1, S2) ⇔
[∀S1A sk acc(AS, AH, S1, S1A) ⇒

[holds(S1A, Q1) ⇔ holds(S1A, Q2)]]]

I.5. Axiom of comprehension: any property of situations that can be stated in the language is a
fluent.

Let α(S) be a first-order formula with exactly one free variable S of sort “situation”. (α may
have other free variables of other sorts.) Then the closure of the following formula is an axiom:

∃Q ∀S holds(S, Q) ⇔ α(S).

(The closure of a formula β is β scoped by universal quantifications of all its free variables.)

I.6 Frame axiom for ignorance. See discussion in text below.

Table 3: Axioms of Communication
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be consistent with the physical constraints on communications. These axioms do not rule out the
possibility that the content could affect other physical aspects of the inform act — for example, that
a complex content takes longer to communicate than a simple content — but I have not shown that
any such constraints lead to a consistent theory.

Note that axiom I.2 requires, conversely, that any fluent Q that is known to be true can be
communicated; that is, there is a branch in the time structure corresponding to the communication
of Q.

3.2 Epistemic effect of communication

Since we require the strong conditions mentioned in section 1, we can posit the following axiom:2

Axioms I.3: If AS informs AH of Q from S1 to S2, then in S2, AH knows that AS has informed
him of Q.

∀S1,S2,S2A [occurs(do(AS,inform(AH, Q)),S1, S2) ∧
k acc(AH, S2, S2A)] ⇒

∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A) ∧ k acc(AH, S1, S1A)

Lemmas 3.1 and 3.2 are important consequences of I.3 together with the preceding axioms:

Lemma 3.1: If AS informs AH of Q then, when the communication is in complete, the AS and
AH have shared knowlege that the communication has taken place.

occurs(do(AS,inform(AH, Q)),S1, S2) ∧ sk acc(AS, AH, S2, S2A) ⇒
∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A)

Proof: By K.5, AS knows when he has completed a communication.

occurs(do(AS,inform(AH, Q)),S1, S2) ∧ k acc(AS, S2, S2A) ⇒
∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A)

By I.3, AH knows when he has received a communication.

occurs(do(AS,inform(AH, Q)),S1, S2) ∧ k acc(AH, S2, S2A) ⇒
∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A)

Choosing Φ(S) to be the formula “occurs(do(AS,inform(AH, Q))”, the formula in Lemma 3.1
then follows from axiom K.8.

Lemma 3.2: If AS informs AH of Q then, when the communication is in complete, the AS and
AH have shared knowlege that Q was true when the communication began.

occurs(do(AS,inform(AH, Q)),S1, S2) ∧ sk acc(AS, AH, S2, S2A) ⇒
∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A) ∧ holds(S1A, Q)

Proof:

Let as, ah, q, s0, s1, s2a satisfy the left side of the above implication.
By I.3 there exists s1a such that occurs(do(as,inform(ah,q)),s1a,s2a).
By K.1, k acc(as,s1a,s1a).
By I.2, holds(s1a,q).

2The statement of this axiom in the KR-2004 paper (Davis, 2004) was not correct.
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3.3 Axiom of comprehension

The axiom of comprehension states that there is a fluent corresponding to any property of situations
definable in the language. The content of this axiom therefore depends on the overall language L.
We state this as an axiom schema i.e. an infinite set of axioms.

Axiom I.5: The comprehension axiom for fluents in a language L is this: Let α(S) be a first-order
formula in L with exactly one free variable S of sort “situation”. (α may have other free variables
of other sorts.) Then the closure of the following formula is an axiom:

∃Q ∀S holds(S, Q) ⇔ α(S).

(The closure of a formula β is β scoped by universal quantifications of all its free variables.)

Let us first discuss the significance of free variables in the formula α. The reason to allow free
variables that are not situations is to deal with examples such as the following: We want to be able
to posit that a speaker can say, for example, that some specific block is either red or blue without
requiring that the language L have a constant symbol for each block, or even a formula that uniquely
identifies each block.3

This axiom achieves this. We choose α(S) to be the formula “holds(S,red(X)) ∨ holds(S,blue(X))”.
The axiom schema then state

∀X ∃Q ∀S holds(S, Q) ⇔ holds(S,red(X)) ∨ holds(S,blue(X))

That is, for every object X there is a fluent Q that corresponds to the situations in which X is either
red or blue.

The reason to exclude formulas that have other situational free variables in addition to S is
that it doesn’t seem to mean anything to have this kind of de re reference to situations. A situation
is meaningful only in relation to the current situation; there is no other way to meaningfully refer
to a situation. It may be noted that the consistency proof for the theory (theorem 1 below) does
not depend on this restriction.

The content of the comprehension axiom depends on the overall language L. In general, one
supposes that the language L will contain many domain and problem specific symbols beyond those
that are used in the axioms enumerated here. Theorem 1 shows that these axioms are consistent
when L is a physical language augmented with the symbols from the theory of knowledge and
communication described here. In (Davis and Morgenstern, 2004) we consider a language that
includes also agent commitments and requests. In that setting, the above formulation of the axiom
turns out to be too strong; we have to limit the comprehension axiom to apply only to formulas that
do not include symbols describing commitment and requests.

In view of this comprehension axiom, axiom K.8 could be restated as a single axiom (rather
than an axiom schema) as follows¿

K.8.A ∀Q,AS,AH [ [∀S,SA holds(S, Q) ∧ k acc(AS, S, SA) ⇒ holds(SA, Q)] ∧
[∀S,SA holds(S, Q) ∧ k acc(AH, S, SA) ⇒ holds(SA, Q)]] ⇒

[∀S,SA holds(S, Q) ∧ sk acc(AS, AH, S, SA) ⇒ holds(SA, Q)].

However we did not use this formulation originally because we did not want K.8 to be dependent
on I.5.

3You might well ask, “If you can’t refer to the block in L, how is the speaker talking about it?” Perhaps he is
pointing. Perhaps he is using a slightly richer language with more constant symbols. It is not a very important point,
but it does make the theory more elegant and easier to use if one assumes that a speaker can refer de re to any entity
other than a situation.
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3.4 Independent actions

In a temporal representation, like ours, that permits the concurrent execution of actions, it does
not suffice just to describe what actions can be executed; one must also, to greater or lesser extent,
describe what combinations of actions can be executed concurrently. At the minimum, if two actions
are independent, it should be possible to execute the one without the other. In the case of “inform”
acts, the natural axiom would be that, if AS knows φ, then he can chooose to carry out the single act
of informing AH of φ and not doing anything else. One might suppose that this could be expressed
in the following two axioms:

WRONG.1 feasible(do(AS,inform(AH, Q)),S0) ⇒
∃S2 occurs(do(AS, Z),S1, S2) ⇔ Z=do(AS,inform(AH, Q)).

WRONG.2 do(AS1,inform(AH1, Q1)) = do(AS2,inform(AH2, Q2)) ⇒
AS1 = AS2 ∧ AH1 = AH2 ∧ Q1 = Q2.

However, as my labels subtly suggest,4 this is not an acceptable formulation. In fact, as we
shall show in section ??, these are inconsistent with the axiom of comprehension I.5.

The problem, intuitively, is this: The comprehension axiom asserts that there exists a fluent
for every set of situations; axiom WRONG.1 asserts that there exists a separate branch in time for
every fluent. Therefore, if you try to construct a model of these axioms combined, you first have
to construct all sets of situations; then add branches for each of these, which gives a whole bunch
more resultant situations; these in turn generate vast numbers of new sets of situations . . . There is
no way to make this construction converge. (I’m being a little loose here, but one can make this
tight. The decisive proof that this can’t be made to work is the “misled” paradox of section ??.)

Therefore, we have to weaken axiom WRONG.1.5 The approach we take is as follows: In
general, it is only necessary to distinguish an occurrence of action A1 from an occurrence of action
A2 if they have different causal consequences. For instance, in the blocks world, if all you are
interested in is the position of blocks, then all that matters in discriminating actions is the ending
position of the block being moved; the trajectory through which it moves is immaterial.

Now, in the case of informative acts, the causal consequence of concern is the effect on knowl-
edge states. Assuming axiom I.3, the main effect of AS informing AH of Q is that, when the
communication is complete, AS and AH have shared knowledge that Q held at the beginning of the
communication. Therefore, if Q1 and Q2 are two informative contents such that the effects on the
shared knowledge of AS and AH following a communication of Q1 from AS to AH are the same as
those effects following a communication of Q2, then we can treat the communication of Q1 and the
communication of Q2 as the same action; they, so to speak, attain the same end state via different
trajectories. And a sufficient condition to ensure this is that AS and AH have shared knowledge at
the start of the communication that Q1 and Q2 are equivalent.

For example, if Jack and Jane share the knowledge that George Bush is the President and that
1600 Pennsylvania Avenue is the White House, then the action of Jack informing Jane that Bush
is at the White House is identical to the act of Jack informing Jane that the President is at 1600
Pennsylvania Avenue. If they do not share this knowledge, then these two acts are different.

4One thing I have learned in twenty years of teaching is that, if you write down a wrong formula on the blackboard
for purposes of discussion, you have to label it WRONG in large letters. Otherwise, students copy it into their
notebooks . . . Similarly, if someone is skimming through this paper looking for formal axioms, I do not want him to
use these.

5Weakening axiom WRONG.2 does not work. In fact, WRONG.2 ends up being true in the model we will construct,
but its truth won’t actually matter much once we have correctly reformulated WRONG.1.

12



This, then, is our axiom: If it is feasible in S1 for AS to inform AH of Q1, then there exists
a branch of the time structure in which the only informative action that AS starts in S1 are those
that are “equivalent” to Q1 in the above sense.6

I.4: occurs(do(AS,inform(AH, Q1)),S1, S2) ⇒
[occurs(do(AS,inform(AH, Q2)),S1, S2) ⇔
[∀S1A sk acc(AS, AH, S1, S1A) ⇒

[holds(S1A, Q1) ⇔ holds(S1A, Q2)]]]

As we shall see in section ??, in a model of discrete time this is sufficient to avoid the contra-
diction.

Note: The above axiom is not sufficient to rule out models in which the informative actions
of one agent are linked to the concurrent actions of another agent. The easiest way to insure
independence between agents is to posit an axiom of “anti-synchrony” that no two agents begin two
actions at the same time (Reiter, 2001).

T.10 occurs(do(A1, Z1),S1, S2) ∧ occurs(do(A2, Z2),S1, S3) ⇒ A1 = A2.

However, since this axiom is part of the physical theory, and not all physical theories may wish to
use it, we have not made it part of our standard set of temporal axioms.

Two alternative formulations of axiom I.4 should be mentioned. We can modify I.4 to read that
communicating Q1 and Q2 co-occur just if they coincide over all situations of the same time as the
beginning of the situation.

I.4.A: occurs(do(AS,inform(AH, Q1)),S1, S2) ⇒
[occurs(do(AS,inform(AH, Q2)),S1, S2) ⇔
[∀S1A time(S1A)=time(S1) ⇒

[holds(S1A, Q1) ⇔ holds(S1A, Q2)]]]

The consistency proof in Appendix A requires only a small modification to deal with this new
version. However, this version seems to me harder to justify than the previous version.

A second alternative, which is in effect equivalent to axiom I.4.A, is to use the axioms WRONG.1
and WRONG.2 and modify the comprehension axiom to state that there is a fluent corresponding
to every property of situations at some particular time T :

I.5.B: Let α(S) be a first-order formula in L with exactly one free variable S of sort “situation”.
(α may have other free variables of other sorts.) Then the closure of the following formula is an
axiom:

∀T ∃Q ∀S holds(S, Q) ⇔ α(S) ∧ time(S)=T .

3.5 The frame inference

Finally, it would be desirable to carry out the frame inference over knowledge and ignorance.

The frame axiom over knowledge is just the axiom of memory, axiom K.4; if A knows in S that φ

is true, then he remembers in all later situations that φ was true. Since we have no actions or events

6This is slightly more general than the formulation given in the KR-2004 paper (Davis, 2004).
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that cause forgetting, this simple formulation suffices. Note that “knowing φ” is represented as “all
worlds in which φ is false are inaccessible.” Hence preserving knowledge amounts to saying that if
two worlds are inaccessible one from the other, any of their descendants are likewise inaccessible one
from the other.

The frame axiom over ignorance is the reverse: Given that A does not know φ in S0, and given
that nothing occurs between S0 and S1 that would cause him to learn φ, we wish to infer that he
still does not know φ in S1. Since “not knowing φ in S” is represented as “there are possible worlds
accessible from S in which φ is false,” this frame inference should have the following general form:
If S0A is accessible from S0, S1 > S0, S1A > S0A, and as far as A’s sources of knowledge are
concerned, the interval between S0 and S1 is indistinguishable from the interval between S0A and
S1A, then S1A is accessible from S1.

Stating this formally is mostly a matter of collecting all the necessary sources of knowledge.
Our theory requires that agent A gains knowledge in S under the following circumstances

1. If A begins action E in S1, and S2 is on a branch in which E is executed, then in S2, A

knows that E is executed. If E is completed at or before S2, then in S2 A knows when it was
completed.

2. If action E is feasible for A in situation S, then A knows that E is feasible in S.

3. If A receives a communication from AS in S then A knows in S that he has received a
communication. If we assume axiom A.3.B, then A and AS have shared knowledge in S that
A received a communication.

We also assume that there are domain-specific axioms of knowledge production. In an S5 logic,
it is reasonable to assume that these are all of the following form: In all situations S, A knows
whether Φ(A, S), where Φ is a formula that can refer only to present or past physical states or to
past (but not present) knowledge states.7 Formally, we impose the following conditions on Φ(A, S):

• The only free variables in Φ(A, S) are A and S.

• If S1 is a quantified variable other than S appearing in Φ, and S1 is used as either the second-
to-last or last argument for either k acc or sk acc, then the quantification of S1 imposes the
restriction S1 < S.

• If S1 is a quantified variable other than S appearing in Φ, and S1 is not used as an argument
for either k acc or sk acc, then the quantification of S1 imposes the restriction S1 ≤ S.

Thus we assume the existence of a finite collection of axioms of the form

∀A,S [[∀SA k acc(A, S, SA) ⇒ Φi(A, S)] ∨
[∀SA k acc(A, S, SA) ⇒ ¬Φi(A, S)]]

For example, (Scherl and Levesque, 2003) propose the use of an action “SENSEQ” which informs
the actor whether fluent Q is true. We can achieve that in the above framework by choosing Φ(A, S)
to be the condition that A has executed SENSEQ and Q holds:

Φ(A, S) ⇔ ∃S1 occurs(SENSEQ,S1, S) ∧ holds(S, Q).

7Actually, I conjecture that these restrictions are not necessary, and that it is consistent to allow Φ to be any
formula, but I have not proven it.
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We now posit that every agent always knows whether Φ(A, S). Since, by axiom K.5, an agent always
knows whether he has executed SENSEQ, it follows that, if an agent has executed SENSEQ, then
he knows whether Q is true.

So now we can state the frame axiom asserting that if a knowledge accessibility relation disap-
pears then one of the above conditions must have been met.

I.6: [k acc(A, S0A, S0B) ∧ S0A < S1A ∧ S0B < S1B ∧
time(S1B)=time(S0B) ∧ ¬k acc(A, S1A, S1B)] ⇒
[[∃Z ¬[[∃SZA occurs(do(A, Z),S1A, SZA) ∧ ordered(SZA, S2A)] ⇔

[∃SZB occurs(do(A, Z),S1B, SZB) ∧ ordered(SZB, S2B)]]] ∧
[∃Z,TZ ¬[ [∃SZA occurs(do(A, Z),S1A, SZA) ∧ SZA ≤ S2A ∧ time(SZA)=TZ] ⇔

[∃SZB occurs(do(A, Z),S1B, SZB) ∧ SZB ≤ S2B ∧ time(SZB)=TZ]] ∨
[∃AS,Q ¬[[∃SQA occurs(do(AS,inform(A, Q),SQA, S2A) ⇔

[∃SQB occurs(do(AS,inform(A, Q),SQB, S2B)]] ∨
∃S3A,S3B S1A < S3A ≤ S2A ∧ S1B < S3B ≤ S2B ∧ time(S3A)=time(S3B) ∧∨

i ¬[Φi(A, S3A)⇔Φi(A, S3B)]
]

That is: If S0B is knowledge accessible from S0A but later S1B is not knowledge accessible
from S1A — that is, something was learned in between the two times to distinguish these — then
one of the following conditions was met:

• A started some action Z on one branch but not the other. That is, it is not true that he
started Z on one branch if and only if he started it on the other.

• A was informed of something on one branch but not the other.

• One of the domain specific conditions held at some time on one branch but not the other.

Well, there it is. It is not a candidate for any “Top 10 most elegant axioms” lists.

A more serious problem is that it doesn’t give us what we want. What we want is: Given that in
s0, Sam doesn’t know whether Herbert Hoover invented the vacuum cleaner (P ), and given that the
only thing that happens between s0 and s1 is that Jack tells Sam that tea is selling for $2 a pound
in Shanghai (Q), we should be able to infer that Jack still doesn’t know whether Herbert Hoover
invented the vacuum cleaner. But that inference is not valid. The problem is that it is consistent
with the govens that Sam knows ¬P⇔Q, and so, when Jack tells him Q he finds out ¬P .

The problem here is not with the frame axiom; the frame axiom is fine. The problem is with the
specification of the initial state. What you want to say is something like“All agents are as ignorant
as possible, consistent with the givens,” but it is not easy to characterize what kind of possible
worlds structure that would entail, let alone to formulate that characterization in a set of first-order
axioms. Of course, in any particular case, one can get around this by adding more givens. You can
specify that, in s0, Jack does not know that Q⇒¬P ; this approach is taken in the “Persistence of
ignorance” theorem of (Scherl and Levesque, 2003). If the class of physical fluents is finite, you can
assert that there is a possible world for each possible valuation consistent with the axioms, and that
any two such possible worlds are knowledge accessible, unless the axioms rule this out. Since this
is a finite structure, this, at least in principle, can be stated. But (a) if there are infinitely many
possible states of the world, then it is not at all clear that this can be stated in first-order logic; and
(b) it does not achieve utter ignorance, because it is common knowledge among all agents that none
of them know anything about the physical fluents. In a system of this kind, Sam knows that Jack
does not know P, whereas in the desired state of utter ignorance, presumably Sam doesn’t know
whether or not Jack knows P. How to characterize a state of minimal knowledge of this kind is, as
far as I know, an open problem.
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4 Sample Inferences

We illustrate the power of the above theory with three toy problems.

4.1 Sample Inference 1:

Given:

X.1 Sam knows in s0 that it will be sunny on July 4.
[k acc(sam,s0,S0A) ∧ S0A < S1A ∧ time(S1A)=july4] ⇒
holds(S1A,sunny).

X.2 In any situation, if it is sunny, then Bob can play tennis.
∀S holds(S,sunny) ⇒ feasible(occurs(do(bob,tennis),S)

X.3 Sam can always communicate with Bob.
∀S1 feasible(do(sam,communicate(bob)),S1).

Infer:

X.P Sam knows that there is an action he can do (e.g. tell Bob that it will be sunny) that will
cause Bob to know that he will be able to play tennis on July 4.

k acc(sam,s0,S0A) ⇒
∃Z,S1A occurs(do(sam,Z),S0A, S1A) ∧

∀S2A,S2B,S3B [occurs(do(sam,Z),S0A, S2A) ∧ k acc(bob,S2A, S2B) ∧
S2B < S3B ∧ time(S3B)=july4] ⇒

feasible(do(bob,tennis),S3B).

Proof:

By the comprehension axiom I.5 there is a fluent q1 that holds in any situation S just if it will be
sunny on July 4 following S.
P.1: holds(S,q1) ⇔ [∀S1 [S < S1 ∧ time(S1)=july4] ⇒ holds(S1,sunny)].

Let z1=inform(bob,q1). By axioms I.2, X.1, and X.3, do(sam,z1) is feasible in s0;
P.2: feasible(do(sam,z1),s0).

By axiom K.5, Sam knows in s0 that do(sam,z1) is feasible.
P.3: ∀S0A k acc(s0,S0A) ⇒ feasible(do(sam,z1),S0A).

Let s0a be any situation such that k acc(sam,s0,s0a).
By P.3, there exists a situation s1a such occurs(do(sam,z1),s0a,s1a).
Let s2a be any situationn such that occurs(do(sam,z1),s0a,s2a).
Let s2b be any situation such that k acc(bob,s2a,s2b).

By Lemma 3.2, there exists s1b such that occurs(do(sam,z1),s1b,s2b) and holds(s1b,q1).
Let s3b be any situation such that s2b < s3b and time(s3b)=july4.
By T.8 and T.4, s1b < s3b.
By P.2, holds(s3b,sunny).
By X.2, feasible(do(bob,tennis),s3b).
Applying universal abstraction over s0a, s2a, s2b, and s3b and existential abstraction over z1 and
s1a gives us formula X.P.
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4.2 Sample Inference 2

Given: Bob tells Alice that he has cheated on her. Alice responds by telling Bob that he has never
told her anything she did not already know.

Y.1 Bob confesses to Alice that he has cheated on her.
∃Q occurs(do(bob,inform(alice,Q)),s0,s1) ∧
∀S holds(S, Q) ⇔ ∃S2,S3 S3 < S ∧ occurs(do(bob,cheat),S2, S3).

Y.2 Alice responds that Bob has never told her anything she didn’t already know. (Equivalently,
whenever he has told her anything, she already knew it.)

∃Q occurs(do(alice,inform(bob,Q)),s1,s2) ∧
∀S holds(S, Q) ⇔

∀S3,S4,Q1

[S3 < S4 ≤ S ∧ occurs(do(bob,inform(alice,Q1)),S3, S4)] ⇒
∀S3A k acc(alice,S3, S3A) ⇒ holds(S3A, Q1).

Infer: Bob now knows that Alice knew before he spoke that he had cheated on her.

Y.P Bob now knows that Alice had already known, before he spoke, that he had cheated on her.

∀S2A k acc(bob,s2,S2A) ⇒
∃S0A,S1A,Q1 S1A < S2A ∧ occurs(do(bob,inform(alice,Q1)),S0A, S1A) ∧

[∀S0B k acc(alice,S0A, S0B) ⇒
∃S3B,S4B S4B < S0B ∧ occurs(do(bob,cheat),S3B, S4B)].

Proof:

Let q1 be the content of Bob’s statement in Y.1, and let q2 be the content of Alice’s statement in Y.2.

By K.4, Bob knows in s2 that he has informed Alice of q1.
Q.1: ∀S2A k acc(bob,s2,S2A) ⇒

∃S0A,S1A S1A < S2A ∧ occurs(do(bob,inform(alice,q1)),S0A, S1A).

By Lemma 3.2, Bob knows in s2 that q2 held when Alice started to speak.
Q.2: k acc(bob,s2,S2A) ⇒

∃S1A occurs(do(alice,inform(bob,q2)),S1A, S2A) ∧ holds(S1A,q2).

Let s2a be any situation such that k acc(bob,s2,s2a), and let s1a be a corresponding value of S1A

satisfying Q.2. Then holds(s1a,q2).

By definition of q2, we have that in s1a, whenever Bob had previously told Alice anything (Q3), she
had already known it.
Q.3: ∀S3,S4,Q3 [S3 < S4 ≤ s1a ∧ occurs(do(bob,inform(alice,Q3)),S3, S4)] ⇒

∀S3A k acc(alice,S3, S3A) ⇒ holds(S3A, Q1).

By K.4 and Y.3, Bob knows in s1 that he has informed Alice of q1.
Q.4: ∀S1A k acc(bob,s1,S1A) ⇒

∃S0A occurs(do(bob,inform(alice,q1)),S0A, S1A).

In particular, therefore, Q.4 is true of S1A=s1a.
Q.5: ∃S0A occurs(do(bob,inform(alice,q1)),S0A,s1a).
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Let s0a be a situation satisfying Q.5. Applying Q.3, with S3→s0z, S4→s1a, and Q3→q1, gives
Q.6. ∀S0B k acc(alice,s0a,S0B) ⇒ holds(S0B,q1).

Applying the definition of q1, we get the desired result.

4.3 Sample Inference 3

Given:

Z.1: Anne does not know that she has a brother.
¬[∀S0A k acc(anne,s0,S0A) ⇒ ∃Y holds(S0A,brother(Y ,anne))].

Z.2: Anne knows that, if she had a brother, someone would have told her about him.

∀S0A k acc(anne,s0,S0A) ⇒
∀Y holds(S0A,brother(Y ,anne)) ⇒

[∃S1A,S2A,AS S2A ≤ S0A ∧ occurs(do(AS,inform(anne,brother(Y ,anne)),S1A, S2A)

Z.3: Brotherhood is forever.
S0 < S1 ∧ holds(S0,brother(X, Y )) ⇒ holds(S1,brother(X, Y ))

Infer: Anne knows that she has no brother.
Z.4: ∀S0A k acc(anne,s0,S0A) ⇒ ¬∃Y holds(S0A,brother(Y ,anne)).

Note: This is a monotonic variant of the “auto-epistemic” inference (Moore, 1985b).

Proof by contradiction: Suppose that Z.4 is false and Anne does not know that she does not has a
brother — in other words, as far as she knows she might have a brother.
R.1: ∃S0A,Y k acc(anne,s0,S0A) ∧ holds(S0A,brother(Y ,anne))

Let sb and yb be values satisfying R.1. Thus k acc(anne,s0,sb) and holds(sb,brother(yb,anne)). By
Z.2, in sb someone would have already told her that she had a brother.
R.2: ∃S1A,S2A,AS S2A ≤sb ∧

occurs(do(AS,inform(anne,brother(yb,anne)),S1A, S2A)

Let s1b, s2b, as satisfy R.2. By Lemma 3.2, Anne would know in sb that she had previously had a
brother. R.3: ∀SC k acc(anne,sb,SC) ⇒

∃S1C S1C < SC ∧ holds(S1C,brother(yb,anne)).

Let s0x be any situation such that k acc(anne,s0,s0x). By K.2 and K.3 k acc(anne,sb,s0x). By R.3
and X.3, holds(s0x,brother(yb,anne)). Applying universal abstraction to s0x we have
R.4: ∀S0X k acc(anne,S0, S0X) ⇒ holds(S0X ,brother(yb,anne)).

But this contradicts X.1.

5 Paradox

The following Russell-like paradox seems to threaten our theory:

Paradox: Let Q be a fluent. Suppose that over interval [S0, S1], agent a1 carries out the action
of informing a2 that Q holds. Necessarily, Q must hold in S0, since agents are not allowed to lie
(axiom I.2). Let us say that this communication is immediately obsolete if Q no longer holds in S1.
For example, if it is raining in s0, the event of a1 telling a2 that it is raining occurs over [s0,s1],
and it has stopped raining in s1, then this communication is immediately obsolete. Now let us say
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that situation S is “misled” if it is the end of an immediately obsolete communication. Since “being
misled” is a property of a situation, by the comprehension axiom it should be definable as a fluent.
Symbolically,

holds(S,misled) ≡
∃Q,A1,A2,S0 occurs(do(A1,inform(A2, Q)),S0, S) ∧ ¬holds(S, Q)

Now, suppose that, as above, in s0 it is raining; from s0 to s1, a1 tells a2 that it is raining; and
in s1 it is no longer raining and a1 knows that it is no longer raining. Then a1 knows that “misled”
holds in s1. Therefore, (axiom I.2) it is feasible for a1 to tell a2 that “misled” holds in s1. Suppose
that, from s1 to s2, a1 informs a2 that “misled” holds. The question is now, does “misled” hold in
s2? Well, if it does, then what was communicated over [s1,s2] still holds in s2, so “misled” does not
hold; but if it doesn’t, then what was communicated no longer holds, so “misled” does hold in s2.

The flaw in this argument is that it presupposes the independence axiom WRONG.1 that we
rejected before. The argument presumes that if fluent Q1 6= Q2, and do(A1,inform(A2, Q1)) occurs
from s1 to s2, then do(A1,inform(A2, Q2)) does not occur. (Our English description of the argument
used the phrase “what was communicated between s1 and s2”, which presupposes that there was
a unique content that was communicated.) But axiom I.4 asserts that many different fluents are
communicated in the same act. Therefore, the argument collapses.

In particular, as we shall show, the clock time (in the sense of “the number of situations that
have elapsed since the start of time) is always common knowledge among all agents (Theorem 3,
appendix A). Now, let q1 be any fluent, and suppose that occurs(do(a1,inform(a2,q1)),s1,s2). Let
t1=time(q1) and let q2 be the fluent defined by the formula

∀S holds(S,q2) ⇔ holds(S,q1) ∧ time(S)=t1.

By assumption, it is shared knowledge between a1 and a2 that holds(s1,q2) ⇔ holds(s1,q1). Hence,
by axiom I.4, occurs(do(a1,inform(a2,q2)),s1,s2). But by construction q2 does not hold in s1; hence
the occurrence of do(a1,inform(as,q2)) from s1 to s2 is immediately obsolete. Therefore “misled”
holds following any informative act.

Changing the definition of misled to use the universal quantifier, thus:

holds(S,misled) ≡
∀Q,A1,A2 occurs(do(A1,inform(A2, Q)),S0, S) ∧ ¬holds(S, Q)

does not rescue the contradiction. One need only change the definition of q2 above to be
∀S holds(S,q2) ⇔ holds(S,q1) ∨ time(S)6=t1.

Clearly, the new definition of “misled” never holds after any informative act.

Of course, if we extend the theory to include the underlying locutionary act, then this paradox
may well return, as the locutionary act that occurs presumably is unique. However, as the content
of a locutionary act is a quoted string, we can expect to have our hands full of paradoxes in that
theory; this “misled” paradox will not be our biggest problem (Morgenstern,1988).

6 Unexpected Hanging

The well-known paradox of the unexpected hanging (also known as the surprise examination) (Gard-
ner, 1991; Quine, 1953) can be formally expressed in our theory; however, the paradox does not ren-
der the theory inconsistent. (The analysis below is certainly not a philosophically adequate solution
to the paradox, merely an explanation of how our particular theory manages to side-step it.)
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The paradox can be stated as follows:

A judge announces to a prisoner, “You will be hung at noon within 30 days; however,
that morning you will not know that you will be hung that day.” The prisoner reasons
to himself, “If they leave me alive until the 30th day, then I will know that morning that
they will hang me that day. Therefore, they will have to kill me no later than the 29th
day. So if I find myself alive on the morning of the 29th day, I can be sure that I will be
hung that day. So they will have to kill me no later than the 28th day . . . So they can’t
kill me at all!”

On the 17th day, they hung him at noon. He did not know that morning that he would
be hung that day.

We can express the judge’s statement as follows:

occurs(do(judge,inform(prisoner,Q)),s0,s1) ∧
∀S holds(S, Q) ⇔

∀SX [S < SX ∧ date(SX) = date(S)+31] ⇒
∃SH,SM,SMA,SHA

S < SM < SH < SX ∧ hour(SH)=noon ∧
holds(SH ,hanging) ∧ hour(SM)=9am ∧
date(SM)=date(SH) ∧
k acc(prisoner,SM, SMA) ∧ SMA < SHA ∧
hour(SHA)=noon ∧ date(SM)=date(SH) ∧
¬holds(SHA,hanging).

That is: the content of the judge’s statement is the fluent defined by the following formula over
S: On any timeline starting in S and going through some SX 31 days later, there is a situation SH

at noon where you will be hung, but that morning SM you will not know you will be hung; that
is, there is a SMA knowledge accessible from SM which is followed at noon by a situation SHA in
which you are not hung.

Let UHlang be the judge’s statement in English and let UHlogic be the fluent Q defined in the
above formula. Let “kill(K)” be the proposition that the prisoner will be killed no later than the
Kth day, and let “kill today” be the fluent that the prisoner will be killed today. It would appear
that UHlang is true; that the judge knows that in s0 that it is true, and that UHlogic means the
same as UHlang. By axiom I.2, if the judge knows that UHlogic holds in s0, then he can inform the
prisoner of it. How, then, does our theory avoid contradiction?

The first thing to note is that the prisoner cannot know UHlogic. There is simply no possible
worlds structure in which the prisoner knows UHlogic. The proof is exactly isomorphic to the
sequence of reasoning that prisoner goes through. Therefore, by Lemma 3.2 above, the judge cannot
inform the prisoner of UHlogic; if he did, the prisoner would know it to be true.

The critical point is that there is a subtle difference between UHlang and UHlogic. The statement
UHlang asserts that the prisoner will not know kill today — this means even after the judge finishes
speaking. In our theory, however, one can only communicate properties of the situation at the
beginning of the speech act and there is no way to refer to what will happens as distinguished from
one could happen. So what UHlogic asserts is that the prisoner will not know kill today whatever

the judge decides to say or do in s0.

In fact, it is easily shown that either [the judge does not know in s0 that UHlogic is true], or
[UHlogic is false]. It depends on what the judge knows in s0. Let us suppose that in s0, it is inevitable
that the prisoner will be killed on day 17 (the executioner has gotten irrevocable orders.) There are
two main cases to consider.

20



• Case 1: All the judge knows kill(K), for some K > 17. Then the most that the judge can tell
the prisoner is kill(K). In this case, UHlogic is in fact true in s0, but the judge does not know
that it is true, because as far as the judge knows, it is possible that (a) he will tell the prisoner
kill(K) and (b) the prisoner will be left alive until the Kth day, in which case the prisoner
would know kill today on the morning of the Kth day.

• Case 2: The judge knows kill(17). In that case, UHlogic is not even true in s0, because the judge
has the option of telling the prisoner kill(17), in which case the prisoner will know kill today
on the morning of the 17th day.

Again, we do not claim that this is an adequate solution to the philosophical problem, merely
an explanation of how our formal theory manages to remain consistent and side-step the paradox.
In fact, in the broader context the solution is not at all satisfying, for reasons that may well become
serious when the theory is extended to be more powerful. There are two objections. First, the
solution depends critically on the restriction that agents cannot talk about what will happen as
opposed to what can happen; in talking about the future, they cannot take into account their own
decisions or commitments about what they themselves are planning to do. One can extend the
outer theory so as to be able to represent what will happen — in (Davis and Morgenstern, 2004),
we essentially do this — but then the comprehension axiom I.5 must be restricted so as to exclude
this from the scope of fluents that can be the content of an “inform” act. We do not see how this
limitation can be overcome.

The second objection is that it depends on the possibility of the judge telling the prisoner kill(17)
if he knows this. Suppose that we eliminate this possibility? Consider the following scenario: The
judge knows kill(17), but he is unable to speak directly to the prisoner. Rather, he has the option of
playing one of two tape recordings; one says “kill(30)” and the other says UHlogic. Now the theory is
indeed inconsistent. Since the prisoner cannot know UHlogic it follows that the judge cannot inform
him of UHlogic; therefore the only thing that the judge can say is “kill(30)”. But in that case, the
formula “UHlogic” is indeed true, and the judge knows it, so he should be able to push that button.

To axiomatize this situation we must change axiom I.2 to assert that that the only possible
inform acts are kill(30) and UHlogic.

Within the context of our theory, it seems to me that the correct answer is “So what?” Yes, you
can set up a Rube Goldberg mechanism that creates this contradiction, but the problem is not with
the theory, it is with the axiom that states that only these two inform acts are physically possible.

(Those readers, if any, who work through the proof of theorem 1 in appendix A may wonder
what prevents this constraint from being incorporated into the construction of u-situations. After
all, all that this amounts to is drastically restricting the class of “inform” acts that are added on.
The answer is that which of the “inform” acts are allowed to exist now depends on the interpretation
of a formula in the extended language, and that therefore the construction now involves a vicious
cycle. See further the comments on Lemma 21.)

In a wider context, though, this answer will not serve. After all, it is physically possible to
create this situation, and in a sufficiently rich theory of communication, it will be provable that you
can create this situation. However, such a theory describing the physical reality of communication
must include a theory of locutionary acts; i.e. sending signals of quoted strings. As mentioned above
such a theory will run into many paradoxes; this one is probably not the most troublesome.
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7 Consistency

Two paradoxes have come up, but the theory has side-stepped them both. How do we know that the
next paradox won’t uncover an actual inconsistency in the theory? We can eliminate all worry about
paradoxes once and for all by proving that the theory is consistent. We do this by constructing a
model satisfying the theory. More precisely, we construct a fairly broad class of models, establishing
(informally) that the theory is not only consistent but does not necessitate any weird or highly
restrictive consequences. (Just showing soundness with respect to a model or even completeness
is not sufficient for this. For instance, if the theory were consistent only with a model in which
every agent was always omniscient, and inform acts were therefore no-ops, then the theory would
be consistent but not of any interest.)

As usual, establishing soundness has three steps: defining a model, defining an interpretation
of the symbols in the model, and establishing that the axioms are true under the interpretation.

Our class of models is (apparently) more restrictive than the theory;8 that is, the theory is not
complete with respect to this class of models. The major additional restrictions in our model are:

I. Time must be discrete. We believe that this restriction can be lifted with minor modifications
to the axioms, but this is beyond the scope of this paper. We hope to address it in future
work.

II. Time must have a starting point; it cannot extend infinitely far back. It would seem to be
very difficult to modify our proof to remove this constraint; at the current time, it seems to
depend on the existence of highly non-standard models of set theory.

III. A knowledge accessibility link always connects two situations whose time is equal, where
“time” measure the number of clock ticks since the start. In other words, all agents always
have common knowledge of the time. In a discrete structure, this is a consequence of the
axiom of memory. Therefore, it is not, strictly speaking, an additional restriction; rather, it is
a non-obvious consequence of restriction (I). If we extend the construction to a non-discrete
time line, some version of this restriction must be stated separately.

There are also more minor restrictions; for example, we will define shared knowledge to be the
true transitive closure of knowledge, which is not expressible in a first-order language.

Theorem 1 below states that the axioms in this theory are consistent with essentially any
physical theory that has a model over discrete time with a starting point state and physical actions.

Definition 1: A physical language is a first-order language containing the sorts “situations”,
“agents”, “physical actionals”, “physical actions”, “physical fluents”, and “clock times”; containing
the non-logical symbols, “<”, “do”, “occurs”, “holds”, “time”, and “communicate”; and excluding
the symbols, “k acc”, “inform”, and “sk acc”.

Definition 2: (This is definition 6 of Appendix A). Let L be a physical language, let T be a theory
over L. T is an acceptable physical theory (i.e. acceptable for use in theorem 1 below) if there exists
a model M and an interpretation I of L over M such that the following conditions are satisfied:

1. I maps the sort of clock times to the positive integers, and the relation T 1 < T 2 on clock
times to the usual ordering on integers.

8The only way to be sure that the theory is more general than the class of models is to prove that it is consistent
with a broader class of models.
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2. Axioms T.1 — T.9 in table ?? are true in M under I.

3. Theory T is true in M under I.

4. The theory is consistent with the following constraint: In any situation S, if any communica-
tion act is feasible, then arbitrarily many physically indistinguishable communication acts are
feasible.

5. If α is a predicate symbol in L with more than one situational argument, then α(X1 . . . Xk)
holds only if all the situations among X1 . . . Xk are ordered with respect to <. (Note that this
condition holds both when α is“<” and α is “occurs”.) If β(X1 . . .Xk) is a function symbol,
then the above condition holds for the relation Xk+1 = β(X1 . . .Xk).

Condition (4) no doubt seems complex, strange, and restrictive. But in fact any physical
model can be easily transformed into one satisfying this condition: take the original model and,
whereever a communicative act occurs, make an infinite number of identical copies of the subtree
following the branch where the act occurs. Moreover, most reasonable physical theories T will
accept this transformation, or can be straightforwardly transformed into theories that will accept
this transformation. In fact, therefore, condition (4) is not a substantial restriction on T .

For several reasons, it is unfortunate that condition (5) needs to be included:

• It was not included in the KR-2004 paper.

• I don’t know that it’s necessary; in fact, I suspect that the theorem is true even if this condition
is dropped (certainly not true of the other conditions.)

• This condition is satisfied in most causal theories; generally a causal theory refers only to
situations in a single time line, which is what is required here. However, it is hard to be sure
that you will never encounter a causal theory where it would be natural to use a relation that
violates this condition.

However, I have not found a proof for languages that violate this condition.

Of course, if L contains a symbol α that violates condition 5, but that is defined in T using a
rule α⇔φ where φ contains only symbols that respect condition 5, then that is not a problem; we
can simply replace α by φ throughout T , and thus obtain a theory that respects condition 5. The
problematic case is where there are symbols whose interpretation in I violates condition 5, and that
are not reducible to symbols that respect condition 5.

(The KR-2004 paper claims that condition (4) can be stated in a first-order axiom schema.
This is in error. More precisely, I have not found any first-order axiom schema that can be used to
instantiate condition 4 that I can prove to be sufficient for the theorem below.)

Theorem 1: Let T be an acceptable physical theory, and let U be T together with axioms K.1 —
K.8 and I.1 — I.5. Then U is consistent.

It is possible to strengthen theorem 1 by adding in domain-specific axioms of knowledge ac-
quisition and the associated frame axiom over accessibilty relation, as described in section ??, plus
conditions on the initial knowledge and ignorance of the agents. Specifically, we have the following
theorem:

Theorem 2: Let T be an acceptable physical theory, and let U be the union of:

A. T ;
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B. Axioms K.1 — K.7 and I.1 — I.5.

C. A collection of domain-specific knowledge acquisition axioms of the form specified in section ??.

D. The frame axiom I.6 associated with the axioms in (C).

E. Any set of axioms K specifying the presence or absence of k acc relations among situations at
time 0 as long as:

i. The axioms in K do not refer to any situations of time later than 0.

ii. The axioms in K are consistent with T , axioms K.1 — K.3, K.5 (as regards knowing the
feasibility of actions at time 0); and the axioms in (C).

Then U is consistent.

In appendix A, we sketch how the proof of theorem 1 is modified to give a proof of theorem 2.

8 Related Work

The theory presented here was originally developed as part of a larger theory of multi-agent planning
(Davis and Morgenstern, 2004). That theory includes requests as speech acts as well as informative
speech acts. However, our analysis of informative acts there was not as deep or as extensive in scope.

As far as we know, this is the first attempt to characterize the content of communication as a
first-order property of possible worlds. Morgenstern (1988) develops a theory in which the content
of communication is a string of characters. A number of BDI models incorporate various types of
communication. The general BDI model was first proposed by Cohen and Perrault (1979); within
that model, they formalized illocutionary acts such as “Request” and “Inform” and perlocutionary
acts such as “Convince” using a STRIPS-like representation of preconditions and effects on the
mental states of the speaker and hearer. Cohen and Levesque (1990) extend and generalize this
work using an full modal logic of time and propositional attitudes. Here, speech acts are defined in
terms of their effects; a request, for example, is any sequence of actions that achieves the specified
effect in the mental state of the hearer.

Update logic (e.g. Plaza 1989; van Benthem 2003) combines dynamic logic with epistemic logic,
introducing the dynamic operator [A!]φ, meaning “φ holds after A has been truthfully announced.”.
The properties of this logic have been extensively studied. Baltag, Moss, and Solecki (2002) extend
this logic to allow communication to a subset of agents, and to allow “suspicious” agents. Colombetti
(1999) proposes a timeless modal language of communication, to deal with the interaction of intention
and knowledge in communication. Parikh and Ramanujam (2003) present a theory of messages in
which the meaning of a message is interpreted relative to a protocol.

There is a large literature on the applications of modal logics of knowledge to a multi-agent
systems. For example, Sadek et al. (1997) present a first-order theory with two modal operators
Bi(φ) and Ii(φ) meaning “Agent i believes that φ” and “Agent i intends that φ” respectively. An in-
ference engine has been developed for this theory, and there is an application to automated telephone
dialogue that uses the inference engine to choose appropriate responses to requests for information.
However, the temporal language associated with this theory is both limited and awkward; it seems
unlikely that the theory could be applied to problems involving multi-step planning. (The dialogue
application requires only an immediate response to a query.)

The multi-agent communication languages KQML (Finin et al., 1993) and FIPA (FIPA, 2001)
provide rich sets of communication “performatives”. KQML was never tightly defined (Woolridge
2002.) FIPA has a formal semantics defined in terms of the theory of (Sadek et al. 1997) discussed
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above. However, the content of messages is unconstrained; thus, the semantics of the representation
is not inherently connected with the semantics of the content, as in our theory.

Other modal theories of communication, mostly propositional rather than first-order, are dis-
cussed in (Wooldridge and Lomuscio, 2000; Lomuscio and Ryan, 2000; Rao, 1995).

The theory of runs and messages, presented in (Fagin et al. 1995) developed a constructive
model of a system of agents. Each agent is characterized as a infinite sequence. A state of agent
A at time T is the prefix of the first T element of the corresponding sequence. The global state
of the system at time T is the tuple of the states of all the agents at time T. Two global system
states Q1 and Q2 are knowledge accessible relative to A if the state of A is the same in Q1 and
Q2. A message is an event that modifies the state of the sender when it is sent and the state of
the recipient when received. There is a protocol that governs under what circumstances a sender
may send a specified message. The meaning of the message can be identified with the knowledge
gained by the recipient when it is received. If one identifies “possible world” with “global state of the
system”, this gives a clear and simple semantics for knowledge and informative acts. Moreover, it
has the remarkable advantage that, given a suitable interpretation of the symbols, axioms T.1–T.9,
K.1–K.7, I.1, I.2, I.3, and I.6 are all consequences of the definition. However, it does not seem to be
a quite adequate framework for our theory, since there doesn’t seem to be a way to achieve axioms
I.4 and I.5. The reason that the (similar) semantics that we give in Appendix A does not quite
fit within this framework is that this framework assumes a fixed set of messages, whereas in our
semantics, a message sent at time K corresponds to a set of situations at time K; and this kind of
mutual recursion between system states and messages is not allowed within Fagin et al.’s definition
of a system.

9 Conclusions and Open Problem

We have developed a theory of communications which allows the content of an informative act
to include quantifiers and logical operators and to refer to physical states, events including other
informative acts, and states of knowledge; all these in the past, present, or possible futures. We have
proven that this theory is consistent, and compatible with a wide range of physical theories. We
have examined how the theory avoids two potential paradoxes, and discussed how these paradoxes
may pose a danger when these theories are extended. Elsewhere (Davis and Morgenstern, 2004)
we have shown that the theory can be integrated with a similarly expressive theory of multi-agent
planning.

The major technical problem that follows naturally on this work is to find ways to relax the
limitations enumerated in section 1 while preserving the consistency of the theory. Let us discuss
what is involved here a little.

The most irksome of the restrictions is that the sender AS knows when the communication
is complete and that, when the commication is complete, the recipient AH knows when the com-
munication was initiated. This rules out application to most mail-like communications, or any
communication media with an unknown delay. The problem is to find a modified version of sec-
tion I.4 which is suitable for this more relaxed setting. Untimed communication, especially where
the recipient does not know the time when the communication was initiated, leads to complex and
confusing possible worlds structures, and I have not yet managed to think my way through them.
However, I would be surprised if there were any insurmountable problems here.

The restriction that the sender and recipient know each other is one that, in practice, is often
enough violated, and it would certainly be interesting to relax this. If you relax this condition, then
a timed communication (i.e. one satisfying I.4) gives rise to anonymous shared knowledge. That is,
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the speaker and hearer know that they share the knowledge of the content; they just don’t know
who they are sharing the knowledge with. This is analogous to common knowledge among non-rigid
sets (Fagin et al. 1995, section 6.4) but the different setting here raises different issues.

The restriction to discrete time obviously impedes the integration of this theory with physical
theories that use continuous time. The problem is that that the construction of the model in our
consistency proof is inherently iterative over time, and there does not seem to be any easy way to
modify this iterative structure. The proof will work if one makes strong assumptions about the
discreteness of communicative acts; e.g. one posits that it is only physically possible to begin a
communication in a situation whose clock time is a non-negative integer. It is conceivable that such
a theory would suffice for most applications; one would have to look over examples of reasoning that
integrate continuous physical reasoning with communication, which I have not yet done. I would
conjecture that axioms K.1 — K.7 and I.1 — I.6 are in fact consistent with a continuous model
of time, without modification, and without the need to impose strong conditions on the physics of
communication, but I am certainly far from a proof.

Other, more far-reaching, problems include:

• The problem of characterizing a “maximally ignorant” initial state, discussed in section ??.

• Having defined the notion of a “generalized fluent”, an obvious next step is to define “know(A, Q)”
as a first-order function mapping agent A and fluent Q into the fluent of A knowing Q. The
axiomatics of this representation would be interesting to study.

• Our work on integrating this work with a theory of planning (Davis and Morgenstern, 2004)
involves some rather restrictive constraints on the protocols between agents. We would like to
study how the theory can be modified to weaken these.

• To my mind, the brass ring in this field would be to integrate the above theory of illocutionary
acts, which describes the content of communications, with a theory of locutionary acts, which
would describe the form of communications. Achieving a theory that is both general and
consistent would be a major accomplishment.
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Appendix A: Proof of Theorem 1

This appendix contains a proof of theorem 1. Specifically, we prove that if T is a physical theory
over integer-valued time satisfying a few, not very restrictive, constraints, then T is consistent with
our axioms of knowledge and of communication.

Outline of paper: In section A.1 we give a formal definition of what we mean by a physical theory.
In section A.2, we show how a model of a physical theory can be extended to incorporate knowledge
relations and informative actions. In section A.3, we define the interpretation of our theory over
the new model. In section A.4, we prove that this interpretation over this model satisfies both the
original physical theory and the axioms of knowledge and communication.

A.1: A Physical Theory

A physical theory is a set of constraints on actions and fluents. A communicative action may have
physical preconditions, effects, or other constraints, but these may not depend on the content of the
communication. That is, from the physical point of view, communicative actions are distinguished
only by the identity of the speaker and hearer, not the content. Physical theories do not refer to
knowledge states.

Our objective here is to prove that any reasonable physical theory is consistent with our theory
of knowledge and communication. To do this, we have to ensure that the two theories “join up”, so
to speak; specifically, that the physical theory does not impose any constraints that are incompatible
with the epistemic theory. There are three potential sources of trouble.

• Axiom I.1, I.2, and I.4 together imply that, if AS can communicate with AH then, in gen-
eral, there are a large number of different possible communicative acts that AS can perform.
Specifically, in any situation S, if Q1 and Q2 are fluents such that (a) AS knows that both Q1
and Q2 hold; but (b) it is not shared knowledge between AS and AH that Q1⇔Q2, then the
act of AS informing AH that Q1 different from the act of AS informing AH that Q2. The
physical theory could make this impossible by asserting that only a small number of differ-
ent communicative acts are feasible in S. For instance, the statement that only two different
communicative acts are feasible in s0 could be stated in the formula

∃S1a,S1b occurs(do(as,communicate(ah)),s0,S1a) ∧
occurs(do(as,communicate(ah)),s0,S1b) ∧ S1a 6= S1b ∧
∀S1 occurs(do(as,communicate(ah)),s0,S1) ⇒ [S1 = S1a ∨ S1 = S1b]

To block this, we impose condition (4) in definition 6 below: A physical theory must be
consistent with the constraint that, if any communicative action is feasible in a situation, then
infinitely many physically indisinguishable actions are feasible in that situation.

• Axiom I.5 asserts the existence of a large number of fluents. The physical theory could assert
that only a limited class of fluents exist. E.g. the following axiom asserts that the only fluents
have the form “on(A, B)” where A and B are blocks.

∀Q ∃A,B block(A) ∧ block(B) ∧ Q=on(A, B).

This is not at all far-fetched; one approach to the frame problem is to assert “The only fluents
changed by action A are Q1 . . .Qk,” which leads to the same kind of problem.
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We get around this problem by distinguishing between physical fluents and general fluents ,
and requiring that a physical theory can only refer to physical fluents.

• Similarly, the theory of communication requires the existence of actionals “inform(AH, Q)”
and of actions “do(AS,inform(AH, Q)).” We have to make sure that the physical theory
does not simply prohibit these; e.g. assert that the only possible actionals have the form
“communicate(AH)” and “puton(A, B)”. To insure this, we require that the physical theory
can only refer to physical actions and actionals.

Definition 1: A physical language is a first-order language containing the sorts “situations”,
“agents”, “physical actionals”, “physical actions”, “physical fluents”, and “clock times”; containing
the non-logical symbols, “<”, “do”, “occurs”, “holds”, “time”, and “communicate”; and excluding
the symbols, “k acc”, “inform”, and “sk acc”. (The language may or may not contain any sort or
non-logical symbol other than those mentioned above.)

Definition 2: Let L be a physical language. Let M be a model and let I be an interpretation of
L in M. Let s0 and s1 be situations in M. Situation s1 is a successor of s0 if s0 < s1 and there is
no situation sm such that s0<sm<s1

Here, and in subsequent definitions, we implicitly use I to apply nomenclature from L to entities
in M. More formal statements of the condition “s0 < s1” above would be, “The pair 〈s0,s1〉 ∈ I(’<’)”
or “The open formula SA < SB is true in M under I under the valuation SA→s0, SB→s1.”. We
will use the shorter form when it is clear; when necessary, we will be more precise.

Definition 3: Let L,M, I be as above. Let s0,s1 be situations in M. We say that s1 is a
communication successor of s0 if s1 is a successor of s0 and there exist agents as,ah and a situation
sz such that s1≤sz and occurs(do(as,communicate(ah)),s0,sz).

Definition 4: Let L,M, I be as above. Let τ be a function from M to itself which is one-to-one
and onto. The function τ is said to be a situational automorphism if the following conditions hold:

1. If X is not a situation, then τ(X) = X .

2. Let α be a predicate symbol in L with k arguments or a function symbol with k−1 arguments.
Note that, under standard Tarskian semantics, I(α) is a set of k-tuples of elements of M. A
tuple 〈x1 . . . xk〉 ∈ I(α) if and only if 〈τ(x1) . . . τ(xk)〉 ∈ I(α).

Definition 5: Two situations SA and SB are indistinguishable if the following holds: Let SSA be
the part of the time structure following SA and SSB be the part of the time structure following
SB.

SSA= { S ∈ M | SA ≤ S }
SSB= { S ∈ M | SB ≤ S }

Then there exists a situational automorphism τ over M such that τ(SSA) = SSB, τ(SSB) = SSA,
and for any situation S which is not in SSA and SSB, τ(S) = S.

Definition 6: Let L be a physical language, and let T be a theory over L. T is an acceptable physical

theory (i.e. acceptable for our discussion here) if there exists a model M and an interpretation I of
L over M such that the following conditions are satisfied:
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1. I maps the sort of clock times to the positive integers, and the relation T 1 < T 2 on clock
times to the usual ordering on integers.

2. M satisfies Axioms T.1 — T.9 in table ?? under T , where T.8 and T.9 are restricted to
physical actions.

3. M satisfies theory T under I.

4. For any situations s0,s1 and agents as,ah in M, if s1 is a communication successor of s0, then
there are infinitely many successors of s0 that are physically indistinguishable from s1.

5. If α is a predicate symbol in L with more than one situational argument, then α(X1 . . . Xk)
holds only if all the situations among X1 . . . Xk are ordered with respect to <. (Note that this
condition holds both when α is“<” and α is “occurs”.) If β(X1 . . .Xk) is a function symbol,
then the above condition holds for the relation Xk+1 = β(X1 . . .Xk).

We can now state precisely the theorem that is the objective of this appendix.

Theorem 1:

Let T be an acceptable physical theory, and let A be T together with axioms K.1 — K.7 and I.1 —
I.5, and with T.8 and T.9 extended to arbitrary actions. Then A is consistent.

Sections A.2-A.4 give the proof of this theorem.

A.2: Model construction

Sketch of model construction

The main sticking point of the proof is as follows: In order to satisfy the comprehension axiom,
we must define a fluent to be any set of situations. However, if Q is a fluent, then the act of AS

informing AH of Q in S1 generates a new situation; and if we generate a separate “inform” act for
each fluent, then we would have a unsolvable vicious circularity.

We are rescued here by axiom I.4 together with the theorem, proven in theorem 2 below, that,
in a discrete time structure satisfying the axiom of memory (K.4), knowledge accessibility relations
can only connect situations of the same time, and therefore the current time is always common
knowledge between all agents. Let q1 be any fluent that holds in situation s1. By axiom I.4, if AS

informs AH of q1 over the interval [s1,s2] and AS and AH have shared knowledge that q1⇔q2 in
s1, then the same act can be characterized as AS informing AH of q2. Let t1=time(s1). Let q2
be the fluent such that holds(S,q2) ⇔ holds(S,q1) ∧ time(S)=t1. Then AS and AH have shared
knowledge in s1 that q1 is equivalent to q2. Therefore, it suffices to generate an occurrence of an
inform act starting in S1 only for fluents like q2 that specify the current time, and such a fluent can
be identified with a set of situations of the same time as S1. This limitation allow us to break the
circularity in the construction of situations and informative acts: the content of informative acts
starting at time K is a subset of the situations whose time is K; informative acts starting in time
K generate situations whose time is K + 1.

Therefore, we can use the “algorithm” shown in table ?? to construct a model of the theory A.
The main difference between the model M of theory T and the model U of A is that U contains
many more situations. To avoid confusion, we will call the situations of M “p-situations” and call
the situations of U “u-situations”. Each u-situation US has a corresponding p-situation, denoted
PHYS(US), which is physically indistinguishable from US. The difference is that US may associate
specific contents with some of the communication actions that precede PHYS(US).
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Constructing a model

procedure model construct(in T : an acceptable physical theory;
M : a model of theory T )

return a structure of u-situations over which we will define
a model of the extended theory.

for each p-situation PS in M, construct a u-situation US.
Label PHYS(US) = PS, time(US)=0.

for (each agent A), define the relation K ACC(A, ·, ·)
to be some equivalence relation over the u-situations constructed above.

for (K=0 to ∞) do {
for (each u-situation S of time K) do {

for (each p-situation PS following PHYS(S) in M)
construct a new u-situation S1 and mark PHYS(S1)=PS;

for (each pair of agents AS,AH) do {
if (in M there is an act starting in S of AS communicating to AH)
then {

SSL := the set of u-situations knowledge-accessible from S
relative to the knowledge of AS;

SSU := the set of u-situations knowledge-accessible from S
relative to the shared knowledge of AS and AH;

for (each set SS that is a subset of SSU and a superset of SSL) do {
construct an action “do(AS,inform(AH,SS))” starting in S;
construct a successor S1 of S corresponding to the execution of this action;
label PHYS(S1) to be a u-situation in M following a communicate action in PHYS(S);

}
} } }

use the axioms of knowledge to construct a valid set of
knowledge accessibility relations over the new u-situations

} return (the set of u-situations plus the set of knowledge accessibility relations)

Table 4: Construction of a model

Theorem 3: If the set of clocktimes is equal to the positive integers, then for any situations SA, SB,
if k acc(A, SA, SB) then time(SA)=time(SB).

Proof: Suppose that time(SA) < time(SB)=k. By axioms T.7, T.6 and T.5, there exist situations
SB0 < SB1 < . . . SBk−1 < SB such that time(SBi)=i. By axiom K.4 there exist SA0 . . . SAk−1

such that k acc(A, SAi, SBi), SAi−1 < SAi and SAk−1 < SA; but this is impossible, since time(SA)
< k.

Formal construction of the model

The definitions in this section essentially amount to a formalized re-statement of the “algorithm” in
table ??.

Let L be a physical language. Let T be an acceptable physical theory over L. Let M be a
model and let I be an interpretation of L satisfying the conditions of definition 6.

The remaining definitions in this section are relative to a fixed choice of L, T , M, and I.

For convenience, for each symbol τ in T , including sorts, we use the same symbol in block
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capitals to denote the image of τ under I; this is an individual, a subset, a mapping, or a relation
over M. Thus, for example, AGENTS is the image under I of the sort “agents”; TIME is the image
under I of the function symbol “time” and so on.

We now proceed to building up the set of u-situations. This construction is recursive over time.
Naturally, the base case is at time 0.

The most important and complex part of the construction is the wider class of situations that
we will need. In general a u-situation US is a pair 〈S1,MM〉 where:

• S1 is a p-situation. We will write S1=PHYS(US).

• MM is a set of 4-tuples 〈AS,AH,USSQ,SX〉. AS and AH are agents; USSQ is a set of u-
situations; and SX is a p-situation such that SX < PHYS(US) and such that
OCCURS(DO(AS,COMMUNICATE(AH)),SX,SZ). Such a tuple asserts that an action of AS
informing AH of content USSQ began in a u-situation USX < US. We write MM=MM(US).

It will be convenient to posit the existence of an atomic entity INFORM, which is not in M,
and of an entity DO.

Definition 7: Let PS be a p-situation such that TIME(PS)=0. A u-situation at time 0 is a pair of
the form US=〈PS,∅〉. The function ANCESTOR(US) maps a u-situation US to a set of u-situations,
the ancestors of US in the time structure.

Definition 8: A time structure of depth 0 TS is a pair:

• The set of u-situations U SITS = { 〈PS,∅〉 | PS∈SITUATIONS, TIME(PS)=0} with one u-
situation for each p-situation at time 0.

• A function K ACC mapping any agent A ∈ AGENTS to an equivalence relation over U SITS.

Definitions 9 through 15 are mutually recursive, successively building up the model forward in
time.

Definition 9: Let TS be a time structure of depth K. Let US be a u-situation of time K in TS. Let
S1=PHYS(US). Let MM be a collection of 4-tuples as described above. Let S2 be a successor to S1.
The simple successor to US parallel to S2 is the pair 〈S2,MM〉.

Definition 10: Let TS=〈U SITS,K ACC〉, US, S1, MM be as above. Let AS and AH be agents. A
possible communicative content from AS to AH is a set of u-situations USSQ of time K in U SITS
satisfying the following: Let USSL be the set of u-situations USA in TS such that 〈US1,USA〉 ∈
K ACC(AS). Let USSU be the set of u-situations USA in USSL such that there exist US0 = US, US1,
US2 ... USN = USA, such that for each J, 〈USJ , USJ+1〉 is either in K ACC(AS) or in K ACC(AH).
Then USSL ⊆ USSQ ⊆ USSU.

The 4-tuple 〈AS,AH,USSQ,S1〉 is called an inform indicator starting in S1.

Definition 11: Let TS, US, S1, MM be as above. Let S2 be a successor of S1. Let I=〈AS,AH,USSQ,S1〉
be an inform indicator starting in S1. I possibly leads toward S2 if there exists SZ≥S2 such that
OCCURS(DO(AS,COMMUNICATE(AH)),S1,SZ). An informative sheaf in US toward S2 is a set
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MMX of inform indicators in US toward S2 such that no two elements of MMX have the same
speaker and the same hearer. An informative successor to US toward S2 is a pair 〈S2,MM2〉 where
MM2 is the union of MM with some informative sheaf in US toward S2.

Definition 12: Let TS, US, S1, S2 be as above. A u-successor set for US toward S2 is the union of

• The simple successor to US,S2.

• A set USS of informative successors to US,S2 with the following property: If M is any inform
indicator in S1, then there exists an element 〈S2,MM〉 ∈USS such that M∈MM. That is, every
inform indicator is attached to at least one successor of US.

A u-successor of a u-situation at time K is a u-situation at time K + 1. If US1 is a u-successor of
US then ANCESTOR(US1) = ANCESTORS(US) ∪ { US }.

Definition 13: Let TS be a time-structure of depth K. A u-situation successor space for TS is the
union over [all u-situations US of depth K in TS] and [all successors S2 of PHYS(US))] of some
u-successor set for US,S2.

Definition 14: Let TS=〈U SITS,K ACC〉 be a time-structure of depth K. Let USA and USB be
u-situations of depth K in TS. Let US1A be a u-successor of USA and let US1B be a u-successor of
USB. Let A be an agent. Then US1B is possibly knowledge accessible from US1A relative to A if
the following conditions hold:

• 〈USA,USB〉 ∈ K ACC(A).

• For any actional Z and p-situations SXA,SYA, if OCCURS(DO(A,Z),SXA,SYA) and SXA≤PHYS(USA),
then

– If SYA < PHYS(USA), then there exist SXB, SYB such that OCCURS(DO(A,Z),SXB,SYB)
and SYB < PHYS(USB).

– If SYA=PHYS(USA), then there exists SXB such that OCCURS(DO(A,Z),SXB,PHYS(USB)).

– If SXA < PHYS(USA) < SYA, then there exist SXB, SYB such that OCCURS(DO(A,Z),SXB,SYB)
and SXB < PHYS(USB) < SYB.

– If SXA=PHYS(USA) < SYA, then there exists SYB such that OCCURS(DO(A,Z),PHYS(USB),SYB).

• If there exists a tuple 〈AS,A,USSQ,SX〉 in MM(USA) and
OCCURS(DO(AS,COMMUNICATE(AH)),SX,PHYS(USA)) then there exists a p-situation
SXB and a tuple 〈AS,A,USSQ,SXB〉 in MM(USB) and
OCCURS(DO(AS,COMMUNICATE(AH)),SXB,PHYS(USB)). (That is, if AS has completed
informing A of USSQ, then A knows that AS has completed informing him of USSQ.)

Definition 15: Let TS be a time-structure of depth K. A possible successor to TS is a pair
TS1=〈U SITS1, K ACC1〉 where

• U SITS1 is a u-situation successor space for TS.
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• for each agent A ∈ AGENTS, K ACC1(A) is an equivalence relation over U SITS1, which is
a subset of the relation, “USB is possibly knowledge accessible from USA.” (Note that, since
all the conditions on “possibly knowledge accessible” have the form “Some property holds
on US1A iff the corresponding property holds on US1B,” the relation “possibly knowledge
accessible relative to (A)” is itself always an equivalence relation.)

TS1 is said to be of depth K+1.

Finally, we let this construction go from time 0 to infinity.

Definition 16: Let TS0 = 〈U SITS0, K ACC0〉, TS1 = 〈U SITS1, K ACC1〉, . . . be a sequence such
that TS0 is a time structure of depth 0 and for each i, TSi+1 is a possible successor for TSi. Then the
pair TS∞ = 〈U SITS∞, K ACC∞〉 = 〈∪iU SITSi,∪jK ACCj〉 is a communicative model extension

of M, I.

A.3: Interpretation

Let L, M and I be as in the previous section. Let W be the language L combined with the following
additional elements:

• The sorts “fluent”, “actional” and “actions”, which are super-categories of the sort “physical
fluent”, “physical action”, and “physical actional”, respectively.

• The symbols “k acc”, “sk acc”, and “inform”.

Let TS∞ = 〈U SITS∞, K ACC∞〉 be a communicative model extension of M, I.

In this section, we define an interpretation J of W in terms of constructions over TS∞ and
M. For notational convenience, we will write the image of a symbol under J by writing it in
lower-case boldface; thus, for example, sk acc = J (“sk acc”). We will use ordinary Roman font
where symbols are used in prefix notation and are interpreted under J . For example, if we write
“occurs(E, S1, S2)” we mean the interpretation of “occurs” under J . Note that, if a symbol is in
L, then its interpretation under I may be different than its interpretation under J .

We will first discuss the construction of J informally and then proceed to the formal definition.

The first issue is fluents. On the one hand, axiom I.5 asserts that every property of situations
α(S) has an associated fluent Qα such that Qα holds in just those situations satisfying S. The
usual extensionalizing trick, therefore, is to identify Qα with the set of u-situations satifying α;
generally, to identify fluents with sets of situations. On the other hand, to extend the theory T
to the new model, we must make sure that every physical fluent in T is still a fluent in the new
theory. Moreover it is possible that T involves the existence of two different fluents that are in fact
coextensional in terms of the situations where they hold, but differ in terms of some other property
of interest to T . Therefore, we define a general fluent as a pair of a label and a set of u-situations.
For a physical fluent that is, so to speak, grandfathered from T , the label is just the physical fluent;
for all other fluents, the label is immaterial. A physical fluent Q holds in u-situation S just if Q

holds in PHYS(S).

The second issue is the occurrence of actions. For physical actions, as for physical fluents, we
use the “PHYS” mapping to guide us; a physical action E occurs from US1 to US2 if E occurs
from PHYS(US1) to PHYS(US2). For informative events, there are two steps. First, axiom I.4
asserts that “do(as,inform(ah,q1))” and “do(as,inform(ah,q2))” co-occur from us1 to us2 if the in-
tersection of q1 with the set of u-situations that are sk-accessible relative to as,ah from us1 is the
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same as the intersection of us2 with that set. Second, the occurrence from us1 to us2 of the act
“do(as,inform(ah,q0))” where q0 is a subset of the sk-accessible situations is indicated in the second
(MM) field of the u-situation us1.

Finally for simplicity we assume that there are no “pointless coincidences” between M and the
constructions we will use in J . That is to say: It is conceivable that M itself happens to contain,
as an entity, some tuple that we will want to define as an entity in the denotation of J . Such a
coincidence would cause propositions to be true and false in ways that we don’t intend. One could
block this by modifying definition 17 below as follows: Whereever the definition constructs an tuple,
add an additional element that is not an element of M (e.g. M itself.) That will block any such
coincidences. For the sake of readability, I have omitted these.

Otherwise, the definition is pretty much straightforward.

Definition 17: A general fluent is a pair 〈LABEL,USS〉 where LABEL is either a physical fluent
or 0, and USS is a set of u-situations.

Definition 18: For any PF in PHYSICAL-FLUENTS, define PF MAP(PF) to be the pair
〈PF, { US | US∈U-SITUATIONS ∧ HOLDS(PHYS(US),PF)} 〉.
Define PF IMAGES = { PF MAP(PF) | PF ∈ PHYSICAL-FLUENTS}

Definition 19: We define a general mapping “U2P MAP” from constructions over TS∞ to entities
in M as follows:

• If U is a u-situation, then U2P MAP(U)=PHYS(U).

• If U=〈PF,USS〉 ∈ PF IMAGES then U2P MAP(U)=PF.

• If U ∈ M then U2P MAP(U)=U.

• Else U2P MAP(U) is undefined.

In reading definition 20 below, keep in mind that, in the standard Tarskian semantics for first-
order logic, the denotation of a function or a predicate symbol is a set of tuples. Similarly, we take
the denotation of a sort to be a set of entities.

Definition 20: (Long) Let L,M, I,W ,U be as above. We define the function J over the sorts and
symbols of W as follows:

Sorts:

J (the sort “clock time”) = the non-negative integers.

J (the sort “agent”) = I(“agent”).

J (the sort “situation”) = the set of u-situations in U .

J (the sort “fluent”) = the set of general fluents.

J (the sort “physical fluent”) = PF IMAGES.

J (the sort “physical actional”) = I(“physical actional”)

J (the sort “physical action’) = I(“physical action”)

Let informative actionals ≡ { 〈INFORM,AH,Q〉 | A ∈ agent ∧ Q ∈ fluent }.
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Let informative actions ≡ { 〈DO, A,Z〉 | Z ∈ informative actionals }

J (the sort “actional”) = I(“physical actional”) ∪ informative actionals.

J (the sort “action’) = I(“physical action”) ∪ informative actions.

If σ is any other sort used in L, then J σ) = I(σ).

Non-logical symbols:

J (“<”) (as a predicate on clock times) = the usual ordering on integers.

J (“<”) (as a predicate on situations) = { 〈S1, S2〉 | S1, S2 ∈ situation and S1 is an ancestor of
S2. }

J (“holds”) = { 〈S, Q〉 | S ∈ situation, Q = 〈PF, USS〉 ∈ fluent and S ∈ USS. }

J (“time”) = { 〈S, T 〉 | S ∈ situation, T ∈ clocktime and S is of time T }.

J (“communicate”) = I(“communicate”)

J (“do”) = I(“do”) ∪ { 〈 A,Z, 〈DO,A,Z〉〉 | A ∈ agent and Z ∈ informative actionals }

J (“inform”) = { 〈AH,Q, 〈INFORM,AH,Q〉〉 | AH∈agent and Q∈fluent }

J (“k acc”) = { 〈A,S1,S2〉 | A ∈agents and 〈S1,S2〉 ∈ K ACC∞(A). }

J (“sk acc”) =
{ 〈AS,AH,SA,SB〉 |

exists(S0 = SA, S1 . . . Sk = SB) such that
for (i = 1 . . . k) either k acc(AS, Si−1 , Si) or k acc(AH, Si−1, Si)

}.

J (“occurs”) =
{ 〈E,US1,US2〉 |

E∈action and US1,US2∈situation and
either [E ∈ I(“physical action”) and OCCURS(E,PHYS(US1),PHYS(US2))] or

[there exist (A,AH ∈ agent; Q1,Q2 ∈ fluent; USS1,USS2) such that
E=〈DO,AS,〈INFORM,AH,Q1〉〉 and
Q1=〈PF1,USS1〉, Q2=〈PF2,USS2〉;
USS2 = { US ∈ USS1 | 〈AS,AH,US1,US〉 ∈ sk acc },
OCCURS(DO(AS,COMMUNICATE(AH)),PHYS(US1),PHYS(US2)) and
〈AS,AH,USS2,PHYS(US1)〉 ∈ MM(US2)
]

}

Let α be any symbol in L other than those enumerated above. I(α) is a set of tuples of entities
in M. A tuple T ′ is a replacement for tuple T if, for each index I, U2P MAP(T ′[I]) = T [I]. Then
J (α) is the set of all replacements R for the tuples in I(α), such that any two situations in R are
ordered under J (“ < ”).

End of definition 20.

Definition 21: The model U is the union of clocktime, agent, situation, fluent, actional,
action and M.
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Note that the function U2P MAP(X) is defined for exactly those entities X which are in J (σ)
where σ is one of the sorts in the physical language (clock times, situations, agents, physical fluents,
physical actionals, physical actions, and other sorts in L).

A.4: Soundness

Throughout this section: Let L be a physical language. Let T be an acceptable physical theory over
L. Let M be a model and let I be an interpretation of L in M that satisfies T . Let U and J be
defined as above.

We will assume that L is strongly sorted; in particular, that every variable in L is labelled with
its sort. A valuation over variables in L is required to respect the sort constraint. That is, if µi is a
variable of sort σi, and V is a valuation of µi in M then V(µi) ∈ I(σi). If W is a valuation of µi in
U then W(µi) ∈ J (σi).

Lemma 1: For every p-situation PS in M there exists a u-situation US in U such that PHYS(US)=PS.

Proof by induction on TIME(PS). If TIME(PS)=0 then there exists a corresponding u-situation
by definition 8. Suppose the statement is true for all PS such that TIME(PS)=k. Let PS1 be
a p-situation such that TIME(PS1)=k + 1. By axiom T.7, PS1 is the successor of some situ-
ation PS0 such that TIME(PS0) = k. By the induction hypothesis, there is a situation US0
such that PHYS(US0)=PS1. By definition 9 there is a simple successor US1 of US0 such that
PHYS(US1)=PS1.

Lemma 2: For any u-situation U, TIME(PHYS(U)) = TIME(U). For any two u-situations U1, U2
if U1 < U2 then PHYS(U1) < PHYS(US2).

Proof: Immediate from the definition of J (“<”) in definition 20 and the definition of “ANCES-
TORS” in definitions 7 and 12.

Lemma 3: Let µ1 . . . µk be variables in L. Let V be a valuation mapping each variable µi into
I(σi). Then there exists a valuation W into U such that U2P MAP(W(µi)) = V(µi).

Proof: Immediate from Lemma 1 together with the construction of U2P MAP and the fact that,
for each sort σ, U2P MAP maps an element of J (σ) to an element of I(σ).

Lemma 4: Let α(µ1 . . . µk) be a predicate symbol in L, including equality. Let W be a valuation
from µi into U . Define V(µi) = U2P MAP(W(µi)). Then α(µ1 . . . µk) holds in U under J , W if
and only if (a) α(µ1 . . . µk) holds in M under I,V and (b) any two situations W(µi) and W(µj)) are
ordered under J (“<”).

Proof: We must consider separately the cases where α is (A) equality over non-situations; (B)
equality over situations; (C) the symbol “<” over clock times; (D) the symbol “<” over situations;
(E) the symbol “occurs”; (F) the symbol “holds”; (G) any other predicate symbol in L.

(A) Equality over non-situations: from definitions 19 and 20.

(B) Equality over situations: Following definitions 19 and 20, this amounts to the claim that
US1=US2 if and only if PHYS(US1)=PHYS(US2) and US1 and US2 are ordered. The implication
from left to right is trivial. For the implication from right to left, consider that, if US1 and US2 are or-
dered but US1 6=US2, then either US1<US2 or US2<US1. If US1<US2, then time(US1)<time(US2)
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so by lemma 2 PHYS(US1)6=PHYS(US2); and likewise if US2<US1.

(C) The symbol “<” over clock times: From the fact that the interpretation is the same under
J as under I (Definition 20).

(D) The symbol “<” over situation: Analogous to (B) above.

(E) The symbol “occurs”. By definition 20, if E is a physical action then occurs(E, S1, S2)
occurs under J if and only if occurs(E,PHYS(S1),PHYS(S2)) under I.

(F) Let µ1, µ2 be variables of sorts “situation” and “physical fluent” respectively. Let PF=V(µ1).
Since U2P MAP(W(µ2)) = V(µ2) = PF, by definition 19 W(µ2) ∈ PF IMAGES, which, by defini-
tion 18 and 19, means that W(µ2) = 〈PF , { US ∈U-SITUATIONS | HOLDS(PHYS(US),PF) }〉 By
definition 20 it follows that 〈W(µ1), W(µ2)〉 ∈ J (“holds”) if and only if 〈V(µ1), PF)〉 ∈ I(“holds”)

(G) α is any other predicate symbol in L. Immediate from definition 20.

Lemma 5: Let β(µ1 . . . µk) be a function symbol in L. Let W be a valuation from µi into U such
that, for any two situational variables µp and µq, W(µp) and W(µq) are ordered with respect to
J (“<”). Define V(µi) = U2P MAP(W(µi)). Then the value of β(µ1 . . . µk) in M under I, V is the
image under U2P MAP of the value of β(µ1 . . . µk) in U under J ,W.

Proof: As in the proof of lemma 4, we must consider separately the cases where β is (A) the function
symbol “do”; (B) the function symbol “time”; (C) any other function symbol in L.

(A) By definitions 19 and 20, if A is an agent and Z is a physical actional then U2P MAP(J (do(A,Z)))
= J (do(A,Z)) = I(do(A,Z)) = I(do(U2P MAP(A),U2P MAP(Z)). (Again, we are mildly abusing
notation.)

(B) By definitions 19 and 20, if US is a u-situation then U2P MAP(J (time(US))) = J (time(US))
= I(time(PHYS(US)) = I(time(U2P MAP(US)).

(C) Let β be any other function symbol. Let 〈x1 . . . xk, y〉 be any tuple where the xi and y are
entities in the image under J of the sorts in L. Then by the last part of definition 20,
〈x1 . . . xk, y〉 ∈ J (β) iff 〈 U2P MAP(x1) . . . U2P MAP(xk), U2P MAP(y)〉 ∈ I(β).
But for any terms γ1 . . . γk and any valuation W from the variables in the γ’s to U , the denotation
of β(γ1 . . . γk) under J ,W is equal to y just if the tuple 〈J (γ1) . . .J (γk), y〉 is in J (β); and likewise
for I.

Unfortunately, U2P MAP does not preserve truth-values of predicates over unordered u-situations;
it is possible that U2P MAP(US1)=U2P MAP(US2) even though US1 6=US2. or that U2P MAP(US1)
< U2P MAP(US2) even if US1 and US2 are unordered. There is, moreover, in general no way to
modify U2P MAP to preserve inequality, since the cardinality of the set of u-situations may be
larger than the cardinality of p-situations. Therefore, in establishing below that if an open formula
with inequalities or orderings is satisfiable in J then it is also satisfiable in I, it is necessary to
continuously “patch” the mapping U2P MAP by mapping a u-situation US into some p-situation
that is physically indistinguishable from U2P MAP(US). Fortunately, we had the foresight to pro-
vide ourselves with plenty of these. Stating this exactly is a little involved; definitions 22-24 and
corollary 6 through lemma 9 accomplish this.

Definition 22: Let τ be a function from U to itself which is one-to-one and onto. The function τ

is said to be a physical automorphism over U if the following conditions hold:

1. If X is not a u-situation, then τ(X) = X .

2. Let α(µ1 . . . µk) be any atomic formula in L with free variables µ1 . . . µk. Let W and Y be
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valuations from µi to U such that Y(µi) = τ(W(µi)). Then Y satisfies α only if W satisfies α.

Note that condition (2) only applies to formulas in the physical language L, not in the broader
language.

Definition 23: Let S1, S2 be either two p-situations or two u-situations. Situation S is the latest

common ancestor (LCA) of S1 and S2, if S≤S1, S≤S2 and S is the latest situation with that property.
Since the order relation on situations is a forest of trees, any two situations have at most one latest
common ancestor

Definition 24: Let 〈µ1 . . . µk〉 be a k-tuple of variables. Let W be a valuation of the µ’s to U and
let V be a valuation of the µ’s to M. V is said to be an image of W if the following conditions hold:

• If µ is not a situational variable, then V(µ) = U2P MAP(W(µ)).

• There exists a physical automorphism τ over U such that, for each pair of situational variables
µi, µj , if S is the latest common ancestor of W(µi), W(µj) then PHYS(τ(S)) is the LCA of
V(µi), V(µj); and if W(µi) and W(µj) have no common ancestor, then V(µi) and V(µj) have
no common ancestor.

We say that the automorphism τ establishes the correspondence between W and V.

Corollary 6: Let µ1 . . . µk, W, V, and τ be as in definition 24. For each i, V(µi) = U2P MAP(τ(W(µi))).

If µi is a situational variable, then applying definition 24 and choosing j = i, since W(µi) is the
LCA of W(mui) and itself, we have U2P MAP(τ(W(µi)) = PHYS(τ(W(µi)) = LCA(V(µi),V(µi))
= V(µi). If µi is not a situational variable, then the result is immediate.

Lemma 7: Let µ1 and µ2 be situational variables in L. Let W and V be valuations of µ1, µ2 to
U and M respectively, and let V be an image of W. Then W(µ1) = W(µ2) if and only if V(µ1) =
V(µ2) and W(µ1) < W(µ2) if and only if V(µ1) < V(µ2)

Proof: Let τ be an automorphism that establishes the correspondence between W and V. If W(µ1)
= W(µ2) then V(µ1) = V(µ2), since V(µ) = PHYS(τ(W(µ)) and is thus a function of W(µ). If
W(µ1) < W(µ2) then by lemma 2, V(µ1) < V(µ2).

Suppose that V(µ1)= V(µ2). Thus, LCA(V(µ1), V(µ2)) = V(µ1) = V(µ2). By definition 24
LCA(W(µ1), W(µ2)) = W(µ1) = W(µ2).

Suppose that V(µ1) < V(µ2). Thus, LCA(V(µ1), V(µ2)) = V(µ1). By definition 24, LCA(W(µ1),
W(µ2)) = W(µ1). Therefore W(µ1) ≤ W(µ2). Since V(µ1) 6= V(µ2), it follows from the earlier part
of this lemma that W(µ1) 6= W(µ2); hence W(µ1) < W(µ2).

Lemma 8: Let α(µ1 . . . µk) be a predicate symbol in L. Let W be a valuation of the µ’s to U and
let V be an image of W. Then α holds in U under W if and only if α holds in M under V.

Proof: Let τ be an automorphism that establishes the correspondence between W and V. Let Q(µi)
= τ(W(µi)). By definition 22, α(µ1 . . . µk) holds under J ,W if and only if it holds under J ,Q. By
lemma 4, α(µ1 . . . µk) holds under J ,Q if and only if it holds under I,V and for any two situational
variables µa, µb, Q(µa) and Q(µb) are ordered. By lemma 7, Q(µa) and Q(µb) are ordered if and
only if V(µa) and V(µb) are ordered; and by condition 5 of definition 6, α(µ1 . . . µk) holds under
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I,V only if V(µa) and V(µb) are ordered. Putting these together, it follows that α(µ1 . . . µk) holds
under J ,W if and only if it holds under I,V.

Lemma 9: Let β(µ1 . . . µk) be a function symbol in L, and let µk+1 be another variable. Let W
be a valuation of the µ’s to U and let V be an image of W. Then the equation µk+1 = β(µ1 . . . µk)
holds in U under W if and only if it holds in M under V.

Proof: Exactly analogous to the proof of lemma 8, substituting lemma 5 for lemma 4.

Lemma 10: Let α(µ1 . . . µk) be a quantifier-free formula in L. Let W be a valuation of the µ’s to
U and let V be an image of W. Then α holds in U under W if and only if α holds in M under V.

Proof: Straightforward structural induction over the form of α, using lemmas 8 and 9.

Lemma 11: Let µ1 . . . µk be variables whose sorts are in L. Let W be a valuation from variables
µ1 . . . µk to U and let V be an image of W . (We will include here the case where k = 0; in that case,
W and V are null valuations.) Let µk+1 be a new variable of sort σk+1.

1. Let A be an entity in J (σk+1). Let W′ = W ∪ { µk+1→A }. Then there exists B in M such
that V′ = V ∪ { µk+1→B } is an image of W′.

2. Let B be an entity in I(σk+1). Let V′ = V ∪ { µk+1→B }. Then there exists A in U such
that V′ is an image of W′ = W ∪ { µk+1→A }.

Proof:

Let τ be a physical automorphism over U that establishes the correspondence of W and V. If
the sort of µk+1 is not a situation, then both (1) and (2) are trivial; one can take A=B, leave the
automorphism τ unchanged, and the result is immediate from the definitions. Therefore, we may
assume that the sort of µk+1 is a situation, and therefore A is a u-situation and B is a p-situation.
Without loss of generality, renumber the variables µ1 . . . µk so that µ1 . . . µm are situational variables
and the rest are not situational variables.

In both halves of the lemma, in order to show that W′ is an image of V′ we must exhibit an
automorphism τ ′ that establishes this correspondence.

Let us write PT(S) = PHYS(τ(S)), and Si = W (µi) for i = 1 . . .m.

Part 1. There are three cases:

Case A. m = 0. In this case, one can choose B=PHYS(A), and τ ′ to be the identity automorphism.

Case B. Suppose that A≤ Si for some i. Let τ ′ = τ , and let B=PT(A). For any j, let S be the LCA
of Sj and A. There are four cases:

B.i. Sj ≤ A. In this case S = Sj. Since W is an image of V under τ , PT(S) = PT(Sj) =
V(µj).

B.ii. A≤ Sj . In this case S=A. Since τ is an automorphism, τ(S) ≤ τ(Sj). By lemma 2, PT(S)
= PT(A) ≤ PT(Sj) so PT(S) is the LCA of PT(A) and PT(Sj)

B.iii. A and Sj are unordered but have LCA S. Then S is the LCA of Si and Sj , so PT(S) is
the LCA of PT(Si) and PT(Sj). Since PT(S) < PT(A) ≤ PT(Si), it follows that PT(S)
is the LCA of PT(A) and PT(Sj).
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B.iv. A and Sj have no common ancestor. Hence Si and Sj have no common ancestor. Hence
PT(Si) and PT(Sj) have no common ancestor. Hence PT(A)<PT(Si) and PT(Sj) have
no common ancestor.

Case C. Suppose that A does not precede any of the Sj . Consider the set LL=LCA(A,S1) . . . LCA(A,Sm).
If LL is non-empty, let S be the latest situation in LL. We have three cases:

C.i. LL is empty; that is, none of the Sj are ordered with respect to A. Then none of the
values of τ(Sj) are ordered with respect to τ(A), so by lemma 4, none of the values of
PT(Sj) are ordered with respect to PT(A). Hence, we may choose τ ′ = τ and B=PT(A).

C.ii. S is equal to one of the Si. Then for each Sj , LCA(A, Sj) = LCA(Si, Sj). Thus, again,
we may may choose τ ′ = τ and B=PHYS(τ(A)).

C.iii. S is not equal to any of the Si. Note that at least there must be one of the Sj > S; call
this Sx. Let Q be the successor of S such that Q ≤ A. There are two cases:

C.iii.a. Q is not a communicative successor of S. Then τ(Q) is not a communicative successor
of τ(S). For any Sj , if S < Sj , let Qj be the successor of S such that Qj ≤ Sj . By
the construction in definitions 9-12, it follows that PT(Q) is not equal to PT(Qj).
Therefore PT(S) is the LCA of PT(A) and PT(Sj). If Sj is not ordered with respect
to S, then the LCA of Sj and A is the same as the LCA of Sj and Sx (or neither
of these LCA’s exists), so again LCA(PT(A),PT(Sj)) = LCA(PT(Sx),PT(Sj)) =
PHYS(LCA(τ(Sx), τ(Sj)) = PHYS(LCA(τ(A), τ(Sj )). Therefore we can choose τ ′ =
τ and B=PHYS(τ(A)).

C.iii.b. Q is a communicative successor of S. Here, finally, is the case where τ may need
to be modified. Let Q1 . . . Qp be all the successors of S that precede one of the Si.
By property (4) of definition 6, there are infinitely many successors of PT(S) that
are physically indistinguishable from PT(Q). Let C be one such that is not equal to
PT(Qi) for any i. Let ω be the automorphism of M that interchanges the subtree of
p-situations following C with the subtree of p-situations following PT(Q) and leaves
the rest of M the same (see definition 5). Let τ ′ = τ ◦ ω. Let B=PHYS(τ ′(A)).
Now, suppose Sj > S. Then the LCA of Sj and A = S. Since PHYS(τ ′(A))
is a descendant of C, which is a successor of PHYS(τ(S)) and PHYS(τ ′(Sj)) is a
descendant of PHYS(τ(Qj) which is a different successor of PHYS(τ(S)), it follows
that the LCA(PHYS(τ ′(A)),PHYS(τ ′(Sj))) = PHYS(τ(S)). Alternatively, if Sj is
not ordered with respect to S, then we still have LCA(PHYS(τ(A)),PHYS(τ(Sj )))
= PHYS(LCA(τ(A), τ(Sj ))), by exactly the same argument as in case C.iii.a.

Part 2. The proof of part 2 is exactly analogous to that of part 1, but going in the opposite
direction. .

Lemma 12: Let α be a prenex formula in L with m quantifiers and k free variables µ1 . . . µk. Let
W be a valuation from variables µ1 . . . µk to U and let V be an image of W . Then α is true under
J ,W if and only if it is true under I,V.

Proof by induction on m, the number of quantifiers.

If m = 0, then the statement is just lemma 10.

Suppose the statement is true for all formulas with m quantifiers. Let α be a formula with
m + 1 quantifiers. There are four cases:

Case 1: α is true under J ,W and α has the form “∃Xβ(X)”, where β is a formula with m quantifiers
and k + 1 free variables. Since α is true, there exists an entity A ∈ U and a valuation W′ =
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W ∪ { X→A} such that β is true under J , W′. By lemma 11 there exists a valuation V′ that
is an image of W′. By the inductive hypothesis, β is true under I, V′. Hence α (that is, ∃Xβ)
is true under I,V.

Case 2: α is true under I,V and α has the form “∃Xβ(X)”. Since α is true, there exists an entity
B ∈ M and a valuation V′ = V ∪ { X→B} such that β is true under I, V′. By lemma 11
there exists a valuation W′ such that V′ is an image of W′. By the inductive hypothesis, β is
true under J , W′. Hence α is true under J ,W.

Case 3: α is true under J ,W and α has the form “∀Xβ(X)”. Let γ be the transformation into prenex
form of ¬α. Then γ is false under J ,W, and γ has the form “∃Xδ” where δ is the prenex form
of ¬β. By the contrapositive to case 2 above, γ is false under I,V; hence α is true under I,V.

Case 4: α is true under I,V and α has the form “∀Xβ(X)”. Exactly analogous to case (4), but using
the contrapositive to case 1.

Corollary 13: All the physical axioms of T , axioms T.1-T.7, and axioms T.8 and T.9 restricted to
physical actions are true in U under interpretation J .

Proof: Immediate from lemma 12, taking k = 0. and using the fact that the axioms in T and
axioms T.1-T.9 are true in M (by definition of M.)

Lemma 14: If PS1=PHYS(US1) and PS1 and PSZ are ordered, then there exists USZ such that
US1 and USZ are ordered, and PSZ=PHYS(USZ).

Proof: If PS1=PSZ then USZ=US1.

If PSZ<PS1, then let USZ be the ancestor of US1 at time TIME(PSZ).

If PS1<PSZ, then let s1 = PS1, s2 . . . sk = PSZ be p-situations such that si+1 is a successor of
si. Using definition 9 iteratively, let US2 be the simple successor to US1 parallel to PS2, let US3 be
the simple successor to US2 parallel to PS3, and so on. Then USk satisfies the desired conditions
on USZ.

Lemma 15: Axioms T.8 extended to general actions and K.1—K.8 are true in U under J . (I’m
just bunching together the axioms whose proof is easy.)

Proof:

T.8 Immediate from the definition of J (“occurs”) (Definition 20).

K.1–K.3. Immediate from definition 15, which requires K-ACC(A) to be an equivalence relation on
u-situations.

K.4–K.6 Immediate from definition 14, which restricts the “possibly accessible” on situations that hold
on the left-hand side of each of these relations to those that satisfy the conditions on the right-
hand side of these implications; plus definition 15, which states that the actual knowledge
accessibility relation are a subset of the possibly accessible relations.

K.7,K.8. Immediate from the definition of J (“sk acc”) in definition 20.

Lemma 16: Axiom I.1 is true in U under J .
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Proof:

By the definition of J (“occurs”) in definition 20, if occurs(do(AS,inform(AH,Q)),US1,US2)
then there exist QA, PF1,USS1,PFA,USSA) such that
Q1=〈PF1,USS1〉, QA=〈PFA,USS2〉, USSA = { US ∈ USS1 | 〈AS,AH,US1,US〉 ∈ k acc, }, and
〈AS,AH,USS2,S1,PHYS(US2)〉 ∈ MM(US2). Let USQ be the successor of US1 such that USQ
≤ US2. By definition 9, 〈AS,AH,USS2,S1,PHYS(US2)〉 ∈ MM(USQ). By definition 10 and 11,
OCCURS(DO(AS,COMMUNICATE(AH)),PHYS(US1),PHYS(US2)).
By definition 20, occurs(do(AS,communicate(AH)),US1,US2).

Lemma 17: Axiom T.9 extended to general actions is true in U under J .

Proof:

Let US1, US2, USX, and USY be u-situations and E an event such that occurs(E,US1,US2),
US1<USX<US2 and USX<USY. Let S1=PHYS(US1) and S2=PHYS(US2). By definition 20, E is
either a physical action or an informative action. The case where E is a physical action is covered
in corollary 13. Suppose that E is an informative action; let E=〈DO,AS,〈INFORM,AH,Q1〉〉. By
definition 20 there exist QA, PF1,USS1,PFA,USSA such that
Q1=〈PF1,USS1〉, QA=〈PFA,USS2〉, USSA = { US ∈ USS1 | 〈AS,AH,US1,US〉 ∈ k acc, }, and
〈AS,AH,USSA,S1〉 ∈ MM(US2). By definition 9, 〈AS,AH,USSA,S1〉 ∈ MM(USX). By axiom T.9
applied to the action DO(AS,COMMUNICATE(AH)) there exists a situation SZ such that or-
dered(SZ,PHYS(SY)), SZ>SX, and OCCURS(DO(AS,COMMUNICATE(AH,S1,SZ)). By lemma
14, there exists USZ such that PHYS(USZ)=SZ and USZ is ordered with respect to USY. It follows
that USZ>USX and that 〈AS,AH,USS2,S1〉 ∈ MM(USZ).
By definition 20, occurs(do(AS,inform(AH,Q)),US1,USZ).

Lemma 18: Axiom I.2 is true in U under J .

Proof:

Let AS,AH be agents, let US1,US2 be u-situations, and let Q=〈PF,USSQ〉 be a general fluent.
Let US1ACC = { USA | 〈AS,AH,US1,USA〉 ∈ sk acc }, the set of situations accessible from US1 in
the shared knowledge of AS and AH. Let USSA = USSQ ∩ US1ACC, the set of situations satisfying
Q that are knowledge accessible from S1, relative to the shared knowledge of AS and AH. Let
S1=PHYS(US1).

Suppose that occurs(do(AS,inform(AH,Q)),US1,US2). By definition 20 (denotation of “oc-
curs”), the tuple 〈AS,AH,USSA,S1〉 ∈ MM(US2). Let USY be the successor of US1 that is an ances-
tor of US2. By definitions 9, 11, and 12 it follows that MM(USY) contains the tuple 〈AS,AH,USSA,S1〉.
By definition 10, USSA is a possible communicative content for S1 from AS to AH; hence, by defini-
tion 10, every situation that is knowledge accessible from US1 relative to AS is an element of USSA
and therefore an element of USSQ ⊃ USSA. By definition 20 (“holds”) Q holds in every situation
accessible from US1.

Conversely, if Q holds in every situation accessible from S1, then USSA is a possible commu-
nicative content from AS to AH. Suppose that OCCURS(DO(AS,COMMUNICATE(AH)),S1,S2).
Let SY be the successor of S1 such that SY≤S2. By definition 12, there exists an informative suc-
cessor USY of US1 such that 〈AS,AH,USSA,S1〉 ∈ MM(USY). By axiom T.9 there exists a situation
USZ≥USY such that OCCURS(DO(AS,COMMUNICATE(AH)),US1,USZ). By definitions 9, 11, 12
〈AS,AH,USSA,S1〉 ∈ MM(USZ). By definition 20, occurs(do(AS,inform(AH,Q)),S1,SZ).

Lemma 19: Axiom I.3 is true in U under J .
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Proof: Assume that occurs(do(AS,inform(AH,Q)),US1,US2) and that k acc(AH,US2,US2A). We
need to prove that there exists a situation US1A such that occurs(do(AS,inform(AH,Q)),US1A,US2A)
and k acc(AH,US1,US1A).

Define USSA as in the proof of lemma 18. By definition 20 (denotation of “occurs”) since
occurs(do(AS,inform(AH,Q)),US1,US2) it follows that the tuple 〈AS,AH,USSA,PHYS(US1)〉 ∈ MM(US2)
and OCCURS(DO(AS,COMMUNICATE(AH)),PHYS(US1),PHYS(US2)). By definition 15, since
k acc(AH,US2,US2A), US2A is possibly knowledge accessible from US2 relative to AH. By definition
14, the tuple 〈AS,AH,USSA,PS1A)〉 ∈ MM(US2A) for some p-situation PS1A < PHYS(US2A), and
OCCURS(DO(AS,COMMUNICATE(AH)),PS1A,PHYS(US2A)). By theorem 3 and axiom K.8, any
two situations that are sk acc are at the same time. Hence, all the situations in USSA are at the
same time, and by definition 10 this time must be equal to TIME(US1) and to TIME(US1A). Hence
TIME(US1)=TIME(US1A). By axiom A.4, since k acc(AH,US2,US2A), US1<US2, US1A<US2A
and TIME(US1)=TIME(US1A) it follows that k acc(AH,US1,US1A). Hence, the set of situations
that are accessible relative to the shared knowledge of AS and AH is the same starting from US1
as starting from US1A. Hence the act of AS informing AH of Q starting in US1A uses the tuple
〈AS,AH,USSA,PS1A〉. Thus by definition 20, occurs(do(AS,inform(AH,Q)),US1A,US2A).

Lemma 20: Axiom I.4 is true in U under J .

Proof: Suppose that occurs(do(AS,inform(AH,QX)),US1,US2) and that QY is a fluent. Let US3
be the successor of US1 such that US3≤US2. Let QX=〈PFX,USSQX〉; QY=〈PFY,USSQY〉;
QXA = USSQX ∩ { USA | sk acc(AS,AH,US1,USA) }, and
QYA = USSQY ∩ { USA | sk acc(AS,AH,US1,USA) }.
By definition 20, 〈AS,AH,QXA,PHYS(US1)〉 ∈ MM(US2).
By definitions 9, 11, 12, 〈AS,AH,QXA,PHYS(US1)〉 ∈ MM(US3).

I. (Left to right in the two-way implication.) Suppose that occurs(do(AS,inform(AH,QY)),US1,US2).
By the same argument as above 〈AS,AH,QYA,PHYS(US1)〉 ∈ MM(US3). But by definition 11, US3
contains at most one inform indicator with starting point PHYS(US1), speaker AS, and hearer AH.
Hence QXA=QYA. That is, if situation USA is accessible from US1 relative to the shared knowledge
of AS and AH, then QX holds in USA iff QY holds in USA.

II. (Right to left in the two-way implication.) If it is the case that ∀S1A sk acc(AS,AH,S1,S1A)
⇒ [holds(S1A,QX) ⇔ holds(S1A,QY)] then QXA=QYA, so by definition 20,
occurs(do(AS,inform(AH,QY)),US1,US2).

Lemma 21: Axiom I.5 (the comprehension axiom) is true in U under J .

Proof: Immediate from definitions 17 and 20, using the comprehension axiom of set theory.

Considering how problematic the comprehension axiom would seem to be it may be surprising
that it has a one-line proof. In fact, one might say that the whole construction we went through
in section A.3 is precisely tailored so that the comprehension axioms should have a one-line proof.
Nonetheless the reader may well have legitimate worries about such a powerful axiom, that are
hardly assuaged by the above proof. Let me therefore discuss further how this whole construction
works.

The key point is this: There is no circularity whatever in the whole structure of definitions
given in section 3. The structure of u-situations is built up iteratively forward in time. The label
on an “inform” action A is a set of u-situations contemporaneous with the start of A; it gives rise
to a new u-situations at the next point in time. Iterating from 1 to infinity gives us a well-defined
and fixed set U of all u-situations. Definition 17 defines a fluent as a subset of U . Definition 20
defines the occurrence of an inform action in terms of these fluents and of the labels on the actions.
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More generally, definition 20 defines the denotation of every symbol in W extensionally, in terms of
structures over U and M and the interpretation I; no aspect of J is defined in terms of J itself
(except as a convenient abbreviation.) Having adopted definition 20, J is now fixed, and it is fixed
which fluents satisfy which formulas under J .

But isn’t it inherently circular to say, for example,

q1 is the fluent such that
∀S holds(S,q1) ⇔ ∃AS,AH,S2,Q occurs(do(AS,inform(AH, Q)),S, S2)

considering that the quantification over Q contains q1 itself? Not at all, no more than saying

0 is the number such that, ∀X , X + 0 = X

when the quantification over X includes 0 itself. The formula above is just a description of q1, and
the axioms are sufficient to guarantee that a q1 satisfying this definition exists.

Theorem 1:

Let T be an acceptable physical theory, and let A be T together with axioms K.1 — K.8 and I.1 —
I.5, and with T.8 and T.9 extended to arbitrary actions. Then A is consistent.

Proof: We have shown that a model and an interpretation satisfying A can be constructed.

Theorem 2: Let T be an acceptable physical theory, and let U be the union of:

A. T ;

B. Axioms K.1 — K.7 and I.1 — I.5.

C. A collection of domain-specific knowledge acquisition axioms of the form specified in section ??.

D. The frame axiom I.6 associated with the axioms in (C).

E. Any set of axioms K specifying the presence or absence of k acc relations among situations at
time 0 as long as:

i. The axioms in K do not refer to any situations of time later than 0.

ii. The axioms in K are consistent with T , axioms K.1 — K.3, K.5 (as regards knowing the
feasibility of actions at time 0); and the axioms in (C).

Then U is consistent.

Sketch of Proof: The proof of theorem 1 needs to be modified as follows:

• In definition 8, initialize the K ACC function at time 0 to satisfy the union of the axioms in
(E) with the axioms enumerated in E.ii.

• In definition 14, add to the conditions on US1B being possibly knowledge accessible from
US1A:

For each axiom in (C) of the form “A always knows whether Φi(A, S),” the condition
Φ(US1B)⇔Φ(US1A) must hold.
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• Modify the second bullet in definition 15 to read, “For each agent A, K ACC1(A) is the relation
over u-situations, ‘US1B is knowledge accessible from US1A relative to A.’ ”

The proof that the additional axioms enumerated in theorem 2 are satisfied is then straightfor-
ward.
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