Theorem: Consider the probability distribution of velocities over a body of gas. Assume that
a. The distribution depends only on speed; it is invariant under direction.
b. The velocities in the $x-, y-$, and z-dimensions are all independent of one another.
c. The distribution is continuous (this is probably unnecessary, but makes things easier).

Then the distribution is a Gaussian.

Proof:

Let X, Y, Z be random variables denoting the components of velocity. Let $f(X)$ be the distribution of X; by assumption (a) $f(Y)$ and $f(Z)$ are the distributions of Y and Z. Let $H(X, Y, Z)$ be the joint distribution of X, Y, Z.
By assumption (a), if $x_{1}^{2}+y_{1}^{2}+z_{1}^{2}=x_{2}^{2}+y_{2}^{2}+z_{2}^{2}$ then $H\left(x_{1}, y_{1}, z_{1}\right)=H\left(x_{2}, y_{2}, z_{2}\right)$ (condition 1).
By assumption (b), $H(x, y, z)=f(x) f(y) f(z)$ for all x, y, z (condition 2).
Note first that for any constants a, b the functions $f(t)=a e^{b t^{2}}, H(x, y, z)=a^{3} e^{b\left(x^{2}+y^{2}+z^{2}\right)}$ satisfies both conditions above.

Conversely, suppose that f and H satisfy the above conditions.
The following equation holds: for any u, v,

$$
f(u) f(v) f(0)=H(u, v, 0)=H\left(\sqrt{u^{2}+v^{2}}, 0,0\right)=f\left(\sqrt{u^{2}+v^{2}}\right) f(0) f(0)
$$

Thus $f\left(\sqrt{u^{2}+v^{2}}\right)=f(u) f(v) / f(0)$.
In particular if $u=v$, we have $f(u \sqrt{2})=f(u)^{2} / f(0)$.
Equivalently, substituting $v=u \sqrt{2}$, we get $f(v / \sqrt{2})=\sqrt{f(v) \cdot f(0)}$.
Now let $a=f(0)$. Define $b=\ln (f(1) / a)$. Thus the equation $f(t)=a e^{b t^{2}}$ is satisfied for both $t=0$ and $t=1$. We need to show that it is satisfied for all t.
Suppose that the equation $f(t)=a e^{b t^{2}}$ is satisfied for some value t.
Let $v=t \sqrt{2}$ and let $u=t / \sqrt{2}$.
Then $f(v)=f(t \sqrt{2})=f(t)^{2} / f(0)=\left(a e^{b t^{2}}\right)^{2} / a=a e^{2 b t^{2}}=a e^{b v^{2}}$.
And $f(u)=f(t / \sqrt{2})=(f(t) f(0))^{1 / 2}=\left(a^{2} e^{b t^{2}}\right)^{1 / 2}=a e^{b t^{2} / 2}=a e^{b u^{2}}$.
Next, suppose that u and v both satisfy the equation and let $w=\sqrt{u^{2}+v^{2}}$. Then $f(w)=$ $f(u) f(v) / f(0)=a e^{b u^{2}} \cdot a e^{b v^{2}} / a=a e^{b\left(u^{2}+v^{2}\right)}=a e^{b w^{2}}$.

Thus, the equation $f(t)=a e^{b t^{2}}$ holds for arbitrarily large values of t and for arbitrarily small values of t and it is preserved when two values are combined using the operator $\sqrt{u^{2}+v^{2}}$. Since any positive real value can be approximated with arbitrary precision by enough combinations of that operator applied to small enough arguments, the equation holds over a dense subset of the reals. By continuity, it holds everywhere on the reals.
Finally the constraint $a=1 / \sqrt{2 \pi} \sigma, b=-1 / 2 \sigma^{2}$ follows from the requirement that the integral of f is 1 .

