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Abstract

FunSearch (Romera-Paredes et al., 2023) uses a large language model (LLM) of a component of an
AI system that has generated some difficult-to-find solutions to combinatorial problems that are larger
than was previously known. However, the excitement that has greeted this has been unwarranted. First,
as compared to other applications of AI to mathematical research, FunSearch does not seem particularly
promising as a technique and its contribution to mathematics is not unusually great. Second, FunSearch
uses the LLM as a subroutine in a genetic programming algorithm, to generate mutations of one particular
subroutine in a larger program. The LLM is not told either what problem is being addressed or what
the overall program is. Thus, as compared to other application of LLMs to mathematics, the LLM in
FunSearch is remarkable for the shallowness of the mathematical understanding that it seems to exhibit.

1 Introduction

FunSearch (Romera-Paredes et al., 2023) uses a large language model (LLM) of a component of an AI
system that has generated some difficult-to-find solutions to combinatorial problems that are larger than
was previously known. These results are (to the very limited degree that I can judge) moderately interesting
mathematically, and FunSearch is likewise moderately interesting as an original approach to the use of AI for
mathematical research. One aspect of the interaction between FunSearch and the human mathematicians
involved in the project, discussed below, is indeed quite noteworthy and, as far as I know, original.

Inevitably, however, the PR machine at Deep Mind has announced this new system with blaring trumpets,
and the technology media has been happy to join the parade. As reported in Technology Review (Heaven,
2023):

Google DeepMind has used a large language model to crack a famous unsolved problem in pure
mathematics. In a paper published in Nature today, the researchers say it is the first time a
large language model has been used to discover a solution to a long-standing scientific puzzle-
producing verifiable and valuable new information that did not previously exist. “It’s not in the
training data—it wasn’t even known,” says coauthor Pushmeet Kohli, vice president of research
at Google DeepMind.

Large language models have a reputation for making things up, not for providing new facts.
Google DeepMind’s new tool, called FunSearch, could change that. It shows that they can
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indeed make discoveries if they are coaxed just so, and if you throw out the majority of what
they come up with.

Nature’s own news item about the article (Castelvecchi, 2023) is entitled “DeepMind AI outdoes human
mathematicians on unsolved problem”. It quotes Pushmeet Kohli further as saying, “This is the first time
anyone has shown that an LLM-based system can go beyond what was known by mathematicians and
computer scientists. It’s not just novel, it’s more effective than anything else that exists today.”

As we will see, some of this is doubtfully true; some of it is misleading; some of it is irrelevant; and none of
it is nearly as impressive as it sounds.

A DeepMind blog (Fawzi and Romera-Paredes, 2023) made even more extravagant predictions:

FunSearch demonstrates that if we safeguard against LLMs hallucinations, the power of these
models can be harnessed not only to produce new mathematical discoveries, but also to reveal
potentially impactful solutions to important real-world problems.

We envision that for many problems in science and industry - longstanding or new - generating
effective and tailored algorithms using LLM-driven approaches will become common practice.

Indeed, this is just the beginning. FunSearch will improve as a natural consequence of the wider
progress of LLMs, and we will also be working to broaden its capabilities to address a variety of
society’s pressing scientific and engineering challenges.

The Twitterverse is likewise in a tizzy; Stanford Professor Eric Brynjolffson tweeted, “This is undoubtedly
just the beginning of a new age of scientific discovery.”

I will argue below that:

• As compared to other applications of AI, or more broadly computer technology, to mathematical
research, FunSearch is not particularly promising as a technique and the results that it has achieved
are not particularly ground-breaking.

• FunSearch, in its current form, can only be applied to a very limited category of mathematical problems.
There is essentially zero reason to believe that FunSearch or any related technique will be helpful in
solving “a variety of society’s pressing scientific and engineering challenges.”

• FunSearch uses the LLM as a subroutine in a genetic programming algorithm,1 to generate mutations
of one particular subroutine in a larger program. The LLM is not told either what problem is being
addressed or what the overall program is. The prompt consists of two versions of the subroutine, and
it is asked to produce another, similar subroutine. The LLM is called millions of times with prompts of
this form. Thus, as compared to other application of LLM to mathematical problem solving, the LLM
in FunSearch is remarkable for the shallowness of the mathematical understanding that it seems to
exhibit. Anthropomorphizing, one would say that the LLM is being used for extraordinarily repetitious
and tedious work, with no motivation in terms of the ultimate goal that its output serves.

I will first outline the new mathematical discoveries that FunSearch has made (section 2). Then I will explain
how FunSearch works (section 3). Then I will discuss the significance of FunSearch (section 4). Sections 2
and 3 are just summaries of the technical content of (Romera-Paredes et al., 2023), highlighting features that
seem to me important, so readers who have already read that, or who are uninterested in technical details
can skip those. All the original material of this paper is in section 4

1Genetic programming is an AI technique for constructing a good program for some particular problem by starting with a
poor program, experimenting with a variety of small changes, analogous to genetic mutations, keeping the new variants that
do best on the problem, analogous to adaptive fitness, and iterating.
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Necessary disclaimer: I am not an expert in either applications of AI to math or in LLM technology, though
I try to keep an eye on both. My knowledge of the mathematical content involved here is extremely limited.
I think that my account below is correct, but certainly there is some chance that it has errors of one kind or
another; if you notice any, I shall be very obliged if you point them out to me.

2 FunSearch’s contributions to mathematics

Romera-Paredes et al. (2023) describe the application of FunSearch to four different mathematical problems:

1. The “cap set” problem, a problem in combinatorics/discrete geometry.

2. “Online bin packing,” a problem in combinatorial optimization.

3. “Shannon capacity of cycle graphs,” a problem in information theory.

4. The “corners” problem, a problem in combinatorics.

The cap set problem is by far the most extensively discussed, both in (Romera-Paredes et al. 2023) and in
the general media accounts of FunSearch. It is certainly the most easily explained and justified for a general
readership. My guess, though I cannot be sure, is that the results obtained from FunSearch for cap set were
the most interesting mathematically of the four problems and that the scientists who built FunSearch were
the most engaged with this problem of the four. In particular, Jordan Ellenberg, a co-author of (Romera-
Paredes et al. 2023), is one of the leading experts on the cap set problem and was co-author on one of the
major papers in the area (Ellenberg and Gijswijt, 2017, discussed further below).

The online bin packing problem is discussed in the main paper more briefly than the cap set problem, and
the other two problems are discussed only in the supplemental material. In this review, I will follow suit,
concentrating on the cap set problem and giving only a summary of the results for the other three.

2.1 The Cap Set Problem

The “cap set” problems is unusual among problems of current mathematical research interest in that it can
be easily explained to a mathematically interested high-school student.

The problem has to do with the space of n-dimensional vectors whose components are all 0, 1, and 2
where you are doing addition modulo 3. For instance, with n = 4, if ~x = 〈0, 2, 2, 1〉 and ~y = 〈1, 2, 1, 2〉, then
~x+~y = 〈1, 1, 0, 0〉. In ordinary vector geometry, we say that three points ~u,~v.~w are collinear if ~w−~u = c·(~v−~u)
where c is a constant which is neither 0 nor 1. Applying that same definition in the context of arithmetic
modulo 3, it must be that c = 2, and we can rewrite the condition as “~u + ~v + ~w = ~0”. An equivalent
condition is that three vectors are collinear if, in each component, either the three vectors all have the same
value, or they all have different values. So, for instance, if ~x and ~y are as above, and ~z = 〈2, 2, 0, 0〉 then ~x, ~y
and ~z are collinear.

A cap set is a set S of vectors such that no three vectors in S are collinear. For instance, for n = 3 you can
check (with a little work) that the set
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0 0 0
0 0 2
0 2 1
0 2 2
1 0 1
2 0 1
2 2 2
2 2 0

is a cap set of size 8.

The cap set problem is, given a dimension n, what is the largest cap set of n dimensional vectors, using
modulo-3 arithmetic? For people who like this kind of thing, this is a problem of considerable mathematical
charm. Moreover, it has deep connections to other combinatorial problems and to the problem of arithmetic
sequences in the prime numbers, as well as to the SET card game. (The sequence of values for the maximal
cap set is #A090245 in the Online Encyclopedia of Integer Sequences.2) There is a very readable account in
(Klarreich, 2016) and a mathematically deeper but still comparatively readable account in (Grochow, 2019).

It turns out that the cap set problem is mathematically difficult. Let us use the notation cn to mean size of
the maximal cap set for a particular value of n. No general formula is known for cn. The exact value of cn is
known for n = 1 . . . 6 but not for n = 7 or any larger value. For any particular value of n, you can establish
that some value m is a lower bound for cn by constructing a specific cap set for n of size m. Establishing
that m is an upper bound for cn is a lot harder; you have to show that no cap set for n can be bigger than
m.

From the mathematical point of view, more interesting than exact values at particular values of n is the
asymptotic behavior; that is, for large values of n, approximately how large is cn. There is an easy upper
bound: since there are only 3n vectors in total formed out of 0, 1, and 2, certainly cn < 3n. And there is an
easy lower bound; it is easily seen that the set of all vectors with only 0’s and 1’s but no 2’s is a cap set, and
there are 2n of those, so cn ≥ 2n. But that is a large gap. The challenge for mathematicians is to narrow

that gap; ideally, to find the exact value γ = limn→∞ c
1/n
n ; that is, cn is approximately equal to γn under a

suitable definition of “approximately”.

Lower bounds for γ can be found by finding a systematic way to generate large cap sets for arbitrarily large n.
This can be done by leveraging the idea of an “admissible set of vectors”, especially a “full-sized admissible
set of vectors”. What an “admissible” set of vectors is, and how you can use an admissible set to construct
cap sets in arbitrarily high dimension and to calculate a lower bound for γ need not detain us here.3 All we
need to know here is that an admissible set is a finite set of n-dimensional vectors where each group of three
satisfies a particular constraint; and that the bigger the admissible set, the more useful it is for constructing
big cap sets.

Upper bounds for γ are really tough to establish, since, again, you have to establish that you can’t construct
a cap set larger than the proposed upper bound. The first proof that there is an upper bound less than 3
here was given by Ellenberg and Gijswijt (2017). They proved an upper bound of γ ≤ 2.756, which remains
the best known upper bound.

2.1.1 FunSearch’s contribution to the cap set problem

So now we’re in a position to discuss what FunSearch contributed to our understanding of the cap set
problem.

2https://oeis.org/A090245
3This is, of course, a euphemism for “I have not looked into it, and I am quite sure I wouldn’t understand it if I did look

into it.” The definition of an “admissible” set is given in (Romera-Paredes et al. 2023); for the other two questions, they refer
the reader to (Edel, 2004) (I think).
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OR1 OR2 OR3 OR4 Weibull 5k Weibull 10k Weibull 100k
First fit 6.42% 6.45% 5.74% 5.23% 4.23% 4.20% 4.00%
Best fit 5.81% 6.06% 5.37% 4.94% 3.98% 3.90% 3.79%

FunSearch 5.30% 4.19% 3.11% 2.47% 0.68% 0.32% 0.03%

Table 1: Comparative results of heuristics, from (Romera-Paredes et al., 2013). The values are the fraction
of excess bins as compared to the optimal solution; lower is better. Each column corresponds to a particular
benchmark collection of problems.

First: FunSearch found a cap set of size 512 for n = 8. The previous best known cap set had size 496. It
thus established a lower bound c8 ≥ 512

Second: FunSearch found a large admissible set which raised the lower bound for γ from the previous value
of 2.2180 to 2.2184.

Third: In examing the output from FunSearch, Ellenberg observed that it correctly assumed a symmetry in
the problem of constructing admissible sets that was not previously known. He then was able to use this
symmetry to focus the search space that FunSearch was exploring, allowing it to create an even larger lower
bound of 2.2202. This feedback loop between the AI and the human mathematician is, to my mind, the
most interesting aspect of FunSearch; I will discuss it further in section 4.

2.2 Bin packing

The bin packing problem in general is a well known problem in combinatorial optimization: Given a set of
bins, all the same size, and a set of objects, none larger than the bins, place the objects into the bins so as
to use the smallest possible number of bins. (It is assumed that an object cannot be chopped into pieces
which are put in separate bins.) The online version of the problem assumes that the objects are presented
one by one, and that each object must be placed before the size of remaining objects is known.

The standard algorithms used for the online bin packing problem are first-fit (number the bins and put the
object in the first bin where it fits) and best-fit (put the object into the fullest bin where it fits). (I am
unable to determine whether these are in fact currently state of the art in terms of overall performance.) The
quality of these algorithms is standardly measured in terms of their performance over various benchmark
problem collections or collections of problems generated by a specified random distribution. FunSearch found
a heuristic that does much better on some collections and significantly better on others than either first-fit
or best-fit (table 1).

2.3 Shannon capacity of cycle graphs

Quoting from the supplemental material for (Ramona-Paredes, 2023): “The Shannon capacity of a graph
is an important quantity from Information Theory as it indicates the amount of information that can be
transmitted over a noisy channel with zero probability of error. Consider a discrete noisy communication
channel in which certain symbols can be confused with each other, with a graph describing these confusion
patterns. The vertices of the graph correspond to symbols (inputs of the channel), and the edges indicate
which symbols can be confused with each other at the receiver side of the communication channel.

One of the most studied graphs with unknown Shannon capacity is the cycle Cm i.e. the graph with m
vertices and m edges forming a single cycle.”

A step toward finding the Shannon capacity of cycle graphs is finding large independent sets on particular
powers of cycle graphs. In the case of m = 7, FunSearch found an independent set that was equal to the
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biggest known, but simpler and so more susceptible to mathematical inspections. In the cases of m = 9 and
m = 11 it was able to find independent sets larger than had been previously known. Apparently, none of
these actually led to an improved estimate of the Shannon capacity for the cycles of size 7, 9, or 11, but they
perhaps lead toward one.

2.4 Corners problem

A problem rather similar in flavor to the cap set problem, but less interesting, at least to non-experts like
myself. Look it up in the supplementary material, if you’re interested. FunSearch allowed the lower bound
to be increased from 3.391 to 3.421 in the case n = 2 and from 7 to 7.280 in the case n = 3.

3 How FunSearch uses the LLM to solve problems

Fundamentally, FunSearch is a genetic programming algorithm which is searching for a program that will
produce a good solution to the problem at hand.

It will be easiest to describe the operations of FunSearch for the specific example of the cap set problem;
then I will generalize.

In the cap set problem, FunSearch is trying to create a program that will generate a large cap set. The human
programmer implements a greedy algorithm solve(n, priority). The arguments to generateCapSet are
the dimension n and a function priority(v), which assigns a numerical priority measure to each vector v.

function solve(n,priority) {

L = list of n-dimensional vectors;

L = sort L in decreasing order of priority(v);

C = empty set of vectors; % the cap set

for (v in L) {

if (v is not collinear with any two vectors in C)

add v to C;

}

return C;

}

The human programmer also programs a function to evaluate the quality of an answer generated by solve,
in this case just the size of the cap set.

function evaluate(solution) {

return size(solution);

}

The FunSearch algorithm is then a genetic programming algorithm. It maintains a population of priority
functions, scored by the evaluation of the output of the function. It takes two high-scoring priority functions,
uses those two as the prompt to the LLM, and implicitly asks the LLM to produce some other priority function
of a similar flavor. (Specifically, it identifies the two functions in the prompt as “priority function 1” and
“priority function 2” and asks for “priority function 3”). It does this millions of times.

function FunSearch(n,solve,evaluate) {

population = some seed priority functions, generally trivial;
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for i=1:ManyIterations {

Prompt = choose two high-ranking priority functions from population;

NewPriority = output of LLM given Prompt;

if (NewPriority is a valid priority function) {

NewCapSet = solve(n,NewPriority);

value = evaluate(NewCapSet);

add <NewPriority, value> to population

}

}

return (best cap set found);

}

The actual FunSearch algorithm is substantially more complicated than the above; it incorporates a number
of genetic algorithmic techniques to prevent the system from getting stuck in a poor state, and it is written
to support parallel search. However, the above sketch does describe how the LLM is used.

The other applications are analogous. To use FunSearch on a particular problem, the human programmer
must supply:

• A solve algorithm which takes some key subroutine (in this case priority) as an argument, which
generates candidate solutions to the mathematical problem. (In general, the mutable function, which
is the input and output to the LLM, need not be a priority function, but for the remainder of this
paper I will continue to refer to it as a “priority function,” since that is a more natural phrase than
“mutable function”.) Romera-Paredes et al. call this the “skeleton”.

• An evaluation function, to measure the quality of any given priority function. For the cap set, Shan-
non capacity, and corners problem, each priority function generates a single solution to a particular
mathematical problem, and the value of the priority function is the value of the solution. For the bin
packing problem, the value of the priority function is the average quality of solve applied to problems
in a particular benchmark collection.

• Seed versions of the priority function.

That’s all. FunSearch and the LLM do the rest.

4 Discussion

I will formulate the discussion in terms of a series of questions. For some of these, I have an opinion as to the
answer, of varying degrees of confidence and well-foundedness. For some, I have no guess as to the answer,
but the project team knows the answer, and I hope they will publish it. For some, no one knows the answer.

4.1 How impressive is FunSearch as a tool for mathematical research, as com-

pared to previous AI systems?

There have been several applications of AI technology to mathematical research, particularly in the last
few years (table 2). (The history of the application of computer technology generally to mathematical
research is of course many times larger and more important mathematically.) These vary both in terms of
the significance of the mathematical results obtained: the depth and centrality of the AI’s contribution to
the research enterprise; the generality of mathematical problem to which the AI system potentially might
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• 1959. Logic Theorist found shorter proofs of some theorems in Principia Mathematica. (Newell, Shaw,
and Simon, 1957).

• 1996. The automated theorem prover AQP proved the Robbins conjecture. (McCune, 1997).

• 2014. Hales’ proof of the Kepler conjecture was verified using proof assistants Isabelle and HOL
Light. (Hales et al. 2017). For further discussion of the contributions of proof assistant technology to
mathematical research, see (Avigad, 2024).

• 2021. Deep learning technology is used to suggest conjectures in representation theory and knot theory
which led to the proofs of theorems. (Davies et al. 2021; Davis, 2021).

• 2022. Deep reinforcement learning (AlphaTensor) is used to find a number of (in principle) faster
matrix multiplication algorithms (Fawzi et al. 2022).

Table 2: Some AI contributions to mathematical research.

apply; the breadth of mathematical problems to the AI system has in fact been successfully applied; and the
reasonableness of calling the software “artificial intelligence”.

I certainly have no standing to compare the mathematical significance of the results generated by FunSearch
to these other results4 The wide variance of these different accomplishments along the other dimensions
makes a meaningful comparison difficult. However, I certainly don’t see that there is a clear case to be made
that, overall, FunSearch’s contribution to mathematics is much greater than that of its predecessors.

4.2 What about the fruitful interaction with Ellenberg?

To my mind, the most interesting aspect of the project was the fruitful interaction between FunSearch and
Ellenberg. FunSearch converged on a particular priority function; Ellenberg examined it and realized that it
reflected a previously unrecognized symmetry relation in the cap set problem; and then Ellenberg was able
to leverage that symmetry to improve the FunSearch search and obtain an even better solution.

Notably, this interaction depended on the fact that FunSearch outputs human-readable code; it could not
have happened with an AI that finds its way to large cap sets but whose internal representation is completely
opaque, such as a system based on reinforcement deep learning.

Needless to say, 99.99% of the credit for this interaction belongs to Ellenberg rather than FunSearch.

If FunSearch continues to be used, will we see further instances of this kind of fruitful interaction? Impossible
to predict. As table 2 suggests, the history of applications of AI to math has seen a number of one-offs, in
which an exciting development had no sequels.

4.3 How does FunSearch compare to other applications of LLMs?

As a means of utilizing an LLM for an application, FunSearch is, frankly, off-the-charts weird. Ordinarily,
when you use an LLM, you ask the question whose answer you are looking for, and it gives you an answer,
based on the material in its training set that is somehow invoked by your question. Perhaps you do a bit of
prompt engineering at the start, and perhaps you engage in some further back-and-forth.

4In the articles about FunSearch, much has been made of the statement by the distinguished mathematician Terrence Tao
(2009) in a blog that the cap set problem was his “favorite” open problem. However, in Tao’s blog, the chief question that he
hopes to see resolved is whether cap sets of a constant density in the space exist — that is, whether limn→∞ cn/3n > 0 —
which was resolved in the negative in (Ellenberg and and Gijswijt, 2017). How significant Tao or other mathematicians consider
FunSearch’s findings that c8 ≥ 512 and that γ ≥ 2.2184 , I can’t say.
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FunSearch is entirely different. The LLM is never told what problem it is working on or how the output
it produces is going to be used. Whatever was in its training set about the cap set problem or even about
greedy algorithms is entirely irrelevant. All it is asked, a million times, is “Here are two priority functions;
generate some other priority function that would go along with them.” Guiding the priority functions toward
a solution to the cap set problem is purely the responsibility of the genetic algorithm superroutine, which is
invisible to the LLM.

Put it another way: Suppose that we replaced the LLM in FunSearch with an AGI — in fact, suppose we
replaced it with an AI that had superhuman mathematical abilities and could directly answer questions
like “Please tell me the value of γ and prove the correctness of your answer,” or “Please give me a priority
function that will produce large cap sets when used in a greedy algorithm.” In this archictecture, that AI
would have no opportunity to use those abilities, because no one ever bothers to tell it that it is working on
a project involving a cap set and a greedy algorithm. There is no reason to think that FunSearch powered
by that kind of AI would work at all.

4.4 What kinds of mathematical problems might be promising applications for

FunSearch?

The answer given by Romera-Paredes et al. is as follows: “We note that FunSearch currently works best
for problems having the following characteristics: a) availability of an efficient evaluator; b) a “rich” scoring
feedback quantifying the improvements (as opposed to a binary signal); c) ability to provide a skeleton with
an isolated part to be evolved.” That seems pretty much right, though I would guess that “works best”
should be read “works at all”.

Certainly another condition is that the problem is solvable, or approximately solvable, by an algorithm of
the specified structure (e.g. greedy algorithm) applied to some attainable priority function. My guess is that
it would be rare that one could be sure, or even very confident, of that a priori.

Since FunSearch is in effect doing a local (relative to whatever the LLM considers “local”) heuristic search
through the space of priority functions, I would think another condition would be “existence of a rich space
of solutions that are more and less successful”.

Certainly, these are more or less necessary conditions for success, but there is no reason to suppose that they
are sufficient conditions. That leads directly to the next two questions:

4.5 Why did FunSearch work as well as it did on these four problems?

God only knows, and I doubt that God much cares.

4.6 What if anything does the success of FunSearch indicate?

It certainly indicates nothing about the LLM’s knowledge of mathematics or reasoning abilities, since neither
of these are called on to any degree.

It would seem to imply something about the topography of the space of priority functions relevant to these
particular mathematical problems as mapped by the LLM’s idiosyncratic measure of similarity. But it would
be very difficult to say anything specific or well-defined about that.

4.7 Is the LLM biased toward short programs or Kolmogorov complexity?

Romera-Paredes et al. propose the following partial answer to my previous question:
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Because FunSearch implicitly encourages concise programs, it scales to much larger instances
compared to traditional search approaches in structured problems. In a loose sense, FunSearch
attempts to find solutions that have low Kolmogorov complexity (which is the length of the
shortest computer program that produces a given object as output), while traditional search
procedures have a very different inductive bias. We believe that such Kolmogorov-compressed
inductive bias is key to FunSearch scaling up to the large instances in our use-cases.

The claim that the LLM is biased toward outputting concise programs might be true, and seems somewhat
plausible. Presumably the LLM is biased toward producing code that in some respects resembles the code in
its training set that is similar to the code in its prompts, however it is that the LLM measures “similarity”
and perhaps that creates a bias toward short code. However, in view of our very poor understanding of what
LLMs do and in the absence of a careful examination of the bodies of code used in training and fine-tuning
the Codey LLM that was used in FunSearch, that is not a very strong argument. As far as I have seen, there
is no other evidence to support that claim. Finally, even if the claim is true, it does not go very far toward
explaining why FunSearch works well on these problems.

The “loose” usage of “Kolmogorov complexity”, on the other hand, is becoming increasingly common in the
machine learning community, and is fast becoming a pet peeve of mine. So I will rant about it.

The Kolmogorov complexity of string S in programming language/Turing machine P , denoted “KP (S)”,
is, as stated above, the length in bits of the smallest inputless program that outputs S. Now, you can
write a program that näıvely computes cn in about 40 lines of Matlab — maybe less, if you’re a cleverer
programmer than I am — about 2000 bits. The problem, of course, is that it runs in time roughly 3nγ

n

— doubly exponential. On any plausible universal Turing machine, the program may well be considerably
longer in bits, but in any case it is pretty short as compared to lots of programs that compute lots of useful
things. Let’s call the length of that program L. Then we have KP (cn) ≤ L+KP (n). If log(cn) > L — that is,
if n > L log(2)/ log(γ) — then quite possibly this is in fact the shortest program to generate cn so the above
inequality would be tight.5 The key point here, though, is that this program is not much longer than the
code generated by FunSearch — which, keep in mind, includes the greedy algorithm in the skeleton as well
as the policy — and it establishes the true value for any n, not just a lower bound for n = 8. So if FunSearch
had anything to do with Kolmogorov complexity, it would be outputting this program or something similar.
It doesn’t, and you certainly wouldn’t want it to. Kolmogorov complexity is a red herring.

4.8 Is it wise to limit the target code to a single skeleton?

I was quite surprised to see that the FunSearch team had used such a simple-minded algorithm for the
skeleton — the simplest possible greedy algorithm, based on priorities which are computed at the start as
a function of individual vectors. There are other kinds of priority functions; one could have an evaluation
metric over a cap set or a function that maps a cap set to a vector to add, analogous to a policy function in
Markov decision processes. And there are many alternative search strategies one could use a beam search, or
a stochastic search, or a hill-climbing search with swap operators and sideways motion, and so on. I am not
an expert on search, but I would think considering a sophisticated skeleton with a simpler priority function
might well do better than the simplest possible skeleton with a comparatively complex priority function. I
should certainly think it would be worthwhile experimenting with the option.

Romera-Paredes et al. write,

This [architectural decision] delegates to FunSearch precisely the part that is usually the hardest
to come up with. While a fixed skeleton may constrain the space of programs that can be
discovered, we find it improves overall results because it focuses the LLM resources on evolving

5We may, some time in the future, find out that it is not the shortest program, but we will never be able to prove that it is
the shortest program.
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the critical part only, instead of also using the LLM to recreate already known program structures
(with more opportunities for mistakes that would render the entire program incorrect).

I agree, certainly, that giving the LLM free rein to invent new skeletons is not likely to be fruitful, but I
would say that it’s misleading to say that that’s because the skeleton “is usually the hardest to come up
with”. On the contrary, it is because devising a good new skeleton is much harder and error-prone than
devising a good new priority function. The fact that the skeleton is protected from the LLM in this way is
another indication of how shallow the LLM’s understanding of the larger setting is.

4.9 Is FunSearch the best current AI approach to this problem?

Romera-Paredes et al., in their supplementary material, report on some ablation tests and comparative
tests on the problem of generating a large admissible set. One result that is intriguing was an experiment
where they replaced the LLM by a hand-crafted set of mutations on the priority function, but otherwise left
the architecture of FunSearch unchanged. What they found is that the resulting program did a lot worse
than FunSearch and took much longer to arrive at anything reasonable, but after 1.5 million iterations had
achieved a result that was impressive — better than they expected. Note that this alternative archictecture
not only had no LLM; it had no neural-network or deep learning whatever.

There is, however, an enormous difference between FunSearch and this uninformed genetic algorithm in
speed of convergence in the early iterations of the algorithm. FunSearch reaches a state that is good, though
not optimal, with astonishing speed. In its best run, the seed priority function, with which it begins, gives
a score 1161 points below optimal. After 840 calls to the LLM, it reached a score 468 points below optimal.
After 88,548 calls, it reached a score 75 points below optimal. Finally after 1,732,100 calls, it reached the
optimal. By contrast, the uninformed genetic algorithm had to generate more than a million variants to
reach a state 800 points below the optimal. (See figure A.2 of the supplemental information. The exact
figures on the best run of FunSearch were kindly provided by Pawan Kumar by email.)

A more important question is this: FunSearch is doing search through a space of complex functions toward
a function that maximizes some objective evaluation, using only feedback from the evaluation function on
a sequence of candidates. That sounds almost like the definition of reinforcement deep learning. Since this
project is coming out of DeepMind, which is the world center for reinforcement deep learning, I couldn’t
help but wonder: Did they try reinforcement deep learning on any of these problems and if they tried it,
how well did it do? I asked Alhussein Fawzi, the corresponding author. who answered:

We tried initially an RL approach that searches in the space of constructions directly, but that
didn’t look promising – it didn’t scale in particular to large problem sizes. We haven’t tried RL
in the space of functions, but that’d be an interesting next step.
(Email from Alhussein Fawzi to Ernest Davis, 12/18/2023; quoted by permission of Dr. Fawzi.)

The article in Technology Review (Heaven, 2023) quotes a similar statement:

Built on top of DeepMind’s game-playing AI AlphaZero, both [AlphaTensor and AlphaDev] solved
math problems by treating them as if they were puzzles in Go or chess. The trouble is that they
are stuck in their lanes, says Bernardino Romera-Paredes, a researcher at the company who
worked on both AlphaTensor and FunSearch: “AlphaTensor is great at matrix multiplication,
but basically nothing else.”

As I remarked above, the history of AI applied to research mathematics has a number of one-offs. The
successes of AlphaTensor and AlphaDev suggested that deep reinforcement learning might have a great
future in applications to mathematical research; apparently, that tool is much more limited than had been
hoped.
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4.10 What other mathematical problems, if any, was FunSearch tested on?

To what extent, if any, have the results reported been cherry-picked? The article does not say.

4.11 What was the interpersonal group dynamics of the project?

This is not a question that one usually asks about a technical paper, but since the product here is being
touted as potentially a useful tool for the working mathematician, it seems to me legitimate. We have here
a team from DeepMind plus a mathematician who is a world expert on the cap set problem, and we have
the report of the outcome of a new software system, primarily on cap set and secondarily on three other
problems. How did this come about? Did Ellenberg propose the cap set problem to the Deep Mind team,
and they developed FunSearch to solve that problem? Was FunSearch developed independently, and then
someone at DeepMind thought to propose it to Ellenberg? Looking forward to future collaborations between
mathematicians and AI labs, this would be useful to know.

4.12 What ultimately will be the impact of FunSearch?

Obviously, there is no way to predict with certainty. But in view of its clear limitations and its strange
construction, my own feeling is that, among the many different techniques that have been proposed and
attempted for applying AI to mathematics — symbolic proof construction and proof verification, proof con-
struction using learned strategies, using LLMs to translate mathematics into code, using LLMs to translate
mathematics into formal logic, applying deep reinforcement learning — FunSearch seems like one of the most
niche and least promising. Certainly claims that this particular technology is revolutionary or even a great
leap forward seem unfounded.
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