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ABSTRACT

A mobile robot that maintains a dynamic cognitive map will
often find that the information in the map is contradicted by his
perceptions, and is therefore incorrect. Such errors may be the
result of an earlier misperception, an erroneous matching, an
erroneous default inference, computational errors, a change in the
world over time, or an erroneous previous error correction. Due to
the complexity of inference in forming cognitive maps, domain -
independent strategies for error correction, such as data-
dependencies or conditional probabilities, are not sufficient by
themselves to give a robust error correction scheme. Rather,
domain -specific techniques and heuristics must be applied. We dis-
cuss some of the basic issues involved in detecting, diagnosing and
correcting errors in the cognitive map. We also discuss how a
robot may decide whether to take actions in order to gather
relevant information.

1. INTRODUCTION

Most animals, over the course of their lifetime, move about in an environ-
ment that is considerably larger than the range of their sensors and is not
under their direct control, but is stable enough that many features remain the
same between one visit to a place and the next. Such an animal, or a mobile
robot with sensors that operates under similar circumstances, stands to gain
from learning and remembering the geographic characteristics of its environ-
ment. A dynamic cognitive map is a knowledge structure that supports such
learning and remembering. There have been numerous studies' proposing
knowledge structures for dynamic cognitive maps for use in AI systems.

It is not possible, in general, to design a cognitive mapping system that
is both powerful enough to be useful to a robot in a rich environment and
also secure enough to be guaranteed correct. In almost any uncontrolled
environment, there are possible circumstances in which the cognitive map-
ping system may perform an operation which, though reasonable, is in fact
mistaken and results in the cognitive map being incorrect. A robust cognitive
mapping system must therefore have the capacity to detect and deal with
errors. Previous cognitive mapping systems that have avoided doing error
correction are necessarily fragile. A number of systems47 -10 have addressed
the problem of correcting perceptual errors, but these have generally used
overly simple models that are appropriate only in very restricted environ-
ments. In this paper, we give a preliminary discussion of the issues that arise
in error correction in a broad range of cognitive mapping systems. We do
not, however, give any complete algorithms for any specific cognitive map-
ping architecture.

Error correction is an important issue in many areas of AI, and a
number of domain -independent techniques have been developed to address
it, such as data- dependency maintenance or numerical combination of evi-
dence weights. We shall show below (section 6) that, though these tech-
niques may be helpful in dealing with cognitive maps, they are not by them-
selves sufficient, owing to the complexity of the inference performed in cog-
nitive mapping. Rather, error correction in cognitive maps requires a
domain -specific architecture and heuristics. In other words, you cannot take
an existing cognitive mapping system and make it robust by connecting it to
a truth- maintenance system, or by throwing in conditional probabilities.

2. FUNDAMENTALS

A cognitive map is a knowledge structure that connects spatial proper-
ties to real -world features. Features may include named objects such as "the
Statue of Liberty "; object characteristics, such as "a large beech tree "; con-
tinually varying measurements, such as "surface reflectance" or "elevation"
in a two -dimensional map; or quantified statements such as "an area with no
trees" or "an area where every house has a TV antenna ". Spatial properties
may include exact coordinates; shape characteristics; metric relations

between regions, such as distance or direction; topological relations between
regions, such as containment or adjacency; or characteristics of spatial distri-
bution, such as "Every fifty to one hundred feet ". (These lists are intended to
be suggestive rather than exhaustive.)

A cognitive map describes an external environment; it may be correct,
incorrect, or partially correct, depending on the actual state of the world. The
meaning of a particular cognitive map may be defined in terms of the
assignment of correctness over the space of possible real -world states. The
rules that define this meaning are the semantics of the representational sys-
tem. Since almost all cognitive maps are incomplete or imprecise in some
respects, it is worthwhile being systematic about the semantics of a represen-
tation, rather than, as is common, letting the semantics be defined operation-
ally by the behavior of the program that manipulate the map. Otherwise, it
becomes easy to leave potential sources of ambiguous interpretation
unresolved, or to have two modules of the system interpret the same
representation in conflicting ways. We illustrate with two examples:

1. Shape: Many cognitive maps approximate the shapes of real -world
features, which may be complex or ill- defined, in terms of an idealized sim-
ple geometry. In such cases, it is often possible to find two quite different
legitimate representations for the same actual shape (Figure 1.)
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Either of the dotted shapes is
a reasonable approximation

for the solid shape

Figure 1: Two representations for a single shape

It is therefore important to define the sense of approximation involved, so
that sound rules for matching can be found. Consider, for example, the fol-
lowing approximation criteria for two -dimensional shapes:

i. The approximation boundary is everywhere close to the real boundary.
ii. The real boundary is everywhere close to the approximation.
iii. There is a continuous 1 -1 function from the approximation interior

onto the real interior that moves points only a small amount.
iv. The area of the symmetric difference between the two regions is

small.

v. The tangent to the approximation is close to the tangent to the real
boundary at some nearby point.

Different approximation criteria lead to different evaluations of
correctness. For example, in figure 2, example A satisfies criteria (i), (iv),
and (v); B satisfies (ii); C satisfies (i), (ii), (iii), and (v); D satisfies (iv); E
satisfies (i), (ii), (iii), and (iv); and F satisfies (i), (ii), (iv), and (v).

2. Individuation of objects: In a cognitive map that enumerate,
discrete objects, two questions arise about the enumeration: (i) Is it com-
plete? That is, can it be assumed that any object that is in the area shown in
the map and that can be detected by the sensors is represented in the map? If
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Figure 2: Criteria of approximation

not, is there any way to express in the map that some particular area is com-
plete with respect to some type of object? Is there ever any way to infer from
a map that a object of a particular kind is not present in an area? (ii) Are the
objects enumerated all distinct? That is, is it possible for an object to appear
twice in the map under two different geometrical description? If only
separated pieces of an object have been seen, is it legitimate for them to be
represented separately in the map?

What semantics should be chosen depends on the type of information
available and the use being made of the information. For example, if the
objects being recorded are large and the robot passes close to them, then
local properties of objects will be particularly evident, and the semantics
should allow them to be represented. Another example: as noted above, if
the robot often sees only parts of objects due to occlusion, it is probably
unwise to require the map to identify two separated parts of an object as
parts of the same object.

The cognitive maps we are considering are built up dynamically from
the perceptions of a mobile robot. That is, a robot moves about in an
environment, receiving information about its motion from its effectors, and
information about the local scene (and possibly about its motion, as well)
from its perceptions. The perceptual information may be either in the form
of a discrete series of scene descriptions, or a characterization of the con-
tinuous evolution of the perceptible scene. Updating the cognitive map
involves relating the perceptual information to the cognitive map and to
incorporating any new information in the perceptions into the map. Both of
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these operations become much more difficult if the map's description of the
area being perceived is incorrect. Relating perceptions to the map is difficult
because perceptions correspond only to the correct information in the map;
they contradict the errors in the map. These contradictions will interfere with
the task of finding the valid correspondences. Incorporating new informa-
tion must now deal with correcting information in the map, not merely
adding information to it.

When the robot returns to an area previously seen, relating perceptions
to the map involves finding an explicit match between its current perceptions
to the previous record of the area in the cognitive map.* This match can be
forced, meaning that the identification holds necessarily if both the map and
the perception are correct, or it may be optional, if the identification is not a
necessary consequence of the map and perception, but is merely suggested
by the similarity of the perception to the map. The need to find these kinds of
matches suggests that it is not sufficient to index cognitive maps by position;
there should also be a feature -based index.

Sensor Effector

Matching

Corres-
pondence

Incorporation

Figure 3: Arch'tecture of a Cognitive Mapping System

3. SOURCES OF ERROR

Errors can enter the cognitive map from a number of different sources:
1. Errors of perception 6'11. Most image interpretation systems can

only give a best guess as to interpretation; by the nature of the task, they can-
not give an answer that is guaranteed correct. The perceptual information
may contain either errors in geometry or misidentifications of features.
Incorporating a margin of error into the representation, by using relational
constraints2,3,9 alleviates the problem but does not eliminate it. Errors tend to
follow a probability distribution rather than to have fixed bounds; therefore,
any bounds tight enough to give useful information are likely to be exceeded
occasionally. These relational constraints are also difficult to compute with.

2. Errors in effector feedback, giving incorrect information about the
motion of the robot.

* Matching features in the current perception to the same features in the
immediately preceding perceptions is a much easier and more reliable opera-
tion. The failure to distinguish between these two types of matching was a
major limitation of MERCAOTOR.3

Sensor Fusion: Spatial Reasoning and Scene Interpretation (1988) / 333

e

Real shapes in solid. 

Approximations in dotted lines. 

Figure 2: Criteria of approximation

not, is there any way to express in the map that some particular area is com­ 
plete with respect to some type of object? Is there ever any way to infer from 
a map that a object of a particular kind is not present in an area? (ii) Are the 
objects enumerated all distinct? That is, is it possible for an object to appear 
twice in the map under two different geometrical description? If only 
separated pieces of an object have been seen, is it legitimate for them to be 
represented separately in the map?

What semantics should be chosen depends on the type of information 
available and the use being made of the information. For example, if the 
objects being recorded are large and the robot passes close to them, then 
local properties of objects will be particularly evident, and the semantics 
should allow them to be represented. Another example: as noted above, if 
the robot often sees only parts of objects due to occlusion, it is probably 
unwise to require the map to identify two separated parts of an object as 
parts of the same object.

The cognitive maps we are considering are built up dynamically from 
the perceptions of a mobile robot. That is, a robot moves about in an 
environment, receiving information about its motion from its effectors, and 
information about the local scene (and possibly about its motion, as well) 
from its perceptions. The perceptual information may be either in the form 
of a discrete series of scene descriptions, or a characterization of the con­ 
tinuous evolution of the perceptible scene. Updating the cognitive map 
involves relating the perceptual information to the cognitive map and to 
incorporating any new information in the perceptions into the map. Both of

these operations become much more difficult if the map's description of the 
area being perceived is incorrect. Relating perceptions to the map is difficult 
because perceptions correspond only to the correct information in the map; 
they contradict the errors in the map. These contradictions will interfere with 
the task of finding the valid correspondences. Incorporating new informa­ 
tion must now deal with correcting information in the map, not merely 
adding information to it

When the robot returns to an area previously seen, relating perceptions 
to the map involves finding an explicit match between its current perceptions 
to the previous record of the area in the cognitive map.* This match can be 
forced, meaning that the identification holds necessarily if both the map and 
the perception are correct, or it may be optional, if the identification is not a 
necessary consequence of the map and perception, but is merely suggested 
by the similarity of the perception to the map. The need to find these kinds of 
matches suggests that it is not sufficient to index cognitive maps by position; 
there should also be a feature-based index.

Incorporation

Figure 3: Architecture of a Cognitive Mapping System

3. SOURCES OF ERROR

Errors can enter the cognitive map from a number of different sources:
1. Errors of perception 8"u . Most image interpretation systems can 

only give a best guess as to interpretation; by the nature of the task, they can­ 
not give an answer that is guaranteed correct. The perceptual information 
may contain either errors in geometry or misidentifications of features. 
Incorporating a margin of error into the representation, by using relational 
constraints2- 3 ' 9 alleviates the problem but does not eliminate it. Errors tend to 
follow a probability distribution rather than to have fixed bounds; therefore, 
any bounds tight enough to give useful information are likely to be exceeded 
occasionally. These relational constraints are also difficult to compute with.

2. Errors in effector feedback, giving incorrect information about the 
motion of the robot.

* Matching features in the current perception to the same features in the 
immediately preceding perceptions is a much easier and more reliable opera­ 
tion. The failure to distinguish between these two types of matching was a 
major limitation of MERCAOTOR.3

SPIE Vol. 1003 Sensor Fusion: Spatial Reasoning and Scene Interpretation (1988) / 333



3. Matching errors. An optional match is a best guess, rather than a
sound deduction, and therefore can be in error, if the robot identifies two dis-
tinct but similar places. If the semantics rules out representing a single
feature twice in the map, then the failure to find a correct match may also
introduce an error into the map.

4. Heuristic error. In many cases, assembling a cognitive map requires
addressing problems that, in principle, are computationally intractable in the
worst case. In such cases, the system may use approximate or heuristic
methods; these will sometimes give incorrect solutions that must be
corrected later. For example, the SPAM and MERCATOR programs" used
a combination of hill-climbing and Monte Carlo techniques to extract infor-
mation from a collection of constraints on distances and direction, a problem
which is NP- hard.12 These techniques are not logically sound and therefore
tend to introduce into the map new information that may not be correct.

5. Default inference. The cognitive mapping system may flesh out the
map using a variety of default inferences which may go wrong. For example,
if you are traveling on a road, and you see a traffic light, you can usually
infer that there is a cross -road there, but this inference may be wrong.

6. Temporal change. The world may have changed since it was last
seen.

7. Error introduced in error correction. As we shall discuss below,
there are usually several different ways of changing a cognitive map to
resolve any particular problem. Choosing the wrong correction may intro-
duce new errors.

Once an error is introduced into a map, normal inference processcan
easily spread it around to generate new errors elsewhere in the map. For
example, suppose that you have previously seen that the turn-off from Atlan-
tic Avenue onto Maple Lane is opposite a gas station, and your cognitive
map records the fact. If the gas station is now taken down, and you are driv-
ing up Atlantic Avenue, you may go past Maple Lane without realizing it,
and place all the features you see on the wrong side of the Maple Lane turn-
off. (Figure 4) My own experience in MERCATOR3 was that, once a small
error was introduced into the map, it spread itself around the map amazingly
quickly; however, MERCATOR may have been unusually fragile in this
regard.

4. DETECTING ERRORS

In most cases, error is detected when the cognitive mapping system
observes that the current perceptual information is inconsistent with the cog-
nitive map. This inconsistency may be logical - e.g. the map asserts that a
field is empty, while the perceptual system reports that it contains a tree -
or it may involve a violation of some domain rule - e.g. the perceptual sys-
tem reports seeing a building over a place where the map records a lake,
violating the default rule that buildings are not generally built on lakes.
Such a contradiction implies or suggests that either the cognitive map or the
perception is erroneous; it is the task of the error correction system to choose
between these.

There are also other cases where error correction is appropriate, even
though there is no explicit contradiction between perception and the cogni-
tive map. One case is where the perceived scene very closely matches a
known place which is marked in the cognitive map as being far from the
robot's current position. In this case, it may be more probable that an error
has been made in judging position than that the world should contain two
such similar places. For example, suppose you set out for a walk from your
hotel in a strange city. After walking for a while, you judge that you are
probably a mile from your hotel. Suddenly, you come across a building
which is indistinguishable from your hotel in all respects. In this case, it is
probably more reasonable to suppose that you have made a mistake evaluat-
ing your position than to suppose that there are two such similar buildings in
the city, though the latter supposition does not violate any actual rules. Simi-
larly, if the perceptions match an area in the cognitive map except for some
minor differences, it may be more reasonable to suppose that the differences
are due to some kind of error than that such a coincidence of common
features could occur.

It is often computationally infeasible to perform a complete check of
whether the perception is consistent with the map. In such cases, it is possi-
ble for contradictory information to be merged directly from the perception
into the map, leaving the map in an inconsistent state. Such contradictions
may emerge as the result of some later computation, that brings the two facts
together in a way that makes their contradiction evident. If so, the error
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Figure 4: Error propagation.

should be corrected at that time by purely internal examination of the map,
independent of the current perception. Similarly, implausible duplications of
features may lay hidden in the map, to emerge and be corrected at a later
date.

5. MATCHING

The interactions between matching and error correction are particu-
larly difficult. Matching errors can be especially malignant in their effects. A
match between two similar regions that are far apart can introduce very sub-
stantial distortions into the map, for all the environs of each region will simi-
larly be placed close together. If these environs are sufficiently similar to one
another to be yield plausible partial matches, the map can get thoroughly
twisted up with combinations of facts that belong to two different parts of
the world. Unraveling such an error involves separating information from
the two sources. It would seem advisable to maintain two separate tokens for
the two perceptions of the object with an explicit equality link between
them. Over time, however, this becomes burdensome; it does not seem rea-
sonable to maintain a separate token representing each time an object has
been seen.

These considerations suggest that it may be well to be very conserva-
tive in matching; to delay committing the map to a match between two areas
until so many common features have been detected that the probability of
coincidence is absolutely negligible. This should apply even to forced
matches, to avoid spurious matches generated by previous errors.

6. CREDIT ASSIGNMENT

The problem of determining what basic error underlies an observed
failure, known in learning theory as the credit assignment problem, is partic-
ularly difficult in dynamic cognitive mapping, because natural chains of
inference can extend over long periods of motion and perception, making
basic calculations dependent on virtually all previous measurements and
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until so many common features have been detected that the probability of 
coincidence is absolutely negligible. This should apply even to forced 
matches, to avoid spurious matches generated by previous errors.

6. CREDIT ASSIGNMENT

The problem of determining what basic error underlies an observed 
failure, known in learning theory as the credit assignment problem, is partic­ 
ularly difficult in dynamic cognitive mapping, because natural chains of 
inference can extend over long periods of motion and perception, making 
basic calculations dependent on virtually all previous measurements and
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judgements. Consider, for example, a mobile robot that tracks its own posi-
tion using a combination of dead reckoning together with perceptual feed-
back, and which uses this judgement of position in its identification of per-
ceived objects. If this robot mismeasures its motion in an early stage of its
travels, then this can throw off all subsequent judgements of position. More-
over, if the robot also uses its perception to judge its position, then any type
of error - misperception of geometry, misidentification of features,
mismatch, or the like - can propagate in the same way. This kind of propa-
gation can lead to seriously distorted maps, as in the example in section 2 of
the gas station on Maple Street. More subtly, but perhaps even more seri-
ously, it means that when a contradiction is detected, the cognitive mapping
system must consider all possible previous sources of error, which means
virtually all previous perceptual information and plausible inferences. More-
over, if the robot wants now to compute the effects of changing its judg-
ments of three hours ago, it may require recomputing every change it has
made to its map since then, as all these changes were based on a different
judgement of position. Considering all possibly relevant changes to the map
to determine which correction best fixes the observed problem would thus be
a computational nightmare. Since the dependencies here are genuine, they
are not avoided by any general scheme of belief revision, such as data-
dependency maintenance or the use of conditional probabilities. Algebraic
techniques for tracing from a failure to a underlying error, such as those used
by Simmons,13 may provide some degree of pruning. However, they are
unlikely to constitute a complete solution, due to the complex interrelations
of data used in computing an answer.

The problem will be compounded if, as is common, the input percep-
tual information is not incorporated directly into the map, but, rather, is
translated to some more tractable or compact form. If the original informa-
tion is thrown away in the process, then access to the original source of error
becomes impossible. Even if the original input is maintained as a
justification for the compact form, determining the effect of making a
correction to the original input will require recomputing all the transforma-
tions.

These considerations suggest some possible approaches to designing
systems with error correction. The first would be to prevent the system from
constructing very long chains of inference, such as that involved in tracking
absolute position in the scenario above; so to speak, to erect fire -walls
against very long searches through the space of underlying assumptions.
Such a strategy would probably involve creating a very localized map, with
little explicit global information. Where a global inference must be made, it
should be a very robust one, which is valid under a wide range of possible
errors. Note that any error in orientation can generate an error in position
proportional to the total distance travelled since the error was made.

Another possible approach would be to give up on trying to find an
original cause for the error, and simply look for a plausible new state of the
map. This would be particularly appropriate, of course, in maps where the
original form of the input has been discarded. For example, if the robot is
found to be somewhere else than expected, don't try to figure out where the
process went wrong, just adjust the map to record his new position and his
recent path. Such a strategy will often result in many errors persisting in the
map past the time when they could, in principle, have been eliminated, and,
quite possibly, in the map containing global inconsistencies; but it may be
the most effective solution computationally.

7. HEURISTICS FOR ERROR CORRECTION

In general, there will be many possible ways of changing the map or
the perceptual information to resolve any given conflict. It is the task of the
error correction mechanism to find the "best" such correction.

The first condition on correction is that the final map make sense inter-
nally. It must be logically consistent (e.g. the map should not contain one
datum that area A is empty, and another that object O is in A), geometrically
consistent, and consistent with physical constraints (e.g. it should not record
that two incompatible features are in the same place.) In many cases, a com-
plete verification of these constraints may be computationally infeasible; if
so, some partial conditions will have to suffice.

In many structures for cognitive maps, the data in the map are interre-
lated by these constraints, so that, if one datum is changed, it will be neces-
sary to change others as well, in order to keep the map consistent. For
instance, if the map records each of the lengths and angles of a triangle, and

the error corrector decides that one of these quantities is in error, it will have
to change at least two of the other quantities as well, since there are only
three free parameters in a triangle. There are structures for maps in which
each datum is independent, so that the map is always consistent no matter
what combinations of values are specified. An occupancy array has this pro-
perty; the occupancy of any square of an array does not depend on the occu-
pancy of any other square. Another structure with this property is a map in
which objects are organized in a free tree, and the map records the relative
position only of adjacent objects.4 Even in these maps, however, it will
often be more reasonable to change many data rather than to change a single
datum. Consider, for example, a map using an occupancy array that records
that two objects are adjacent. If it is later found that position of one of these
objects is misrecorded in the map, and that it is, in fact, ten feet away, then it
is often reasonable to "move" the second object along with the first. That is,
we would assume that the implicit information relating the rooms to the
walls is more reliable than the explicit record of the position of the rooms.
Therefore, in formulating an error correction strategy and deciding which
information to preserve and which to abandon, it is advisable to consider as
potentially relevant all information implicit in the map, not just that expli-
citly expressed. Error correction strategies that ignore these implicit con-
straints, such as [8], necessarily apply to a limited range of environments.

In some cases, it is reasonable to organize the map so that it directly
employs the most reliable information. In the above example, it would be
feasible to have the adjacency of the two objects directly represented; in
fact, the accessibility of this fact would simplify many important inferences
as well as aiding in error correction. In other cases, however, particularly
reliable information may be quite unhelpful in most uses of the cognitive
map. For example, if the robot sees two objects simultaneously, then the
datum that these objects can both be seen from a single position is as reliable
as the identification of the objects; substantially more reliable than data such
as the distance between them or their relative orientation. However, since
this datum involves not only the position of the two objects but also the
absence of other occluding objects, it is very difficult to use in a forward
direction as a basis for other inferences, and therefore should not be part of
the basic structure of the map. The best that can be done with it is to record it
as a constraint, and then use it prune the space of positions of objects, in a
"generate and test" manner. (Note that, though this fact depends on the posi-
tions of all other objects, it may be more reliable than the judgement of posi-
tions of other objects; however, it is not more reliable than the temporal
inference that no other objects have moved to interrupt the view.)

Finding the most likely correction involves evaluating the reliability of
each relevant datum in the map, and the likelihood that it is in error. This
evaluation depends strongly on the source of the information:

Direct perception: The error corrector should have available informa-
tion about the reliability of various kinds of data acquired through the sen-
sors. For example, in humans, it would seem that object type identification is
fairly reliable, while metric judgements is relatively uncertain. The reverse
would probably be true in a robot with range- finders and current software for
object recognition. Similarly, the error corrector needs information about the
reliability of effector feedback in reporting the motions of the robot. This
information about the reliability of perception is also used to determine the
likelihood that it is the current perception rather than the existing map that is
in error.

Inference: If a datum 4 is inferred from data 01,02 then the likeli-
hood of is some function of the likelihoods of 01,02 - their product,
if they are independent probabilities. If the inference involves the use of an
uncertain heuristic, then that uncertainty must be factored in as well. Hence,
default rules used by the system should be tagged with a measure of their
reliability. Similarly, metric quantities that are calculated using numerical
techniques of limited accuracy should be tagged with some additional meas-
ure of uncertainty.

Temporal change: The likelihood that a given state continues to hold
after it is perceived tends to decrease over time. The rate of this decrease
depends on the type of state involved. If one returns to a city street after
fifteen minutes absence, one expects to find many of the parked cars in the
same place, but not the moving cars; after a week, one expects to find that
many of the cars have moved, but the buildings are the same; after ten years,
that some, but not necessarily all of the buildings are the same; after five
hundred years, that the general topography is the same. In the absence of
information about relevant events that change the state, the likelihood that no
change has occurred may be taken to be a decaying exponential.14 It is there-
fore necessary to tag each datum in the map with an indication of the time
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judgements. Consider, for example, a mobile robot that tracks its own posi­ 
tion using a combination of dead reckoning together with perceptual feed­ 
back, and which uses this judgement of position in its identification of per­ 
ceived objects. If this robot mismeasures its motion in an early stage of its 
travels, then this can throw off all subsequent judgements of position. More­ 
over, if the robot also uses its perception to judge its position, then any type 
of error   misperception of geometry, misidentification of features, 
mismatch, or the like   can propagate in the same way. This kind of propa­ 
gation can lead to seriously distorted maps, as in the example in section 2 of 
the gas station on Maple Street. More subtly, but perhaps even more seri­ 
ously, it means that when a contradiction is detected, the cognitive mapping 
system must consider all possible previous sources of error, which means 
virtually all previous perceptual information and plausible inferences. More­ 
over, if the robot wants now to compute the effects of changing its judg­ 
ments of three hours ago, it may require recomputing every change it has 
made to its map since then, as all these changes were based on a different 
judgement of position. Considering all possibly relevant changes to the map 
to determine which correction best fixes the observed problem would thus be 
a computational nightmare. Since the dependencies here are genuine, they 
are not avoided by any general scheme of belief revision, such as data- 
dependency maintenance or the use of conditional probabilities. Algebraic 
techniques for tracing from a failure to a underlying error, such as those used 
by Simmons,13 may provide some degree of pruning. However, they are 
unlikely to constitute a complete solution, due to the complex interrelations 
of data used in computing an answer.

The problem will be compounded if, as is common, the input percep­ 
tual information is not incorporated directly into the map, but, rather, is 
translated to some more tractable or compact form. If the original informa­ 
tion is thrown away in the process, then access to the original source of error 
becomes impossible. Even if the original input is maintained as a 
justification for the compact form, determining the effect of making a 
correction to the original input will require recomputing all the transforma­ 
tions.

These considerations suggest some possible approaches to designing 
systems with error correction. The first would be to prevent the system from 
constructing very long chains of inference, such as that involved in tracking 
absolute position in the scenario above; so to speak, to erect fire-walls 
against very long searches through the space of underlying assumptions. 
Such a strategy would probably involve creating a very localized map, with 
little explicit global information. Where a global inference must be made, it 
should be a very robust one, which is valid under a wide range of possible 
errors. Note that any error in orientation can generate an error in position 
proportional to the total distance travelled since the error was made.

Another possible approach would be to give up on trying to find an 
original cause for the error, and simply look for a plausible new state of the 
map. This would be particularly appropriate, of course, in maps where the 
original form of the input has been discarded. For example, if the robot is 
found to be somewhere else than expected, don't try to figure out where the 
process went wrong, just adjust the map to record his new position and his 
recent path. Such a strategy will often result in many errors persisting in the 
map past the time when they could, in principle, have been eliminated, and, 
quite possibly, in the map containing global inconsistencies; but it may be 
the most effective solution computationally.

7. HEURISTICS FOR ERROR CORRECTION

In general, there will be many possible ways of changing the map or 
the perceptual information to resolve any given conflict. It is the task of the 
error correction mechanism to find the "best" such correction.

The first condition on correction is that the final map make sense inter­ 
nally. It must be logically consistent (e.g. the map should not contain one 
datum that area A is empty, and another that object O is in A), geometrically 
consistent, and consistent with physical constraints (e.g. it should not record 
that two incompatible features are in the same place.) In many cases, a com­ 
plete verification of these constraints may be computationally infeasible; if 
so, some partial conditions will have to suffice.

In many structures for cognitive maps, the data in the map are interre­ 
lated by these constraints, so that, if one datum is changed, it will be neces­ 
sary to change others as well, in order to keep the map consistent. For 
instance, if the map records each of the lengths and angles of a triangle, and

the error corrector decides that one of these quantities is in error, it will have 
to change at least two of the other quantities as well, since there are only 
three free parameters in a triangle. There are structures for maps in which 
each datum is independent, so that the map is always consistent no matter 
what combinations of values are specified. An occupancy array has this pro­ 
perty; the occupancy of any square of an array does not depend on the occu­ 
pancy of any other square. Another structure with this property is a map in 
which objects are organized in a free tree, and the map records the relative 
position only of adjacent objects.4 Even in these maps, however, it will 
often be more reasonable to change many data rather than to change a single 
datum. Consider, for example, a map using an occupancy array that records 
that two objects are adjacent. If it is later found that position of one of these 
objects is misrecorded in the map, and that it is, in fact, ten feet away, then it 
is often reasonable to "move" the second object along with the first. That is, 
we would assume that the implicit information relating the rooms to the 
walls is more reliable than the explicit record of the position of the rooms. 
Therefore, in formulating an error correction strategy and deciding which 
information to preserve and which to abandon, it is advisable to consider as 
potentially relevant all information implicit in the map, not just that expli­ 
citly expressed. Error correction strategies that ignore these implicit con­ 
straints, such as [8], necessarily apply to a limited range of environments.

In some cases, it is reasonable to organize the map so that it directly 
employs the most reliable information. In the above example, it would be 
feasible to have the adjacency of the two objects directly represented; in 
fact, the accessibility of this fact would simplify many important inferences 
as well as aiding in error correction. In other cases, however, particularly 
reliable information may be quite unhelpful in most uses of the cognitive 
map. For example, if the robot sees two objects simultaneously, then the 
datum that these objects can both be seen from a single position is as reliable 
as the identification of the objects; substantially more reliable than data such 
as the distance between them or their relative orientation. However, since 
this datum involves not only the position of the two objects but also the 
absence of other occluding objects, it is very difficult to use in a forward 
direction as a basis for other inferences, and therefore should not be part of 
the basic structure of the map. The best that can be done with it is to record it 
as a constraint, and then use it prune the space of positions of objects, in a 
"generate and test" manner. (Note that, though this fact depends on the posi­ 
tions of all other objects, it may be more reliable than the judgement of posi­ 
tions of other objects; however, it is not more reliable than the temporal 
inference that no other objects have moved to interrupt the view.)

Finding the most likely correction involves evaluating the reliability of 
each relevant datum in the map, and the likelihood that it is in error. This 
evaluation depends strongly on the source of the information:

Direct perception: The error corrector should have available informa­ 
tion about the reliability of various kinds of data acquired through the sen­ 
sors. For example, in humans, it would seem that object type identification is 
fairly reliable, while metric judgements is relatively uncertain. The reverse 
would probably be true in a robot with range-finders and current software for 
object recognition. Similarly, the error corrector needs information about the 
reliability of effector feedback in reporting the motions of the robot. This 
information about the reliability of perception is also used to determine the 
likelihood that it is the current perception rather than the existing map that is 
in error.

Inference: If a datum <|> is inferred from data 61,62   *' then the likeli­ 
hood of (J> is some function of the likelihoods of 0! ,92         their product, 
if they are independent probabilities. If the inference involves the use of an 
uncertain heuristic, then that uncertainty must be factored in as well. Hence, 
default rules used by the system should be tagged with a measure of their 
reliability. Similarly, metric quantities that are calculated using numerical 
techniques of limited accuracy should be tagged with some additional meas­ 
ure of uncertainty.

Temporal change: The likelihood that a given state continues to hold 
after it is perceived tends to decrease over time. The rate of this decrease 
depends on the type of state involved. If one returns to a city street after 
fifteen minutes absence, one expects to find many of the parked cars in the 
same place, but not the moving cars; after a week, one expects to find that 
many of the cars have moved, but the buildings are the same; after ten years, 
that some, but not necessarily all of the buildings are the same; after five 
hundred years, that the general topography is the same. In the absence of 
information about relevant events that change the state, the likelihood that no 
change has occurred may be taken to be a decaying exponential. 14 It is there­ 
fore necessary to tag each datum in the map with an indication of the time
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when it was last perceived.

Corrections due to temporal change often changes collections of data
in quite different ways from other types of correction. For example, suppose
that you believe that your radio is in the trunk of your car which is parked
legally on Broadway and 44th Street. Now you come back to Broadway and
44th Street, and you do not see your car. If you were mistaken about where
you parked your car, then it is likely that your radio is still in the trunk; how-
ever, if your car has been moved (presumably by unauthorized persons),
then it is likely that your radio is no longer in the trunk. Similarly, as noted
above, the reliability of the perception that a view of an object is unoccluded
is unaffected by errors in judging the positions of potentially occluding
objects, whereas it is affected by the possibility that these objects have
moved into occluding position. By contrast, suppose that you believe you
have left your driver's license on your bureau and you come back and it is
not there. If the error is due to error, then the license is lost, and there is no
particular reason to believe that it is anywhere in the house. If the error is
due to temporal change, then presumably your spouse put it away some-
where, and it probably is in the house. The point is that a temporal change
often implies or suggests some event causing the change, and this inferred
event may in turn imply further changes or constancies.

Repeated Evidence: A datum gains credibility if it is confirmed by
many sources. If all the sources are independent, then the probability that the
datum is erroneous is the product of the probabilities of error in each indivi-
dual source. The problem is that determining that sources are independent or
evaluating the degree of dependence can be tricky. Two sources may be
independent as regards one kind of error but not as regards another. For
example, if the type of an object is identified twice based on two observa-
tions at different times from the same viewing points, then these
identifications may be independent pieces of evidence as regards certain
potential disruptions of the perception, such as noise, but not as regards more
systematic distortions, such as occlusions or partial views. Observations at
different times have little effect in evaluating the likelihood of temporal
change; only the latest observation matters.

Optional matches: Optional matches introduce errors if the two areas
being matched are merely similar and not identical. Judging whether the
match should be withdrawn requires evaluating the likelihood of such an
extensive coincidence between features. This likelihood should be estimated
and recorded when the match is originally performed. In the case of a missed
match, it is obviously not generally feasible to evaluate the probability of
error at the time the error is made; this evaluation must be made when the
error correction proposes this match as a solution to its problems.

Error correction: The likelihood of facts introduced by the error
correction must be computed from the previous likelihoods, conditioned on
the fact that the detected problem has, in fact, occurred. Furthermore, the
likelihoods of all other data in the map that could be relevant to the detected
problem should likewise be updated. For example, suppose that the map ini-
tially records two measurements th and 02 with reliabilities pt and P2,
where pr <p2. Now the system detects a problem that must be due to one or
the other of these. Since ttit is the less reliable, the system decides to replace
it by the new measurement 01'. The reliability of the new measurement 01'
depends on the likelihood that the error corrector made the correct choice.
Therefore, it is an increasing function of p2 and a decreasing function of pr.
Moreover, the reliability of 02 should be decreased, since the discovery of
the problem raises the likelihood that 02 is in error. If some later perception
forces 02 to be changed then 4u will have to be reconsidered. Bayesian
updating gives a principled way of changing probabilities that ordinarily has
all these properties. It requires, however, either extensive information about
conditional probabilities or extensive use of independence assumptions. In
complex situations, the former may be unavailable, while the latter may be
unjustified. If so, some more ad hoc techniques must be employed.

8. ACTIVE PERCEPTION

One possible response to detecting an error in the cognitive map is to
go out actively and look for disambiguating information. (This an instance of
the use of "active vision" to obtain a particular desired piece of informa -
tion.15,16) The actual decision to do this obviously involves many issues
external to the cognitive mapping system; the robot must decide whether he
can afford the time and resources based on the state of his other tasks and the
resources available. However, information provided by the cognitive map is
central to determining what kind of information to look for and where to
look for it. If the error corrector considers it reasonably likely that the prob-

lem discovered is a result of an error in current perception, the robot can
simply look again, perhaps with some slight motion to correct for features
such as non -general position and highlights. If the system suspects that an
error lies in some feature of the map close to the current position of the
robot, it can go and check it out. If the system suspects that a temporal
change has occurred, the robot can look around for other consequences of
the event that caused the change. If the system finds two possible candidate
areas in the map both of which match current perceptions, it can calculate
some feature that serves to discriminate the two areas, and then go verify

that feature.
A number of special heuristics apply when the robot is lost: that is,

when he is unable to determine the relation between his immediate surround-
ings and the remainder of the cognitive map. The robot may physically back-
track; that is, to reverse the steps that got him to this place, as far as he can.
It may head for a place, such as a high point, where he will be able to get a
good view of a large area, and thus have a chance of seeing some known
landmark. It may search in some systematic fashion, such as a maze -
searching strategy. If it has some general idea of its position and orientation,
it may head off in the general direction of some large or conspicuous object,
such as a river or tower, which it will be able to see and recognize anywhere
in a large vicinity. It may use special features of the type of the region; for
example, if it is looking for a river -bed in a valley, it is usually a good rule to
head downward. To generate and verify these kinds of plans, the robot needs
a theory relating its perceptual powers to the surrounding environment.17

9. CONCLUSIONS

We have seen that error correction is not a feature that can be added to
a cognitive mapping system as an afterthought, but, rather, the need for
robust error correction must be taken into account in all stages of designing
the cognitive mapping system. In particular:

The map should be structured so that inferences can be based very
largely on local inference; inferences requiring the compilation of
many local measurement to give a global constraint should be
avoided.

Data in the map should be tagged with some measure of reliability and
with a time -stamp.

The matcher should be exceptionally conservative in its actions, and
should not commit itself to a match until there is so strong a correla-
tion between features to be beyond coincidence. At the same time, it
must be forgiving of a certain number of discrepancies between per-
ception and the cognitive map, due to error or change

In an time -varying environment, the mapping process should have
access to a theory of plausible change, so that it can know what
changes to expect to come together.

Designing such a system presents many difficulties for which we do
not currently have a solution. Research for the near future should focus on
developing systems for very restricted environments, either natural or simu-
lated.
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Corrections due to temporal change often changes collections of data 
in quite different ways from other types of correction. For example, suppose 
that you believe that your radio is in the trunk of your car which is parked 
legally on Broadway and 44th Street. Now you come back to Broadway and 
44th Street, and you do not see your car. If you were mistaken about where 
you parked your car, then it is likely that your radio is still in the trunk; how­ 
ever, if your car has been moved (presumably by unauthorized persons), 
then it is likely that your radio is no longer in the trunk. Similarly, as noted 
above, the reliability of the perception that a view of an object is unoccluded 
is unaffected by errors in judging the positions of potentially occluding 
objects, whereas it is affected by the possibility that these objects have 
moved into occluding position. By contrast, suppose that you believe you 
have left your driver*s license on your bureau and you come back and it is 
not there. If the error is due to error, then the license is lost, and there is no 
particular reason to believe that it is anywhere in the house. If the error is 
due to temporal change, then presumably your spouse put it away some­ 
where, and it probably is in the house. The point is that a temporal change 
often implies or suggests some event causing the change, and this inferred 
event may in turn imply further changes or constancies.

Repeated Evidence: A datum gains credibility if it is confirmed by 
many sources. If all the sources are independent, then the probability that the 
datum is erroneous is the product of the probabilities of error in each indivi­ 
dual source. The problem is that determining that sources are independent or 
evaluating the degree of dependence can be tricky. Two sources may be 
independent as regards one kind of error but not as regards another. For 
example, if the type of an object is identified twice based on two observa­ 
tions at different times from the same viewing points, then these 
identifications may be independent pieces of evidence as regards certain 
potential disruptions of the perception, such as noise, but not as regards more 
systematic distortions, such as occlusions or partial views. Observations at 
different times have little effect in evaluating the likelihood of temporal 
change; only the latest observation matters.

Optional matches: Optional matches introduce errors if the two areas 
being matched are merely similar and not identical. Judging whether the 
match should be withdrawn requires evaluating the likelihood of such an 
extensive coincidence between features. This likelihood should be estimated 
and recorded when the match is originally performed. In the case of a missed 
match, it is obviously not generally feasible to evaluate the probability of 
error at the time the error is made; this evaluation must be made when the 
error correction proposes this match as a solution to its problems.

Error correction: The likelihood of facts introduced by the error 
correction must be computed from the previous likelihoods, conditioned on 
the fact that the detected problem has, in fact, occurred. Furthermore, the 
likelihoods of all other data in the map that could be relevant to the detected 
problem should likewise be updated. For example, suppose that the map ini­ 
tially records two measurements fa and (j>2 with reliabilities p\ and p2 , 
where p\<pi- Now the system detects a problem that must be due to one or 
the other of these. Since fa is the less reliable, the system decides to replace 
it by the new measurement fa'. The reliability of the new measurement fa' 
depends on the likelihood that the error corrector made the correct choice. 
Therefore, it is an increasing function of p 2 and a decreasing function of p l . 
Moreover, the reliability of cj>2 should be decreased, since the discovery of 
the problem raises the likelihood that fa is in error. If some later perception 
forces <j>2 to be changed then fa will have to be reconsidered. Bayesian 
updating gives a principled way of changing probabilities that ordinarily has 
all these properties. It requires, however, either extensive information about 
conditional probabilities or extensive use of independence assumptions. In 
complex situations, the former may be unavailable, while the latter may be 
unjustified. If so, some more ad hoc techniques must be employed.

8. ACTIVE PERCEPTION

One possible response to detecting an error in the cognitive map is to 
go out actively and look for disambiguating information. (This an instance of 
the use of "active vision" to obtain a particular desired piece of informa­ 
tion.15' 16 ) The actual decision to do this obviously involves many issues 
external to the cognitive mapping system; the robot must decide whether he 
can afford the time and resources based on the state of his other tasks and the 
resources available. However, information provided by the cognitive map is 
central to determining what kind of information to look for and where to 
look for it. If the error corrector considers it reasonably likely that the prob­

lem discovered is a result of an error in current perception, the robot can 
simply look again, perhaps with some slight motion to correct for features 
such as non-general position and highlights. If the system suspects that an 
error lies in some feature of the map close to the current position of the 
robot, it can go and check it out. If the system suspects that a temporal 
change has occurred, the robot can look around for other consequences of 
the event that caused the change. If the system finds two possible candidate 
areas in the map both of which match current perceptions, it can calculate 
some feature that serves to discriminate the two areas, and then go verify 
that feature.

A number of special heuristics apply when the robot is lost: that is, 
when he is unable to determine the relation between his immediate surround­ 
ings and the remainder of the cognitive map. The robot may physically back­ 
track; that is, to reverse the steps that got him to this place, as far as he can. 
It may head for a place, such as a high point, where he will be able to get a 
good view of a large area, and thus have a chance of seeing some known 
landmark. It may search in some systematic fashion, such as a maze- 
searching strategy. If it has some general idea of its position and orientation, 
it may head off in the general direction of some large or conspicuous object, 
such as a river or tower, which it will be able to see and recognize anywhere 
in a large vicinity. It may use special features of the type of the region; for 
example, if it is looking for a river-bed in a valley, it is usually a good rule to 
head downward. To generate and verify these kinds of plans, the robot needs 
a theory relating its perceptual powers to the surrounding environment. 17

9. CONCLUSIONS

We have seen that error correction is not a feature that can be added to 
a cognitive mapping system as an afterthought, but, rather, the need for 
robust error correction must be taken into account in all stages of designing 
the cognitive mapping system. In particular:
  The map should be structured so that inferences can be based very 

largely on local inference; inferences requiring the compilation of 
many local measurement to give a global constraint should be 
avoided.

  Data in the map should be tagged with some measure of reliability and 
with a time-stamp.

  The matcher should be exceptionally conservative in its actions, and 
should not commit itself to a match until there is so strong a correla­ 
tion between features to be beyond coincidence. At the same time, it 
must be forgiving of a certain number of discrepancies between per­ 
ception and the cognitive map, due to error or change

  In an time-varying environment, the mapping process should have 
access to a theory of plausible change, so that it can know what 
changes to expect to come together.

Designing such a system presents many difficulties for which we do 
not currently have a solution. Research for the near future should focus on 
developing systems for very restricted environments, either natural or simu­ 
lated.
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