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Abstract

We prove that the class of rational polyhedra and the class of topologically regular regions

definable in an o-minimal structure are each elementarily equivalent to the class of polyhedra

for topological languages.
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1 Introduction

The study of qualitative spatial reasoning using topological relations over spatial regions has flour-
ished since the seminal papers of Egenhofer and Franzosa [4] and of Randell, Cui, and Cohn [11, 12].
(See [2] for a recent survey.) One frustrating aspect of this research programme, however, is that the
important logical characteristics of the theories involved often depend very sensitively on rather fine
details of the language or the model. For example Kontchakov et al. [7, 8] study a variety of existen-
tial languages, with different dimensionalities of space, domains of regions, and different collections
of predicates, and they demonstrate many differences between these in terms of expressivity and of
computational complexity. Since there is often no very principled way of deciding which particular
language is most reasonable, one ends up with a large number of equally plausible theories, each
with its own characteristics.

In this paper we present some results in the opposite direction, discussing some distinctions that
do not make a difference. We show that a number of collections of spatial regions are elementarily
equivalent to the space of polyhedra, for topological languages over regions. That is, suppose you
have a collection of topological relations over spatial regions, such as “Regions P and Q are exter-
nally connected,” or “Region Z is the union of X and Y”, and you have a first-order language L
whose predicates refer to these relations. Then any sentence in L that is true over the domain of
polyhedra in Euclidean space is also true over any of the other domains of regions we will discuss
here. Specifically, we show that the class of rational polyhedra and the class of topologically regular
regions definable in an o-minimal structure over the reals are each elementarily equivalent to the
class of polyhedra in Rk.

∗Many thanks to Ian Pratt-Hartmann for helpful discussions, and to the reviewers for valuable suggestions. This

research was supported in part by NSF grant #IIS-0534809.
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It should be emphasized that these results apply to a language of any collection of topological
relations — i.e. relations that are invariant under homeomorphisms of the entire space to itself
— including, for what it is worth, non-computable relations such as “the number of connected
components of region P is the index of a non-halting Turing machine.”

Pratt-Hartmann has proved a strong result of this kind in [10], corollary 2.174, p. 89:

Theorem 1 All splittable, finitely decomposable mereotopologies over S2 with curve-selection have
the same LΣ-theory for any topological signature Σ.

In other words, if C and D are mereotopologies satisfying the specified conditions and Σ is a collection
of topological relations, then the structures 〈C,Σ〉 and 〈D,Σ〉 are elementarily equivalent. For
the definitions of the terms “mereotopology”. “splittable”, “finitely decomposable”, and “curve
selection” see the cited paper. The key points here are (a) that these are topological features of a
collection of regions; (b) that the theorem is only proven in two-dimensional space. The results in
the current paper apply to Euclidean space of arbitrary finite dimension, but they place conditions
on the collection of regions that are much more restrictive, and they are formulated in algebraic and
structural terms rather than in geometric terms.

Section 2 presents a general meta-logical theorem giving sufficient conditions that two structures
are elementarily equivalent. Section 3 presents the proof that the collection of rational polyhedra is
elementarily equivalent to the collection of polyhedra, relative to a topological language. Section 4
presents the proof that any o-minimal collection of regions over the reals that includes the polyhedra
is elementarily equivalent to the collection of polyhedra.

2 A general meta-logical theorem

In this section, we prove a general meta-logical theorem, giving sufficient conditions that two struc-
tures are elementarily equivalent. First, let us briefly discuss structures and elementary equivalence.

Definition 1 An L-structure is a triple 〈D, σ, I〉 where D is a domain; σ = 〈σ1 . . . σm〉 is a signature
of m formal symbols; and I is an interpretation mapping each σi to a relation over D.

Definition 2 A structure is a tuple 〈D,P1 . . .Pm〉 where Pi is a relation over D. The L-structure
〈D, 〈σ1 . . . σm〉, I〉 corresponds to the structure 〈D, I(σ1) . . . I(σm)〉

Definition 3 Let 〈D, σ, I〉 and 〈E , σ,J 〉 be two L-structures with the same signature σ. These are
elementarily equivalent if, for every sentence φ in the first-order language over σ, I|=φ if and only
if J |=φ.
Two structures are elementarily equivalent if the corresponding L-structures with the same signature
σ are elementarily equivalent.

Throughout the remainder of this section, let Ω be a set. Let A be a set of bijections from Ω to
itself that forms a group; that is, A is closed under composition and inverse.

We will use boldface capitals such as R to denote elements of Ω. We will use the composition
operator Γ ◦ Φ in analysts’ style rather than algebraicists’; that is, (Γ ◦ Φ)(R) = Γ(Φ(R)). If P is a
relation over Ω and C ⊂ Ω then P|C will denote the restriction of P to C.

Definition 4 A relation P(R1 . . .Rn) over elements of Ω is an invariant of A if, for all Φ ∈ A,
P(R1 . . .Rn) if and only if P(Φ(R1) . . .Φ(Rn)).
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Definition 5 Let C and D be subsets of Ω. C is finitely embeddable in D with respect to A if it
satisfies the following condition: For any m ≥ 0, let {P1 . . .Pm} be a set of m elements in C. Then
there exists a bijection Γ ∈ A such that Γ(Pi) ∈ D for i = 1 . . .m.

For readability, we will often omit the reference to A in using “finitely embeddable” and similar
terms.

Definition 6 Let C and D be subsets of Ω. C is extensible in D with respect to A if it satisfies the
following condition. For any m ≥ 0, let {P1 . . .Pm} be a set of m elements in C, and let Γ ∈ A be
a bijection over Ω such that Γ(Pi) ∈ D for i = 1 . . .m. Then for any element Pm+1 ∈ C there exists
a bijection Γ′ ∈ A such that Γ′(Pi) = Γ(Pi) for i = 1 . . .m and Γ(Pm+1) ∈ D.

For the case m = 0, this condition asserts that for any P ∈ C there exists Γ ∈ A such that Γ(P) ∈ D.

Note that we cannot simply choose Γ′ = Γ, because Γ(Pm+1) is not necessarily in C.

The following simple example illustrates the distinction between embeddability and extensibility.
Let Ω = R the set of real numbers. Let A be the collection of bijections that are monotonic under
ordering; that is, for Γ ∈ A and for x, y ∈ R, if x < y then Γ(x) < Γ(y). Let C = R, and let D = Z the
set of integers. Then C is finitely embeddable in D; given any set of real numbers {P1 . . .Pm}, sort
them, and then map them to the corresponding integers in sequence. However C is not extensible
in D; if we have chosen P1 = 0,P2 = 2, and Γ(x) = x/2, then Γ(P1) and Γ(P2) are in D, but there
is no way to extend Γ so that Γ(1) ∈ D. This same example illustrates that Z is not extensible in
itself with respect to A.

If we use the same Ω, A and C but let D = Q, the set of rational numbers, then C is extensible
within Q. If Γ is a function mapping the set of real numbers S = {P1 . . .Pm} to a set of rationals,
and we are given the next element Pm+1, then we can extend Γ by finding the Pi and Pj to be
the elements of S immediately above and below Pm+1, and then choose Γ′(Pm+1) to be a rational
between Γ(Pi) and Γ(Pj). (Applying theorem 8 below, one can go on to show that the structures
〈R, <〉 and 〈Q, <〉 are elementarily equivalent.) Note that there is no injection as a whole from C as
a whole into D, since C has a larger cardinality than D, so one cannot choose a fixed Γ at the start.

Lemma 2 If C is extensible in D with respect to A, then C is finitely embeddable in D.

Proof: The fact that the set {P1 . . .Pm} is embeddable is trivial by induction on m.

Lemma 3 If C is finitely embeddable in D with respect to A, and D is extensible in E, then C is
extensible in E.

Proof: Let P1 . . .Pm be m elements in C; let Γ ∈ A be a bijection over Ω such that Γ(Pi) ∈ E
for i = 1 . . .m; and let Pm+1 ∈ C. Since C is finitely embeddable in D, choose Θ ∈ A such that
Θ(Pi) ∈ D for i = 1 . . .m + 1. Let Qi = Θ(Pi) for i = 1 . . .m + 1. Let Φ = Γ ◦ Θ−1. Then,
for i = 1 . . .m, Φ(Qi) = Γ(Pi) ∈ E . Since D is extensible in E , there exists Φ′ ∈ A such that
Φ′(Qi) = Φ(Qi) for i = 1 . . .m and Φ′(Qm+1) ∈ E . Now let Γ′ = Φ′ ◦ Θ. Then for i = 1 . . .m,
Γ′(Pi) = Φ′(Qi) = Φ(Qi) = Γ(Pi); and Γ(Pm+1) = Φ′(Qm+1) ∈ E .

Corollary 4 Extensibility is transitive: If C is extensible in D and D is extensible in E, then C is
extensible in E.

Proof: Immediate from lemmas 2 and 3.
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Definition 7 Two sets C ⊂ Ω and D ⊂ Ω are mutually extensible with respect to A if each is
extensible in the other. A set C is self-extensible if it is extensible in itself.

Corollary 5 Mutual extensibility is an equivalence relation over the class of self-extensible sets.

Proof: Immediate from lemma 3 and definition 7.

Corollary 6 If C is finitely embeddable in D and D is self-extensible, then C is extensible in D.

Proof: Immediate from lemma 3 with E = D.

Lemma 7 Let C and D be mutually extensible subsets of Ω with respect to A. Let P1 . . .Pm be
relations over Ω that are invariants of A. Let σ = 〈σ1 . . . σm〉 be a signature with m symbols. Let I
and J be the interpretations of σ such that I(αi) = P|C and J (αi) = P|D. Let φ be a prenex first-
order formula over σ. Let µ1 . . . µn be the free variables in φ. Let U be a valuation from µ1 . . . µn

to C. Let Γ ∈ A be a bijection such that Γ(U(µi)) ∈ D. Let V be the valuation from µ1 . . . µm to D,
V(µi) = Γ(U(µi)). Then C, I,U|=φ if and only if D, I,V|=φ.

Proof by induction on the number of quantifiers in φ.

Base case : φ is a quantifier-free formula with variables µ1 . . . µn. Let U be a valuation of µ1 . . . µn

onto C such that C, I,U|=φ. Since C is embeddable in D, there is a bijection Γ ∈ A such that
Γ(U(µi)) ∈ D for i = 1 . . . n. Let V(µi) = Γ(U(µi)). Since Pi is invariant under A for i = 1, . . . ,m,
it follows that each atomic formula occurring in φ has the same value under J ,V as under I,U .
Hence each subformula of φ, including φ itself has the same value under J ,V as under I,U .

The proof of the reverse implication is symmetric.

Recursive case: Suppose that the statement is true for all formulas with no more than q quantifiers.
Let φ be a formula with q + 1 quantifiers; thus φ has either the form ∃µψ or ∀µψ where ψ is a
formula with m quantifiers. Let µ1 . . . µn be the free variables in φ; then the free variables in ψ are
µ1 . . . µn, µ.

Let U , Γ and V be as in the statement of the lemma.

I. Suppose that φ has the form ∃µψ, and suppose that this is true under I,U . Then there exists
R ∈ C such that ψ is true under I,U ′ where U ′ = U ∪ {µ→R}. Since C is extensible in D, there
exists a bijection Γ′ ∈ A such that Γ′(U(µi)) = V(µi) for i = 1 . . . n. and such that Γ′(R) ∈ D.
Let V ′ = V ∪ {µ→Γ′(R)}. Then ψ,U ′,Γ′, and V ′ satisfy the induction hypothesis, so J ,V ′|=ψ.
Therefore J ,V|=φ.

II. Suppose that φ has the form ∃µψ, and suppose that this is true under J ,V. Then there exists
Q ∈ D such that ψ is true under J ,V ′ where V ′ = V ∪ {µ→Q}. Since D is extensible in C, using
the bijection Θ = Γ−1, there exists a bijection Θ′ ∈ A such that Θ′(V(µi)) = U(µi) for i = 1 . . . n.
and such that Θ′(Q) ∈ C. Let U ′ = U ∪ {µ→Θ(Q)}. Let Γ′ = Θ′−1. Then ψ,U ′,Γ′, and V ′ satisfy
the induction hypothesis, so I,U ′|=ψ. Therefore I,U|=φ.

III. Suppose that φ has the form ∀µψ, and suppose that this is true under I,U . Then ∃µ¬ψ is false
under I,U , so by the contrapositive of (II) ∃µ¬ψ is false under J ,V, so ∀µψ is true under J ,V.

IV. Suppose that φ has the form ∀µψ, and suppose that this is true under J ,V. Then by the
contrapositive of (I), ∀µψ is true under I,U .
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Theorem 8 Let C and D be mutually extensible subsets of Ω with respect to A. Let P1 . . .Pm be rela-
tions over Ω that are invariants of A. Then the structures 〈C,P1|C , . . .Pm|C〉 and 〈D,P1|D, . . .Pm|D〉
are elementarily equivalent.

Proof: Let σ be a signature of m symbols and let φ be a sentence over σ. By lemma 7, since φ has
no free variables, it holds in the structure 〈D, σ,J 〉 if and only if it holds in the structure 〈C, σ, I〉.
It will be convenient to abbreviate the structure 〈C,P1|C , . . .Pm|C〉 as 〈C,P1 . . .Pm〉; this is unam-
biguous, as the relations in a structure are necessarily limited to its domain.

Lemma 9 below gives a set of sufficient conditions for mutual extensibility.

Definition 8 Let D ⊂ Ω. Let A and B be groups of bijections from Ω to itself. We say that A is
rectifiable to B over D if the following condition holds: for all Γ ∈ A, and all D1 . . .Dm ∈ D, if
Γ(Di) ∈ D for i = 1 . . .m, then there exists Φ ∈ B such that Φ(Di) = Γ(Di) for i = 1 . . .m.

Lemma 9 Let D ⊂ C ⊂ Ω. Let A be a group of bijections from Ω to itself and let B be a subgroup
of A. If the following conditions hold:

a. C is closed under A.

b. D is closed under B.

c. C is embeddable in D under A.

d. A is rectifiable to B over D.

Then C and D are mutually extensible with respect to A.

Proof: We first show that D is self-extensible under A. Let Γ ∈ A, and D1 . . .Dm ∈ D such that
Γ(Di) ∈ D for i = 1 . . .m. Let Dm+1 ∈ D. Then since A is rectifiable to B over D, there exists
Γ′ ∈ B such that Γ′(Di) = Γ(Di) for i = 1 . . .m. Since D is closed under B, Γ′(Dm+1) ∈ D.

Therefore, by corollary 6, C is extensible in D.

The fact that D is extensible in C under A is immediate from the facts that D ⊂ C and C is closed
under A. Thus, if Γ ∈ A, and Dm+1 ∈ D, then Γ(Dm+1) ∈ C.

3 Rational polyhedra

In this section we prove that the domain of rational polyhedra in Rk (i.e. polyhedra with rational
coordinates) is elementarily equivalent to the domain of general polyhedra for a topological language
over regions.

The main lemma we will need for this proof is the following (this will be lemma 15 below):

Lemma: The space of piecewise linear (PL) mappings is rectifiable to the space of rational piecewise
linear mappings over the space of rational polyhedra.

That is: Let D1 . . .Dm be rational polyhedra and let Φ be a PL homeomorphism with real coefficients
such that Φ(Di) is a rational polyhedron for i = 1 . . .m. We need to show that there exists a PL
rational homeomorphism Ψ such that Ψ(Di) = Φ(Di) for i = 1 . . .m.

A simple example will help clarify the issues here and point the way toward a solution (figure 1).
Let m = 1, let D be the triangle with vertices 〈0, 0〉 〈1, 0〉, 〈0, 1〉 and let P be the square [2, 3]× [0, 1].
Now define the following 9 points in D
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Figure 1: Irrational mapping between rational regions

a = 〈0, 0〉; b = 〈1/
√

2, 0〉; c = 〈1, 0〉; d = 〈1/
√

3, 1 − 1/
√

3〉; e = 〈1/
√

5, 1 − 1/
√

5〉;
f = 〈1/

√
7, 1 − 1/

√
7〉; g = 〈0, 1〉; h = 〈0, 1/

√
11〉; i = 〈

√

6/13,
√

8/17〉

And 9 points in P:

a′ = 〈2 +
√

10/19, 0〉; b′ = 〈3, 0〉; c′ = 〈3,
√

11/23〉; d′ = 〈3, 1〉; e′ = 〈2 +
√

14/29, 1〉;
f ′ = 〈2, 1〉; g′ = 〈2,

√

15/31; h′ = 〈2, 0〉; i′ = 〈2 +
√

18/37,
√

20/41〉.

One can now construct a PL mapping Φ that maps D into P and maps each vertex v into v′ (see
lemma 13). Of course, since Γ maps rational points into irrational points, and vice versa, it is not a
rational PL mapping.

Our task now is to construct a rational PL mapping from D into P. Of course, the temptation
in this case is just to chuck Φ overboard and construct a sensible mapping by inspection. We are
not going to do that; instead, we will use Φ as a starting point and modify it so that it becomes a
rational mapping.

We need to fix three kinds of problems with Φ. First, Φ maps the vertices of D into irrational points.
Second, Φ−1 maps the vertices of P into irrational points. Third, the vertices of the cells of Φ itself,
such as i, are at irrational points, and Φ maps them to irrational points.

Our solution is to move all these irrational points to nearby rational points and then build the new
Φ with the same structure as Φ based on all these rational point associations. But we have to do
this in a way that maintains the mapping of D to P. Thus, for example, Φ(c) has to remain on the
edge b′d′ and Φ−1(b′) has to remain on the edge ac.

With this example in mind, we proceed to the proof.

Not surprisingly the proof works in the same way for any subfield of the reals, not just the rationals.

We begin by defining conventions of notation and standard terminology. The index k will be the
dimension of the Euclidean space, throughout. We will use boldface lower-case letters like x for
geometric points in Rk, and boldface upper-case letters like R for sets of points, also called regions.
We will use vector notation ~v for vectors and v̂ for unit vectors. We will use upper-case Greek letters
like Γ for homeomorphisms and other functions. We will use calligraphic letters like C for collections
of regions or functions. F will be a subfield of the reals. For other entities, we used italicized letters.

For any sets, including regions, the set difference U minus V is denoted U \V . The distance between
points x and y is denoted d(x,y). The closed disk of radius r around x is denoted B̄(x, r); the open
disk is denoted B(x, r).

If R is a region then the topological boundary of R, denoted ∂R, is defined as
∂R = closure(R) \ interior(R).

6



Definition 9 A subset R of Rk is topologically closed regular (generally abbreviated to “regular”)
if R = closure(interior(R)).

Definition 10 A relation P(R1 . . .Rn) over regions in Rk is topological if it is invariant over the
space of homeomorphisms of Rk to itself.

We use the standard theory of simplices, complexes, abstract complexes, and piecewise-linear (PL)
mappings [13, 9].

Definition 11 For q ≤ k, a set of points {p0 . . .pq} is affine-independent if the vectors
p1−p0 . . .pq−p0 are linearly independent. Let P = 〈p0 . . .pq〉 be a q+1-tuple of affine-independent
points. For any point x, if there exist coefficients t0 . . . tq such that

∑q

i=0
tq = 1 and

∑q

i=0
tipi = x,

then 〈t0 . . . tq〉 are the barycentric coordinates of x with respect to P. (If these exist, they are unique.)
The set of points that have barycentric coordinates with respect to P is the affine space spanned by P.
The open simplex spanned by P, denoted “S(P)” is the set of points p such that all the barycentric
coordinates of p are in (0,1). The corresponding closed simplex, denoted S̄(P) = closure(S(P)).
The dimension of both the affine space and the open simplex is q. If W ⊂ P, then S(W) is a face
of S(P) and S̄(W) is a face of S̄(P).

The elements 〈p0 . . .pm〉 are the vertices of S(P) and S̄(P). A single vertex is considered both an
open and a closed simplex of dimension 0.

A point with coordinates in F will be called an “F-point”; likewise “F-simplex” and so on.

Definition 12 An open F-half-space is defined by a linear inequality a0+Σk
i=1aixi > 0 where ai ∈ F

for i = 0 . . . k. A basic F-polytope is the intersection of finitely many open F-half-spaces. A closed
F-polytope is the closure of the union of finitely many basic F-polytopes. An F-polyhedron is a
compact F-polytope.

We denote the collection of F-polyhedra as Poly[F]. The set of all polyhedra, Poly[R] will be
abbreviated as Poly.

Definition 13 A homeomorphism Γ from Rk to itself is a piecewise-linear (PL) mapping if for some
integer m there exist a sequence of m polytopes P1 . . .Pm; a sequence of m matrices M1 . . .Mm;
and a sequence of m vectors ~c1 . . .~cm such that:

• ∪m
i=1Pi = Rk.

• for i = 1 . . .m, if p ∈ Pi then Γ(p) = Mi · p + ~ci.

Γ is a bounded PL mapping if Γ(p) is the identity over each unbounded Pi.

The polytopes P1 . . .Pm are the cells of Γ.

An F-PL mapping is a PL mapping such that all the cells are F-polytopes, and all the elements of
Mi and ~ci are in F.

Definition 13 departs slightly from the definition in [13] in that here the collection of cells is required
to be finite, whereas in [13] it is only required to be locally finite.

We will denote the class of all bounded F-PL mappings as M[F].
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Definition 14 A closed complex is a set C of closed simplices such that

a. If P is in C then any face of P is in C.

b. If P,Q ∈ C, then P ∩ Q is either empty or a face of both P and Q.

An open complex is the set of open simplices corresponding the simplices of a closed complex.

Definition 15 Let Z be a finite set. An abstract simplex over Z is a subset of Z. An abstract
complex C over Z is a collection of abstract simplices over Z such that, if A ∈ C and B ⊂ A then
B ∈ C. A realization of C is a function Γ from Z to Rk. A realization is proper if Γ(C) is a complex
satisfying definition 14.

Lemma 10 Let Γ be a realization of abstract complex C over Z. Γ is proper if the following condition
is met: For every pair of abstract simplices F,G ∈ C, if F ∩G = ∅ then S̄(Γ(F )) ∩ S̄(Γ(G)) = ∅.

Proof: Immediate from lemma 2.1, p. 8 of [9].

Since a realization Γ of Z is an assignment of a point in Rk to each element of Z, it can be considered
a point in Rk|Z|.

Definition 16 Let Z be a set of abstract points. We define the following metric over the realizations
of Z (the L∞ metric): For any two realizations Φ and Γ, d∞(Φ,Γ) = maxz∈Z d(Φ(z),Γ(z)).

The associated metric topology is, of course, the standard topology on Rk|Z|.

Lemma 11 Let C be an abstract complex over Z. The set of proper realizations of C is an open
set within Rk|Z|.

Proof: Define the function fC : Rk|Z| 7→ R as f(Γ) is the minimum distance from S̄(Γ(U)) to
S̄(Γ(V )) over all pairs of simplices U, V ∈ C. Clearly this is a continuous function. By lemma 10,
the set of proper realizations is equal to the set of Γ where fC(Γ) > 0, and hence an open set.

Definition 17 Let P be a set of closed simplices. A triangulation of P is a complex C such that,
for any simplex P ∈ P and for any face Q of P, Q is the union of simplices in C.

Lemma 12 Let {P1 . . .Pm} be a finite set of F-polyhedra. Let B be an F-polyhedron such that Pi

is disjoint from ∂B for i = 1 . . .m. Let P = {B,P1 . . .Pm}. Then there exists an F-triangulation
T of P such that, if t is a vertex of T and t ∈ ∂B then t is a vertex of B.

Proof: By definition 11, each polyhedron Pi is the finite union of simplices. Let V be the set of
all intersections between component simplices of polyhedra in P. Then V is a collection of cells, as
defined in [13] p. 13. Since F is a field, all the vertices of cells in V are F-vertices. By [13], p. 16,
proposition 2.9, V has a triangulation whose vertices are exactly the vertices of V. Since the only
vertices of V in ∂B are vertices of B itself, the conclusion of the lemma follows. .

Lemma 13 Let P = {B,P1 . . .Pm} be a set of F-polyhedra such that Pi ⊂ interior(B), i = 1 . . .m.
Let T be an F-triangulation of P. Let C be an abstract complex and Γ be a realization such that
Γ(C) = T . Let ∆ be a proper realization of C such that, for every abstract vertex z ∈ Z, if
Γ(z) ∈ ∂B, then ∆(z) = Γ(z). Then there exists a PL F-homeomorphism Ψ such that for every z,
Ψ(Γ(z)) = ∆(z) and such that Ψ is the identity outside B.
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Proof: We use barycentric coordinates to construct Ψ. For any point x ∈ B, let X be the open
simplex in T containing x. Let x1 . . .xq be the vertices of X, and let 〈t1 . . . tq〉 be the barycentric
coordinates of x. Define Ψ(x) such that, for x ∈ B, Ψ(x) =

∑q

i=1
ti∆(Γ−1(xi)); for x 6∈ B,

Ψ(x) = x.

Since ∆ and Γ map the vertices of each simplex to an affine independent set, Ψ is a bijection within
the simplex. Since ∆ and Γ are proper realizations, the open simplices of T are disjoint, and the
open simplices of Ψ(T ) are disjoint, so Ψ is overall a bijection. As a point x in X approaches a
face F of X, the barycentric coordinates corresponding to vertices of X outside F go to 0, so Ψ is
continuous in moving from simplices to their faces and back. The same argument shows that Ψ−1

is continuous. Thus Ψ is a homeomorphism from B to Ψ(B).

It is obvious that Ψ is piecewise linear. Since every vertex of T is an F-vertex and is mapped onto
an F-vertex, Ψ is an F-mapping. Clearly Ψ is the identity on ∂B, so its continuation as the identity
outside B is continuous.

Lemma 14 For any subfield F of R, Poly is embeddable in Poly(F) under M[R].

Proof: Let D1 . . .Dm be polyhedra in Poly. Let B be an F-polyhedron such that Di ⊂ interior(B)
for i = 1 . . .m. Let D = {B,D1 . . .Dm}. Since none of the Di intersect ∂B, we can use lemma 12
with F = R to construct a triangulation T of D such that the only vertices of T in ∂B are the
vertices of B itself.

Let C be an abstract complex and Γ be a realization such that Γ(C) = T . Let N be the number
of vertices in C. By lemma 11 there exists a neighborhood U of Γ in realization-space such that all
realizations in U are proper. Since FNk is dense within RNk, there exists ∆ ∈ U such that ∆(z) is
an F-point for all z, and further ∆(z) = Γ(z) for all vertices z of B,

By lemma 13 there exists a bounded homeomorphism Ψ from Rk to itself such that Ψ(Γ(v)) = ∆(v).
Since each of the polyhedra Di is the union of the simplices in T , each of the polyhedra Ψ(Di) is
the union of simplices in Φ(C), and hence is in Poly[F].

Lemma 15 For any subfield F of R, M[R] is rectifiable to M[F] over Poly[F].

Proof: Let D = D1 . . .Dm be in Poly[F]. Let Φ be a bounded PL mapping such that Φ(Di) ∈
Poly[F] for i = 1 . . .m. Let Pi = Φ(Di) for i = 1 . . .m. We need to show that there exists an F-PL
mapping Ψ such that Ψ(Di) = Φ(Di) for i = 1 . . .m.

Let C be the bounded cells of Φ. Let B be an F-polyhedron such that, for each R in C ∪ D,
R ⊂ interior(B). Note that since ∂B is outside all the cells of Φ, Φ is the identity on ∂B. Using
lemma 12, let W be a triangulation of C ∪D∪{B} such that all the vertices of W in ∂B are vertices
of B. Then Φ(W) is a triangulation of {B,P1 . . .Pm}, though not in general an F-triangulation.

Let C be an abstract complex and let Γ be a realization such that Φ(W) = Γ(C); obviously Γ
is a proper realization of C. Let Z be the set of abstract vertices in C. Using lemma 11, let U
be the open set of proper realizations of C. Let e > 0 be such that the box in realization space
[Γ1 − e,Γ1 + e] × . . .× [Γk|Z| − e,Γk|Z| + e] ⊂ U .

Let P be an F-triangulation of {Pi|i = 1 . . .m}. Construct a new realization ∆ of Z as follows:
Let q be a point in Γ(Z) (a vertex of Φ(W)). If q is a vertex of P, then ∆(q) = q. Otherwise let
Q be the open simplex in P containing q. Let the coordinates of q be 〈q1 . . . qk〉. Since Q is an
F-simplex, it is possible to find an F-point r = 〈r1 . . . rk〉 ∈ Q such that |ri − qi| < e for i = 1 . . . k.
Let ∆(z) = r. Once this is done, ∆ is an F-realization of Z which is a proper realization of C. Note
that, since any vertices in ∂B are all F-points, they are the same under ∆ as under Γ.
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Since the vertices of the cells of Φ are not necessarily F-points, like the vertex i in figure 1, we need
to carry out the same construction on the domain side of Φ as well. Let Λ be the realization of C
corresponding to W. As above, construct a box in realization space centered at Λ and contained
in U ; and let f be the distance from Λ to the faces of the box. Let T be an F-triangulation of
{P1 . . .Pm,B}. Construct a realization Σ of Z as follows: for each z ∈ Z, let R be the open simplex
in T such that Λ(z) ∈ R. Let Σ(z) be an F-point in R within f of Λ(z) in each coordinate.

Thus Σ(C) is an F-triangulation of {P1 . . .Pm,B}, and ∆(C) is an F-triangulation of
{Φ(P1) . . .Φ(Pm),B}. Using lemma 13 construct PL F-homeomorphism Ψ such that Ψ(Γ(z)) =
∆(z) for all z ∈ Z and such that Ψ is the identity outside B.

What remains to be shown is that for D ∈ D, Ψ(D) = Φ(D), that all of our original polyhedra have
the same image under Ψ as under Φ. Proof by induction over the dimensionality of the faces of D

(not the triangulation). If x is a vertex of D then x is an F-vertex so Ψ(x) = Φ(x) by construction.
If F is a q-dimensional face, then by induction, each of its boundary faces is the same under Ψ as
under Ψ; hence, so is F.

It may be noted that there is a proof of the central part of lemma 15 in [1], Theorem 1. However,
the formulation here is sufficiently different — in particular, Beynon does not demonstrate that the
mapping between the complexes can be extended to all of Rk, and he asserts lemma 11 without
proof — that it seemed worthwhile giving the entire proof here.

Theorem 16 Let F be a subfield of R. Let Poly[F] be the collection of F-polyhedra in Rk. Let
P1 . . .Pn be topological relations over Rk. Then the structures 〈Poly,P1 . . .Pn〉 and
〈Poly[F],P1 . . .Pn〉 are elementarily equivalent.

Proof: Let A be the group of bounded PL homeomorphisms, and let B be the group of bounded PL
F-homeomorphisms. It is immediate that Poly is closed under A and that Poly[F] is closed under
B. By lemma 14 Poly is embeddable in Poly[F] under A and by lemma 15 A is rectifiable to B
over Poly[F]. Hence by lemma 9, Poly and Poly[F] are mutually extensible. The result then follows
from theorem 8. (Note that in applying theorem 8, the universe Ω is the set of regions in Rk, and
thus, from the standpoint of theorem 8, A and B are viewed as sets of bijections over the space of
regions, rather than over the space of points. The same applies in the proof of theorem 27 below.)

We now extend theorem 16 to polytopes. Let UPoly[F] (U for “unbounded”) be the collection of
polytopes, bounded and unbounded, and let L[F] be the collection of F-PL mappings, bounded and
unbounded.

To transfer the above results on bounded polyhedra to the space of unbounded polytopes, we will
use piecewise projective transformations.

Definition 18 An F-projective mapping is a function Γ(x) = (M ·x+~c)/(~a ·x+ b) where M is an
F-matrix, ~c and ~a are F-vectors and b ∈ F.

Let U and V be F-polytopes. Let C1 . . .Cm be a set of F-polytopes such that ∪m
i=1Ci = U. Let Φ

be a homeomorphism from U to V, and let Φi, i = 1 . . .m be F projective mappings, such that, for
x ∈ Ci, Φ(x) = Φi(x). Then Φ is an
mathbbF piecewise projective mapping.

Lemma 17 Let P be an unbounded closed polytope, and let Γ be a projective transformation such
that Γ(P) is also an unbounded closed polytope. Then Γ is a linear transformation.

Proof of the contrapositive. Suppose that Γ is not a linear transformation; then Γ−1 is likewise not a
linear transformation. Since Γ−1 is a projective transformation which is not a linear transformation,
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it has the form Γ−1(x) = (Mx + ~c)/(~a · x + b) , where ~a 6= ~0. Thus Γ−1 maps the hyperplane
H = {x | ~a · x + b = 0} to the hyperplane at infinity, so Γ maps the hyperplane at infinity to H.
Considered as a function over the projective space, Γ is a continuous function. Since P borders the
hyperplane at infinity, Γ(P) borders but does not include H, so Γ(P) is not an unbounded closed
polytope.

In the proofs below, we will use extensively one particular piecewise projective mapping, which we
will denote Θ(~v). It is defined as follows. Let B be the open box of side 2 centered at the origin
B = (−1, 1)k. Let v = 〈v1 . . . vk〉 be a point in B and let u = maxk

i=1 |vi|. Define Θ(v) = v/(1− u).
Note that:

• Θ is a homeomorphism from B to Rk.

• Θ is a piecewise projective transformation. It has 2k cells, Ci+ and Ci− for i = 1 . . . k, defined
as follows:

Ci+ = {p | 0 ≤ pi < 1, pi ≥ pj , pi ≥ −pj , for all j 6= i}
Ci− = {p | − 1 < pi ≤ 0, pi ≤ pj , pi ≤ −pj , for all j 6= i}.

• Likewise, the cells of Θ−1 are the regions
Di+ = {~p | pi ≥ 0, pi ≥ pj , pi ≥ −pj , for all j 6= i} and
Di− = {~p | − pi ≤ 0, pi ≤ pj , pi ≤ −pj , for all j 6= i}.

For example in R2 the four cells of Θ are the left, right, up, and down quadrants of B, bounded by
the diagonals x = ±y, and the cells of the Θ−1 are the quadrants of the plane.

Since Θ is piecewise projective, it maps any open polytope in B to an open polytope in Rk. If R is
an open polyhedron such that closure(R) ⊂ B, then Θ(R) is a bounded polyhedron, and conversely.
If R is an open polyhedron such that closure(R) ⊂ closure(B) and closure(R)∩ ∂B 6= ∅, then Θ(R)
is an unbounded open polytope, and conversely.

The important feature of Θ is that it maps B to Rk, while mapping polyhedra to polytopes.

The following lemma is analogous to lemma 13.

Lemma 18 Let B̄ = [−1, 1]k (note that this is the closed box). Let P1 . . .Pm be polyhedra such that
for i = 1 . . .m, Pi ⊂ B̄, and let P = {B̄,Pi . . .Pm}. Let T be a triangulation of P. Let C be an
abstract complex and Γ be a realization such that Γ(C) = T . Let ∆ be a proper realization of C such
that, for every abstract vertex z ∈ Z, if Γ(z) ∈ ∂B̄, then ∆(z) is on the same face of ∂B̄ as Γ(z).
Then there exists an PL homeomorphism Ψ from B to itself such that for every z, Ψ(Γ(z)) = ∆(z)
and such that, if F is a face of B̄, then Ψ(F) = F. (Ψ need not be defined outside B̄).

Proof: As in the proof of lemma 13, for any point x ∈ B, let x1 . . .xq be the vertices of the open
simplex in T containing x, and let 〈t1 . . . tq〉 be the barycentric coordinates of x. Define Ψ(x) such
that, for x ∈ B, Ψ(x) =

∑q

i=1
ti∆(Γ−1(xi)); The proof that Ψ is a homeomorphism proceeds as

in lemma 13. If x is in a face F of B̄, let C be the abstract simplex C = Γ−1({x1 . . .xq}). By
assumption ∆(C) ⊂ F, so Φ(x) ∈ F.

Lemma 19 Let χ be a piecewise projective transformation that is a homeomorphism from Rk to
Rk. Let {C1 . . .Cm} be the cells of χ. Then there exists a PL homeomorphism Φ from R to itself
such that, for i = 1 . . .m, Φ(Ci) = χ(Ci).

Proof: Let χi be the restriction of χ to Ci. Since χ is a homeomorphism of Rk to itself, for any
unbounded cell Ci, Γ(Ci) must be unbounded so, by lemma 17, χi is a linear transformation.

We define Φ as follows. Let T be a triangulation of the bounded polytopes in {C1 . . .Cm}.
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• If x is in one of the simplexes in T , let 〈s1 . . . sq〉 be the open simplex of T containing x; let
〈t1 . . . tq〉 be the barycentric coordinates of x; and let Φ(x) =

∑q

i=1
ti · χ(si).

• Otherwise, let Φ(x) = χ(x).

The proof that Φ is continuous across bounded simplexes is same argument as in lemma 13. The
fact it is consistently defined going from the bounded to the unbounded cells follows from the fact
that Ψ2 is linear on the unbounded cells, and hence must agree with the barycentric mapping on
the bounded faces of the unbounded cells.

Lemma 20 UPoly[R] is embeddable in UPoly[F] under L[R].

Proof: Let 〈P1 . . .Pm〉 be a tuple of polytopes in UPoly[R]. For i = 1 . . .m let Qi = closure(Θ−1(Pi)).
Thus 〈Q1 . . .Qm〉 is a tuple of polyhedra in B̄. Let Q = {B̄,Q1 . . .Qm}. Let T be a triangulation
of Q. Let C be an abstract simplex and Γ a realization of C such that Γ(C) = T . By lemma 11
there exists an proper realization ∆ such that ∆(z) is an F-point for all z ∈ C and such that, if Γ(z)
is in a face F of B̄ then ∆(z) ∈ F. By lemma 18 there exists an PL homeomorphism Ψ from B to
itself such that for every z, Ψ(Γ(z)) = ∆(z) and such that, if F is a face of B̄, then Φ(F) = F.

Now let χ = Θ ◦ Ψ ◦ Θ−1. Clearly this is a homeomorphism from Rk to itself. Since it is the
composition of piecewise projective mappings, χ is itself a piecewise projective mapping. Since χ
satisfies the conditions of lemma 19, there exists an LP homeomorphism Φ such that Φ(Pi) = χ(Pi).

Lemma 21 L[R] is rectifiable to L[F] over UPoly[F].

Proof: Let P1 . . .Pm be F-polytopes and let Γ be a PL mapping such that Γ(Pi) is an F-polytope
for i = 1 . . .m. Note that Γ(Rk) = Rk. For i = 1 . . .m, let Qi = Θ−1(Pi) and let Wi = Θ−1(Γ(Pi);
these are all F-polyhedra. Let Ψ = Θ−1 ◦ Γ ◦ Θ. Thus Ψ is a piecewise projective mapping from B̄

to itself such that Ψ(Qi) = Wi. Moreover, since Ψ is a homeomorphism it preserves betweenness
relations on the points in B̄. That is, if c1 . . . cq are in B̄ and point x is in the open simplex with
vertices c1 . . . cq, then Ψ(x) is in the open simplex with vertices Ψ(c1) . . .Ψ(cq).

Therefore, let Q = {B̄,Q1 . . .Qm}. Let W be the set of all intersections of a region in Q with a
cell of Ψ. Let T be a triangulation of W. Define the PL-mapping Ψ2 from B̄ to itself as follows:
For any point x let c1 . . . cq be the open simplex in T containing x, let t1 . . . tq be the barycentric
coordinates of x, and let Ψ2(x) = Σq

i=1tiΨ(ci). Then Ψ2 is a PL homeomorphism from B̄ to itself.
Moreover, for any simplex S in T , Ψ2(S) = Ψ(S); hence Ψ2(Qi) = Ψ(Qi).

By lemma 15, Ψ2 is rectifiable to an F-PL mapping; that is, there exists an F-PL mapping Φ2 such
that Φ2(Q) = Φ(Q) for Q ∈ Q.

Now, let χ = Θ ◦ Φ2 ∪ Θ−1. This is an piecewise F-projective mapping from Rk to itself. For any
Pi we have

χ(Pi) = Θ(Φ2(Θ
−1(Pi))) = Θ(Φ2(Qi)) = Θ(Ψ(Qi)) = Θ(Θ−1(Γ(Θ(Θ−1Pi)))) = Γ(Pi)

Since χ satisfies the conditions of lemma 19, there exists an F-PL mapping Φ such that Φ(Pi) =
χ(Pi) = Γ(Pi).

Theorem 22 Let P1 . . .Pn be topological relations. Then the structures 〈UPoly[R],P1 . . .Pn〉 and
〈UPoly[F],P1 . . .Pn〉 are elementarily equivalent.

Proof: Identical to the proof of theorem 16, replacing the classes of bounded homeomorphisms by
classes of unbounded homeomorphisms, and replacing lemmas 14 and 15 by lemmas 20 and 21.
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4 O-minimal domains

Using the powerful theory of o-minimal domains [16] we can show that all o-minimal domains are
elementarily equivalent with respect to topological languages over regions in Rk.

We begin with the set-theoretic definition of an o-minimal domain (there is also an equivalent
model-theoretic definition):

Definition 19 For m = 1, 2, . . . let Om be a collection of subsets of Rm. The sequence O =
〈O1,O2 . . .〉 is an o-minimal domain over R if the following conditions are satisfied:

• O1 is the set of all finite unions of points and intervals in R.

• The graph of the addition function {〈x, y, z〉 | z = x + y} and the graph of the multiplication
function {〈x, y, z〉 | z = xy} are elements of O3.

• The set {〈x1, . . . , xm | x1 = xm} is an element of Om

• Om is closed under pairwise union, intersection, and complementation.

• If A ∈ Om then A× R and R ×A are in Om+1.

• If A ∈ Om+1 then the projection of A,onto the first m coordinates,
π(A) = {〈x1, . . . , xm〉 | ∃y〈x1, . . . , xm, y〉 ∈ A}

is in Om.

Examples of o-minimal structures include the class of semi-algebraic regions and the class of sub-
analytic regions.

Definition 20 Let O be an o-minimal collection over R. A function Γ from Rm to Rn is definable
with respect to O if the graph {〈x,Γ(x)〉 | x ∈ Rm} is an element of Om+n.

For the remainder of this section, let O be an o-minimal domain. Let A be the class of homeomor-
phisms from Rk to itself that are definable relative to O. Let M be the class of piecewise-linear
homeomorphisms over Rk. Let UDef be the class of definable, topologically regular k-dimensional
regions in O, and let Def be the class of bounded regions in UDef .

Lemma 23 For any finite set of definable regions D ⊂ UDef there exists a definable homeomor-
phism Ψ over their union such, for every D ∈ D, Ψ(D) is the union of simplices in Rk.

Proof: This is the triangulation theorem for o-minimal structures. See [16] p. 130.

Lemma 24 Let 〈X1 . . .Xm〉 and 〈Y1 . . .Ym〉 be sequences of polyhedra. If there is a defineable
homemorphism Γ such that Yi = Γ(Xi) for I = 1 . . .m then there exist a PL homemophism Φ such
that homeomorphic then they are PL homeomorphic. Yi = Φ(Xi) for I = 1 . . .m.

That is, the space of definable homeomorphisms is rectifiable to the space of piecewise linear home-
omorphisms over the domain of compact polyhedra.

Proof: See [15], p. 5, theorem 2.1.
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Lemma 25 Let D be a finite subset of UDef . Then there exists a definable homeomorphism Φ
from Rk to Rk such that Φ(D) ⊂ UPoly. That is, UDef is embeddable in UPoly over A.

Likewise, Def is embeddable in Poly over A.

Proof: Let E = D ∪ {Rk}; By lemma 23 there exists a homeomorphism Ψ1 such that Ψ1(E) is the
union of simplices for all E ∈ E . Note that Ψ1(E) ⊂ interior(Ψ(Rk)) for each E ∈ E . Also, Ψ1(R

k)
is a bounded open polyhedron homeomorphic to Rk and therefore to the open box (−1, 1)k. By
lemma 24 there exists a PL homeomorphism Ψ2 from Φ1(R

k) to (−1, 1)k. Since Ψ2 is piecewise
linear, Ψ2(Ψ1(D)) is still a regular polyhedron for each D ∈ D and Ψ2(Ψ1(D)) is inside B. Now
apply the piecewise projective transformation Θ and let Φ be the composition Φ = Θ ◦ Ψ2 ◦ Ψ1.
Then for each D ∈ D, Φ(D) is a polytope.

If all of the D are bounded, then Φ(D) is bounded and thus in Poly. .

Lemma 26 The space of definable homeomorphisms A is rectifiable to the space of piecewise linear
homeomorphisms M over UPoly.

Proof: Let D = D1 . . .Dm be a set of polytopes, and let Γ be a homeomorphism in A such
that Γ(Di) is a polytope for i = 1 . . .m. For i = 1 . . .m let Pi = closure(Θ−1(Di)); thus Pi ⊂ B̄.
Consider the composition Φ = Θ−1◦Γ◦Θ, which is a definable homeomorphism from B to itself. Note
that for any Pi, Φ(Pi) = Θ−1(Γ(Di)) is a polyhedron in B; thus Φ is a definable homeomorphism
mapping polyhedra in B to polyhedra in B. By lemma 24, there exists a PL-mapping Ψ such that
Ψ(Pi) = Φ(Pi) for i = 1 . . .m. Now let χ be the composition Θ ◦ Ψ ◦ Θ−1. For any Di,

χ(Di) = Θ(Ψ(Pi)) = Θ(Φ(Pi)) = Θ(Θ−1(Γ(Pi))) = Γ(Pi)

Then χ satisfies the conditions of lemma 19, so there exists a PL-mapping Φ such that Φ = Γ(Pi).
.

Theorem 27 Let O be an o-minimal structure. Let UDef be the class of regular regions in Rk

definable in O. Let P1 . . .Pm be topological predicates over regions in Rk. Then the structures
〈UDef,P1 . . .Pm〉 and 〈UPoly,P1 . . .Pm〉 are elementarily equivalent.

Let Def be the collection of bounded regions in UDef . Then 〈Def,P1 . . .Pm〉 and 〈Poly,P1 . . .Pm〉
are elementarily equivalent.

Proof: It is immediate that UDef is closed under A and that UPoly is closed under M. Together
with the results of lemma 23 and lemma 25, the conditions of lemma 9 are satisfied, so C and Poly
are mutually extendible relative to A. The result then follows theorem 8.

The same argument applies to Def and Poly.

We have thus shown that the collections of k-dimensional regular regions corresponding to two o-
minimal structures are elementarily equivalent. The o-minimal structures over Euclidean space are
few but very important; they include the polyhedra, the semi-algebraic regions, and the sub-analytic
regions.

5 Conclusion

We have demonstrated that the domain of rational polyhedra and the domain of definable regions
relative to an o-minimal structure are each elementarily equivalent to the domain of polyhedra.
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The most obvious problem left open is to find a theorem comparable to theorem 1, giving geometric
criteria rather than algebraic or structural criteria sufficient to guarantee elementary equivalence
to polyhedra that will apply in dimensions higher than 2. One would think it should be possible
to find some reasonable set of geometric conditions that guarantee a simplicial structure that will
support the kind of construction used in the proof of theorem 16, but I have not been able to work
it through.

Another open problem: The results in this paper apply to first-order structures with any topological
relations over the space of regions. The more common object of study, however, is the first-order
language with the single predicate C(x,y) (regions x and y are connected). Quite a bit is known
about this more limited language. The computational complexity has been characterized quite fully:
it is undecidable over the domain of polyhedra and even over the domain of unions of rectangles [6];
over the domain of regular regions, the language has the undecidability of the second-order theory
of the integers [14]. Some strong positive results about expressivity have been proven: a variety of
individual relations have been shown to be expressible in this language [12, 5], and Pratt-Hartmann
[10] has proved that, in R2 and R3, any specific topological layout of regions that can be attained
by polyhedra can be characterized by a formula in the language. However, the limits of expressivity
are not known; for instance, it is not known whether the binary relation “Regions P and Q are
homeomorphic” can be expressed in the language.

By contrast, the expressive power of languages over regions that include some notion of distance
or of convexity, such as that language with the predicate Convex(r) (r is a convex region) or
Closer(x,y,z) (region x is closer to y than to z), is known to be very great [3]. In fact, the only
domain first-order equivalent to Poly for such languages is Poly itself; one can in effect assert the
statement, “all regions are polygons and all polygons are regions” in either of these languages.
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