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RI: Small: Reasoning about Containers: Cognitive and Automated Models 
Ernest Davis and Gary Marcus, New York University 

Project Summary 
 

Computers surpass humans in many respects, but remain notoriously poor at common sense reasoning, 
such as reasoning about every day physical objects. In computers this is generally carried out through the 
use of step-by-step physical simulation; a computer program is given an exact specification of a physical 
situation, and the computer calculates the precise trajectory of the system at a sequence of discrete time 
points. There is good reason, however, to think that human beings may use different techniques -- and 
that the techniques of humans may offer significant advantages over simulation-based calculation. First, 
humans can make useful qualitative predictions given only partial specifications of the physical and 
geometrical properties of the situation. Second, humans can make useful qualitative predictions even if 
they have only a very imperfect knowledge of the physics of the objects or materials involved. Third, 
humans can predict the qualitative behavior of a complex situation without needing to calculate all the 
details of the behavior. Finally, humans can use the same physical knowledge for a wide variety of 
cognitive tasks, including not just prediction but also manipulation, planning design, vision, and text 
understanding. Our goal is to develop a theory that explains how reasoning with these characteristics can 
be carried out, both in humans and machines. 
 
We aim to study qualitative physical reasoning of this kind from two directions: psychology and artificial 
intelligence (AI). First, we will carry out experimental studies of human commonsense physical reasoning, 
and we will develop cognitive models based on the results of those studies. Second, we will develop an 
AI system that will use symbolic reasoning to carry out qualitative physical reasoning. The two 
approaches will be synergistic: the results of the experimental study will guide the construction of the AI 
system; conversely, the AI system will serve, both as a proof of concept and as a source of insights and 
constraints for the cognitive model. 

Our particular empirical focus will be one of the fundamental challenges in physical reasoning: 
understanding the relations between containers such as boxes, cups, bags, cages, automobiles, and so  
forth, and their contents. Such relationships are ubiquitous in everyday life very well understood by 
human reasoners, and span a very wide range of shapes and materials. The contents of a container can 
be essentially any shape and any material; the container itself may have a wide range of shapes and 
materials. (Standard physical simulations, in contrast, are typically restricted to certain classes of 
materials, effective with solid-bodies, but also less effective with certain kinds of malleable materials.)  

Intellectual impact: By synergistically combining psychological and computational studies, this project 
has the potential to both contribute substantially to our understanding of commonsense physical 
reasoning as a cognitive process, and to the state of the art in automated commonsense physical 
reasoning. 

Broader impact: In addition to training graduate students, we aim to significantly enhance the general 
public’s understanding of the challenges of building artificial intelligence with common-sense reasoning, 
through writings in the popular media (Marcus is currently blogging for The New Yorker, and has also 
written for Wired, the Wall St Journal, and the New York Times), and, we hope, through an exhibition on 
the relation of cognitive psychology and artificial intelligence at a major science museum (see letter of 
support from Paul Hoffman).  

Keywords: Physical reasoning, commonsense reasoning, cognitive models, simulation, qualitative 
reasoning. 
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1.  Qualitative physical reasoning 

Computers surpass humans in many respects, but remain notoriously poor at common sense reasoning, 
such as reasoning about every day physical objects, Predicting the behavior of physical systems has , of 
course, been one of the central objectives of mathematics and computer science since the inceptions of 
each field to the present day; and techniques for carrying out such predictions comprise a significant 
fraction of the content of both fields. Programs exist that can create extremely detailed simulations of the 
interactions of 200,000,000 deformable red blood cells in plasma (Rahimian et al. 2010); the air flow 
around the blades of a helicopter (Murman et al., 2003); the interaction of colliding galaxies (Benger 
2008); and the injuries caused by the explosion of an IED under a tank (Tabiei and Nilakantan). Software, 
such as NVidia PhysX, that can simulate the interactions of a range of materials, including rigid solid 
objects, cloth, and liquids, in real time, is available for the use of game designers as off-the-shelf freeware 
(Kaufmann and Meyer, 2008). 

Still, most of the mathematics and nearly all of the computer science applies only in conditions where 
there is complete information available. Exact physical equations for the physical interactions must be 
known, and the problem specifications must give precise values for the material characteristics, physical 
properties, and geometric relations of all the objects and materials involved. (We will discuss exceptions 
in section 5.2 below.) 

Human reasoners, in contrast, often make sound inferences about the world, rapidly, with far less 
complete information. Consider, for example, the following scenario: You take a half-filled coffee cup and 
turn it upside down. Given exact specifications of all the elements involved ― the shape of the cup, the 
amount of liquid in the cup, the exact motion involved in turning the cup, the distance from the floor ― a 
simulation program can produce a precise1 prediction for what will happen. A human reasoner, by 
contrast, can predict that the result will be a puddle of coffee on the floor, underneath the cup, two or 
three feet in diameter; and she can predict this with only very approximate knowledge of the shape of the 
cup and so on. On the other hand, the reasoner is not simply using a specific rule of the form “Turn coffee 
cup upside down ֜ puddle on floor”, as is evidenced by the fact that she can take into account all kinds of 
circumstances that modify the conclusion. If the cup is over the center of a table, then the puddle may 
end up entirely on the table; if the cup is over the edge of a table, the puddle will probably end up partly 
on the floor and partly on the table. If the floor is slanted, then the coffee will continue to run in the 
direction of the slant. If the cup is covered, then the coffee will not pour; if the cover has a small hole, then 
it will leak slowly out the hole. If there is a fan blowing hard toward the stream of coffee, then the coffee 
will be deflected.  

                                                            
1 The prediction will be precise, but how accurate it will be is a different and much more difficult question. 
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No existing program can carry out this kind of reasoning. The goal of this grant is to glean insight into how 
humans perform rapid approximate physical reasoning with incomplete information, and to use insights 
from human intuitive physics to help develop better systems for automated physical reasoning.  

In particular, we will focus on four characteristics of human commonsense reasoning: 

 The ability to reason with incomplete spatial and physical specifications. 
 The ability to reason about different physical materials whose characteristics or interactions are 

imperfectly understood. 
 The ability to reason easily and quickly about broad qualitative features of situations whose 

detailed behavior is complex. 
 The ability to use a piece of knowledge for many different kinds of cognitive tasks, such as 

prediction, planning, explanation, and natural language understanding, 
 

2.  Containers and Contents 

The test bed that we will use for studying these characteristics of commonsense physical reasoning will 
be the relations between containers ― boxes, bags, cups; wombs, cribs, rooms, and so forth ― and their 
contents. Such relations are ubiquitous in everyday life, and very well understood by people; this 
understanding is fundamental to spatial and physical reasoning of all kinds.   

As an important step towards improving machine understanding of common sense, we propose to study 
how people understand, use, and learn the meaning of these relationships and how an understanding of 
these cognitive underpinnings can lead to more robust methods for automated commonsense reasoning. 

A container can serve many different purposes: 

 To carry contents that are difficult or impossible to carry directly. For example, a shopping bag or 
a bottle. 

 To ensure that the contents remain in a fixed place. For example, a crib or a cage; a cup that 
remains stationary. 

 To protect the contents against other objects or physical influences. For example, a case or a 
thermos bottle. 

 To hide the contents from inspection. For example, an envelope. 
 To ensure that objects can only enter or exit through specific portals. For example, a tea-kettle. 

In some cases it is necessary that some kinds of material or physical effects can either fit through the 
portals or pass through the material of the container, while others cannot. For instance, a pet carrying 
case has holes to allow air to go in and out; a display case allows light to go in and out but not dust. 

There are four primary kinds of physical principles involved in all of these cases. First, matter must move 
continuously; if the contents could be teleported out of the container, as in Star Trek, none of these would 
work. Second, the contents (or the externality being kept out, such as dust) cannot pass through the 
material of the container. Third, there are constraints on the deformations possible to the shapes of the 
container and of the content. Fourth, in the case of an upright open container, gravity prevents the 
contents from escaping. 

Simple, natural examples of commonsense physical reasoning reveal a number of important 
characteristics.  
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First, human reasoners can use very partial spatial information. For example, consider the text, "There 
was a beetle crawling on the inside of the cup. Wendy trapped it by putting her hand over the top of the 
cup, then carried the cup outside, and dumped the beetle out onto the lawn." A reader understands that 
the cup and the hand formed a closed container for the beetle, and that Wendy removed her hand from 
the top of the cup before dumping the beetle. Thus, the reader uses general spatial knowledge about 
cups, hands, and beetles in interpreting the text and does not require the geometry of these to be 
specified precisely. Physical simulators can calculate the interactions of all these objects only when their 
shapes are precisely specified. 

Second, human reasoners can in many cases infer that a material is confined within a closed container 
even if they have only a vague idea of the physics of the material of the container and almost no idea at 
all of the material of the contents. By contrast, automated reasoning systems that rely on detailed 
physical simulations are typically far less robust.  Simulation systems such as NVidia PhysX can deal 
effectively and efficiently with solid objects and other specific materials such as liquids or cloth. However, 
materials in these systems are understood either completely or not at all. If a material is outside its 
repertoire, it cannot fail gracefully, carrying out partial reasoning; it fails to give an answer at all. For this 
reason, a model of reasoning about containers that relies on having detailed physical models of the 
materials of the container and of the contents is entirely implausible as a cognitive model and is 
inadequately general as a model for automated reasoning.  

Third, human reasoners can predict qualitative behavior of a system and ignore the irrelevant complex 
details; unlike much software, they are often very good at seeing the forest and not being distracted by 
the trees. For example, if you pour water into a cup, you can predict that, within a few seconds it will be 
sitting quietly at the bottom of the cup; and you do not need to trace through the complex trajectory that 
the water goes through in getting to that equilibrium state. 

Finally, knowledge about containers, like most high-level knowledge, can be used for a wide variety of 
tasks in a number of different modalities, including prediction, planning, manipulation, design, textual or 
visual interpretation, and explanation. The container relation is also often used metaphorically; e.g. for the 
relation between a memory location and a value in computer science. 

3.  Proposed Research 

Our proposed research project will study both the empirical psychology of adult humans and the design of 
an automated intelligent system. 

1. Cognition: How do humans reason about the relationships between containers and their 
contents? In particular, how do they carry out reasoning in cases where only partial information is 
available, and how are the reasoning methods used in these general cases integrated with the 
more specialized techniques available where more constraints are known? To what extent does 
reasoning rely on broad general principles and to what extent on special-case rules? To what 
extent do different cognitive tasks draw on the same general knowledge versus employing task-
specific heuristics? What sorts of problems if any lead human reasoners to erroneous inferences 
about containers?  

2. Automated reasoning: How can an automated reasoner be constructed that achieves the same 
kind of flexibility in reasoning shown by humans?  

 
3.1 Adult psychology   
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In experimental work, we plan to investigate how human adults solve certain physical reasoning 
problems, contrasting inferences that might be derive from rule-based heuristics from inferences drawn 
from direct physics-engine like simulations. Our primary focus will be on four features that distinguish 
these two categories of models.  

Step-by-step simulation vs. heuristic characterization over extended time. A simulation model 
necessarily computes the entire trajectory of the physical system involved from start to finish. A rule-
based system can take advantage of heuristics that characterize the end state of a system, or partially 
characterize the trajectory, without computing the intermediate states in detail. For example, an 
experimenter picks up a closed bottle of water, and say to the subject, "I am going to shake the bottle and 
then put it down on the table. What will happen to the water?" A subject should be able to predict that the 
water will remain in the bottle while it being shaken, and then, once the bottle is at rest, will go back to 
sitting at the bottom of the bottle with a horizontal upper surface. In a rule-based system, this prediction 
requires tracking the complicated motion of the water from the shaken state to the rest state. 

Inference from precise problem specifications vs. partial information. A simulation model is 
fundamentally based on reasoning with precise fully detailed information. Reasoning with partial 
information can be performed only by doing a Monte Carlo search over the space of precise instantiations 
of the partial information. Rule-based systems are inherently designed to deal with partial information; 
precise information is just a special case of partial information, and not necessarily a particularly tractable 
special case. For example, in the same experiment with shaking the bottle, in a simulation model, the 
reasoner must simulate a large number of different possible motions that might be involved in the shaking 
motion. If the shape of the inside of the bottle is unknown, then the reasoner must simulate the situation 
with a variety of different possible inner shapes. The direct effect of this need for multiple simulations on 
subjects' response times is hard to predict exactly, since alternative simulations can in principle be carried 
out in parallel. However, one way or another, the need to reason with partial information must increase 
the demand on cognitive resources of some form. The more incomplete the information and the more 
forms of incomplete information are involved (e.g. position, shape, mass, motion, material, number of 
objects), the larger this increase should be. 

Full vs. partial knowledge of materials. A simulation model requires a fully detailed model of all the 
materials involved; without that, no predictions at all can be made. A particularly vivid example of this is in 
dealing with animals. A reasoner presumably does not have a useful mechanical model of the animal; 
nonetheless she can do some kinds of reasoning about it. For instance, a reasoner can predict that an eel 
in a fish tank will remain in the tank, even without having any idea what the mechanics are of the eel's 
locomotion, whereas a simulation would, in the absence of a detailed model of an eel, be unable to make 
any prediction at all. (Davis and Marcus, in prep.). 

Collections.  In a physical system with many similar objects, such as a pail full of sand, or with many 
similar shape features, such as a sieve with many holes, a system based on simulation must, first, do a 
Monte Carlo search with random instantiations of the number of such objects and features, and, second, 
in each such instantiation, reason about each grain of sand or each hole through the sieve individually. In 
a rule-based system, it is at least in principle possible to reason collectively about the grains of sand or 
the holes through the sieve (though admittedly this is a challenging problem for automated reasoners). In 
a rule-based system, if sets of related objects are viewed as collections rather than individuals (Halberda, 
Sires, and Feigenson, 2006) increasing the number of objects should have little effect; e.g. there should 
be essentially no difference between reasoning about 100 grains of sand and reasoning about 1000. In a 
simulation-based system, the difficulty of reasoning continues to increase: reasoning about 1000 should 
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be more difficult than reasoning about 100 in the same way that reasoning about 10 is more difficult than 
reasoning about 1. 

 
To study how human reasoning deal with challenges of these sorts, we will present subjects with 48 
scenarios such as those described below, drawn from four categories, presented in random order, 
counterbalanced across subjects, as videos that will be rendered in advance using a physics engine. 
Subjects will be requested to respond as quickly as they can while still being accurate. We will measure 
their response time and analyze their answers in terms of speed and accuracy.  
 
A sample scenario for each of the four features: 
  
Scenario 1: Full trajectory vs. prediction over extended time 
Subjects are shown a small die being dropped into a funnel with steep sides held over a table (Davis, 
1988). They are asked where the die will be when it comes to rest. There are two different sizes of 
funnels; the top, conical, section of the larger funnel is the same shape as the smaller funnel but larger in 
each dimension; the bottom, cylindrical section is the same diameter in the two funnels, but longer in the 
larger funnel. In each case the original position of the die is just below the top of the funnel, well off-
center.   
 
A rule-based theory predicts that both situations will have the same response time, since the qualitative 
information is the same. 
A simulation-based theory will predict that it will take longer to simulate the situation in the larger funnel; 
hence, the response time should be longer. This difference should be manifested, whether the simulation 
process uses a constant time increment (e.g. the state of the die is calculated at 100 millisecond 
intervals), since the actual time required to fall through will be greater in the second case, or it uses a 
variable time increment, tracking from one significant event to the next event, since the fall of the die 
through the larger funnel will both take more total time and involve more collisions and changes of 
contact. 

 

 
 

Figure 1: Scenario with a die being dropped through a funnel 
 
An alternative version of this example will show subjects the two situations, placed over a table such that 
the starting position of the die is at equal heights off the table, and ask them to predict in which situation it 
will take longer for the die to reach the table (as opposed to simply inquiring about the final state). A  
correct response -- that it will take longer for the longer funnel, -- would suggest that subjects are using a 
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physics-like simulation, rather than rules, inasmuch as such an inference is easy to derive from simulation 
and extremely difficult to get from a rule-based system (such as Davis, 1988).) 
 
Scenario 2: Partial vs. complete Information 
Subjects are shown one of three situations: 

Situation 1: There are 3 boxes: A, B1, and B2, each with a lid. The experimenter shows that A will 
fit into B1, but not into B2. Subjects are told, "There is an object O in A. If I take O out of A. which 
of the other boxes can I be sure it will fit into?" 
Situation 2: Boxes A, B1, B2 are the same as in situation 1. After showing that A fits in B1, but not 
in B2, the experimenter shows object O inside A. Subjects are asked which of the other boxes O 
will fit into. The shape of O is quite complicated. 
Situation 3: There is no box A. Object O is shown outside boxes B1 and B2. Subjects are asked 
which one it fits into. The shape of O is the same as in situation 2, so that in fact O fits inside B1 
and B2,  

 
We can divide the reasoning tasks into three categories:  

i. In situation 1, since the subjects do not see O, they cannot use precise shape information; they 
must make the inference that, since O fits in A and A fits in B1, O fits in B1. 

ii. In situation 3, since there is no easy qualitative inference like the one in situation 1, subjects must 
use the precise shapes of O and the boxes. 

iii. In situation 2, to infer that O fits in B1, subjects may either use the exact shapes of O and B1 or 
may use the inference used in situation (1). To infer reliably that O does not fit in B2, they must 
use the exact shapes of O and B2. 

 

 
 Figure 2: Scenario 2  

 
If subjects are using a simulation model in reasoning then "necessarily use precise" should be faster and 
more accurate than "necessarily use partial"; if they are using rule-based reasoning, then "necessarily 
use partial" should be faster and more accurate than "necessarily use precise". Moreover, under the latter 
assumption, if the behavior for the "either method" problems is more similar to the "necessarily use 
precise" problems, then one can infer that subjects preferentially use precise information when available; 
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if the behavior is more similar to the "necessarily use partial" problems, one can infer that they 
preferentially use partial information. (Figure 2 shows a two-dimensional version; the actual experiment 
will involve three-dimensional objects, so the precise judgments will be significantly more difficult than 
figure 2 suggests.)  Rule-based reasoning that can support this kind of inferences is discussed in 
(Christani 1999) and in (Davis 2013). 

 
 
Scenario 3: Partially known dynamics 
Subjects are shown one of six situations: 

Situation 1: There is a small ball in a closed, sealed box. 
Situation 2: There is a slinky inside the box.  
Situation 3: There is a grasshopper inside the box . 
Situations 4-6. Identical, except that the box is open on top.  

Subjects are asked, "If the box is shaken hard up and down, can the ball/slinky/grasshopper come out of 
the box?"  
If the subjects are using a rule-based system, then the three problems should be of comparable difficulty.  
If the subjects are using a simulation-based system, then prediction should be much more difficult in 
situations 2,3,5, and 6, because the dynamic model of a slinky or a grasshopper are much more 
complicated, and much less well known to the subject, than the dynamics of a ball. Subject’s predictions 
should therefore be slower and less reliable. (The comparison between slinky and grasshopper allows us 
to begin investigate the role of animacy in physical reasoning.) 
 
Scenario 4; Collections of objects 
Subjects are shown one of three situations: 

Situation 1: There is a single marble in a bottle, much smaller than the opening of the bottle  
Situation 2: There are 10 such marbles in the bottle  
Situation 3: There are 50 such marbles in the bottle, 

Subjects are asked: If I turn the bottle upside down, will the marble(s) fall out? 
If the subjects are using a rule-based system, then situation 2 will be only somewhat more difficult than 
situation 1, and situation 3 will be only negligibly more difficult than situation 2.  
If the subjects are using a simulation-based system, then situation 2 will be much more difficult than 

situation 1 and situation 3 will be much more difficult than situation 2, because the simulation must track 

the interactions of all the individual marbles. 

 

Further scenarios will address other issues, such as the nature of reasoning about different materials,  

 

3.2 Automated reasoning 
 
For the automated reasoning portion of this project, we will develop a system that can reason with a 
range of more and less specific physical and geometric properties and draw reasonable inferences. That 
system will consist of a representational language that can express partial information about physical 
situations and a rule-based system that can carry out various kinds of reasoning tasks based on the 
representation. The emphasis in this part of the project will be on dealing adequately with weak 
information, as humans do. 
  
Specifically, we plan to develop a representation language that can deal with a wide range of materials, to 
describe under what circumstances they can serve as a container, and under what circumstances they 
can either pass through the material of a container or fit through the holes of a container. Materials 
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include rigid objects; paper; cloth; string; liquids; gasses; light (as a thing to be blocked); animals (as 
contents); and human hands (as containers when cupped). 
 
The representation language will need to express spatio-temporal information, physical information, and 
information about actions. Our representation language will be in the spirit of the work that has been done 
in qualitative reasoning (e.g. Bobrow 1985), and qualitative spatial reasoning (e.g. Cohn and Renz 2008), 
discussed below in section 5.2.  However in our project we will address additional issues that arise in 
reasoning about the container/content relation, such as whether one object fits through a portal or 
whether a malleable object will fit in a space, or whether a malleable object can be cupped around a 
cavity, that previously have received little or no attention in the work on qualitative spatial reasoning. 
Working out a complete specification of the representation language is one aspect of the proposed 
project, but broadly speaking, we are planning on using a constraint language with the following 
elements: 
 

1. Spatial language 
a. Categories of entities: Extended regions, measures of distance, height, and volume. 
b. Mereological relations over regions: "A is part of B", "A overlaps B", "A and B are 

disjoint". 
c. Contact relations, such as "The boundaries of regions A and B meet." 
d. Euclidean congruence, for rigid objects: "Regions A and B are congruent". 
e. Topology of holes: "A is an inner cavity of B," "H is a hole through A connecting inner 

cavity C to the outside". 
f. Comparative distance, height, or volume: "X is greater than Y". 
g. Characteristic measures associated with regions; "D is the diameter of region R"; "D is 

the inner radius of region R", "V is the volume of region R". 
h. Heights associated with regions: "H is the height of the bottom/top of region R." 
i. Cylinders: "C is a right circular cylinder of radius R and length L" 

2. Temporal language 
a. Categories of entities: Instants of time and fluents.  
b. Order of instants: "Time I is earlier than J" 
c. Relation of instants to fluents: "Fluent F holds at time I"; "F holds throughout interval [I,J]". 
d. Preconditions on actions: "Action A is possible at time I if conditions Q1, Q2 ... hold." 
e. Effects of actions: "If action A is carried out then Q will become true." 

3. Spatio-temporal language:  
a. Category of entities: histories (= region-valued fluents). 
b. Constraints: "Spatial relation Q holds on history A at time I / over time interval [I,J]". 
c. Passing through: "History A passes through.history B during time interval [I,J]" 

4. Physical language 
a. Categories of entities: Objects, materials 
b. Relations between histories and physical entities: "History H corresponds to the position 

of object O", "History H is filled with material M", "History H is empty". 
5. Actions. For simplicity, we will abstract away the actual manipulator used for actions, and model 

actions as if the agent could move objects by telekinesis. Under that assumption, an action 
amounts to the trajectory (history) followed by the manipulated objects. 

a. Category of entity: Histories 
b. Occurrence relation: "Action A occurs over time interval [I,J]". 

Problems we leave for future research include integrating this qualitative language with a language of 
precise geometric and material specifications; characterizing complex shapes such as the range of 
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shapes that a piece of paper can be crumpled into or that a human hand can attain; and dealing with 
collections of objects and shape features. The problem of complete, general inference over a language as 
expressive as sketched above is of course hugely intractable (almost certainly undecidable). However, 
we do not need, and certainly do not intend, to implement a general inference engine, just an inference 
engine that carries out the particular inferences needed for commonsense reasoning about containers.   

The reasoning system will be able to reason about the interactions between objects described in the 
language of materials and shapes. For example, it will: 

 Predict that the contents of a closed container will remain inside the container. 
 Infer that, if an object fits inside a cavity formed by a box and a lid, then it is possible to place the 

object in the box and then close the lid. 
 Predict that a rigid object will not fit in a cavity if the diameter of the object is greater than the 

diameter of the cavity. 
 Predict that fluids can pass through a portal of any size or shape. 
 Predict that, for any object, a sufficiently large box will contain the object. 

Using this representation language, we will assemble a knowledge base sufficient to support most or all 
of the inferences based on partial information that we will study in our experimental scenarios, except for 
those dealing with collections, which we leave for later study. 

In the initial implementation of our automated reasoner, we plan to use a first-order theorem prover such 
as SPASS (Weidenbach et al. 2002) or Prover9 (McCune). This technology has been applied very 
effectively in a wide range of applications ranging from qualitative spatial reasoning (Wölfl, Mossakowski, 
and Schröder 2007) to program verification (e.g. Cook, Kroening, and Sharygina 2004). However, as the 
project progresses and we learn more about the kinds of reasoning involved in these cognitive tasks, we 
may either supplement the theorem prover with such features as support for default reasoning (Brewka, 
Nielmelä, and Truszczński 2008)) or higher-level control heuristics (Cox and Raja 2011); or adopt a 
different reasoning architecture such as answer-set programming (Gelfond 2008). 

A special focus, both computationally and empirically, will be on the likelihood that human reasoners may 
use collections of mutually inconsistent partial theories in dealing with problems of this kind, and an 
automated reasoner that is intended to serve as a cognitive model must to some extent address the 
issues of dealing with inconsistent beliefs. How this can best be done is a matter for research, and 
certainly substantially depends on the findings of our psychological studies. Our initial plan is to use a 
truth-maintenance system (Forbus and de Kleer, 1993); again, these have been applied successfully both 
in qualitative reasoning (Forbus and de Kleer 1993) and in program verification (where the technique is 
known as clause learning; Gomes et al. 2008). 

4.  Evaluation 

The AI segment of the project will be evaluated according to three kinds of criteria: 

 Representational adequacy. To what extent can the representation express the kinds of partial 
knowledge that arise in commonsense reasoning about containers? 

 Inferential adequacy. To what extent can commonsense inferences about containers be carried 
out in this system? 

 Cognitive modeling. To what extent can features of human reasoning be characterized in terms of 
this model? As remarked above, this will be inherently limited by the fact that we do not intend to 
address reasoning from inconsistent knowledge in our AI system. 



 

11 
 

For representational adequacy and inferential adequacy, since there does not exist either a standard 
collection of benchmarks for this domain or, as far as we know, a ecologically natural source of problems, 
An important objective will be to develop a suite of benchmark problems, along the lines of the scenarios 
described in the experiments above, probably numbering in the hundreds, that will be empirically tested 
against human performance, and be freely distributed to serve as a testbed for competing approaches to 
physical reasoning.  

5.  Related work  
Our project builds on existing bodies of work in cognitive psychology and in artificial intelligence. 
 

5.1 Related work in cognitive psychology 
 
Several leading researchers in developmental psychology, including Renée Baillargeon, Susan Hespos, 
and Elizabeth Spelke (Hespos & Baillargeon 2001; Hespos & Spelke 2007), have examined young 
infants’ understanding of containers, establishing that within the first six months of life, infants have some 
basic understanding of the fact that objects can be hidden within containers . Further work has shown that 
by the end of the first year of life, infants develop a more refined concept, recognizing for example that it 
is surprising that an object A (say a small hat) conceals an object B that  is bigger than A  (say, a large 
rabbit). Less work has been done in adults understanding of containment, and we are not aware of any 
studies in adults that aims to do what we aim to do here, viz characterizing the specific cognitive 
processes underlying human common-sense reasoning in situations relating to containers and their 
contents, 
 
An older line of research due to Piaget, well-known but now somewhat controversial, concerned 
children’s understanding of the “conservation” of liquid, matter, number and so forth. For example, in 
classic tasks, six years seemed confused about what happened when the liquid in a tall skinny container 
was poured into a short wide container (Inhelder & Piaget, 1959); later work raised questions about 
whether children’s difficulties stemmed a genuine lack of physical understanding  (e.g. Siegal, 1991). 
 
Téglás et al. (2007, 2011) have studied infants' expectations about the time required for objects to escape 
from a container with holes, and have shown that the level of surprise that the infants exhibit, as indicated 
by staring time, corresponds to the predictions of a simulation-based model. 
 
Hamrick, Battaglia, and Tenenbaum (2011) studied adult physical reasoning in predicting stability of a 
tower of blocks, and showed that the data matched a simulation-based model that incorporates a 
probabilistic element corresponding to the uncertainty of the reasoner's perception.  Marcus and Davis 
(submitted) show that the models make incorrect predictions, however, in another closely-related task, 
and earlier work by McCloskey (e.g., 1983) and Hecht & Proffitt (1995) shows that people’s intuitive 
physics is not always veridical. 
 
Markman, Klein and Suhr (2009) survey the use of simulation-based models in psychology. 
 

5.2 Related work in artificial intelligence 
 
The best-known body of work on physical reasoning with partial information are the techniques pioneered 
in the seminal programs QSIM (Kuipers 1985), QP (Forbus 1985) and ENVISION (de Kleer and Brown 



 

12 
 

1985);2 since these early papers, these techniques have been very much extended and have been 
applied to a wide range of physical systems (Forbus 2011). However, this approach is for the most part 
limited to physical systems whose state can be characterized in terms of a collection of one-dimensional 
parameters and inequalities between those parameters and landmark values in the parameter space; and 
whose dynamics can be characterized in terms of a set of qualitative differential equations. In particular, 
these techniques do not apply well to the kind of reasoning about spatial relationships and spatial change 
that are central in reasoning about containers. 
 
More relevant to our project is the substantial literature on qualitative spatial reasoning, initiated by the 
papers of Randall, Cui, and Cohn  (1989) and of Egenhofer and Franzosa (1991) and extensively 
developed since (Cohn and Renz, 2008). These do indeed provide a language that can express some of 
the qualitative relations needed for our theory and a set of rules that can justify some of the inferences we 
wish to carry out; and we will certainly be building on these. For instance, in a language that combines the 
RCC-8 (Region Connection Calculus) calculus (Randell, Cui, and Cohn 1989) with set operations, the 
relation “A is contained inside container C’’  can be expressed as the quantifier-free formula  P(A,B)  ר 
NTPP(B,D) ר  C = D \ B;  here B is the entire interior cavity,  D is the union of the container with the cavity 
(figure 1). P(A,B) is the relation "A is a subset of B"; NTPP(B,D) is the relation "B is a subset of the interior 
of D" and D\B is the normalized set difference D  minus B. Likewise, the relation, “Rigid solid object A fits 
inside interior cavity B of closed container C’” is expressed in the formula CGPP(A,B)  ר NTPP(B,D) ר  C 
= D \ B, where CGPP(A,B)   is the relation “A is congruent to a partial part of B”, defined in (Christiani 
1999). However, we will need to extend this theory substantially, as discussed in section 3.3 above. 

Davis (2008, 2011). has developed representation languages and systems of rules to characterize 
reasoning about loading solid objects into  boxes and carrying objects in boxes, and pouring liquids 
between open containers. This work is obviously closely related to the proposed project, and we will draw 
on it extensively. However, the proposed project differs in significant respects from these earlier works: 

 The new project deals with a wider range of materials. (For reasons of computational efficiency, 
we will not include a rich theory of dynamics of solid and liquid motion ― for instance, the 
analysis of pouring liquid by tilting a cup.) 

 The new project aims toward a theory that is both effectively implementable and cognitively 
realistic, sacrificing expressive and inferential power where necessary. 

 6.  Results from Prior NSF Support 

Grant:  "Automating Commonsense Reasoning for Elementary Physical Science,'' NSF IIS-0534809, 
$328,877, 2/06-8/10. PI: Ernest Davis 
 
In research supported by the above NSF grant, Davis and his associates carried out in-depth studies in 
physical reasoning and qualitative spatial reasoning His research group also carried out research 
developing a number of techniques for improved retrieval of web documents.  
 
Another substantial educational project supported by the grant was the development of a new course, 
“Mathematical Techniques for Computer Science Applications'', an introductory course in linear algebra, 

                                                            
2 Regrettably, the term "qualitative reasoning" is often applied narrowly to theories of this specific form, which 
leads to terminological difficulties when contrasting this particular class of techniques with other methods of 
qualitative reasoning 
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probability, and statistics for computer science masters students, and the writing of a textbook for the 
course (Davis, 2012). 
 
Physical Reasoning: 
 
Our studies of physical reasoning have led to the following results, 
 
1. The analysis of commonsense reasoning about loading objects into boxes and carrying objects in 
boxes. (Davis, 2011) 
 
2. The analysis of commonsense reasoning about carrying liquids in containers and pouring liquids 
between containers. (Davis, 2008)  
 
3. The formulation of a collection of inferences about simple physical and chemical process in a number 
of alternative ontologies of matter: An ontology based on particles, one based on fields, one based on 
histories, one based on chunks, one based on infinitesimal particles, and one hybrid ontology combining 
particles, fields, histories, and chunks. (Davis, 2010, and in prep.) 
 
Spatial Reasoning 
 
4. An analysis of the expressivity of the first-order language allowing quantification over regions, and 
containing the one predicate, "Closer(x,y,z)'' (region x is closer to y than to z). We have show that any 
relation that is analytical and invariant under orthogonal  transformations can be expressed in this 
language. Roughly speaking, the language is capable of expressing essentially all the concepts in 
standard mathematical geometry and analysis. (Ref) Similarly, the first-order language over the same 
domain containing the two predicates "C(x,y)" (x is connected to y) and "Convex(x)" (x is convex) can 
express any analytical relation that is invariant under affine transformations (Davis, 2006) 
 
5. An analysis of a number of techniques for reconstructing spatial regions from sample points, and a 
proof that, under specified conditions, the reconstructed region is ``close'' to the true region, under a 
number of different definitions of ``closeness.'' (Davis, 2012a) 
 
6. An analysis of the use of transition graphs in reasoning about  continuous spatial change. We give 
general definitions of different categories of transition graph for a partition of a topological space. We 
prove that the class of paths through the graphs is elementary equivalent to the class of continuous paths 
through the space, relative to a specified first-order language. We show how this theory can be applied 
in real-world domains such as rigid objects, strings, and liquids. (Davis, 2012b) 
 
Web Search Engines 
 
7. As a doctoral thesis, Ziyang Wang  developed and tested a system that monitors a local web site for 
new information and presents it to the user (Wang, 2006). 
 
Development of human resources 
 
During the period of NSF support, one student completed a doctorate under Davis’ advisement:: 
Ziyang Wang, ``Incremental Web Search: Tracking Changes in the Web.'' May 2006. 
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Publications 
 
E. Davis. "The Expressivity of Quantifying over Regions.'' Journal of Logic and Computation, 16, 2006, 
891-916. 
 
E. Davis. "Physical Reasoning.'' In The Handbook of Knowledge Representation, F.van Harmelen, 
V. Lifschitz, and B. Porter (eds.), Elsevier, Oxford, 2008, chap. 14, pp. 597-620.  
 
E. Davis."Pouring Liquids: A Study in  Commonsense Physical Reasoning.'' Artificial Intelligence, 172, 
2008, pp. 1540-1578.  
 
E. Davis. "Ontologies and Representations of Matter.” AAAI-10 
 
E. Davis. "How Does a Box Work? A Study in the Qualitative Dynamics of Solid Objects.'' 
Artificial Intelligence. 175, 2011, 299-345. 
 
E. Davis. "Preserving Geometric Properties in Reconstructing  Regions from Internal and Nearby Points.'' 
Computational Geometry: Theory and Applications, 45, 2012, 234-253 
 
E. Davis, Qualitative Reasoning and Spatio-Temporal Continuity, in S. Hazarika ed. Qualitative Spatio-
Temporal Reasoning and Representation: Trends and Future Directions, IGI Global 2012. 
 
E. Davis, Linear Algebra and Probability for Computer Science Applications, CRC Press, 2012, 431 pp. 
 
E. Davis, The Logic of Coal, Iron, Air, and Water: Representing Common Sense and Elementary Science, 
in preparation. 
 
Z. Wang, Incremental Web Search: Tracking Changes in the Web. NYU Ph.D. thesis, May 2006. 
 

8.  Intellectual merit 

8.1 Advancement of knowledge. 

We expect the project to advance our understanding of commonsense physical reasoning as a cognitive 
process; to advance the state of the art in automated commonsense physical reasoning; and to serve as 
an example of how psychological and computational studies of high-level reasoning can be pursued in 
tandem synergistically. Specifically, we will study reasoning about the interactions of containers and their 
contents in adults, in children, and in automated reasoners. The reasoning tasks that we will consider will 
involve much broader classes of materials, partial geometric specifications, and directions of inference 
than have previously been considered in the related psychological or AI literature.  

The deliverables of the project will include: 

 Experimental studies of commonsense reasoning about containers in adults,  
 Cognitive models that account for the experimental results. 
 A representation language for the relevant kinds of partial physical and spatial knowledge. 
 A knowledge base that expresses commonsense knowledge of containers and that supports 

commonsense inferences. 
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 A reasoning architecture for the knowledge base that can carry out commonsense reasoning in 
this domain. 

The techniques developed and information gained for this rather narrow though important domain will 
presumably generalize to insights that can be used in theories of high-level cognition and automated 
reasoning for other kinds of commonsense reasoning as well. 

 

8.2  Plan of work 
1. Preliminary stages (prior to support and early parts of Year 1 of support): 

1.1. Construction of a corpus of inferences to be used for evaluation and for guiding theory 
development. 

1.2. Design of initial experiments 
2. Core project (Later parts of year 1, years 2 and 3). A cyclical feedback loop, in which all of the 

following tracks are pursued in parallel, and results from one track are continually used to guide all 
the other tracks: 
2.1. Running and evaluating experiments. 
2.2. Development of cognitive models 
2.3. Design of new experiments 
2.4. Development of representation, theories, and inference engine 
2.5. Evaluation of automated system 

3. Project conclusion (end of year 3) 
3.1. Overall evaluation of cognitive models, and analysis of outstanding problems. 
3.2. Overall evaluation of automated reasoner, and analysis of outstanding problems. 
3.3.  Implications for other forms of high-level cognition and automated reasoning. 

8.3  Qualifications of the Principal Investigators 

Ernest Davis has been working for almost thirty years in the areas of commonsense physical reasoning 
and qualitative spatial reasoning for AI systems, and has published extensively in those areas. In 
particular, he has recently authored two papers bearing directly on qualitative reasoning about containers: 
one dealing with loading solid objects into boxes, the other dealing with carrying liquids in open 
containers and pouring from one container into another. He has written a textbook on representations of 
commonsense knowledge (Davis, 1990). 

Gary Marcus is a cognitive scientist in the psychology department at NYU. He has published 
experimental and theoretical work in Science, Nature, Cognition, Cognitive Psychology, and numerous 
other leading journals. He is also the editor of The Norton Psychology Reader, and author of four books 
about cognitive science, including the New York Times bestseller Guitar Zero: The New Musician and The 
Science of Becoming Musical and Kluge: The Haphazard Construction of the Human Mind, which was a 
New York Times Book Review editor's choice. 
 
Since September 2012 Davis and Marcus have been collaborating on a number of projects. They have 
written a critique of Bayesian methods of high-level cognition), and are currently writing a paper on the 
limits of simulation in cognitive models and models of automated reasoning. 

8.4  Institutional support 

Davis’ research is supported by the NYU Computer Science department and the Courant Institute of 
Mathematical Sciences. Marcus’ research is supported by the NYU Psychology department and the 
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School of Arts and Science. All aspects of the administrative, scientific, and computational infrastructure 
required by this project receive full support from these parts of the university. 

9.  Broader Impact 

1. Training of graduate students. The proposed budget contains 1 semester of academic year support 
and two summer months of support per year for one student in computer science and one student in 
psychology. Over Davis’ career he has supervised nine doctoral students, who are now working at such 
places as IBM Watson Labs, Microsoft Research, the Hebrew University, and ISI; Marcus’s two recent 
PhD students are currently post-docs at Harvard and Toronto. 

2. Public understanding of science.  

a. Writing: The Co-PI (Marcus) frequently writes about complex, technical subjects for the general-public, 
mostly recently in an ongoing series of widely-read essays on artificial intelligence and cognitive science 
at the website of The New Yorker.  He has also written for The New York Times (both for the Science 
Times and Sunday Magazine), Discover, Wired, and the Wall St Journal, and envisions one or more lay-
audience articles in prominent places on the topic of common-sense reasoning, informed by the present 
work.   

b. Video: Additionally, in conjunction with a new collaborator, the filmmaker Jason Silva (whose work 
recently opened TEDGlobal, Marcus aims to develop a video (presumably for free distribution on 
YouTube) comparing human and machine common-sense reasoning. 

c. Public Appearances: Marcus will describe our work and broader issues that arises in common-sense 
reasoning, in public lectures and radio appearances (he has spoken at venues such as TED NYC and 
appeared numerous times on NPR and other radio shows).  

d. Song: The well-known rapper and playwright Dirk Murray "Baba" Brinkman is interested in the 
possibility of writing a rap song on the subject of AI and commonsense reasoning in AI. Brinkman's 2011 
show, "A Rap Guide to Evolution" was extremely successful and received a glowing review in the New 
York TImes. (For this subproject, we would seek outside funding, rather than NSF fnds.) 

e. Museum exhibit: We hope to help develop a museum exhibit on AI and Common Sense Reasoning, 
and are in discussions with Paul Hoffman, President and CEO of Liberty Science Museum, who has 
expressed interest. (Marcus has also close ties to the American Museum of Natural History; he has 
consulted on the development of two exhibits, and appears in a video that is shown regularly there in The 
Hall of Human Origins). 
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