Lemma S.A forall(u,v,w) P(u,v) ^ P(v,w) => P(u,w). Proof: SBD1 Lemma S.B forall(u) Region(u) => P(u,u). Proof: SBD1 Lemma S.C: forall(u,v) P(u,v) => O(u,v). Proof: SBD2 + LemS.B Lemma S.D: forall(u,v) P(u,v) => not DR(u,v). Proof. LemS.C + SBD3 Lemma S.E. P(u,v) ^ DR(v,w) => DR(u,w). Proof of contrapositive. Assume: SE.1 Assume P(U,V) and not DR(U,W). Infer: SE.2 O(U,W). SBD3 + SE.1. SE.3 exists(X) P(X,U) ^ P(X,W). SBD2 + SE.2 SE.4 exists(X) P(X,V) ^ P(X,W) 3E.3 + LemS.A SE.5 O(V,W). SBD2 + SE.4 SE.6 not DR(V,W). SBD3 + SE.5 Discharge SE.6 against SE.1 and rearrange. Lemma S.F. Outside(u,v) ^ P(w,u) ^ Cavity(x,v) => not P(w,x). Assume SF.1 Outside(U,V) ^ P(W,U) ^ Cavity(X,V) Infer SF.2 DR(U,X) SCD2. SF.3 DR(W,X). LemS.E + SF.2 SF.4 not P(W,X). LemS.D + SF.3 Discharge SF.4 against SF.1 Lemma S.G: EC(ra,rb) ^ DC(rb,rc) => not P(ra,rc). Proof of the contrapositive: Assume SG.1 EC(Ra,Rb) SG.2 DC(Rb,Rc) Infer SG.3 C(Rb,Ra) SBD4 + SBA3 SG.4 not C(Rb,Rc) SG.2 + SGD5 SG.5 not P(Ra,Rc) SGD1 + SG.3 + SG.4 SG.6: EC(ra,rb) ^ DC(rb,rc) => not P(ra,rc) Discharge SG.5 against SG.1, SG.2. Lemma S.H DR(r,ra) ^ DR(r,rb) => DR(r,RUnion(ra,rb)) Proof: Since O(u,v) <=> not DR(u,v) (SBD3), Lemma S.H is just the contrapositive of SBA4. Lemma S.I DC(u,v) ^ P(w,v) => DC(w,u). Proof: By SBD1 C(u,w) ^ P(w,v) => C(u,v). This is the contrapositive, using SBD5 and SBA3. Lemma S.J FullyOutside(u,v) => DC(u,v). Assume SJ.1 FullyOutside(U,V). Infer SJ.2 DC(ConvexHull(U),ConvexHull(V)). SCD7 SJ.3 DC(ConvexHull(V),ConvexHull(U)). SBD5 + SBA3 + SJ.2 SJ.4 P(U,ConvexHull(U)). SCA4 SJ.5 P(V,ConvexHull(U)). SCA4 SJ.6 DC(U,V) LemS.I+SJ.2+SJ.3+SJ.4+SJ.5 Lemma S.K DC(u,v) => DR(u,v). Proof: Assume SK.1 O(U,V). Infer SK.2 exists(w) P(w,U) ^ P(w,V). SBD2 SK.3 P(W,U) ^ P(W,V). Naming SK.4 C(W,W). SBA2 SK.5 C(W,U). SBD1 + SK.3. SK.6 C(U,W). SBA3 SK.7 C(U,V) SBD1 + SK.3 SK.8 forall(u,v) O(u,v) => C(u,v). Discharge SK.7 against SK.8 SK.9 forall(u,v) DC(u,v) => DR(u,v). Contrapositive of SK.8 + SBD5 + SBD3 Lemma S.L P(u,v) => C(u,v). Proof: SBA2 + SBD1. Lemma S.M DR(u,v) => u !=v. Proof: Lemma S.D + Lemma S.B Lemma S.N CombinedContainer(u,v,w) ^ P(x,w) => DR(x,u) ^ DR(x,v) Assume: SN.1 CombinedContainer(U,V,W) SN.2 P(X,W) Infer: SN.3 Cavity(W,RUnion(U,V)) SCD4 + SN.1 SN.4 DR(W,RUnion(U,V)) SCD1 + SN.3 SN.5 DR(X,RUnion(U,V)) LemSE SN.6 P(U,RUnion(U,V)) ^ P(V,RUnion(U,V)) SBD6 SN.7 DR(X,U) ^ DR(X,V) LemSE Lemma S.P O(u,v) => O(v,u) SBD2 Lemma S.Q DR(u,v) => DR(v,u) LemSP, SBD3 Lemma S.O UContained(t.oa,ob) => OContained(t,oa,ob). Proof: OCD3, ORD3, SCA2, ORD2, OCD2 Lemma S.T OpenContained(ra,rb) => not FullyOutside(ra,rb). Assume: ST.1 OpenContained(Ra,Rb) Infer ST.2 exists(rc) OpenContainerShape(Rb,rc) ^ P(Ra,rc). SCD6 + ST.1 ST.3 OpenContainerShape(Rb,Rc). Naming ST.2 ST.4 P(Ra,Rc) Naming ST.2 ST.5 P(Rc,ConvexHull(Rb)) SCA6 + ST.3 ST.6 P(Ra,ConvexHull(Rb)). LemSA + ST.4 + ST.5 ST.7 P(Ra,ConvexHull(Ra)) SCA4 ST.8 O(ConvexHull(Ra),ConvexHull(Rb)) SBD2 + ST.6 + ST.7 ST.9 not DC(ConvexHull(Ra),ConvexHull(Rb)). LemSK + SBD3 + ST.8 ST.10 not FullyOutside(Ra,Rb) SCD7 + ST.9