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Abstract.

High-level controllersthat operaterobotsin dynamic,uncertain
domainsareconcerneavith atleasttwo reasoningasksdealingwith
theeffectsof noisysensorandeffectors:They have a) to projectthe
effectsof a candidateplan andb) to updatetheir beliefsduring on-
line executionof a plan. In this paper we shav how the pGOLOG
frameawork, whichin its original form only accountedor the projec-
tion of high-level plans,can be extendedto reasonaboutthe way
the robot’s beliefs evolve during the on-line execution of a plan.
pGOLOG, an extensionof the high-level programminglanguage
GOLOG, allows the specificationof probabilisticbeliefs aboutthe
stateof the world and the representatiorof sensorsand effectors
which have uncertain,probabilisticoutcomesAs an applicationof
belief update,we introducebelief-basedprograms GOLOG-style
programsvhosetestsappealo theagents beliefsat executiontime.

1 Introduction

High-level robot controllersthat operatein dynamic,uncertaindo-

mainsandhave to copewith sensorsand effectorsthat have uncer

tain, probabilisticoutcomesareconcernedvith at leasttwo distinct
reasoningasks.First, given a candidateplan, probabilistic projec-
tion allows the predictionof the effectsof the plan. This task,which

is aprerequisiteo deliberateover differentpossibleplans lies atthe
heartof probabilisticplanning]KHW95, DHW94] andthetheoryof

POMDPs[KLC98]. Secondgiven a characterizatiomf the robot's

beliefsaboutthe stateof theworld, a robotshouldbe ableto update
its beliefsduring the executionof a planinteractingwith the robot's

noisy sensor@andeffectors.This secondask,to which we will refer
to asbeliefupdate following [BHL99], is necessaryo allow proba-
bilistic reasonindin particularprobabilisticprojection)in non-initial

situation.

In this paper we shav how the probabilistichigh-level program-
ming framewvork pGOLOG [GLOOb], whichin its original form only
accountedor the probabilisticprojectionof high-level plansinter-
actingwith noisy sensorsand effectors,can be extendedto reason
aboutthe way the robot’s beliefs evolve during the on-line execu-
tion of a plan! To do so, we first explicitly modela layeredrobot
controlarchitecturevherethe robot’s high-level controllerdoesnot
directly affect the world by operatingthe robot’s physicalsensors
andeffectors,but insteads connectedo abasictask-eecutionlevel
which provides specializedow-level processedik e navigation, ob-
ject recognitionor graspingobjects.Having sucha model hasthe
adwantagethatthereis a clearseparatiorof the actionsof the high-
level controllerfrom thoseof the low-level processedn particular
while the action of activating a low-level processandits execution
time areunderthe controlof the high-level controller neitherarethe
effectsof theactivatedprocessorits completiontime.

To modelthe effectsof the low-level processesywe make useof
probabilisticprogramswherethe differentprobabilisticborancheof

1 Here,we usethetermon-line-executionin the senseof [dGL99].

the programscorrespondo differentpossibleoutcomesof the low-
level processe$.Basedon sucha model of the possibleeffects of
thelow-level processesye specifyhow therobot's beliefsaboutthe
stateof the world evolve during the on-line executionof a plan, in
particularhow the beliefs changewhen the robot activatesa low-
level processhat operateshe robot’s physicaleffectorsor whena
low-level processprovides noisy information aboutthe stateof the
world. Finally, we shav how basedon the robot’s evolving belief
stateit becomegpossibleto executeso-calledbelief-basegrograms
GOLOG-style programgqGLL00] whosetestsappealto the agents
beliefsat executiontime.

To get a betterfeel for what we are aiming at, let us consider
the following ship/rejectexample,adaptedrom [DHW94]: We are
givenamanugcturingrobotwith thegoalof having awidgetpainted
(PA) andprocessedPR). Processingvidgetsis accomplishedby re-
jectingpartsthatareflawed(FL) or shippingpartsthatarenotflawed.
Initially, theprobabilityof beingflawedis 0.3.shipandrejectalways
malke PR TRUE, however ship causesan executionerror (ER) if FL
holds, andreject causesER to be TRUE if FL doesnot hold. The
robot canactivate a low-level processpaint, which first undercoats
the widget (UC) for 10 secondsthentakes 20 seconddo paintit.
However, painthasa 5% probabilityto fail. Thereis alsoalow-level
processnspectwhich canbe usedto determinewhetheror not the
widgetis flawed.However, inspecthasa 10%probabilityto overlook
aflaw andreportOK insteadof OK eventhoughthewidgetis flawed:;
if thewidgetis notflawed,it alwaysreportsOK.

In this scenarioan exampleprojectiontaskis: how probableis it
thatthe plan “first inspectthe widget; thereafterif OK holdsthen
ship elserejectit” will falsely ship a flawed widget. On the other
hand, belief updateis concernedwith questionslike: what is the
probability thatthe widgetis flawedif duringon-line-eecutionthe
robotactuallyperceved OK.2 The differencebetweerthe two tasks
is thatin the former case,the agentreasonsabouthow the world
might evolve, while in the latter caseits beliefschangeas a result
of actualactions.We remarkthat besidesupdatingits beliefs con-
cerningthe stateof theworld in termsof fluentslike PA or PR the
robotalsohasto updateits beliefsconcerninghe stateof execution
of the low-level processesfor example,15 secondsafter activation
of the paint procesghe robot shouldnot only be aware of the fact
thatthewidgetis undercoatedby now, but alsothatthe processs no
longerin its initial statebut only 15 secondsway from completion.
Finally, abelief-baseglanis a specificatiorappealingo therobot's
beliefsat executiontime, like for example“as long asyour (i.e. the
robot’s) confidencen whetherthewidgetis flawedor notis belowv a
thresholdof 99%, (re-)inspecthe widget. Thereaftership the wid-
getif your belief in the widgetbeingnot flawed exceeds99%, else

2 We remarkthat modelinglow-level processess programsallows a very
fine-grainedcharacterizatiomf the effects of the low-level processesat a
level of detailinvolving mary atomicactions takinginto accounthetem-
poralextentof theprocesses.

3 Therespeciie probabilitiesare0.3*0.1=3%and3/73=4.1%.



rejectit.” Notethatin this planthe activation of low-level processes
is conditionedon therobot's beliefsat executiontime.

Therestof this paperis organizedasfollows: aftera brief review
of thesituationcalculusandpGOLOG, we describeanoverall robot
controlarchitecturdor actingunderuncertainty Thereafterwe de-
fine successostateaxiomsthat ensurethat the robot’s belief state
evolvescorrectly during the courseof action.Finally, we introduce
belief-basedrogramsandshav how they canbe usedto solve the
exampleproblem.The paperendswith a discussiorof relatedwork
andconcludingremarks.

2 The Situation Calculus

We will only go over the situationcalculusiMcC63, LPR98]briefly

here:all termsin the languageare of sortordinary objects,actions,
situationsor reals? Thereis aspecialconstantSy usedto denotethe
initial situation namelythat situationin which no actionshave yet
occurred;thereis a distinguishedinary function symboldo where
do(a, s) denoteshesuccessosituationof s resultingfrom perform-
ing actiona in s; relationsand functionswhosetruth valuesvary
from situationto situationarecalledfluents andaredenotecdy pred-
icateresp.function symbolstaking a situationterm astheir last ar

gument;finally, thereis a specialpredicatePosga, s) usedto state
thatactiona is executablein situations. Within this languagewe

canformulatetheorieswhich describehow theworld changessthe
resultof theavailableactions Onepossibilityis abasicactiontheory
of thefollowing form [LPR98]:

e Axiomsdescribingtheinitial situation,So.

e Action preconditionraxioms,onefor eachprimitive actiona, char
acterizingPosga, s).

e Successostateaxioms(SSA), onefor eachfluent F', statingun-
der what conditions F'(Z, do(a, s)) holds asa function of what
holdsin situations. Thesetake the placeof the so-calledeffect
axioms,but alsoprovide a solutionto the frameproblem.

e Domainclosureanduniquenameaxiomsfor theprimitive actions.

e A collectionof foundationaldomainindependenaxioms.Oneof
themdefineshow a situations’ canbe reachedrom a situations
by a sequencef actions.Sincewe useit frequently we defineit
here®

sC do(a,s')=sC s
wheres C s’ standdor (s C s') V (s = §').

AddingaTimeline In its basicform, thesituationcalculushasno
notion of time. In orderto modelthat processesiave temporalex-

tent,we introducea specialunaryfunctionalfluent start of sortreal.
Theunderstandings thatstart(s) denoteghetime whensituations

begins (we assumehat start(.Sp) is 0). The fluent start changests

valueonly asaresultof the specialprimitive actiontUpdatet), with

theintuition that,normally, every actionis instantaneoughatis, the
startingtime of the situationafter doing a in s is the sameasthe
startingtime of s. The only exceptionis tUpdat&t). Whenever this

actionoccurs the startingtime of the resultingsituationis advanced
upto t. Thefollowing axiommalesthis precise.

Poss(a,s) D [start(do(a, s)) =t =
a = tUpdatdt) V t = start(s) A =3t".a = tUpdatdt’)

4 While therealsarenotnormallypartof thesituationcalculusywe neecthem
to represenprobabilities.For simplicity, therealsarenot axiomatizedand
we assuméheir standardnterpretationgogethemwith the usualoperations
andorderingrelations.

5 We usethecorventionthatall freevariablesareimplicitly universallyquan-
tified.

We will seein Section4 how tUpdate actionsare usedto syn-
chronizestart with the actualtime duringon-line executionof robot
plans.We remarkthatin [GL0Oa] a versionof thetemporalsituation
calculusis consideredvhereit is possibleto wait for conditionslike
arobotarriving ata certainlocation,which is modeledusingcontin-
uousfunctionsof time, anissuewe ignoreherefor simplicity.

3 pGOLOG

As arguedin [GLOOb], robot “actions” suchaspaint or inspectare
often bestthoughtof as low-level processesvith uncertain,prob-
abilistic outcomewhich needto be describedht a level of detailin-
volving mary atomicactionsyatherthanasprimitive,atomicactions.
To describesuchprocessesye proposedo modelthe processess
programsausingthe probabilisticlanguagggGOLOG. Theideais to
modelthenoisylow-level processeasprobabilisticprograms where
the different probabilisticbranchesof the programscorrespondo
differentpossibleoutcome®f theprocessessivenafaithful charac-
terizationof thelow-level processem termsof pGOLOG programs,
we canthenreasorabouttheeffectsof theactivationof theprocesses
throughsimulationof their correspondinggGOLOG models.
Besidesonstructsuchassequencesterationsandrecursve pro-
cedurespGOLOG provides a probabilistic branchinginstruction:
prob(p, o1, o2). Its intendedmeanings to executeprogramo with
probability p, andos with probabilityl — p. In additionto the con-
structsalreadypresentin [GLOOb], we introducethe parallel con-
structwithPol(o1, 02) adaptedrom [GLOOa]. Theintuition is to ex-
ecutes; anda, concurrentlyuntil o2 ends.The programe; hasa
higherpriority thano», meaningthatwheneer botho, ando, are
aboutto executeanactionatthe sametime, o1 takesprecedencélle
remarkthatpGOLOG only providesdeterministidnstructions.

a primitive action
¢? wait/testactior?
[01,02] sequence
if(¢,01,02) conditional
while(¢, o) loop

probabilisticexecution
withPol(o1, o2) prioritized executionuntil o2 ends
proc(8(Z) o) proceduredefinition

To illustratethe useof pGOLOG, we will nov modelthe possi-
ble effectsof paintby thepGOLOG programpaintProc. Intuitively,
if thewidgetis alreadyprocessedyying to paintit resultsin aner
ror. Otherwise,10 secondsafter activation of paint the widget will
becomeundercoated,andfinally after 30 secondspaint will result
in the widget being paintedwith probability 95% (thereis also a
5% chancehatpaintwill remaineffectless).To modelthe effectsof
paint, we make useof thefluentsPA, FL, PRandER with the obvi-
ousmeaningto representhe propertiesof our exampledomain,and
assumesuccessostateaxiomsthatensurethatthe truth value of PA
is only affectedby the primitive actionssetPA andclipPA, whoseef-
fectis to malke it TRUE resp.FALSE; similarly for the otherfluents.

prob(p,a1,02)

proc(paintProc, [waitTime(10), if (PR, setER setUQ),
waitTime(20), if (PR, setER prob(0.95, setih))]).

Here,waitTime(n) is a procedurevhosepurposeis to wait for n
secondslt essentiallycorrespondso ateststart > 7 + n?, where
7 refersto thetime wherewaitTime wasinvoked. We will seein the
Section5 how this andsimilar pPGOLOG modelsof therobot's low-
level processeareusedto updatethe robot’s beliefsduring on-line
execution.

6 Here,a condition¢ standgor asituationcalculusformulawherenowmay
be usedto referto the currentsituation;whenno confusionariseswe will
simply leave out the now algumentfrom the fluentsaltogether Similarly,
the term ¢[s] denotesthe formula obtainedby substitutingthe situation
variables for all occurrencesf nowin fluentsappearingn ¢.



Formal Semantics The semanticof pGOLOG is definedusing
a so-calledtransition semanticssimilar to ConGolog [GLL0O]. It
is basedon defining single stepsof computationand, aswe usea
probabilisticframework, their relative probability Thereis a func-
tion transPr(a, s, 4, s') which, roughly yields the transitionprob-
ability associateavith agivenprograms andsituations aswell asa
new situations’ thatresultsfrom executinge’'s first primitive action
in s, anda new programd that representsvhat remainsof o after
having performedthat action’ Furthermorethereis anotherpredi-
cateFinal(o, s) which specifiesvhich configurationge, s) arefinal,
meaningthatthe computationcanbe considereccompletedThis is
thecaseyoughly whentheremainingprogramis nil, but notif there
is still aprimitive actionor testactionto be executed.

For spacereasonsye only list a few of the axiomsfor transPr
andFinal. Let usfirst look at withPol and prob informally: the ex-
ecutionof o2 with policy o1 meansthat one action of one of the
programds performedwherebyactionswhich canbe executedear
lier arealwayspreferred.If botho; ando, areaboutto executean
actionat the sametime, the policy o takesprecedenceThe whole
withPol constructis completedassoonasa, is completedThe ex-
ecutionof prob(p, a1, o2) resultsin the executionof adummy i.e.
effectlessactiontossHeador tosshil with probabilityp resp.1 — p
with remainingprogramo, resp.oz. Let nil bethe emptyprogram
anda aprimitive action.

transPr(nil,s,8,s') =0
transPr(a,s,d,s') =
if Poss(a,s) A =nil A s’ =do(a, s) then 1 else 0
transPr([o1,02],8,0,8") =
if § = [¢', 02] then transPr(o1,s,48',s)
else if Final(o1,s) then transPr(o2,s,d,s’) else 0
transPr(prob(p, o1, 02),s,0,5') =
if § = 01 A s’ = do(tossHeagls) then p else
if § = 02 A s’ = do(tosshil(start, s) then 1 — p else 0
transPr(withPol(a1, 02),5,6,s') =
if 361.0 = withPol(81, 02) A transPr(o1,s,81,8) > OA
—Final(o2) A V2, sa.transPr(o2, s,d2,82) > 0D
start(s') < start(sz2) then transPr(o1,s,d1,5")
else if 36,.0 = withPol(a1,d2)A
transPr(o2, s,02,58') > 0 AVé1, s1.
transPr(o1,s,01,81) > 0 D start(s') < start(s1)
then transPr(o2, s,02,5’) else 0

Final(c, s) = FALSE
Final(withPol(o1, o2), s) = Final(o2, s)

Final(nil, s) = TRUE

Sofar, we have only definedwhich successoconfigurationscan
bereachedhrougha singletransition.The predicatedo Pr(a, s, s')
definesthe probability of an executiontraces’ of programe start-
ing in s, thatis the probability to end up in a final configuration
with situationcomponents’ after a sequencef transitions.In the
following axiom, transPr* (4, s,d’, s") refersto the transitive clo-
sureof transPr. Intuitively, if (§',s") canbe reachedrom (4, s),
thentransPr* (4, s,d', s') is theproductof the probabilitiesof each
transitionalongthe pathfrom (4, s) to (¢’, s').8

7 Note that the useof a transition semanticnecessitatethe reification of
programsas first order termsin the logical languagean issuewe gloss
over completelyhere(see[GLLOO] for details).For spaceeasonswe also
completelyglossover thedefinition of proc, whichrequiresa secondrder
definitionof transPr.

8 Defining the transitive closureof transPr requiressecondorder logic;
for spacereasonswe omit the definition,andreferthe interestedeaderto
[GLOOb].

doPr(d,s,s') =
if 30, p.p > 0 AtransPr*(d,s,d',s') = p AFinal(§', s')
then p else (

4 A Control Architecturefor Acting under
Uncertainty

In modernrobot control architecturedike RHINO [BCFF0(], the
robot’s high-level controller doesnot directly affect the world by
operatingthe robot's physical sensorsand effectors, but insteadis
connectedo abasictask-eecutionlevel which providesspecialized
low-level processedike navigation, objectrecognitionor grasping
objects.We will now describehow this type of architecturecanbe
reconstructeéh alogic-basedramework; the architecturgpresented
hereis essentiallyanextentionof [GLO1], adaptedo stochasticsce-
narios.In particular we allow for the robot's uncertaintyaboutthe
stateof theworld, accountfor the factthatlow-level processebave
uncertairoutcomesandshav how to dealwith processelk einspect
which provide informationaboutthe stateof the world, i.e. how to
integratesensingnto ourarchitectureTheresultingoverall architec-
tureis illustratedin Figurel.

r ocess, (<= =
high-level send = reg(fork) = low-level @
controller | — stem

reg(inspect) R —

Figurel. RobotControlArchitecturefor Acting underUncertainty

In orderto reasonaboutthe effectsof a high-level plan,we need
amodelof every partof the robot control architecturdllustratedin
Figure1.? Let usstartwith arepresentationf the stateof theworld.

4.1 The Stateof the World

While the original situationcalculusallows usto talk only aboutthe
actualstateof theworld, in scenariosik etheship/reject examplewe
have to representincertairbeliefsaboutthe stateof theworld. To do
so, we follow [BHL99] andcharacterizehe probabilisticepistemic
stateof arobotby asetof situationsconsideedpossibleandthelike-
lihood assignedo thedifferentpossibilities.More specifically there
is a binary functionalfluentp(s’, s) which canbereadas‘in situa-
tion s, theagentthinksthats’ is possiblewith weightp(s’, s).”° Al
weightsmustbe non-ngjative andsituationsconsideredmpossible
will begivenweight0 (we do notrequirethattheweightssumto 1).
Furthermoreall situationsconsideregossiblein So mustbeinitial.

Vsl.p(sl, SO) >0DO ‘v’s",a".s' 7& dO(a”, SII)

For example,in theintroductoryship/reject domaintheworld is in
oneof two statessl ands2, which occurwith probability 0.3 and
0.7, respectiely. All othersituationshave likelihood0. The follow-
ing axiommalesthis precisetogethemwith whatholdsanddoesnot
holdin eachof thetwo states.

Vs.p(s,S0) > 0D —~PA(s) A=PR(s) A =ER(s)A
ds1, s2.p(81, S0) = 0.3 A p(s2,S0) = 0.7A
FL(s1) N—FL(s2) AVs.s # s1 As# s2 Dp(s,S0) =0

9 Although the appropriatdevel of detail at which the low-level processes
shouldbe modeledis applicationdependentye remarkthat a robot con-
troller thatlacksa model of the effects of its actionsis intrinsically inca-
pableto reasorabouttheeffectsof its actions.

10 Having morethanoneinitial situationmeanghatReiters inductionaxiom
for situationgLPR98] no longerholds,just asin [BHL99].



Belief Basedon p, [BHL99] define Bel(¢, s), the agents degree
of belief that ¢ holdsin situations, to be an abbreiation for the
following term expressiblein second-ordelogic (as before¢ is a
situationcalculusformulawherenowis beusedto referto thecurrent
situation).

Sstprs (s 8) [ Sap(s', 5)
Intuitively, Bel(¢, s) is the normalizedsum of the weightsof all

situationss’ consideregossiblein s thatsatisfy¢. In our example,
Bel(FL, So) is0.3.

4.2 Communication between low-level Processes
and high-level Controller

We assumethat the entire communicationbetweenthe high-level
controllerandthe low-level processess achieved througha set of
registers,andmodelthemby the specialfunctionalfluentreg(id, s).
Thehigh-level interpretercanaffect the valueof reg by meanf the
specialaction sendid, val) which assignsreg(id, s) the value val.
Theintuition is thatin orderto activatealow-level processthe high-
level controller executesa sendaction. For example,the execution
of sendfork, paint) would tell the executionsystemnto startthe paint
processt!

On the otherhand,the low-level processesanprovide the high-
level controllerwith sensoinformationby meansf theexogenou¥
actionreply(id, val). The following successostateaxiom specifies
how reg changests value.

Poss(a,s) D [reg(id, do(a, s)) = val =
a = sendid, val) V a = reply(id, val)Vv
reg(id, s) = val A =(3r, v.a = sendr,v) V a = reply(r, v)]

We assumehatinitially, the valueof thefluentreg is nil for all id,
andthattherobotknow aboutthis.

Vid.reg(id, So) = nil
Vs, id.p(s, So) > 0 D reg(id, s) = reg(id, So)

4.3 ThelLow-Level Execution System

Next, let us model the low-level execution system,starting with

the individual low-level processesAs mentionedin Section3, we
modelall low-level processedy probabilisticpGOLOG programs.
While we have alreadymodeledpaint by the procedurepaintProc,

we model ship and reject by the following two pGOLOG pro-
grams.We assumethat both processedake 10 secondsto com-
plete execution,whereuponthey confirm completionby meansof

areply(processegt) action.

proc(shipPioc, [waitTime(10),
if(PRV FL, setER, setPRreply(processegk)])

proc(rejectPoc, [waitTime(10),
if(PRV —FL, setER, setPRreply(processeft)])

Sensor Processes Next, we turn to the processinspect At this
point, we have to explain whatwe meanby sensing.To us, sensing
meansactivatea sensorThis “activation” hasasan effect a sensor
reading.In the example,sensinghappenghroughthe activation of
theinspectprocesswhoseeffectis to provide areply(inspect OK) or
reply(inspect OK) answerWe assumehatthe high-level controller
is awareof all exogenougeply actions,asopposedo “actions” like

11 Thetermfork waschoserin analogyto theprocedurd or k usedn UNIX-
like operatingsystemdo createnew concurrenprocesses.

12 Here,an exogenousactionis an actionnot underthe control of the high-
level controller

setA which are solely usedto model the effects of the low-level
processesSensings thusrealizedby meanf specialow-level pro-
cesseswhichwe call sensoiprocesseandwhichcommunicatépre-
processed$ensoreadingsy meansof exogenougeplyactionst®

Although during real execution the actual low-level process
inspectprovides the answey we needa model of the behaior of
the sensorto updatethe robot’s beliefs after OK or OK answers.
The following pGOLOG programdescribeghe possibleeffects of
inspect*

proc(inspectPoc,
if (F L,[waitTime(10), prob(0.9, replyOK, replyOK)],
[waitTime(10), replyOK]))

Directly Observables reply actions like the above provide
the high-level controller with information becausethey assign
reg(inspect s) avaluewhichis correlatedwith the valueof FL (i.e.
OK or OK) andbecauseinlike in the caseof FL thereis no uncee
taintyaboutthevalueof reg. Thereforewe distinguishreg from other
fluentsandcall it directly observablefollowing [GLOOb]. Directly
obserablefluentsare suchthat the agentalways hasperfectinfor-
mationaboutthem- like the display of one’s watchor a fuel gauge
in thecar Formally, we call arelationalfluent P directly obserable
wrt apGOLOG theoryiff thefollowing formulaholds:

Vs,s',Z. [So C s Ap(s,s) > 0] D P(&,s') = P(Z,s)

Directly obsenrable functional fluents are definedsimilarly. We
remarkthatthe initial andsuccessostateaxiomsfor reg presented
in this sectiontogetherwith the successostateaxiom for p in the

following sectionguarante¢hatin ourexamplereg is in factdirectly
obserable.

The Overall Low-Level Execution System Finally, we needa
formal modelof the executionsystemasa whole, i.e. of therobots
operatingsystemwhichensureshatsendactionsresultin theactiva-
tion of the correspondindow-level processThe following program
kernelPioc describeghe “kernel process”of the robot’s operating
system.

proc(kernelPoc, [reg(fork) # nil?,
if(reg(fork) = inspect
[reply(fork, nil), withPol(inspectPoc, kernelPoc)],
if (reg(fork) = paint,
[reply(fork, nil), withPol(paintProc, kernelPoc)],
..., else [reply(fork, nil), kernelPod])...)])

As long asreg(fork) is nil, nothing happenslf reg(fork) is as-
signedthe nameof alow-level processthenreg(fork) is resetto nil,
andthe low-level processs run concurrentlyto the operatingsys-
tem’s kernelprocessWe stresghatpGOLOG programssuchasthe
above arenotintendedfor actualexecution.Their purposes solely
to provide a modelof the behavior of the low-level process?®

4.4 TheHigh-level Controller

In order to ensurethat the high-level controller will always have
the necessarnknowledge to evaluatetestswithin high-level robot
plans,we consideronly a subsetof the pPGOLOG programsas le-
gal high-level plans.This subsebf pGOLOG, to which we referto

13 Note that this view of sensingsignificantly differs from the well-known
sensingactionsof [Lev9g].

14 We usereplyOK asan abbreiation for reply(inspect OK), similarly for
replyOK.

15 |n fact,pGOLOG programdike inspectPoc or paintProc cannotbe exe-
cutedby thehigh-level controllerbecausé hasonly uncertairninformation
aboutthe value of non-obserable fluentslike FL, resp.becauset cannot
directly executeactionslike setfA.



asGOLOG;,,, consistof all programswvhosetestsarerestrictedto
directly observabldluents andwhich only executeactionsthatonly
affectdirectlyobservablesWe glossover thetechnicaldetails.As an
example,the following GOLOG,,, plan activatesboth inspectand
paint, waits for their completetionandfinally processeshe widget
accordingto theresultof inspect®

Prg., = [forkPaint, start > 30, forkInspectreg(inspec} # nil?,
if (OK, forkShip forkRejec}, reg(processel# nil?, |

We remarkthat during on-line executionof a GOLOG,,, plan,
wheneer the high-level plan executesa sendaction, the interpreter
checkswhetherthis signalsan activation of a low-level processand,
asaside-efect, activatesthe actuallow-level processf necessary

The Passage of Time during On-line Execution  Finally, aword
onthepassagef time during on-line executionof a high-level plan.
In orderto synchronisethe internalclock, i.e. the value of the flu-
ent start with the actualtime during on-line execution, the high-
level controllerperiodicallygenerate@xogenougUpdatet) events,
wheret refersto theactualtime. As describedn Section2, theeffect
of atUpdateis thento assigrstart theactualtime 1’

5 Bédlief Update

Right now, we have amodelof therobot's controlarchitectureof its
beliefsaboutthe stateof the world, and of the executionsystemof
therobotincludingmodelsof thelow-level processesBasedon this
model,we will now specifyhaw to updatetherobot’s belief stateas
aresultof the activation of noisy low-level processeandof there-
ceiptof replymessagedie referto this taskas(probabilistic) belief
update following [BHL99].%8

Although not quite olvious, the specificationof a successostate
axiom for the fluent p is not sufiicent to representhe updatedbe-
lief state.To seewhy, let us considerthe situation S, wherethe
robot hasactivatedthe paint processn theinitial situationthrough
sendfork, paint) attime 0, afterwhich it haswaitedfor 15 seconds.
Intuitively, the epistemicstateshouldreflectthe fact that the acti-
vation of the low-level processpaint has affected the truth value
of UC. But this is not sufiicient. Additionally, the robot shouldbe
aware of the factthatunlike in So, in S,. thelow-level processs
active hasalreadyexecutedsetUG andis aboutto probablyexecute
setfA. Thus,thepaintprocesss nolongercorrectlycharacterizety
paintProc, but insteadby the remainingfragmentof paintProc after
15seconds$ave passed.

TheexamplesuggestshattheappropriatggGOLOG modelof the
low-level processes notthe samefor all situations put dependon
the history of actions.Thus, we associatevith every possiblesitu-
ation a specificpGOLOG model. Formally, we introducea special
functionalfluentli(s’, s) thatcanbereadas*in situations, therobot
thinksthatif theworld is in states’ thenthelow-level processesan
becharacterizedhy the pGOLOG programii(s’, s).” Thefollowing
axiomstateghatin theinitial situationthelow-level processeareas
describedy kernelPioc (definedabove).

16 We useOK asanabbreiation for reg(inspect OK), forkinspectasanab-
breviationfor sendfork, inspec}, andsimilarly for forkPaint, forkShipand
forkReject

17 We assumehatthe differenceA = t;+1 — t; betweentwo subsequent
updatesUpdatet;) andtUpdatgt;+1) is smallerthantheminimal delay
betweenthe executiontime of ary two actionsof the pGOLOG models
whichhave differentexecutiontime.Furthermorewe assumehatif areply
is modeledto happenat time ¢, then during on-line executionthe high-
level controllerwill generatea tUpdateactioncausingstart to advanceto
t beforetheactualreplyactionhappens.

18 See[SPLLOQ for the connectiorto the generalareaof belief updateand
beliefrevision.

Vs.p(s, So) D (s, So) = kernelPoc.

In orderto specifysuccessostateaxiomsfor p(s*, do(a, s)) and
li(s*,do(a, s)), statinghow the world andthe low-level processes
evolve from asituations to its successosituationdo(a, s), we have
to distinguishtwo cases(i) a is areplyactionperformedby a sensor
processand(ii) a is anactionexecutedby the high-level controller
or atUpdateaction.Thereasorthatwe have to distinguishreplyac-
tionsfrom other“ordinary” actionsis thatreplyactionsprovide sens-
ing information,ascapturedoy the pGOLOG modelof the sensing
processeflike, for example inspectPoc).t®

5.1 Ordinary Actions

Let usfirst considerthe secondcase.Our solutionis that the low-
level processegxecuteup to the point whereone of the following
conditionsoccur:

1. they areblocked,i.e. waiting for a ¢? conditionto becomerue;
2. orthey areaboutto executeanreplyaction.

While thefirst conditionis fairly obvious,thereasorthatwe mind
reply actionsis that the high-level controller is aware of all reply
actions,anda is no reply action. We will now formalize the idea
to executea programe in s until a configuration{, s’} is reached
whereoneof theabove conditionsis true.For this, we usethe special
functiontransPr<(a, s, 8, s') which specifieshe probabilityto end
upin {8, ') startingin (o, s}. In the following formulas,%(a) is a
shorthandor 3r, v.a = reply(r, v).

transPr(o,s,08,5') =
if transPr*(o, s,6,5") > OA
Va*,s*.s C do(a*, s*) C s’ D ~R(a*)A
Vé6*, s* transPr(8,s',6%,8*) > 0D
Ja*.s* = do(a*, s") A R(a¥)
then transPr*(o,s,d,s') else 0

While the secondine of the if conditionverifiesthat{d, s’y can
be reachedrom (o, s) without executingary reply action, the last
two lines verify thatall successoconfigurationsof (4, s’) canonly
be reachedby a violation of one of the abore conditions,meaning
thatthe simulationhasbeenpursuedasfar aspossible.

Using transPr<, we can define which configurations(s*, 1*)
have been reachedby the low-level processesin do(a,s) to-
getherwith their weight (assumingthat a is no reply action). In-
tuitively, theseare all configurationthat resultfrom the execution
via transPr? of a configuration{li(s’,s),s’) consideredpossi-
ble in s. Their weight is the productof the weight of s’ in s and
the transition probability as specifiedby transPr?. The predicate
advConfigs*, Il*, do(a, s)) makesthis precise.

advConfigs*, ll1*,do(a, s)) =p =
s, p',p*.p(s’,s) = p’' AtransPri(ll(s', s),s',1I*,s*) = p*A
pP>0ADP*>0Ap=9p -p'V
p=0A-35".[p(s',s) > 0AtransPri(li(s',s), s, lII*,s*) > 0]

5.2

Now that we have formalizedhow the low-level processesvolve
if a is anordinaryaction,let usturn to the othercasewhereaq is a
replyaction.Intuitively, theobsenationof areplyshouldsharperthe
beliefstateof therobot.For example if therobotobseresareplyOK
actionafteractivationof inspectit canrule outthosesituationsfrom
its belief statewhere —=FL holds. In general,the obseration of a
replyactioncanbeusedto rule out thosesituationsvhoseassociated

reply Actions

19 As statedabave, we assumehat the high-level controlleris not aware of
ary otherlow-level “actions” thanthereplyactions.



pGOLOG modelof thelow-level processet is notaboutto execute

this very reply action. To male this precise we definethe predicate
advé&filter(s*, 1l*, do(a, s)) which- if a isanreplyaction- preseres

only thoseconfiguration®f advConfigvhosepGOLOG-component
is aboutto executea.

advé&filter(s*,11*, do(a, s)) = p = 3s’.s* = do(a, s")A
[-9(a) A advConfigs’, 1l*,do(a, 5)) = pV
MR(a) A[Is", 11", p", p*.advConfigs”, 1", do(a, 5)) = p" A
transPr*(1l",s" ,11*,s*) = p*A
p">0ADP*>0Ap=p" p*V
p=0A-3s", 1" [advConfigs”, 1l" ,do(a, s)) > 0
AtransPr*(11", " 11*,s*) > 0]]]

If a is anordinaryaction,adv&filter is almostlike advConfig the
only differenceis thatall situationss* consideredn do(a, s) now
“end” with actiona, i.e. 3s".s* = do(a, s'). However, if a is areply
action,thenwe keeponly thosesituationss™ in thebelief statewhose
associateGOLOG modelcorrectlypredictecthatthereplyaction
a would be executednext.

Successor State Axioms for p and Il It canbe shavn that the
function advé&filter is well-defined,meaningthatarny configuration
(s, 1"} with positive weightis assignedexactly one weight. Fur
thermore,jt canbe shavn thatfor eachsituations* thereis at most
onell* suchthatadv&filter(s*, Il*, do(a, s)) > 0. Thereforep and
1l cansimply be definedasthe situationresp.pGOLOG component
of adv&filter.

p(s*,do(a, s)) = p = 3" .adv&filter(s*, Il1*,do(a, s)) = pA
p > 0V VII*.adv&filter(s*, 1l*, do(a,s)) = 0Ap =0

l(s*,do(a,s)) = II" = advé&filter(s™,ll*,do(a,s)) > OV
Vil .advé&filter(s*, I’ do(a, s)) = 0 A ll* = nil

5.3 Examples

To illustratehow p andil evolve, andin particularhow the percep-
tion of an exogeneougeply actionis usedto sharpenthe robots
beliefs,we will now considerthe value of p andil in differentsit-
uations.We begin with the situation Sinspect = do([fork, inspec},
reply(fork, nil), tUpdatg1), ...,tUpdat€10)], So), already men-
tionedabore?® Let T' be the foundationalaxiomsof Section2 (ex-
ceptfor the induction axiom) togetherwith the successostateax-
iomsfor p andll, actionpreconditionaxiomsstatingthatall setand
clip actionsare alwayspossible successostateaxiomsfor the flu-
entsPA, FL, PRandER andtheprobabilisticcharacterizationf the
initial stateof Sectiond. Then,fromI" we candeducethatin Sinspect
two situationsare consideredgossible.Intuitively, the first one cor-
respondgo the casewherethe widgetis flawed andthe secondone
to the casewhereit is not flawed. Furthermorewe candeducethat
thesesituationshave anassociatepGOLOG modelof thelow-level
processeshat accountsfor the fact that the paint processs active
andaboutto provide areply.
T Vs, 1'.p(s', Sinspecd > 0 AUL(S', Sinspec) = Ul' =
Js*.s" = do([sendfork, inspec}, reply(fork, nil), ...,
tUpdatg10)], s)
A[l' = congkernelPioc,
[start > 107, prob(0.9, replyOK, replyOK)])V
I = conqkernelPoc, [start > 107, replyOK])]

We remarkthat so far the belief concerningthe value of FL re-
mainsunchangedT’ |= Bel(FL, Sinspec) = Bel(FL, Sp)). Now as-
sumethattheinspectprocesgprovidesareplyOK answeyleadingto

20 Here,we assumehata tUpdateactionis generatedvery second.

Situation S, = do(replyOK, Sirspecy- Intuitively, we would ex-

pectthatafterthis obserationtherobotno longerconsidersa situa-
tion possiblewherethewidgetis notflawed.Indeed ,we candeduce
thatin S-.x therobotonly considersonesituationpossibleandthat
FL holdsin this situation.

T'Ep(s',S-or) =pAp>0=13sp. p(s0,S0) >0A
s' = do([sendfork, inspec}, reply(fork, nil), ..., tUpdatg10),
tossHeadreplyOK], s5) A FL(s") A FL(sp)

Intuitively, the only situationthatremainsin the belief statecorre-
sponddo the simulationtracewhereFL holds,andinspectcorrectly
reportsreplyOK. Thiscorrespondso theexecutionof thefirst branch
of the probinstructionin the pGOLOG modelinspectPoc, leading
to atossHeadactionin the resultingexecutiontrace.All othersim-
ulationtraceswould endupin areplyOK answerandarethusruled
out from the belief state(seeadvé&filter). We remarkthatthe result-
ing belief stateimpliesBel(FL, S-ox) = 1.

Similarly, if the robotwould obseresreplyOK, we coulddeduce
that only two situationsare considerecpossiblein the resultingsit-
uationdo(replyOK, Sinspecy: Onecorrespondingo the widget bee-
ing flawed (proh 30%)andinspecterroneouslyeportingOK (proh
10%),andanotheronewherethe widgetis not flawed (proh 70%).
Theresultingbeliefin =FL would thencorrespondo thenormalized
probability of thesecondcasewhichis 0.7/(0.7 + 0.3 x 0.1) = 12

As another example, let us consider the situation S,.=
do([sendfork, paint), ..., tUpdatg15)], So), wherethepaintprocess
is active for 15 secondsln this situation,the low-level procesgaint
hasalreadycausedJC to becometrue, andis waiting until time 30
whereaft maycausePA to becomerue.

I'Ep(s,Su)>0=
3s*.s' = do([sendfork, paint), ..., tUpdat&10), setUG
tUpdatg11), ..., tUpdatg15)], s*)A
(', Suc) = conqkernelPoc,
[start > 307, if(PRsetER
prob(0.95, set))])

Someseconddater, therobotsbeliefin PA will riseto 95%dueto
thefactthatit will assumehatpainthasfinishedexecution However,
therobot'sbeliefin thewidgetbeeingflawedwill remainunchanged.

6 Bédief-Based Programming

As an applicationof belief update we will now introducethe con-
ceptof belief-basedrograms GOLOG,, programsthat appealto

the robot’s beliefsat executiontime 2! In particular we introducea
specialepistemictest BTes(¢, p, s), which is true if in situations

therobot's beliefin ¢ is p. Formally, BTes{¢, p, s) is a definedre-
lational fluentwhich is true iff Bel(¢,s) = p. Using BTestwithin

testconditionsaGOLOG;, plancanappeato therobot’s beliefsat
executiontime As anexample,thefollowing plan specifieghatthe
robotis to activatetheinspectprocesantil it is sufficiently confident
aboutwhetherthe widgetis flawed or not. Thereafterthe widgetis

paintedandprocessed?

proc(saveRint,
[ while(3p.BTes(FL,p) A =[p =1V p < 0.001],
sendinspectnil), forkinspectreg(inspect) # nil?),
forkPaint, waitTime(30),
if(BTes(FL, 1), forkRejectforkShip, reg(processefi# nil?]

21 This is similar to Reiters notion of knowledge-basedorogramming
[Rei0d. However, we remarkthat herewe are dealingwith degreesof
belief

22 As usual,we leave out the now agumentin the tests,in particularin the
epistemicfluentBTest



Thewhile loopis executeduntil therobotis surethatthewidgetis
flawed,i.e. Bel(FL) = 1, or theprobabilitythatthe widgetis flawed
dropsbelonv 0.001, meaningthat the robotis sufiiciently confident
thatthe widget is ok. We remarkthat dueto the fact that after the
obsenration of OK the robot is surethat the widget is flawed, the
above programcausesit mostthreeactivationsof inspect?®

Unlike ordinary GOLOG programswhich are conditionedon
factsaboutthe world, in belief-basedprogramslike the above ac-
tionsareconditionedontherobot’s belief stateat executiontime. As
theexampleillustrates belief-basegrogramsallow the programmer
to provide domaindependenproceduraknowledgein anaturalway.
Fromapragmatigointof view, belief-basegrogrammingcanbean
attractie alternatve to probabilisticplanningbecausét represents.
much simplercomputationaproblem.While probabilisticplanners
aresearchingrom scrachfor an (optimal) plan, which in the worst
casemeanghatan exponentialnumberof candidateplanshasto be
projected the executionof a belief-basegrogramonly requiresthe
computationof the belief stateof the robotalongthe executionof a
givenplan.

Implementation Justasin thecaseof ConGolog, it is straightfor
wardto implementa pGOLOG interpretetin PROLOG. We remark
that our implementationwas ableto executethe above belief-based
planin afractionof asecond.

7 Discussion

Summarizingwe have shavn how to updatethe probabilisticbelief
stateof a robot during on-line execution of high-level GOLOG;,,
plans.To do so, we have modeleda layeredrobot control architec-
ture within the pGOLOG frameawork, making use of probabilistic
pGOLOG programgo modelnoisy low-level processedn orderto
deal with sensing,we have introducedthe conceptof sensorpro-
cesses)ow-level processesvhoseactivation resultsin exogenous
reply actions.Finally, we have introducedbelief-basedprograms,
GOLOG;, programavhosetestsappeato theagents beliefsatexe-
cutiontime. We remarkthatunlike approachebk e [Lev96, BHL99],
we representhe belief stateof the agentby a setof possiblesitua-
tions and an associatednodelof the state of executionof the low-
level processeswhich allows usto accountfor noisy processewvith
temporalextent.

Thewholeframework, in particularthedefinitionof p andil, relies
onthefactthatpGOLOG programsaredeterministicAs aresult,it
is not possibleto specifyunprioritizedconcurreng asdonein Con-
Golog wherethe resultingcourseof actionsis not uniquely deter
mined.However, whenwe considerprocessesvith temporalextent,
this doesnotseento be a severerestriction,becausehepriority of a
processnanifestonly whentwo processewish to executeanaction
at exactly the sametime; actionswith differentexecutiontimesare
notaffected.

Probablythe closestwork to that reportedin this paperis that
of BacchusHalpernand Levesque[BHL99], to which we owe the
characterizatiorof the robot's epistemicstate.However, while we
managesolely with the prob instruction to representoise, they
male useof the conceptsof nondeterministianstructions action-
likelihood axiomsOI(a,a’, s) and observation-indistinguishability
axioms l(a, s), and representthe execution of noisy actions as
atomic. This resultsin a simpler SSA for p, but at the costof a
more complex specificationof the effects of the noisy sensorsand
effectors.Furthermorejt is not clearhow to projecta plan within
their framewvork. On the other hand, probabilistic projectionin the

pGOLOG framewvork was alreadyconsideredin [GLOOb], and it
would be relatively straightforvard to considerboth projectionand
belief updatewithin pGOLOG.?

As for probabilisticplannerdik e C-Buridan[DHW94], they usu-
ally completelyignore belief update.Besides,they representpro-
cessesas atomic actions. The latter also holds for the theory of
POMDPs(whichis concernedvith bothreasoningasks) but whose
computationatostis prohibitive alreadyin relatively smalldomains.
We believe thatin mary domainsthe useof belief-basedrograms
providing proceduraknowledgeis morepromisingthanuninformed
searchfor an optimal plan. In [Po09§, Pooleproposesan integra-
tion of decisiontheoryandthe situationcalculus which however is
primarily concernedwith the expectedutility of a candidateplan.
Finally, therecentlyproposeddTGolag [BRST00]assumesull ob-
senability of thedomain.All of theseapproachedo notaccountor
thetemporalextentof thelow-level processes.
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23 Aswe have seerin the previoussectionthe obserationof oneOK answer
causesherobot’s beliefin =FL toriseto 70/73 = 0.7/(0.74 0.3 % 0.1).
Similarly, the obseration of two resp.threeOKs causethe robot’s belief
toriseto0.7/(0.7+0.3%0.1%0.1) resp.0.7/(0.740.3%0.1x0.1%0.1).

24 One possibility would be to explicitly distinguishbetweenon-line and
off-line executionof GOLOG,, plans,andto make useof the special
actionwaitFor to causetime to advanceduring projection,alongthe lines
of [GLO1].



