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Abstract Intuitive spatio-temporal continuity (as previously pro-
posed by[Muller, 19983) is temporal continuity without
spatial leaps. However, such a notion of continuity allows
temporal pinching.e., a history is allowed to disappear and
re-appear instantaneously andirdtransitions are possible
(see fig. 10). To avoid temporal pinching, we introduce a
notion of firm-connectedness\e investigate the different
notions of s-t continuity and transitions possible under dis-
tinct notions and provide a hierarchy of conceptual neigh-
bourhood diagrams.

Further, Muller’s interpretation of history-based theo-
rems of transition has been shown not to be fully adequate
1 Introduction [Davis, 2000. Davis analyses the conditions under which
. L . _ Muller's theory can be said to be adequate and presents an
We want to formalize thentuitive notion of spatio-temporal - 5jtemative more comprehensive framework for character-
continuity for a qualitative theory of motion. We €on- isation of transitions. However, it is not expressed as an
sider temporally extended regions in space. This Ontogpiect level first order theory, and it sacrifices the spirit of
gg:ﬁ‘;lpv'f;‘égj glcgrlfgtligglr;\ig\lréié%er?telif[zgz;i"s’ %gég mereotopology as it defines time instants and s-t phints

- ] ’ i . ’ ! Davis claims th roving th rrectn f rul h
Vieu, 1991 have considered all objects to be occurrent and tat: tﬁecr?on?e;is?érﬁ)cg ofgtrgrfsict:i% n(sacf)rev?/?)rge l‘;ﬁe‘c’ éx?st-
regarded as spatio-temporal (henceforth: s-t) histories. g ; v -
e bt of our knowedgvuler, 19864 = e frt st 72 £ Faralons o plausble merectopniogial i
tempt atafqll_mereotopolpgmal theory of_space-tlme. . ing up this challenge, we characterize transitions in pure

However it is worth noting that continuity from a quali- mereotopology over s-t regions. In order to identify an in-
tative perspective is different from both philosophical and )

mathematical view of continuity. Even though we com- stantaneous relation occurring during a transition between

. . histories we present an exhaustive categorization of rela-
mit to an ontology where objects are occurrent, we do P 9

not attempt a formal characterization of the identity crite-tIcmShIpS bet\_/veenf adjacent parts of histories. Under the
ria, which is difficult[Wiggins, 1980 and also beyond the StFONgest notion of s-t continuity, we axiomatize continu-
scc')pe of this paper. The pr(;blem of continuity of contin- 0US transitions for maximal firmly-connected s-t histories.

uants still lacks a convincing treatment. There are a numyve sketch how 1o use the formulation to recover RGC-

ber of possibilities in the literature to cope with this (see8 conceptual nelghbourh,oci(tohnet aI_., ,1.993' Our ap-

[Thomson, 1988. Some involve considering four dimen- proach is closer to Muller’s than to Davis’ in that we present

sional space-time (e.dHeller, 1999) while others focus ——————

on a revised theory of parfSimons, 198}, [Pratt and Schoop, 199&rgue that points can always be
Muller presents an intuitive notion of s-t continuity and defined and their non introduction is thus illusory. However

one that is perhaps nearest to a qualitative understandint e explicit introduction of points is still counter to the origi-

. . ) | motivation and spirit of mereotopolodyhitehead, 1929;
of motion. Apart from Muller, the main work which ad- Gerla, 199%. Moreover it is possible there may be computational

dresses what continuity implies for a common-sense theoryeasons to eschew their explicit introduction. We recognize that
of motion is[Galton, 2000. However, it falls short of an  whether points are allowed or not in a mereotopology is perhaps
explicit generic characterization of s-t continuity in a point- controversial, but we believe that at the very least it is interesting
less mereotopology. to explore the possibility of not introducing them at all.

Continuity from a qualitative perspective is dif-
ferent from both the philosophical and mathemat-
ical view of continuity. We explore different in-
tuitive notions of spatio-temporal continuity. We
present a general formal framework for continuity
and continuous transitions in mereotopology for
spatio-temporal histories and thus sketch the cor-
rectness of the conceptual neighbourhood for the
gualitative spatial representation langu&ge_-8.



a “naive-physical” theory, rather than one closely based on For the sake of clarity, throughout the paper universal

mathematical topology. guantifiers scoping over whole formulas are omitted. Lower
case symbols intalics stand for variables whereas predi-
2 Mereo-Topological Framework cates are stated a priori.

We will use three connection relation§;, Cs, andC; for 2.1 Mereo-Topological Relations
spatio-temporal, spatial and temporal connection respe
tively. The interpretation of these relations is as shbwn
in Fig 1.

(ifrom Cozy we can define the mereological relation of part-
hood,P,xy: x is a part ofy.

D1. P,y =g V2(Chzz — Cuzy)

time time time The parthood relation is used to defipgoper-part

PP.), overlap (O,) and disjoint (DR,). Further,
[y ] Y] (DCQ,)ECQ,POQ,E(QQ,)TPPQ and NTEDPQ )i.e., discon-
[x] = [x] ,
nected, externally connected, partial overlap, equal, tan-
gential proper partandnon-tangential proper pantespec-
space space space tively can be defined. These relations, along with the in-
a b. c. verses for the last two viZT PPi, andNTPPi,, constitute
the eight JEPD (jointly exhaustive and pairwise disjoint) re-
Figure 1:a. Spatialb. Temporalandc. Spatio-Temporal lations ofRCC-8 (see[Cohnet al, 1997 for definitions).
connection between two spatio-temporal entitiesndy. Fig. 2a show the JEPD setR{C-8 relations in space-time,
whereas Fig. 2b is the equivalent relations urdgr

The binary relation of spatio-temporal connection

Csixy @ x is spatio-temporally connected {ois true just  time

in case the closures afandy at least share a s-t poimt @ @ % @@ @ @
fig. 1c. Spatial connection for space-time entities is their

connection in pure space. As shown in Fig. 1a connection DCxy  ECx  POx  EQx TPPXxy  NTPPxy
under spatial projection is interpreted along the temporal TPPiyx  NTPPi yx
axis i.e., spatial connection on projection to an infinites- space
imally thin temporal sliceat right angles to the temporal é

axis. Spatial connection is written &5,2y : x IS SpPa-  me

tially connected ta) — z andy are s-t regions whose clo-
sures have a spatial point in common, though not neces-

sarily simultaneously. Finally temporal connectiorCig:y e E = . =1

. x andy are s-t regions whose closures have a tempo- DCopXy ECeqxy POwmxy EQuxy TPPyxy  NTPPoxy
ral point in common, though not necessarily at the same PPy NTPPI oyx

place. Fig. 1b shows temporal connection between spatio-
temporal regions: andy. b

The axiomatisation of these connection relations are_ , i i
identical and followdCohnet al, 1997. Note that in this Figure 2:a. JEPD set oRCC-8 relations in space-time
theory the closure and its interior cannot be distinguishedformed fromCs; andb. RCC-8 relations unde€, connec-
We have the following axioms: tion between two entities andy.

space

Al Cozz We introduce the following existential axioms. Axiom
A2. Cozy — Coyx A4 ensures every region has a nontangential part. In A5
A3. [Vz(Cozx « Cuzy) & (2 =4 y)] the individualz is notedz U y or z + y and represents the

sum, whereas in A6 it is noted — y and represents the

- - difference. In A7 the individuad represents the intersection
2gpace is shown as 1D in these illustrations and the others figand is noted as N y.

ures in the paper, but this is simply for ease of drawing. The de-

fined concepts are applicable to 2D and other higher dimensional A4 VyJaNTPPry

wherea € {st,sp,t}*

space. A5, J2Vu(Cuz < (Cux V Cuy))
®Note that although we use points in the informal semantics A6. POzy — JzVw((Pwz A DRwy) « Pwz)
here, this does not mean we are introducing them at the object A7. Ozy — 32Vu(Cuz < Jv(Pvz A
level. Moreover there are other interpretations which do not in- Puy A Cou))
volve points at all, e.g. a distance metfiRandellet al, 1994, or
Boolean Connection AlgebraStell, 2000. In such cases we mean = st (i.e., unless stated otherwise we

“For clarity at times we omit the subscriptfrom predicates. mean a spatio-temporal subscript).



To identify instantaneous relations between historieden asz xy. We will also write Prxy, POyzy and EQixy
(such as in Figure 12) in a pointless mereo-topology reasx C, y, z oy y andz =, y respectively.

quires the categorization of relation between certain parts |n order to introduce a spatio-temporal interpretation we
of histories. This requires a notion of connection differentmyst capture a notion of temporal order between the entities
from the straightforward s-t connection. We will introduce of the theory. FollowingMuller, 19983 we writez < y for
the notion offirm connection A firm-connection in n-D  temporal order meaning the closureoftrictly precedes
space is defined as a connection wherein an n-D worm cahe closure of; in time. Axiom A8 establishes that tempo-
pass through the connection without becoming visible to thga| connection and temporal order are incompatible. Also
exterior. T.hUS-, for two regions to be firmly-Conn.eCted a di'tempora| order is anti-symmetric (Ag) Axiom A10 estab-
rectcondulitexists between the twi@€ohn and Varzi, 1999 |ishes the composition of temporal connection and temporal
Figure 3 illustrates firm connection and non-firm connec-grder.
tion.

A8. Txy— <y

X « AS. z<y—y<w

y @ Al0. (z<yAyxXzAz<w)—z<w
E ' Allen [Allen, 1984 and even before him NicoNicod,
1924 pointed out that if time is totally ordered then there
a. b. are 13 JEPD (jointly exhaustive and pairwise disjoint) rela-
tions in which oneone-piecenterval can stand to another
Figure 3:a. Firm andb. Non-Firmconnection between two which can be defined in terms ofeets We give the defi-
entitiesx andy. nition for meets(D6) which is a specialization d&C; and

define relations that we will be using in subsequent formu-

In order to define firm-connection, we define one-piece ofations. D7 is the definition for one interval ending with
spatio-temporal connectedness. A spatio-temporal region @nother and D8 for one interval starting with another. D9
spatio-temporally one-piec€ON..z just in case all parts states intervak to_be the interval be_tween two distinct in-
of = areCy; connected. Similarly to represent that a certaint€rvalsy andz. Fig. 4 shows the different temporal rela-
temporal extent is one-piece we define temporal connecflOns-
gdngss . spatio-temporal regianis temporally one-piece D6. My =ger ECe A =3v1,va(vy Cp A
just in case all parts of are temporally connected. We can
also define spatial connectedness: spatio-temporal region
is spatially one-piece just in case all partscaire Cs, con-
nected. We have the following definition.

D2. CON,z =g Yy, 2(z = (y+ 2) — Cy)
D4 states that a connection between two entitieend

v2 Gy y A vg <U1)
D7. 3|,y =qer Yu(x Xy u > y M u)
D8. = “:t Y =det Yu(u Xy z o uXyy)
D9. =z | (v; 2) =gt (YXpz Az 2)

y is a firm-connection just in case some one-piece patt of time r>w
(CONg.z) and some one-piece part®{CONgy) is interior w rly Yo v
connectedINCON(z + y)).
D3, INCONZ =g ¥y, 2, 0[((z = y + 2) A il ey s| o5,y
NTPPvy) — Jw(Pvw A
NTPPwa A Owz A CONw)] usv|v -
D4. FCONzy =ge Ju,v[Puz A Pvy A CONu A o
CONwv A INCON(u + v)]
L . . . ) u ud x z z En u
In defining transitions between RCC relations, it will be
helpful to treat RCC relations as constant symbols rather space
than as predicates; thus we define a predieate(y, z, y):
meaning?,, holds between s-t regionsandy (where) is Figure 4: Temporal relations for space-time regions.

the lowercase translation of the RCC relatibp
D5.  reca (v, x,y) = Wal,y)

2.2 Temporal Relations

At times for clarity, we will write the temporal relations as A s-t connection implies a spatial as well as a temporal con-
infix operators[Muller, 19988. Therefore temporal con- nection. Though note that the converse is not necessarily
nectionC.zy : z is temporally connected tgis also writ-  true. Fig 5 shows spatio-temporal regionandy are spa-

2.3 Spatio-Temporal Relations



tially®> and temporally connected but not spatio-temporally. Finally, models must not be spatio-temporal alone, so
Therefore we have the following axiom: spatio-temporal connectio@; needs to be different from
temporal as well as spatial connection.

A12. dzdy Cuzy A Cgry
A13. Jdzdy Coay A ~Caxy

All. Czy — (zxy A Copzy)

time

g 3 Space-Time Continuity

The notion of continuity should implicitly capture the intu-
itive notion of motion and this is the notion that has been
addressed in the existing literature on qualitative continu-
ity mentioned above. However, various weaker notions are
possible, and we will explore these below (these bear a
Figure 5:2 andy C., andC, but do notCy, strong relationship to the various notions of connection in
[Cohn and Varzi, 1999. First we need to define the notion

. . . . of ax being a component of a regigni.e. if itis a maximal
We also introduce the notion of a ‘temporal slice’, i.e., the g . piece part:

maximal component part corresponding to a certain time
extent{Muller, 19983. D13 Compay =ger CONz A Py A

Vw[[CONw A Pwy] — w = z]

D10. TSzy =det Pxy AVz((Pzy A 2 C; ) — Pzx) . . . . .
o We now define various notions of what it means for a history

Henceforth, the notatiorf, denotes the part of cor- g be continuous. First of all consider the case of the history
respon%mg 1o the lifetime o when it exists (i.e., when haying but a single component. This is essentially the case
w i y)’. Fig. 6 shows the “temporal slice” and also the considered by Mullef who defines the notion of a history
whenz is not a “temporal slice” of for a part ofz is miss-  peing continuous if it is temporally self-connected and it
Ing. doesn’t make any spatial leaps:

D14, CONTw =dgef CONtw A VaVu((TSzw A
z ¥ u A Puw) — Czu)

space

time time

time P
L) ) ——
% u

space space X
TSxy; EQ x% -1 TSxy

space

Figure 6: Temporal slic&Szy and when is not a temporal

slice ofy Figure 7: The regiom is discontinuous under Muller’s def-

inition of continuity because it makes a ‘sideways spatial
leap’.
We introduce relationships to refer to the initial and final P
parts of a history. D11 states that a part of a histpgan
be termed its initial part just in case it starts withnd ends
before it. Conversely; is the final part of a history (D12)

just in caser starts aftery and ends with it.

See fig. 7 for an illustration of discontinuity under this
definition. However, this definition of continuity permits
“temporal pinching” of histories — that is histories may dis-
appear and reappear again instantaneously at the same spa-

D11 IPxy =¢ Pry Az |,y A tial location. We can define a stronger notion of continuity
Jz(zDyNe Mz AzUz=1y) for histories and disallow temporal pinching which we term
D12 FPzy =g Py Az 3|,y A firm continuity A non pinchedcontinuous space-time his-

(|C,yAzMz AzUz=1y) tory is firmly continuous.
Figure 8a shows a firm-connected histarywhile Fig-

®Recall that spatial connection is interpreted as connection ofire 8b is for a history with “temporal pinching”. D15 is
spatial projections onto an infinitesimally thin temporal slice atthe definition of a non-pinched history and D16 defines
right angles to the temporal axis. firm-continuity.

5The notation Y is purely syntactic sugar: any 0000
atom «a(..£..) could equivalently be replaced by "Muller uses a slightly different definition &FON,w because
Va(TSzy Az = w) — af..z..) his language distinguishes the interiors and closures of regions.



time time Dually, we may imagine that a history is spatially contin-

\/ uous, in the sense that its components spatially overlap, but
W there may be temporal gaps (e.g. a lake or river which dries
zi up periodically):
D22. SpCONTw =get ~Iz[Compzw A z =¢ w]| A
space space Vay[[Compzw A Compyw] — Cepzy]
FCONT w CONT w; "1TFCONT w )
N A (weaker) variant would be that for any component of
a. .

w, the next component (or all of them if more than one com-
ponent starts simultaneously) @5,. All these notions of

Figure 8:a. Firmly-continuoushistory andb. A non-firm continuity are illustrated in fig, 9,

history with instantaneougmporal pinchingat the end of

z. _
time
D15, NPw =gt ~IzIy[Pzw A Pyw A X X X X X X
x Mg y A "FCONzy] ﬂ
X
a. b. c.

D16. FCONTw =def CONTw A NPw Space

If a history contains multiple components, then we can
consider how these relate to each other over time. Thé@me
strongest notion, which corresponds directly to the case of X
a single component history is if all components are equi- X X
temporal: x|

d. e.

D17. StrCONTw =ger Vz[Compzw — = = w] space

If not all components endure for the time of the whole his-

tory, then we can isolate several cases. Firstly, further comFigure 9: Six kinds of continuous historg. StrCont b.
ponents may come into existence (a kindrafltiplication), MulCont c. ColCont d. WCont e. TCont f. SpCont

but once they start, they carry on until the end, as do the

original component(s) (e.g. the urban landscape where spa- Each of these notions of continuity can be further refined
tially disjoint new cities may be formed from “green fields” to exclude temporal pinchings and also spatial leaps within

and then never revert away being urban): a component. We do not have the space to investigate all
D18, MulCONTw =ger 3z[Compzw A z = w] A of these notions in detail here. Our principal focus will be
Vy|Compyw — FPyw] strong continuity with no temporal pinchings and no spatial
leaps:

There is a natural dual to this, where all components start si-

multaneously but some may finish early (a kindcoflapse

e.g. the gold deposits on the planet earth, which become

fewer in number as they are mined and seams become ekor convenience of reference this notion of continuity for

hausted): histories will be labelled’S-0. Allowing temporal pinching

weakengZS-0 to €S-1 or €S-2 depending on whether tem-

poral pinching of one or both the histories involved in tran-

sition between relations of the spatial representation lan-
We can still regard a history as having a weak notion ofguageRCC-8 is allowed.

continuity providing there is at least one component which

lasts the entire time: 3.1 Continuous Transitions

D20. WCONTw =ger Iz[Comprw A z =t w] With €S-0 the intuitive transitions between histories hold.
Under s-t interpretations f®CC relations and with “tem-
poral pinching”, we can have a number of weird transitions
e.g. as shown in the fig. 10). Fig. 10a shows the transi-

D23, StrFCONTw =get StrCONTw A NPw A
VaVu((TSzw A z xu A Puw) — Czu)

D19. ColCONTw =get Jz[Compzw A z =¢ w] A
Vy[Compyw — IPyw]

Still weaker, we may allow for the possibility that no
component endures for the entire history, i.e. there ma

be spatial jumps providing there are no temporal gaps (thi§q from EC to TPP. This is possible for the “temporal

might correspond to the history of a particular species Ohinching” of historyy. In fig. 10b both the histories and

plant in which colonies die out, but others meanwhile arey undergo “temporal pinching” and a transition frdff to

formed): EQ results.
D21 TCONTw =ger —3z[Compzw A z =, w] A The transition networks fog€S-0, €S-1 and ¢S-2 are
Vz[z S w — JyPyw/2] shown in fig. 11. It can be seen how weakening the notion



tween temporally adjacent parts of histories.

A Model for Instantaneous Relations

time : time
y| i
TPP EQ
X N\~
EC EC In this subsection we analyse from first principles which re-
A lations can hold instantaneously and under what conditions.
space ) space The underlying hypothesis for our analysis is that it is suffi-

' cient to consider the Boolean combinations of two regions
and theirFCON relationship over the instantaneous transi-
tion.

We will thus determine the existence of an instantaneous
of continuity adds direct transition links to the conceptualtopological relation between two historiegndy occurring
neighbourhoods. when two intervalg; andz, meet, based upon the compar-

Note that the diagram fo£S-2 differs slightly from the ition_ Q[f(” L|J Y), (a:dﬂ y), (x _t?/) f‘”dT(r?]J — ), ret')strictedbto q
conceptual neighbourhood given in fig. 1dBavis, 2000, € Intérvaisz; andz, respectively. 1hese can be combine

e.g. his figure has a direct link fromC to TPP. This de- such that they form 16 fundamental descriptions:

a.

Figure 10: Transition frona. EC to TPP andb. EC to EQ.

pends on the interpretation of the spatial relationship hold [2Ys|2ly] | [2Yu|=0y],  [2Uy|ecy] . [2Uy|u=z],
ing when regions pinch to a spatial point. Davis consider [;r%”;ﬁy] [jnlyljﬁ] [z%ly‘jey] [I%ly‘yi?z]

the normalised (regularised) spatial cross section and isq- ' 71, ' 73 1% 121 vz 22 La e 22 L b e o2
lated points will thus disappear, leading to the introduction [Z‘;Uz Jar | ZJJI‘?% laz ZJI|JE Jaa z;z| ZI]M
of yet further links. We could also take this approach in e e L L el L B e e T

which case his fig. 10 and our diagram f&8-2 should be ) ,
identical. Each elemen{s|v];; of the matrix represents a condi-

tion m;; (3, v). We will call this matrixIM™ (r, z, y, 21, 22),

wherer is a 4x4 matrix which gives the 16 predicates which
form the conditions. The entire matri¥ is to be regarded
as a conjunction of its elements:
| /
7®ii D24 IM"(r.z,y,21,22) Zaer ALy AL, IMis(2.9)]

‘ \ The notion of ‘firm-connection’ between the 16 individ-
ual pairs was identified as a simple téghat enables the
identification of whether an instantaneous relationship oc-
curs. Thus eachy; is eitherFCON or -FCON.

Figure 11: Transition graph fa@S-0, €S-1 and¢S-2. Addi- ; Evict ;

tional links forS-1 are double arcs and f@iS-2 are triple Constraints for Non-Existing Relations )

arcs. Based on theHCON) or (-FCON) outcome of each pair,
216 possibilities exist for the instantaneous relation matrix;

[Galton, 200Didentifies transitions as durative or instan- however only a small number of them are possible. The
taneous depending on whether the times involved are inte@iM Of this section is to makexplicit the possibilities that
vals or instants and whether the initial and final states ar@'e not feasible, thus arriving at the ones that characterize
separated by an interval or an instant and defines eight difh€ class of instantaneous relations between two given his-
ferent transition operators. In order to describe the differenfor'e_sg-_ The way we will achieve this is to consider what
transitions in our mereotopology, we define two durativer_estnctlons can_be placed on th_e various matrix elements
transition operators (see fig. 13a and 13b) and one whickn terms of theirFCONnectivity) in order to be sure that
identifies the case where a relationship only holds instantghe transition is indeed instantaneous. Thus in each of the
neously (fig. 12). conditions we specify which impossible values fora_nd

Recognizing and classifying durative transitions such aghus forlM™(r, z,y, z1, z,) can be excluded. For notational
in Fig. 13(a,b) fromEC to DC or vice versa is relatively Cconvenience, in the matrices below, an entry at position i,]
straightforward in mereotopology. The problem occursOf ¢ meansF=CON whilst =¢ means-FCON.
when aRCC relation only holds instantaneously, €.9. atran-congition 1 The union of the two histories before and after
sition fromPO to NTPP with TPP holding instantaneously

in between (Fig. 12). In a true, pointless, mereotopology, 8In case of parts of a pair not existing for one of the intervals

there is no direct way to represent the fact thadndy  the connection is assumed to-6ECON without any loss in gen-
are TPP instantaneously in the above example. Howevergrgjity of the analysis.

we will show in the subsection immediately below how  9Those relations that are irrelevant for a given condition and,

this relationship can be identified without direct appeal tothus can take any of the two values will be marked lwild card
points, by categorizing the mereotopological relations beg-).



an instantaneous transition is alwaff§ON. Condition 6 If the difference pairly — =) is FCON, the
union-difference pairs fofy — x) cannot be-FCON.

—|¢———
- - - - o ¢ — 0 ¢ b — ¢
7 #
- T T S I e IV B
o - - ¢ ¢ - - ¢

If the intersection of the two histories: N y) doesn't
disappear instantaneously, the intersection and the union is The next two conditions follow the same justification as
always FCON. Further, the difference (i.e(z — y) and  stated for 5 and 6, but for the difference before and af-
(y — r)) between the histories is related to the amount of inter the instantaneous transition beinGCON. Under such
tersection. Thus, if it goes out of existence instantaneouslgircumstances the union-difference pairs canndt©@N.

the difference between the histories would also disappeationdition 7 If the difference paiz — y) is -=FCON, the
instantaneously. The following two conditions are based orunion-difference pairs fofz — ) cannot both bé&CON.
this property.

" L . - : ¢ ¢ ¢ - ¢ ¢ ¢ —
Condition 2 The union-intersection pair is equivalent to 6 b - - 6 ¢ - -
the intersection-intersection pair for two histories before 7 7 6 — - — N 6 — -¢ —
and after an instantaneous transition. - - - -
¢ A2 - - Condition 8 If the difference pairy — z) is ~FCON, the
) B_l 5_2 T | where A2 #B1 # B2 # A2, union-difference pairs fofy — x) cannot both b&CON.
- - - ¢ o - ¢ ¢ ¢ - ¢
O I VS B
Condition 3 If the intersection-intersection pair is b — — ¢ 6 — — ¢
—FCON, all others except the union-union pair are
—-FCON. Condition 9 All the pairs cannot b& CON simultaneously.
¢ ¢ - - 6 b ¢ o
S ci|® 0 0 0
- ¢ & ¢ @
- T o ¢ ¢ 9

. . . . Existing Instantaneous Relation Matrices
Conditions 4 to 9 are for firm-connection of the union- The valid instantaneous relation matrices can be determined
intersection i.e, the intersection not disappearing instanta:'c V&!d INs us refatl Ices can :
neously. These are based on the property of maximal coﬁ2y successively applying the above conditions and can-
nected histories and the underlying assumption that pairge”Ing the corresponding non-existing relations from the

with parts that do not exist in either one of the intervals >€t of all2'® relations. Four relations remain for two his-
cannot have a firm-connection tories in transition through an instantaneous relatiort8hip

N . i i This has been verified by finding their geometric interpreta-
Condition 4 Both the difference pairs cannot BEON si-  tjon.

multaneously. . " . .
4 Prop 1 The possible transition matrices for relations

- - which hold instantaneously between two histories are
: (I) IM™ ! (eq7 L, Y, z1, 22)' (”) |M7T (eC, T, Y, %1, 22)1 (“I)
¢ IMﬂ-tpp (tpp7 x,Y, =1, 2’2), (IV) IMﬂtppl (tppla €, Y, 21, 22)'
The following two conditions state that for the difference The_correspondmg pqs&ble values foare displayed be-
S . . . low in the same order:
pair beingFCON, the union-difference pairs before and af-
ter needs to be simultaneou$igON (recall that the union- ¢ & - =
union is alwaysFCON). This condition is required to be (i) 7 = ¢ ¢

stated separately f@r: — y) and(y — ) for the difference
is asymmetric.

¢
¢

| ©©

™ #

[IRSS

Condition 5 If the difference pairn(z — y) is FCON, the ¢ - - -
union-difference pairs fo(z — y) cannot be~FCON. (@) ==
o ¢ -9 - o b 9 - - - - - -
" o ¢ - = AT £ ¢ ¢ - - 19[Galton, 2000 terms these “states of position” as compared
¢ - ¢ - ¢ ¢ - to the other relations which cannot hold instantaneously (“states
- - - = - - - = of motion”).



24 or 29 possibilities are whittled down to just eight possi-
bilities (corresponding to thRCC-8 relations).

(iii) w* =

| ©©
|
©

_ 3.2 Transition Operators

We can now define three transition operators. The first two
_ operators assume that the initial and/or the final relations
- hold over intervals' and differ as to which of the two rela-
tions hold at the dividing instant. The third is for histories
- undergoing a transition between two relations with an in-
where— = —¢. stantaneous relation holding in between.
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Trans-To

A transition for two histories: andy from relationR1 over

NTPP y PO z1 to relationR2 overz; occurs justin case, meet5z2 _and
@ y % R1 holds over every initial part of the histories restricted to

EQ EC z; andR2 holds overr andy restricted taz,.
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Figure 13:a. TransTo andb. TransFrom for space-time
space historiesz andy at end ofz
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Figure 12: Instantaneous Relations possible between two ~ D25 TransTo(rl,r2,z,y, 21, 22) =def
historiesz andy. Vu, v[[IPu APvE] —
rccsp (11, w, v)] A 21 M 22 A recep (12, /22, Y/ 22)
Fig. 12 show the relations that can hold instantaneouslyrgns-From
between two histories andy corresponding to the four
subcases of Prop 1.
It might be wondered why it takes a matrix involving 16
conditions over eight parts af andy to identify the in-
stantaneous relations and the conditions under which th

A transition for two historiest andy from relationR1 to
relation R2 occurs just in case there exists an interval
just afterz; such thaR1 holds overr andy restricted toz
eand R2 holds over every final part of the histories restricted

can hold. It might turn out that it is in fact possible to 2

characterise the conditions using a smaller set of condi-  D26. TransFrom(rl,r2,2,y, 21, 22) =def

tions. However our intention was not to prejudge the fi- rccﬁg(”v“/zlyv y/z1) A zy Mezo A
nal outcome, but rather to exhaustively analyse the rela- Vu, v[[FPug; A FPugl] — recs(r2, u, v)]
tionships between the various partseoindy without any The following proposition hold:

preconception as to which relations could in fact be instan-Pr 2 Y(rl.r2 TransF 1 ro
taneous and ‘discover’ the set analytically from the com- P 2 ¥('L7 ’x’y’zl’“)[\j ol rom(rl, r2,z,y, 21, 2)

. . . —TransTo(rl,r2,z,y, 21, 22)]
plete space of possible matrices. By conducting the anal-
ysis in this way we can have confidence that we have noins-rel
missed a condition (an adhoc style of analysis might easAny transition for two histories: andy with an instanta-
ily identify a sufficient condition but might not identify all neous relatiom holding in between; andz, is related by
sufficient conditions). This analysis is rather in the stylethe instantaneous matrid™ (r, z, 1, 21, 22)
of the 4- and 9-intersection model of Egenhof&gen-
hofer and Franzosa, 1991; Egenhofer and Herring, 1994; s
Egenhofer and Franzosa, 199there from a 2 x 2 and 3 x IM™ (r, 2,9, 21, 22)
3 matrix which determine whether various topological parts  1INote that in the definitions below, the final two arguments to
of two regions share points or not, then by imposing a varithercc,, predicate are always co-temporal, so these amount to just
ety of conditions (such as regularity or one pieceness), thesting the spatial topology at the specified time.

D27. InsRel(r,x,y, 21, 22) =def [21 Xt 22 A



For each instantaneous relation holding in betwegen In each case, by axiom A15, we must have that
andz,, distinctRCC relations hold before and after it. We StrFCONT % A StrFCONT 5. From D29 we can
introduce the following relation relating the three relations:infer one of:

D28. InsRel3(rl,72,73,x,y, 21, 22) =def

[InsRel(12, z,y, 21, 22) A cl TransTo(eq,dc, z,y, 21, 22)

YullPuz — recp(rl, £, L)) A c2. TransFrom(eq,dc, z,y, 21, 22)
Vu[FPuzy — recsy(r3, £, 4)]] c3. TransTo(dc,eq,x,y, 21, 22)
We can now define aelementary transitiofirom an in- ¢4 TransFrom(dc, eq, 2,y, 21, 22)
terval z; to an adjacent interval, as being alransTo, a c5. InsRel3(dc, eq, 7, z,y, 21, 22)
TransFrom or anlnsRel3; 1 is the relation that holds at the c6. InsRel3(r, eq,dc, z,y, 21, 22)
start of the transitiory;3 is the relation that holds at the end c7. InsRel3(eq,dc, 7, z,y, 21, 22)
of the transition, and2 is the relation that holds instanta- c8. InsRel3(r,dc,eq, x,y, 21, 22)

neously between; andzs: . . . . .
y ! 2 c7 and c8 are immediately inconsistent since by Prtapl

D29, EleTran(rl, 72,13, 2,y, 21, 22) =def cannot be an instantaneously holding relation. In cases c1
[TransTo(rl,72,x,y,21,22) Ar2=73] V' gnd c2 consider the history. it is EQ to y and then im-
[TransFrom(rl, 73,2, y, 21, 22) Ar2 =71}V madiatelydC — thus the history: must comprise two com-
[InsRel3(r1, 72,73, 2.y, 21, 22)] ponents since there must be an initial component spatially
Transitions need to be continuous; therefore we add axiocated where, is and then a spatially disconnected com-
ioms Al4 and A15. Al4 states that for aflyansTo to be  ponent separated frog thus the history: is notStrCONT
followed by TransFrom the intermediate state is equivalent. and thus noStrFCONT! Now consider the case c5 (a similar
Axiom A15 establishes an elementary transition during arargument holds for ¢6): initially andy areDC; then they
interval z to be possible only for histories continuous over are instantaneousl§Q; there are two possibilities for the
that interval. relationship betweem andy during zz: either the histories
continue spatially connected to their respective parts during
Al4. [qranslo(rl’ r32’ ﬂ’ Y> 21, 22) A 5 13 z1 — but in this case there will be isolated points frern y
ransFrom(r3, 74,2, y, 22,23)] = 12 =73] (¢ ice versa) instantaneously to make the@y or one or
A15. [EleTran(rl, 72,13, 2,y, 21, 22) — both the histories do not continue to be spatially connected
[StrFCONTm A StrFCONTﬁH to their parts duringy, in which case by an argument sim-
ilar to that made for c1 and c2, historyis not StrCONT
4 Conceptual Neighbourhood of RCC-8 and thus noBtrFCONT. Thus every possibility leads to an
inconsistency an&Q andDC cannot be neighbours in the
We can use the above formulation to recover R&C-8  conceptual neighbourhood transition graph.
conceptual neighbourhood diagram (i&8-0). We need
to show that the links not in the diagram represent inconsis-
tent transitions, and that the links in the diagram are con5 Conclusion
sistent transitions. The latter can be demonstrated at least

intuitively by displaying an actual situation diagrammati- \ve have formally characterised different intuitive notions

cally (e.g. see fig. 135. We will now sketch how one of ~ of 5.t continuity. The strongest notion of s-t continuity has

the missing links corresponds to an inconsistent transitioheen formally defined and transition rules for s-t histories
though we do not display a completely rigorous proof hereormylated in a pure, pointless, mereotopology. Our for-

The others can be derived by reasoning along similar linesg,jation is similar to Muller’s, but avoids the flaws found

by Davis and only requires a simpler mereotopology which
does not have closure and interior operators. Nor does it
have the explicit temporal points used by Davis. We have
Proof: A link betweenr1 andr2 in the conceptual neigh- Sketched how the formulation might be used to recover the
bourhood diagram exists iff the following formula is consis- RCC-8 conceptual neighbourhood diagram to be found in
tent: 3(r, z, y, 21, z2)[EleTran(rl, 72,7, 2, y, 21, 22) V the literature. The axiomatisation of transitions under dif-
EleTran(r, 71,72, 2, y, 21, 22) V ferent notions of s-t continuity is part of ongoing research
EleTran(r2,rl,7, 2, y, 21, 22) V as is a completely formal proof of the correctness of the
EleTran(r, 72,71, 2,9, 21, 20)]  RCC-8 conceptual neighbourhood diagram. It should also
be straightforward to recover the dominance theory of Gal-
2We recognise that this is not satisfying from a for- ton which is a refinement of the conceptual neighbourhood
mal point of view and one rea”y want a rigorous proof d|agram and Closely CorreSpondS to the three different kinds
that the full theory conjoined with a sentence such asoOf transition we have identified her@ransto, Transfrom
Jz,y, 21, 22Transto(dc, ec, 7, y, 21, 22) is satisfiable. andlnsrel).

Prop 3 Non-Existence of Elementary Transition between
DC andEQ.
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