
Programming Assignment 1: Näıve Bayes Text Classification

In this assignment you will use the Näıve Bayes method to learn a classifier for text from training
data, and use a test set to evaluate the quality of the classifier.

1 Input format

The major input to the program consists of a file of short biographies (modified from Knowledge
Graph and Wikipedia) of various people, tagged with a category. There are two samples avail-
able: a small one at http://www.cs.nyu.edu/faculty/davise/ai/bioCorpus.txt and an tiny one at
http://www.cs.nyu.edu/faculty/davise/ai/tinyCorpus.txt

The format of this file is as follows:
Separate biographies are separated by 1 or more blank lines.
In each biography, the first line is the name of the person. The second line is the category (a single
word). The remaining lines are the biography. You may assume that the characters in the file are
all a-z, A-Z, comma, period, and white space; there are no numbers and no other punctuation.

This should be read in from a file “corpus.txt” in the same working directory as the executable
program.

The second input is a user input of an integer N, which is the number of entries in the corpus to use
as the training set. The program will use the first N biographies in the corpus as the training set
and the rest as the test set. This should be read in from standard input or in some other convenient
way from the user. (If you do something other than standard input, please alert the grader in a
ReadMe file.)

A third, optional, input is a file “stopwords.txt”, containing a list of stop words. This should also be
in the same working directory. This is available at http://www.cs.nyu.edu/faculty/davise/ai/stopwords.txt.
It is optional, because it is OK just to hard-code the list of stop words, if you prefer.

2 Output format

The output contains:

• For each person in the test set, the probabilities associated with each category; the prediction
(the category with the highest probability), and a statement whether this is right or wrong.

• The overall accuracy of the classifier on the test set.
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For instance, for the tiny corpus linked above, with N=5, the output is:

Benjamin Disraeli. Prediction: Writer. Wrong.

Government: 0.44 Music: 0.07 Writer: 0.48

George Eliot. Prediction: Writer. Right.

Government: 0.01 Music: 0.07 Writer: 0.91

Barbara Jordan. Prediction: Government. Right.

Government: 0.97. Music: 0.03. Writer: 0.00

Clara Schumann. Prediction: Music. Right

Government: 0.01. Music: 0.98. Writer: 0.01

Overall accuracy: 3 out of 4 = 0.75.

Probabilities should be given to an accuracy of 0.01, as above.

This output is available at http://www.cs.nyu.edu/faculty/davise/ai/tinyOutput.txt.

I will use this as an example throughout the assignment. The “tiny training corpus” is the first 5
biographies in the tiny corpus, and the “tiny test corpus” is the last 4.

3 The Program

The program is divided into two parts: Learning the classifier from the training set (the first N
biographies in the input), and evaluating the classifier over the test set (the remaining biographies).

3.1 Learning the classifier from the training set

3.1.1 Normalization

In reading in the training set:

• All words in the biography should be normalized to lower case.

• Stop words should be omitted. Stop words are: (a) any word of one or two letters; (b) any word
in the list of stopwords provided. http://www.cs.nyu.edu/faculty/davise/ai/stopwords.txt.

3.1.2 Counting

Compile a count of

• For each category C, the number of biographies of category C in the training set T , OccT (C).

• For each category C and word W in the training set T , the number of biographies of category
C that contain word W , OccT (W |C). It does not matter how many times a word occurs within
a given biography, as long as it occurs once (this is known as the “Bernoulli method” or, more
generally, as a “set of words” model).
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Note: THE WORD USED FOR THE CATEGORY DOES NOT COUNT AS A WORD IN THE
TEXT. So, for example, in the biography of Bella Abzug, “Government” is not considered a word
W in the biography.

3.1.3 Probabilities

Step 1: For each classification C, define FreqT (C) = OccT (C)/|T |, the fraction of the biographies
that are of category C. For instance, in the tiny training corpus, FreqT (Government) = 2/5.

For each classification C and word W , define FreqT (W |C) = OccT (W |C)/OccT (C), the frac-
tion of biographies of category C that contain W . For instance, in the tiny training corpus,
FreqT (”american”|Government) = 1/2, since there are two biographies of category Government
and one of these has the word “american”.

Step 2: For each classification C and word W , compute the probabilities using the Laplacian
correction. Let ǫ = 0.1.

P (C) =
FreqT (C) + ǫ

1 + number of categories ∗ ǫ
P (W |C) =

FreqT (W |C) + ǫ

1 + 2 ∗ ǫ

In the second equation, the “2” in the denominator reflects the fact that each random variable W
has two possible outcomes: true and false.

For instance P (Government) = (0.4 + 0.1)/(1 + 3 ∗ 0.1) = 0.3846.
P (“american”|Government) = (0.5 + 0.1)/(1 + 2 ∗ 0.1) = 0.5.

Step 3: Compute negative log probabilities to avoid underflow. The base of the logarithm doesn’t
matter, except that you will have to use the same base when you reconstruct the probabilities in
step 4.b of part 2. I’ve used base 2 in computing the trace. For each classification C define L(C) =
− log

2
(P (C)) and define L(W |C) = − log

2
(P (W |C)). For instance, L(Government) = 1.3785 and

L(”american”|Government) = 1.0.

Now you’re done with the learning phase.

3.2 Applying the classifier to the test data

For each biography B:

Step 1. Normalize the text as in part I. Additionally skip any word that did not appear at all in the
training data.

Step 2. For each category C, compute L(C|B) = L(C) +
∑

W∈B
L(W |C). As in the learning phase:

– Each word counts only once, no matter how often it appears in the biography.

– DO NOT USE THE CATEGORY ATTACHED TO THE BIOGRAPHY. This is even
more important now than it was in part I. Whenever you use part of a labelled corpus
as a test set, you obviously have to ignore the label; otherwise, the learning algorithm is
just cheating off a crib sheet.

Step 3. The prediction of the algorithm is the category C with the smallest value of L(C|B). It is
extremely unlikely that you will ever get a tie; if you do, it may be broken arbitrarily (i.e.
don’t worry about the case.)
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Step 4. To recover the actual probabilities: Let k be the number of categories.

4.a For i = 1 . . . k let ci = L(Ci|B), the values of L for all the different categories. Let
m = mini ci, the smallest value of these.

4.b For i = 1 . . . k, if ci − m < 7 then xi = 2m−ci else xi = 0. The base 2 here is the same
one as used in step 3 of the learning algorithm.

4.c Let s =
∑

i
xi, For i = 1 . . . k, P (Ck|B) = xi/s.

There is a trace of the execution of the algorithm for the tiny corpus with N = 5 at
. http://www.cs.nyu.edu/faculty/davise/ai/tinyChart.txt.

4 Program requirements

You may hard code the list of stop words.

You may not hard code the set of categories; e.g., do not assume that the only categories are
Government, Music, and Writer.

If you want, you may assume that the entire corpus fits in memory, so it is OK to begin by reading
in the whole file corpus.txt and then working on it as an in-memory data structure. However, it is
preferable, and actually not very difficult, to write the program so that it works by doing a single
pass reading through the file; it just requires carefully keeping track of things. The memory required
for doing this the right way is O(number of different words * number of different categories) which
in general is much smaller than the total size of the corpus.

Similarly, you may make reasonable assumptions on the number of different words (not more than
10,000), the number of different categories (not more than 100) the maximum length of a biography
(not more than 200 words), and the total number of biographies (not more than 1000) if you want.
It is certainly better to write your code so that it doesn’t need these kinds of assumptions, however.

In the learning phase, you should not write code whose time requirement is Ω(D2) where D is the
number of different words. O(D log D ·k+ |T |) is acceptable (k is the number of categories; |T | is the
total size of the training set), but really you should achieve O(D ·k + |T |) expected time (hint: hash
tables). In the classification phase, the time to classify each biography B should be O(|B| ·k · log D)
or preferably O(|B| ·k) where |B| is the length of the biography. A penalty of 5 points out of 100 will
be imposed on any code that requires time Ω(D2) in the learning phase or Ω(D) in the classification
phase or both (maximum of 5 points total penalty).

You may assume that the input is correctly formatted, as specified in section 1 of the assignment.
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