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Abstract. We describe a method to solve the compressible time-dependent
Euler equations using Cartesian grids for domains involving fixed or moving
geometries. We describe the concept of a mirror flow extrapolation of a given
solution over a reflecting wall which may be curved or moving at a fixed or
varying speed. We use this mirror flow to develop a Cartesian grid method to
treat the cells along a reflecting boundary avoiding the “small-cell” problem.
Numerical Results are presented.

1. Introduction

We are developing numerical methods based on Cartesian grids for compress-
ible inviscid time-dependent flows involving complex fixed or moving geometries.
Cartesian grids offer great speed, robustness, and flexibility in dealing with com-
plex industrial applications. In addition, they are relatively automated. However,
to be able to use Cartesian grids we need to develop a treatment of the irregular
boundary cells along reflecting walls of moving or fixed objects.

In previous work by the authors ([3], [6]) other boundary treatments for time-
dependent flows described by the Euler equations have been developed. These
boundary treatments are stable (without limiting the time step due to the arbi-
trarily small cut cells), accurate (more than first order along the boundary) and
flexible (applicable for any finite-volume method).

Here we describe a numerical method to treat objects moving at a prescribed
motion or in interaction with the fluid. As in [1] and in [5] we are using a fixed
Cartesian grid and let the object move through it. Many of the same difficulties
of accuracy and stability of Cartesian boundary treatments are also common to
front tracking algorithms (cf. [2]).

2. Problem Description

The main idea of our approach is to use regular Cartesian grid cells as much as
possible. To avoid the “small-cell” problem, we fill in the cut cells and a set of
ghost cells, so that cell updates are performed on regular grid cells.
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To obtain ghost cell values in our method, the flow is extrapolated beyond the
boundary by a mirror flow reflection. The mirror flow is a smooth extrapolation of
the flow variables beyond the boundary such that the extrapolated solution fulfills
the governing equations.

The Euler equations in two dimensions are given as

U +F,+G, =0, (1)
p pu pv
2
U= pu C F= pu®+p . G= ,Qzuv
pv puv pv= +p
pe u(pe + p) v(pe + p)

1
p= (7= 1pe = gpu* +v%)),
where p is the mass density, u = (u,v)” is the velocity vector, pe is the energy
density, p is the pressure and v = 1.4.

In the following the one-dimensional mirror flow extrapolation is described.
The reflecting wall boundary condition at =z = x,, is

u(xy,t) = 0. (2)

To describe a mirror flow extrapolation at the wall boundary, we reflect the space
coordinate x at x,,

(x) = 2y — . (3)
A mirror flow extrapolation is then given for z < x,, as follows:
pa.1) (i, 1)
a(z,t) | = —u(@,t) |. (4)
plz, t) p(&,t)

This mirror flow defines a smooth extrapolation of the solution beyond the wall
boundary fulfilling the governing equations.
If the reflecting wall is moving at constant speed, i.e.,

T = Ty(t), Zu(t) =0, (5)
the boundary condition is
w(Ly(t),1) = G- (6)
The reflection of the space coordinate is time-dependent now:
T(x,t) = 224 (t) — z. (7)

A solution p(z,t), u(z, t), p(z,t) for x > x,(¢) fulfilling the boundary condition (6)
can be smoothly extrapolated beyond the boundary by the following mirror flow:

(o) o(3.1)
a(x,t) | = 2@y —u(d,t) |. (8)
Pl 1 (i )
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Consider now the case of a wall moving at varying velocity:

Ty = Ty (t), &y # 0. (9)
The boundary condition is the same as for the wall moving at constant speed,
i.e., condition (6). In general a mirror flow extrapolation is only possible in a
small neighborhood of the reflecting wall in this case. The solution has a non-zero
pressure gradient at the wall according to

Pa(Tw(t), 1) = —p(2y(t), 1) & (t). (10)
Thus particles moving along the wall change their speed due to this pressure
gradient. Not only pressure but also density has a non-zero gradient at the wall.
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Ficurg 1. Mirror flow for a wall moving with changing speed

In two dimensions the inviscid boundary condition is
u(x,t) - n=0, xel(), (11)

where I'(t) is the reflecting wall and n is the normal vector at the point x. For
a two-dimensional mirror flow extrapolation the normal velocity component u"
is treated as w in one dimension. The other variables as the tangential velocity
component u?, p, and p are treated as p and p in one dimension. Note that u’, p,
and p may have non-zero normal derivatives even at a fixed reflecting wall, namely
if the wall curvature is non-zero, i.e.,
t,t t t

@:,““, ai:,“_7 (12)

on R on R
where n is the normal coordinate and R is the curvature radius of the reflecting
wall. The pressure gradient lets the particles move along the wall, the gradient of
the tangential velocity is required by zero vorticity along the inviscid wall.

3. Numerical method

Here we describe how we incorporate a boundary treatment into the discretization
of the interior flow on a regular Cartesian grid. For the computational results, the
boundary treatment is coupled to the Clawpack method of LeVeque [7], a multi-
dimensional shock-capturing finite-volume method for describing inviscid flows.
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Let h be the grid parameter of a Cartesian grid. Then we set z; = xg +
ih, wyj =yo+jh, 1i,j € Z. The regular Cartesian grid cell C;; is then given by:

Cij = [®i, Tip1] X [Yj,Yj+1]- (13)
The numerical solution at time ¢,, is given by approximations of the cell averages
of the exact solution U(z,y, t,) over the grid cells:

1
U} ~ 73 /O Uz, y, t,)dz dy. (14)

This numerical solution can then be updated using the Euler equations in integral
form
Un+1 _ Un o ﬁ Fn o Fn Gn o Gn
iy = Vi, (Fi i TG i) (15)
where we calculate the fluxes F;;, G;; using Clawpack.

If at time ¢, there is a reflecting wall along I'(¢,,) going through the Cartesian
grid, we divide the cells into regular cells, boundary cells and empty cells. Figure
2 on the left shows the regular and the boundary cells — all other cells are empty
cells. The exact solution at time ¢, can be extrapolated over the reflecting wall
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FiGure 2. Different types of grid cells at time ¢,, (left), splitting
of a boundary cell (right)

such that we can assign a numerical value also for boundary cells. If at time ¢,
the Cartesian grid cell C is a boundary cell, we split this cell into two parts, C*
is the part lying in the fluid domain and C? is the part lying on the solid domain
as sketched in Figure 2 on the right. The numerical solution for such a boundary
cell C' at time £, is then given by U7 approximating the following cell average

Ug ~ 1 < Ul(z,y,t,) dedy + Ulz,y,t,) dz dy) . (16)
h2 2 o1l
Here ﬂ(az, Y, tn) denotes the exact mirror flow solution at time ¢,. For the regular
cells the numerical solution is given by (14).
To advance the numerical solution of the regular cells and the boundary cells
using (15), we fill in a set of ghost cells next to the boundary cells. These ghost cells

C}; are filled with flow variables Ij,’:l using a numerical mirror flow extrapolation
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of the numerical solution at time t,. How many ghost cells are needed depends
on the specific numerical method. Two ghost cells are needed for the second-order
accurate Clawpack method, as shown in Figure 3 on the left.
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F1GURE 3. Two layers of ghost cells for a second-order accurate
method (left), a ghost cell C lying beyond a reflecting wall (right)

In the following we describe how to calculate ghost cell values using a mirror
flow extrapolation of the numerical solution. Suppose at time %, there is a ghost
cell C beyond a reflecting wall along I'(¢,,) which may be moving (cf. Figure 3 on
the right). The midpoint of cell C is denoted as x¢:. The point x,, is the point on
['(t,) closest to x¢. The point x is the reflection of x¢, i.e.,

X = 2%y — X(.- (17)
The normal vector n on I'(¢,) through x,, is given by

n= 2w _XC (18)
Xy — X

The flow variables of the ghost cell C are given by the pressure p, the density
p, and the normal and tangential velocity components 4", 4! with respect to the
n direction. The reflected point X is lying between 4 cell centers of regular or
boundary cells, such that u™(x) can be obtained using a bilinear interpolation
of the normal velocity at x. With @, being the normal wall velocity at x,,, the
normal velocity of the ghost cell is obtained using

A" (x0) = 2y — u™(%). (19)

We experimented with two different strategies to obtain the other ghost cell vari-
ables (as described only for pressure in the following). One is to use the bilinearly-
interpolated values at the reflected point X, i.e.,

p(xc) = p(x). (20)
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This is simpler than the volume weighted averaging used in the h-box method
[3], and yields only a first-order boundary treatment for curved reflecting walls or
walls moving with varying speed.

Another strategy is to extrapolate the corresponding values from the nearest
boundary point x,,. If x,, is lying between 4 cell centers of regular or bound-
ary cells, a value p(x,,) is obtained using a bilinear interpolation, else p(x,,) is
obtained by a linear interpolation from the nearest boundary cell center using
finite-differences. By a bilinear interpolation we obtain also a value at the point
x" (cf. Figure 3, right), where

x" = x,, + hn. (21)
Then the corresponding ghost cell values are obtained by
p(Xw) - p(XZ))
—

Note that the boundary cells themselves can be updated using (15), so they
do not need repeated application of (16); however the price of this is a lack of
conservation (cf. [6] for more details).

p(xc) = p(xw) + [%uw — %0l (22)

4. Numerical results

First we look at a one-dimensional test case, namely a gas confined between two
reflecting walls at x; = 0.5+ vt + %t2 and z, = 1.0, with constants v; and a;. The
initial conditions are

plz,0) = 1.0+0.2cos(7rwa§'5), (23)
v(z,0) = 2.0(1.0 — z)v, (24)
P,0) = ple0)7, (25)

such that entropy is constant, i.e., s(z,0) = p(z,0)/rho(z,0)” = 1.0. As long as
the solution stays smooth, the entropy stays constant, such that we can use this
variable for a numerical error analysis. In the numerical experiment we study the
following quantities at the final time %.:

erryy = |sIm 1.0, (26)

Tw

final
s —1/|C;
ErTtof — Zz ‘Sl ‘ | Z| : (27)

22 1¢i]
(Z pgnz’tz’al|0i| _ Zp{inal|0i|> /Zp::nitial‘cfi‘7 (28)

where iy, is the index of the left boundary cell. The cell volume |C;] is b for regular
cells, the length in the fluid domain for the boundary cells and zero for empty cells.

For the first test case we set: v0 = —0.5,a0 = 0.0,¢, = 0.5. The results in
Table 1 for erry,, suggest that the boundary treatment is only first-order accurate

Am



Flow Simulations on Cartesian Grids 7

5t=0.5 X10’5t20.5

x107° t=0 5 X10°

0 0.5 1 0 05 1 0 0.5 1
t=0 t=05 t=0.5
15 15 15
e
g 1 1 1
[
5
05 0.5 / 05 /
0 0.5 1 0 05 1 0 0.5 1
X X X

F1GURE 4. Wall moving with constant speed — ghost cell extrap-
olation using (20) (middle) or (22) (right), h = 0.005

extrapolation using (20) || extrapolation using (22)

1/h || Am | errpy | errior Am | erryry | errio

200 || 4.27-6 | 2.93-5 | 2.00-6 | 3.19-5 | 3.35-6 | 1.67-6

400 || 9.71-7 | 1.16-5 | 5.31-7 || 8.08-6 | 7.31-7 | 4.14-7

800 || 2.39-7 | 5.57-6 | 1.41-7 || 2.04-6 | 1.70-7 | 1.03-7
TABLE 1. Wall moving with constant speed error analysis using
the two different ghost cell extrapolations

if pressure and density are extrapolated using (20) in this case of a wall moving
with constant speed, whereas using (22) the erry,, values suggest second-order
accuracy also at the boundary in this case. But the lack of conservation is smaller
using (20). Figure 4 shows the results for A = 0.005.

For the second test case we set: v0 = 0.0,a0 = —2.0,%, = 0.5. The results in
Table 2 suggest that for this second test case of a wall moving at varying speed,
using (22) for the pressure and density extrapolation yields a second-order accurate
boundary treatment.

For the following two-dimensional test cases we are using (22) for the ghost
cell values but in the second test case we we fix pressure and density to a small
value (0.01), in case the ghost cell values drop below this small value.
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1/h H Am ‘ ETThry ‘ erTio

400 || 6.65-5 | 1.90-5 | 3.22-6

800 || 2.29-5 | 4.55-6 | 8.71-7

1600 || 4.73-6 | 9.34-7 | 2.46-7
TABLE 2. Wall moving with varying speed — error analysis using
(22) for the ghost cell extrapolations

The first test problem is taken from [4] for a numerical convergence study.
It is a supersonic vortex in a channel formed by concentric circular arcs. The
boundaries of the channel form one quarter of a circle, with inner radius r; and
outer radius r,. A smooth analytic solution exists for this problem, so the errors
in the computation can be evaluated. The density is
1 =T
_ : =
plr) = pi |14+ =M1 - (D)) (29)
and the velocity varies inversely with the radius. We use the same geometry and
test parameters as [4], p; = 1.0,r; = 1.0,7, = 1.384,M; = 2.25,p;, = 1.0/.
We take the exact solution as initial condition and run the calculation until time
t = 5.0, where the analysed values have converged to the 4-th digit. In the nu-
merical study we look at the following relative errors using a discretization of the
continuous L;-norm (cf. [4])

ervact — C
erryy = klbesoct = Pel|Ck] (30)

Zk pezact‘0k|
Zkea ‘pezact - pk‘ V ‘Ok|

Zkea Pexact\/ |Clc‘

ETThry

(31)

(32)

where ), is a summation over the regular cells and the boundary cells and ),
is a summation over the boundary cells only. |Cy| is h? for regular cells and the
area in the fluid domain for the boundary cells. Our boundary treatment is not
strictly conservative. Therefore we look also at the difference of mass-inflow and
mass-outflow in the final solution:

Am = Z prlug|le — Z pr|ugly, (33)

kein keout

where », ., is a summation over the inflow cells and ), _ ., over the outflow
cells. I is the length of the inflow/outflow interface. Table 3 (left) shows an error
analysis of the above errors. The boundary treatment is of order log, % = 1.57.

For a moving-boundary example, we show the cylinder lift-off by a strong
shock wave, an example found in [5]. The movement of the cylinder is induced

by the flow-field. To describe this motion within second-order accuracy, we use a
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h H erriot ‘ ETThry ‘ Am

2.68-2 || 1.52-3 | 1.83-3 | 2.49-3
1.32-2 || 3.58-4 | 4.77-4 | 4.13-4
6.70-3 || 8.95-5 | 1.63-4 | 7.09-5
3.35-3 || 1.96-5 | 5.49-5 | 1.89-5

TABLE 3. Error analysis for the supersonic vortex (left) — con-
vergence history for the cylinder liftoff (right)

h H X ‘ Y ‘Am
3.33-3 | 6.89-1 | 1.429-1 | 1.79-2

2.50-3 || 7.00-1 | 1.392-1 | 1.05-2
2.00-3 || 7.06-1 | 1.379-1 | 9.50-3

staggered time grid. The center of the cylinder is given at full time-steps X,, and
its velocity at staggered time-steps VTF%. At time ¢,, the force F,, on the cylinder
is calculated by a numerical integration of the flow field pressure times the normal
vector along the surface of the cylinder; the velocity is updated by

At
where M is the mass of the cylinder. The position of the cylinder is updated by
X1 =X, + AtVn+%. (35)

We use the same parameters as in [5]. A cylinder with radius 0.05 is initially
located at the lower wall at x = 0.15 of a channel with width 0.2. A Mach 3 shock
wave starts at £ = 0.08 moving towards the cylinder and lifting it off. The density
and pressure of the resting gas are p = 1.4 and p = 1.0. The density of the cylinder
is 10.77. The calculation is stopped at time 0.3282. In our calculation the cylinder
hits the upper wall, opposed to the results of [5]. Table 3 (right) lists the final
position of the center of the cylinder X,Y, and the final relative mass loss as a
function of the grid parameter h. Figure 5 shows pressure contours of the initial
condition, the solution at half-time and the final solution after the cylinder has hit
the upper wall.
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