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Abstract—This paper examines the questions of whether

smaller asteroids that burst in the air over water can generate tsu-

namis that could pose a threat to distant locations. Such airburst-

generated tsunamis are qualitatively different than the more fre-

quently studied earthquake-generated tsunamis, and differ as well

from tsunamis generated by asteroids that strike the ocean.

Numerical simulations are presented using the shallow water

equations in several settings, demonstrating very little tsunami

threat from this scenario. A model problem with an explicit solu-

tion that demonstrates and explains the same phenomena found in

the computations is analyzed. We discuss the question of whether

compressibility and dispersion are important effects that should be

included, and show results from a more sophisticated model

problem using the linearized Euler equations that begins to

addresses this.

Key words: Tsunami, asteroid-generated airburst, shallow

water equations, linearized Euler equations.

1. Introduction

In Feb. 2013, an asteroid with a 20 m diameter

burst 30 km high in the atmosphere over Chelya-

binsk, causing substantial local damage over a 20,000

km2 region (Popova et al. 2013). The question arises

what would be the effect of an asteroid that bursts

over the ocean instead of land? The concern is that

the atmospheric blast wave might generate a tsunami

threatening populated coastlines far away.

There is little literature on airburst-generated

tsunamis. Most of the literature on asteroids study the

more complicated case of water impacts, where the

meteorite splashes into the ocean (Weiss et al. 2006;

Gisler et al. 2010; Gisler 2008). This involves much

more complicated physics. The only reference we are

aware of that relates to a blast-driven water wave is

from the 1883 volcanic explosion of Krakatoa

(Harkrider and Press 1967). The authors report a tide

gauge in San Francisco registered a wave that could

not be explained by a tsunami. There is also some

analytic work in Kranzer and Keller (1959), where

they derive asymptotic formulas for water waves

from explosions and from initial cavities. There is

more literature on meteo-tsunamis. These are also

driven by air-pressure events and have similarities to

our case, but occur in a different regime of air speed

and water depth.

This paper studies the behavior of airburst-gen-

erated tsunamis, to better understand the potential

threat. We compute the ocean response to a given

(specified or pre-computed) atmospheric overpres-

sure. The ocean response to this overpressure forcing,

including the possible tsunami, is simulated. Typi-

cally, the shallow water equations are used for long-

distance propagation, since they efficiently and

affordably propagate waves over large trans-oceanic

distances. Other alternatives, such as the Boussinesq

equations, are much more expensive, and at least for

the case of earthquake-generated tsunamis the dif-

ference seems to be small (Liu 2009).

In the first part of the paper, we present simula-

tions under a range of conditions using the shallow

water equations and the GeoClaw software package

(GeoClaw 2017). We compute the ocean’s response

to an overpressure as calculated in Aftosmis et al.

(2016). The overpressure was found by simulating the

blast wave in air, and extracting the ground footprint.

Roughly speaking, the blast wave model corresponds

to the largest meteor that deposits all of its energy in

the atmosphere without actually reaching the water

surface. With this forcing, if there is no sizeable

response, then we can conclude that that airbursts do

not effectively transfer energy to the ocean, and there

is little threat of distant inundation.
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In general, our results using the shallow water

equations suggest that airburst-generated tsunamis

are too small to cause much coastal damage. Of

course, depending on local bathymetry there could be

an unusual response that is significant. For example,

Crescent City, California is well known to be subject

to inundation due to the configuration of its harbor

and local bathymetry. However, we find that to

generate a large enough response so that the water

floods the coastline, the blast has to be so close that

the blast itself is the more dangerous phenomenon.

This is also the conclusion reached by Gisler et al.

(2010) and Melosh (2003) for the case of asteroid

water impacts.

In the second part of this paper, we study model

problems to better understand and describe the phe-

nomena we compute in the first part. The first model

problem is based on the one-dimensional shallow

water equations for which we can obtain an explicit

closed form solution. It assumes a traveling wave

form for the pressure forcing. Actual blast waves only

approximately satisfy this hypothesis for a short time

before their amplitudes decay. Nevertheless, the

model explains several key features that we observe

in the two-dimensional simulations. We observe a

response wave that moves with the speed of the

atmospheric forcing. There is also the gravity wave,

or tsunami, moving at the shallow water wave speed

cw that is generated by the initial transient of the

atmospheric forcing. We study in detail the response

wave, or ‘forced’ wave, but the two are closely

related. The analysis shows that the forced wave is

proportional to the local depth of the water h at each

location, a phenomena clearly seen in our computa-

tions. The model problem also allows us to assess the

importance of nonlinear modeling. For most physical

situations related to airburst tsunamis, the linear and

nonlinear models give similar predictions.

In our final section, we assess the effect of cor-

rections to the shallow water equations arising from

compressibility and dispersion using a second model

problem—the linearized Euler equations. Airbursts

have much shorter time and length scales than the

earthquakes that generate tsunamis, comparable to

the acoustic travel time to the ocean floor. This leads

to the question of whether compressibility of the

ocean water could be a significant factor. In addition,

airbursts have much shorter wavelengths, on the

order of 10–20 km, at least for meteors with diameter

less than 200 m or so. Recall that the shallow water

model results from assuming long wavelengths and

incompressibility of the water. Our results show that

for airburst-generated tsunamis, dispersion can be

significant but that compressibility is less so, sug-

gesting interesting avenues for future work.

This work is an outgrowth of the 2016 NASA-

NOAA Asteroid-generated Tsunami and Associated

Risk Assessment Workshop. The workshop conclu-

sions are summarized in Morrison and Venkatapathy

(2017). Several other researchers also performed

simulations, and videos of all talks are available

online.1

2. Two-Dimensional Simulations

In this section, we present results from two sets of

simulations. We use a 250MT blast, which roughly

corresponds to a meteor with a 200 m diameter

entering the atmosphere with a speed of 20 km/s.

Generally speaking, this is the largest asteroid that

would not splash into the water.2 For each location,

we did several simulations varying the blast locations

with no meaningful difference in results, so we only

present one representative computation in each set of

simulations.

In the first set of results, we locate the blast in the

Pacific about 180 km off the coast of near Westport,

Washington. This spot was chosen since it is well

studied by the earthquake-generated tsunami

researchers due to its proximity to the M9 Cascadia

fault (Petersen et al. 2002; Gica et al. 2014). By the

time the waves reach shore, they have decayed and

are under a meter high. Since they do not have the

long length scales of earthquake tsunamis, we did not

see any inundation on shore. In the second set of

results, we move the location offshore to Long Beach,

1 All presentations are available at https://tsunami-workshop.

arc.nasa.gov/workshop2016/sched.php
2 Initially, we used a blast wave corresponding to a 100MT

blast, but since no significant response was found we do not include

those results here. We also did simulations where we increased the

250MT pressure forcing by a factor of 1.2 with no change to the

conclusions.
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California, where there is significant coastal infras-

tructure, and has also been studied extensively in

relation to earthquake tsunamis (Uslu et al. 2010).

We place the blast approximately 30 km from shore,

so that there is less time for the waves to decay. In all

simulations, bathymetry is available from the NOAA

National Center for Environmental Information

website.

To perform these simulations, we use a model of

the blast wave simulated in Aftosmis et al. (2016).

The ground footprint for the overpressure was

extracted, a Friedlander profile was fit to the data,

and its amplitude as a function of time was modeled

by a sum of Gaussians. The 250MT model is shown

in Fig. 1, with a few of the profiles drawn in black to

illustrate their form. The profiles start with the rise

in pressure from the incoming blast, and are fol-

lowed by the expected rarefaction wave

(underpressure) some distance behind. Note that the

maximum amplitude is over four atmospheres, but

decays rapidly from its initial peak. In the model, the

blast wave travels at a fixed speed of 391 m/s. If we

take the sound speed at sea level to be 343 m/s, this

corresponds to a Mach 1.14 shock.. This may be less

accurate at early times. If the asteroid enters at a low

angle of incidence, the blast wave travels more

quickly when it first hits the ground. This would also

lead to a more anisotropic response when see from

the ground. Here, however, we assume that the blast

wave is radially symmetric. We then use this model

of the overpressure as a source term in our two-

dimensional shallow water simulations using the

software package GeoClaw.

GeoClaw is an open source software package

developed since 1994 (LeVeque et al. 2011) for

modeling geophysical flows with bathymetry using

the shallow water equations. It is mostly used for

simulations of tsunami generation, propagation and

inundation. GeoClaw uses a well-balanced, second-

order finite volume scheme for the numerics (LeVe-

que 1997; George 2008). Some of the strengths of

GeoClaw include automatic tracking of coastal

inundation, robustness in its handling of dry states, a

local adaptive mesh refinement capability, and the

automated setup that allows for multiple bathymetry

input files with varying resolution. A bottom friction

term is included using a constant Manning coefficient

of 0.025. The results below do not include a Coriolis

force, which we have found to be unimportant. There

is no dispersion in the shallow water equations. In

2011, the code was approved by the US National

Tsunami Hazard Mitigation Program (NTHMP) after

an extensive set of benchmarks used to verify and

validate the code (González 2012).

Figure 1
Ground footprint for 250MT blast wave overpressure as a function of distance from the initial blast. The curves are drawn every 5 s. A few of

the curves are drawn in black to more clearly show a typical Friedlander profile
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2.1. Westport Results

For this set of simulations, the 250MT blast is

located at �126:25� longitude and 46:99� latitude,

about 30 km from the continental slope. The ocean is

2575 m deep at this spot. The blast location is about

180 km from shore. Many simulations were per-

formed with different mesh resolutions. The finest

grids used in the adaptive simulations had a resolu-

tion of 1/3 arc second. Three bathymetric data sets

were used—a 1 min resolution covering the whole

domain, a 3 s resolution nearer shore, and a 1/3 arc

second bathymetry that included the shoreline itself.

In Fig. 2, we show a Hovmöller plot through the

center of the blast location at a fixed latitude. On the

left is the atmospheric overpressure for the first 300 s.

This is the forcing that travels at 391 m/s. On the

right is the amplitude of the water’s response. Two

waves traveling at different speeds are visible. A

shallow water gravity wave travels with speed cw �
ffiffiffiffiffi

gh
p

which at the blast location is 158 m/s. It is

evident that the blast wave travels approximately

twice as fast as the gravity wave. The blast wave

reaches the edge of the graph in just over 150 s

instead of the 300 s of the main water wave (in blue,

since it is a depression). Also visible in the wave

height plot is a wave that starts off in red and travels

at the same speed as the blast wave, and whose

amplitude decays more rapidly. Here, the color scale

saturates below the maximum value in each plot so

that smaller waves are visible.

Figure 3 shows the maximum amplitude found at

any time in the simulation at that location. Note that

the color bar is not linear in this plot, so that the

different levels can more easily be seen. Nearest the

blast location the maximum wave amplitude is over

10 m, but it decay rapidly. As the waves approach

shore, the waves are amplified in a non-uniform way

by the bathymetry. The coastline is outlined in black.

We do not see any inundation of land, although

admittedly at this resolution it would be hard to see.

Figure 4 shows the time history of wave heights

through several gauge plots. The left plot shows

seven gauges placed 0:1� apart (about 10 km at this

latitude), starting about 1 km from the blast and at the

same latitude. The gauge closest to the blast location

has a maximum amplitude that reaches 5 m. Subse-

quent gauges show a very rapid decay in maximum

amplitude. These positive elevation waves are the

water’s response to the blast wave overpressure, and

travel at the same speed as the blast wave. Most of

Figure 2
The Hovmöller plot shows the overpressure in atmospheres through the center of the blast location (left) and the wave height (right). The blast

wave speed is approximately twice the gravity wave speed, and its amplitude decays more rapidly

1528 M. Berger and J. Goodman Pure Appl. Geophys.



the ocean’s response at this location appears as a

depression, not an elevation. The negative amplitude

wave travels at the gravity wave speed,
ffiffiffiffiffi

gh
p

, where

the water has depth h. It shows much less decay in

amplitude. For example, looking at gauge 3 and 5, the

peak amplitude decays from 2.7 to 0.72 m in about 50

s, whereas between 100 and 200 s, the trough decays

from �5:3 to �4:1 m in about 100 s.

Figure 4 right shows gauges approaching the shore,

at latitude 46:88� so that it lines up with the opening to

Gray’s Harbor. The gauges start about 100 km away

from the blast. These are not equally spaced but are

placed from 0.25 to 0:1� apart (from 25 to 10 km at this

latitude), becoming closer as they approach shore and

the bathymetry changes more rapidly. Shoaling is

observed as the wave amplitudes increase, seen in

gauges 17 and higher. The maximum elevation is

between 0.5 and 1 m, and its duration is short, at least

compared to earthquake-generated tsunamis.

Finally, Fig. 5 shows several close-ups of the

region near shore. The waves are of uneven strength

due to focusing from the bathymetry. The maximum

amplitude is around 1 m. The sequence shows waves

reflecting from the coastline but not flooding it. Some

waves enter Grays Harbor, but they small amplitude

and do not flood the inland area either.

2.2. Long Beach Results

For this set of experiments, we move the simula-

tions to Long Beach, California. We locate the blast

very close to shore so that the waves do not have time

la
tit

ud
e

longitude

Maximum amplitude (m)

Figure 3
Maximum amplitude found between the blast location and the

shoreline during the simulation. Note the color scale is not equally

spaced
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Figure 4
(Left) Gauges near blast location, every 0:1� starting 0:01� from blast. Gauges show rapid decay of maximum amplitude, much slower decay

of maximum depressions. (Right) Gauges approaching shoreline show similar wave forms with decreasing maximum amplitude before

shoaling increases it. These gauge locations are marked in Fig. 5
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to decay. Again we have detailed bathymetry at a

resolution of 1/3 arc second between Catalina Island

and Long Beach, and use a 1 min dataset outside of

this region. The blast is located at �118:25� longitude

and 33:41� latitude, where the ocean is 797 m deep.

This is about 30 km from shore. Figure 6 shows the

region where the blast is located, and a zoom of the

Long Beach harbor where we will look for flooding.

Figure 7 shows the ocean response at several

points in time. The black circle on the plots indicates

the location of the air blast. In the plot marked at 25 s,

note how the wave height in red that is closest to the

blast location is not as circular as the air blast itself. It

also decays faster than in the Westport computation.

This will be explained by the model problem

presented in the next section.

There is a breakwater that protects Long Beach. It

reflects most of the waves that reach it, with only a

small portion getting through the opening. Waves that

reach the harbor go around the breakwater, and are

reflected from the shoreline back into this region.

Figure 8 shows a plot of the maximum water

amplitudes seen in the harbor area. We do see some

overtopping of land, but it is very small. In several

locations, it reaches 0.5 m, where the inlet exceeds its

boundaries, and on the dock in the middle. The region

with the largest accumulation is just outside the

harbor before the breakwater, where the maximum

amplitude seen is between 3 and 6 m. There is a steep

cliff here, however, and the water does not propagate

inland. Paradoxically, in other experiments where the

blast was located closer to shore by a factor of 2,

there was no overtopping. This can also be explained

by our model problem in the next section.

3. Shallow Water Model

In this section, we present a one-dimensional

model of the shallow water equations (SWE) that

explains much of the behavior seen in the previous

t = 2400 sec

-125.0 -124.0 -125.0 -124.0

t = 2800 sec

-125.0 -124.0

t = 3200 sec

-124.0-125.0

t = 3600 sec

47.0

46.5 46.5

47.0

46.5

47.0

46.5

47.0

Figure 5
Zoom of waves approaching shoreline around Westport. No inundation is observed
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examples. In the SWE, the atmospheric overpressure

appears as an external forcing pe in the momentum

equation. In one space dimension, it is

ht þ ðhuÞx ¼ 0;

ðhuÞt þ ðhu2 þ 1

2
gh2Þx ¼

� h pex

qw

;
ð1Þ

where h is the height of the water surface over the

bottom, u is the depth-averaged velocity of the water

in the x direction, g is gravity, and qw is the density of

water. The external pressure forcing is pe, and its x

derivative is pex. The notation is illustrated in Fig. 9.

We assume constant bathymetry in the model,

Bðx; tÞ ¼ 0. See Vreugdenhil (1994) for these equa-

tions, or Mandli (2011) for a clear and complete

derivation. In this section (and the next), the con-

clusions are in the last few paragraphs after the

analysis.

3.1. Derivation and Analysis

As stated in the introduction, we simplify the

pressure forcing by assuming it has the form of a

traveling wave, and look for solutions h and u that are

traveling waves too. This means they are functions

only of the moving variable

m ¼ x � st :

so that oth ¼ �s omhðx � stÞ ¼ � s hm. Equation (1)

becomes a pair of ordinary differential equations

�shm þ ðhuÞm ¼ 0; ð2Þ

�sðhuÞm þ ðhu2 þ 1

2
gh2Þm ¼ � hpem

qw

: ð3Þ

Equation (2) can be integrated to give

� sh þ hu ¼ const . We evaluate the constant by

Figure 6
Location of airburst northeast of Catalina, and zoom of Long Beach shoreline

time 25 sec time 50 sec time 75 sec

Figure 7
Snapshots at early times of blast wave and ocean waves in Long Beach simulation
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taking m ! 1, where u ! 0 and h ! h0, with h0 the

undisturbed water height. (We assume that the over-

pressure has localized support, and goes to zero as

m ! 1.) Therefore, � sh þ hu ¼ � sh0. This may be

re-written as:

uðmÞ ¼ sðhðmÞ � h0Þ
hðmÞ :

We use this to eliminate u from (3), which gives

� s ðsðh � h0ÞÞm þ s2ðh � h0Þ2

h

 !

m

þ 1

2
gh2

� �

m

¼ � hpem

qw

:

After some algebra, this leads to

s2

2

h2
0

h2

� �

m

þg hm ¼ � pem

qw

: ð4Þ

As before, this may be integrated exactly. Again we

use the boundary conditions h ! h0, u ! 0, and

pe ! 0 as m ! 1. The result is

s2

2
1� h2

0

hðmÞ2

 !

þ gh0 1� hðmÞ
h0

� �

¼ peðmÞ
qw

: ð5Þ

To summarize, Eq. (5) is the water’s response according

to shallow water theory. The solution of the differential

equation system (2) and (3) is an algebraic relation

between the overpressure and the response height. It tells

us that the water height at a point m ¼ x � st is deter-

mined by the overpressure at the same point.

To get a better feel for the behavior of the solution

(5), we linearize it, writing hðmÞ ¼ h0 þ hrðmÞ where
hrðmÞ is the response height. The linearization uses

the relation

h0

hðmÞ

� �2

¼ h2
0

h0 þ hrð Þ2
� 1� 2hr

h0

;

which is valid when hr � h0. This is our case, since

the change in wave height hr is a number in meters

Figure 8
Maximum amplitude plot shows 0.5 m of water overtopping the dock and the riverbank

B(x, t)

h(x, t)

η(x, t)

u(x, t)

Figure 9
Illustration of variables for Eq. (1). In the general case, the

bathymetry B(x, t) varies in space and possibly time. Here, we take

it to be constant
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where h0 is typically measured in kilometers. The

linearization of (5) is

hr ¼
h0 pe

qwðs2 � c2wÞ
: ð6Þ

Figure 10 shows that the full response theory (5) and

the linear approximation (6) are very close to each

other for the parameters of interest. The plot uses a

constant depth of h0 ¼ 4 km, and takes

qw ¼ 1025 kg = m 3. The maximum difference

between the nonlinear and linear wave heights in

Fig. 10 is half a meter, less than 2%, when the

overpressure is five atmospheres.

To enumerate the consequences of the response

predicted by (5) and (6), we observe

1. The response wave height hr is linearly propor-

tional to the depth h0. A pressure wave over deep

ocean has a stronger effect than a pressure wave

over a shallower continental shelf. This explains

why locating the blast in the Long Beach case

closer to shore had less of an effect. If the distance

offshore of the air blast from Long Beach is

halved to 15 km, the ocean is only 90 m deep,

resulting in approximately 1/10 the impact

response. On the other hand, there is almost no

difference in the decay rate of the shallow water

waves before they reach shore.

2. If s[ cw, then pe and hr have the same sign. The

response height is positive in regions of positive

overpressure. This contradicts an intuition that

positive overpressure would depress the water

surface. This response is similar to the case of a

forced oscillator in vibrational analysis. Consider

for example €x ¼ �x þ A cosðxtÞ. The steady

solution is

xðtÞ ¼ A

1� x2
cosðxtÞ :

For x[ 1, the response x(t) has the opposite sign

from the forcing A cosðxtÞ. For pressure forcings

with speeds slower than the water speed, the water

response would be a depression, with hr negative.

This response is clearly seen in the all the simula-

tions. The wave that travels at the speed of the blast

wave is an elevation. However, in the Long Beach

results, we can see that the response wave is not

uniformly circular when the depth of the water

changes rapidly. Note that if we take the speed of

sound in air is 343 m/s, the water would have to be

more than 12 km deep for the gravity wave speed to

exceed the speed of the pressure forcing. So in all

cases on earth we expect an elevation of the sea

surface beneath the pressure wave.

3. The response is particularly strong when the

forcing speed s is close to the gravity wave speed

cw � 200 m/s., (for h0 ¼ 4 km). In this case, we

have a Proudman resonance (Proudman 1929;

Monserrat et al. 2006). This is the regime for

meteo-tsunamis, in basins whose depth leads to

Figure 10
Wave height as a function of overpressure, for the nonlinear Eq. (5) and the linearized Eq. (6), using h0 ¼ 4 km and s ¼ 350 m/s. The curves

are very close. The right figure is a plot of their difference, which is on the order of a percent
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gravity wave speeds that match the squall speeds.

These speeds are much slower than the speed of

sound in air.

3.2. Shallow Water Model Computations

This subsection presents solutions of the one

dimensional model (1) computed using GeoClaw.

These show the generation of freely propagating

gravity waves along with the forced response wave

described above. The sealevel and bathymetry are

taken to be flat for t� 0, so the initial conditions for

this simulation are h ¼ 0 and u ¼ 0 at t ¼ 0. For

t� 0, the pressure forcing is

pe ¼ pambient expð�0:1ðx � stÞ2Þ

¼ pambient exp � 1

2

x � st
ffiffiffi

5
p

� �2
 !

;
ð7Þ

with pambient = 1 atm. One can check that the solution

to the linearized equations is

hðx; tÞ ¼ hrðx � stÞ � s

cw

þ 1

� �

hrðx � cwtÞ
2

þ s

cw

� 1

� �

hrðx þ cwtÞ
2

;

ð8Þ

The computed solution to the nonlinear equation is

very close to this. It corresponds to the response wave

moving to the right, and two gravity waves. Con-

servation of water requires that the sum of the

amplitudes is zero:

1� 1

2

s

cw

þ 1

� �

þ 1

2

s

cw

� 1

� �

¼ 0 : ð9Þ

The gravity waves move at the shallow water speed

cw ¼
ffiffiffiffiffiffiffi

gh0

p
. The forced wave (what we have been

calling the response wave) moves with speed s.

These initial conditions have a non-zero air blast

pressure wave only at time t[ 0:0. It is not a pure

traveling wave, since the forcing pe is zero before

t ¼ 0:0. The general solution to this linearized

shallow water model is a combination of the inho-

mogeneous solution with forcing function pe, which

gives the response wave hr, and the solution to the

homogeneous problem with pe ¼ 0, which consists of

left and right moving gravity waves of the same

shape hr but different amplitudes. The full solution is

a linear combination of all three waves that satisfy the

initial conditions. Equation (8) shows that the left-

going tsunami wave (rightmost term) will have a

smaller amplitude in absolute value for s=cw [ 1 than

the right going wave (middle term on right hand

side). Also, the latter will be a depression, since it has

amplitude �0:5 � ð1þ s=cwÞÞ.
Numerical results illustrating this are shown in

Fig. 11 at time 250 s. Solid lines show the water

wave heights, and dashed lines show the air over-

pressure profiles. In Fig. 11 left, the speed

s ¼ 350 m/s, somewhat larger than the speed of

sound in air. For this case, since s[ cw, (for h0 = 4

km, cw ¼
ffiffiffiffiffiffiffi

gh0

p
’ 198 m/s), the forced wave height

is positive since the overpressure is positive. Note

that the gravity wave at the same point in time trails

the pressure wave. The right-moving gravity wave is

a depression, the left moving wave is a smaller

elevation. Since this calculation is in one space

dimension, the waves do not decay. In the two-

dimensional shallow water equations, the gravity

wave decays with the square root of distance. Also,

the pressure blast wave and, therefore, the leading

water response would both decay too.

By contrast, Fig. 11 right shows the water’s

response for an overpressure moving at 120 m/s,

slower than the gravity wave (s\cw). The tsunami

waves travel at the same speed in both computations,

but they have different amplitudes and signs. The

tsunami wave is the opposite sign as the wave due to

the pressure. This is consistent with conservation of

mass.

To give a more complete picture, two more

experiments with s[ cw but different forcings are

shown in Fig. 12. The figures on the left use a

Gaussian pressure forcing but their magnitude is

ramped up for the first 100 s. This results in quite a

different-looking gravity wave. The right figure uses

a typical Friedlander blast profile described in Sect. 2

for the overpressure, but keeping the amplitude

constant at 1 atm. It looks similar to the Gaussian

example above.

3.3. Breakdown of Smooth Solutions

In a bit of a digression, this subsection examines

in a little more detail the nonlinear shallow water

1534 M. Berger and J. Goodman Pure Appl. Geophys.
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Figure 11
Numerical simulations showing wave heights hr (left axis) and overpressure pe (labeled on right axis). Left experiment uses s[ cw, on the

right the pressure front is slower. On the left, the wave heights (solid line) under the pressure pulse (dashed line) are positive, as Eq. (6)

predicts, and the tsunami wave trails the pressure wave. On the right, the pressure pulse is above a negative wave height (depression), and the

tsunami leads the pressure wave

Figure 12
Left figure uses same high-speed Gaussian pressure pulse as in Fig. 11 but with the amplitude linearly ramped up over 100 s. Pressure profile

shown on the top; bottom shows water wave heights. Right figure uses a Friedlander blast wave profile instead of a Gaussian. Both

figures show the same positive forced water wave (since s[ cw) and the expected gravity waves from (8) but they take very different forms
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response (5), and when the solution h exists. Dividing

(5) by the shallow water speed c2w ¼ gh0, and defining

a function f(H) equal to the left hand side, we get

f ðHÞ ¼ s2

2c2w
1� h2

0

hðmÞ2

 !

þ 1� hðmÞ
h0

� �

¼ s2

2c2w
1� 1

H2

� �

þ 1� HÞð Þ ¼ peðmÞ
qwc2w

;

ð10Þ

where we define H ¼ hðmÞ=h0.

Figure 13 (left) shows a plot of f(H), for

overpressure traveling wave speeds s ranging from

0 to 400 m/s. This includes pressure waves both

slower and faster than the water wave speed cw � 200

m/s in a 4 km ocean. Note that there is a range where

there is no solution to the equations. For an

overpressure of 1 atmosphere, the right hand side of

(10) is .0025. For the curve with s ¼ 350 m/s, the

maximum of f ðhÞ � 0:37, so the equation will have a

solution for a much stronger overpressure and/or a

much shallower ocean basin. Between 0.8 and 1.2

(which corresponds to a wave response of 0.8 m),

there is no solution for a right hand side of (10)

outside of the range roughly between �1 and 1.

Figure 13 (right) shows a particular solution hrðmÞ
for increasing overpressure amplitudes for a Gaussian

traveling with speed s ¼ 350 m/s in a 4 km deep

ocean. As the amplitude of the forcing increases, the

solution develops a cusp, and it appears that the

derivative approaches infinity. This lack of a smooth

solution could precede a bore.

4. Linearized Euler Model

In this section, we analyze a more complete

model of the ocean’s response to an airburst, to

uncover possible shortcomings of the shallow water

model of Sect. 3. We model the water using the Euler

equations of a compressible fluid, which will bring in

the effects of compressibility and dispersion. Another

possibility would be to use one of the forms of the

Boussinesq equations, but that also assumes incom-

pressible flow, and would be more difficult to

analyze. [See, however, a nice comparison of SWE

and Serre–Green–Naghdi Boussinesq results in

Popinet (2015).] We continue to neglect Coriolis

forces, viscosity, friction, the Earth’s curvature, etc.

We linearize the Euler equations and the boundary

conditions, since Fig. 10 suggests that linear

approximations are reasonably accurate for these

parameters.

Figure 13
Left shows the region where a solution exists, for a given overpressure amplitude. Right shows the change in solution as the amplitude

increases, at the fixed speed s = 350 m/s. When the cusp develops, there is no longer a smooth solution, corresponding to the region with no

solution on the left plot
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4.1. Derivation and Analysis

Our starting point for this section is the linearized

Euler equations with linearized boundary conditions.

A derivation is given in the Appendix. An explicit

solution is not possible, and the results will depend

instead on wave number. We will use wave number

k ¼ 2p
L
, where the length scale L for the atmospheric

pressure wave is on the order of 10–20 km. This is

very short relative to earthquake-generated tsunamis,

which can have length scales on the order of 100 km

or more. As before, those not interested in the

analysis can skip to the end of the section for a

summary of the main points.

The linearized Euler equations and boundary

conditions that we use for analysis are

eqt þ qweux þ qwewz ¼ 0;

qweut þ c2aeqx ¼ 0;

qwewt þ c2aeqz ¼� eqg ;

ð11Þ

where ca is the speed of sound in water. (We use ca

for acoustic to distinguish it from the gravity wave

speed cw ¼
ffiffiffiffiffi

gh
p

). Here, eq is a small perturbation of q
(and the same for the other variables), except for

hðx; tÞ ¼ h0 þ hrðx; tÞ :

where hr is again the water’s disturbance height for

consistency with the previous section. The boundary

conditions are

bottom :ewðx; z ¼ 0; tÞ ¼ 0; ð12Þ

top :
ohrðx; tÞ

ot
¼ ewðx; h0; tÞ ð13Þ

pressure bc: c2aeqðx;h0; tÞ � qwg hrðx; tÞ
¼ peðx; tÞ:

ð14Þ

As in Sect. 3, we will assume the atmospheric pres-

sure forcing has the form peðx� stÞ, and look for

solutions of the same form, functions of m ¼ x� st

and z. The system (11) becomes

�seqm þ qweum þ qwewz ¼ 0; ð15aÞ

�sqweum þ c2aeqm ¼ 0; ð15bÞ

�sqwewm þ c2aeqz ¼ �eqg : ð15cÞ

The boundary conditions become

ewðm; 0Þ ¼ 0; ð16aÞ

ewðm; h0Þ ¼ �s hr;mðmÞ; ð16bÞ

c2aeqðm; h0Þ ¼ qwghrðmÞ þ peðmÞ : ð16cÞ

This system now includes the effects of dispersion

and water compressibility.

These equations cannot be solved in closed form

for general pe. Therefore, we study the response using

Fourier analysis. We will take a Fourier mode of the

overpressure

peðmÞ ¼ Akeikm ; ð17Þ

with amplitude Ak and compute the response as a

function of m. The responses will have the form

hrðmÞ ¼ bhr eikm; ð18aÞ

eqðm; zÞ ¼ bqðzÞeikm; ð18bÞ

euðm; zÞ ¼ buðzÞeikm; ð18cÞ

ewðm; zÞ ¼ bwðzÞeikm : ð18dÞ

The hat variables are the Fourier multipliers. The

partial differential equations (15a–15c) become

ordinary differential equations with wave number k as

a parameter.

Note that (15b) depends only on derivatives with

respect to m. Integrating it gives

� sqweu þ c2aeq ¼ 0:

The constant of integration is zero for each z since as

m ! 1 we know eu ¼ 0 and eq ¼ 0. This gives an

expression for eq in terms of eu,

eq ¼ sqweu

c2a
; ð19Þ

which we can use in (15a) and (15c). After substi-

tuting for eq and dividing by qw, the remaining system

of two equations is

eum 1� s2

c2a

� �

þ ewz ¼ 0;

� ewm þ euz ¼� g

c2a
eu:

ð20Þ

Substituting the Fourier modes (18c–18d) into (20)
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and differentiating eu and ew with respect to m give an

ordinary differential equation in z for the velocities,

bu

bw

� �

z

¼
�g=c2a bu þ i k bw

�i k bu ð1� s2=c2aÞ

 !

¼
�g=c2a i k

�i k ð1� s2=c2aÞ 0

" #

bu

bw

� �

: ð21Þ

The general solution to this 2-by-2 system is the

linear combination

bu

bw

� �

¼ aþvþelþz þ a�v�el�z ; ð22Þ

where l	 and v	 are the eigenvalues and eigenvec-

tors of the matrix in (21), and the scalar coefficients

a	 are chosen to satisfy the boundary conditions. The

eigenvalues are

l	 ¼
�g
c2a
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2

c4a
þ 4k2ð1� s2=c2aÞ

q

2
:

ð23Þ

The eigenvectors (chosen to make the algebra easier

so they are not normalized) are

vþ ¼
2lþ
�ik

2ð1� s2=c2aÞ

 !

; v� ¼
2l�
�ik

2ð1� s2=c2aÞ

 !

:

ð24Þ

The boundary condition at z ¼ 0 is (16a). To apply it,

note that bw corresponds to the second component of

the eigenvectors v	. We find that aþ ¼ � a�.

Henceforth, we call this coefficient simply a.

Next, we substitute the Fourier modes (18c–18d)

into the remaining boundary conditions (16b) and

(16c). We use the pressure forcing equation (17) in

the form bpe ¼ Ak. The result is

bwðh0Þ ¼ �iks bhr; ð25aÞ

c2abqðh0Þ � qwgbhr ¼ Ak : ð25bÞ

Using equation (19) to substitute bq ¼ sqw

c2a
bu in (25b)

gives an expression for bhr

bhr ¼
s

g
bu � Ak

qwg
: ð26Þ

This can be used to replace bhr in (25a) to get

bwðh0Þ ¼
�iks2

g
buðh0Þ þ

iksAk

qwg
: ð27Þ

The final steps are using the form of the solution (22)

in (27) to solve for the coefficient a. With this,

everything is known, and bu, bw and the response

height bhr can be evaluated.

Putting it all together, we get

2 að1� s2=c2aÞ elþh0 � el�h0
� �

¼ iks2

g

2 a

�ik
lþelþh0 � l�el�h0
� �

þ iksAk

qwg
:

ð28Þ

Grouping terms, the final expression to solve for a

(using the definition (23) for l	) is given by

2a ð1� s2=c2aÞ elþh0 � el�h0
� �

þ s2

g
lþelþh0 � l�el�h0
� �

� �

¼ iksAk

qwg

ð29Þ

To summarize, given an overpressure amplitude Ak

with wavelength k, equation (29) gives the scalar

coefficient a in the velocity equations, then we solve

for bu and bw using (22), and use (26) to get the Fourier

multiplier for the wave height response.

4.2. Linearized Euler Model Computations

We evaluate these results using the following

parameters: an ocean with depth h0 ¼ 4 km , ocean

sound speed ca ¼ 1500 m/s, qw ¼ 1025 kg/m 3, and

atmospheric overpressure of Ak ¼ 1 atm with pres-

sure wave speed s ¼ 350 m/s, faster than the gravity

wave speed of about 200 m/s. The responses are

linear in the overpressure amplitude Ak, so we do not

evaluate these curves for any other overpressures.

Figure 14 (left) shows the surface wave height
bhðkÞ as a function of length scale L, and (right) the

amplitude of the surface velocities buðh0; kÞ and

bwðh0; kÞ are shown. There are two curves in each

plot: one uses the physical acoustic water wave speed

of ca ¼ 1500 m/s, and the other uses a very large non-

physical acoustic speed in the water of ca 
 108. The

latter corresponds to the intermediate model of finite

depth but incompressible water. This should, and

does, asymptote in the long wave (k ! 0) limit to the

result of the shallow water equations. The difference
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between the blue and green curves shows approxi-

mately a 20% reduction in the amplitude of the longer

length scales due to compressibility (but that this is

not the amplitude of the total wave response yet).

Note also that the u velocity asymptotes to the

shallow water limit, and the w velocity approaches

zero. The velocity curves show less of an effect due

to compressibility.

For atmospheric forcing fromasteroidswith airbursts,

the length scales of interest are closer to the short end,

perhaps 10 or 20 km. In this regime, the compressibility

effects are around 10% or less. But at these wavelengths,

dispersive effects reduce the response predicted by

shallow water theory by nearly half!

This becomes more clear by comparing the forced

wave response to a Gaussian pressure pulse instead of

using just a single frequency. We use the pressure

pulse form (7) as before but with length scale 5 (not
ffiffiffi

5
p

), take the Fourier transform, multiply by the

Fourier multipliers shown in Fig. 14, and transform

back. Figure 15 shows the results for two different

water depths h0: 4 kmand 1 km. The blue curve uses the

water wave speed ca=1500 m/s, and the red curve uses

the limiting ca. Compressibility changes the height by

less than 10% in Fig. 15 for both depths. However, in

the deeper water, the shallow water response is almost

70% larger than either Euler solution, and has a

narrower width. One can think of this in two ways. The

broader response from linearized Euler is a result of

dispersion, which makes things spread. Alternatively,

it is the result of filtering out the shorter wavelengths

needed to make a narrow Gaussian. In the right figure,

the water is shallower, and the linearized Euler results

are closer to the shallow water results.

In Fig. 16, we fix the horizontal length scale at 15

km and instead vary the speed of the pressure wave s.

This figure again uses h0 ¼ 4000 m, and ca ¼ 1500

m/s. Three curves are shown: the linearized Euler,

and the nonlinear and linearized shallow water

responses. There is much more difference in this set

of curves, particularly around the regions where

resonance occurs. Here too we see that the wave

height response to the linearized Euler forcing is

negative for pressure forcing speeds s. 150 m/s and

again unintuitively, positive for larger s. There is also

a section of the red curve that is missing, corre-

sponding to the regions where there is no smooth

solution. Note also that the overpressure speed where

the resonance occurs is significantly slower for the

linearized Euler than for the SWE.

5. Conclusions

We have presented several numerical simulations

using the shallow water equations over real

Figure 14
Left figure shows wave height bhðkÞ as a function of wavelength for the linearized Euler equations using an atmospheric overpressure of 1

atmosphere. Also shown is the shallow water solution from Sect. 3. Right figure shows the u and w velocities. Both plots show curves using

the physical sound speed of ca ¼ 1500 m/s, and the limiting infinite speed solution. Both figures use the parameters h0 ¼ 4 km, and 1

atmosphere overpressure
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bathymetry that demonstrate the ocean’s response to

a 250MT airburst. There is no significant wave

response from the ocean, in either the forced wave or

the gravity waves after a short distance. Our calcu-

lations show that the amplitude of the pressure wave

response decreases much more rapidly than the

gravity waves do. The blast had to be very close to

shore to get a sizeable response. Thus the more

serious danger from an airburst is not from the tsu-

nami, but from the local effects of the blast wave

itself.

Several unexpected features found in the simula-

tions were explained using a one-dimensional model

problem with a traveling wave solution for the SWE.

One of the main results, that the wave response height

is proportional to the depth of the water, explains why

putting the blast on a continental shelf close to shore

did not generate more inundation than putting it

further away in deeper water.

We also looked at the water’s response to an

airburst using the linearized Euler equations. In this

case, the traveling wave model problem shows that

the amplitudes of the important wave numbers in the

ocean’s response are greatly decreased. We do not

yet know what this means for the gravity wave

response. In addition, we expect the character of the

water’s response to be different, since dispersive

waves will generate a wave train characterized by

multiple peaks and troughs. The effect of this on

land, and whether it causes inundation when the

SWE response does not, is something we plan to

investigate in the future.

Figure 15
Response to a Gaussian pressure pulse for the linearized Euler equations, using the actual sound speed ca ¼ 1500 m/s, and a limiting sound

speed that mimics the incompressible case. The shallow water response is also shown. Left uses depth h0 = 4 km; right uses h0 = 1 km, so it is

closer to a shallow water wave. Both use a maximum overpressure of 1 atm

Figure 16
Wave height response as a function of s, the speed of the

overpressure front. The depth h0 is a constant 4 km, and the length

scale is held fixed at 15 km. There is a large variation between the

models, especially in the location where resonances occur
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Appendix

In this appendix we start with the nonlinear Euler

equations for a compressible inviscid fluid with

nonlinear boundary conditions at the interface

between ocean and air. The static unforced solution to

these equations is determined by hydrostatic balance.

The hydrostatic pressure is p0, and the hydrostatic

density is q0. Since the static density variation is

small (under 2%), we will end up neglecting it and

proceed to linearize the equations, deriving Eq. (11)–

(14) in Sect. 4.

This time there are two spatial coordinates, a

horizontal coordinate x, and a vertical coordinate z.

The (flat) bottom is z ¼ 0. The moving top surface is

z ¼ hðx; tÞ. The horizontal and vertical velocity

components are u and w respectively, and the water

density is denoted by q. The Euler equations are

qt þ ðquÞx þ ðqwÞz ¼ 0;

ðquÞt þ ðqu2 þ pÞx þ ðquwÞz ¼ 0;

ðqwÞt þ ðquwÞx þ ðqw2 þ pÞz ¼� qg:

ð30Þ

There is a ‘‘no flow’’ boundary condition at the bot-

tom boundary,

wðx; z ¼ 0; tÞ ¼ 0: ð31Þ

The kinematic condition at the top boundary Whi-

tham (1974) states that a particle that moves with the

surface velocity stays on the surface,

ht þ uhx ¼ wðx; hðx; tÞ; tÞ : ð32Þ

The dynamic boundary condition at the top is conti-

nuity of pressure,

pðx; hðx; tÞ; tÞ ¼ patm þ peðx; tÞ : ð33Þ

The left side of (33) is pressure in the water evaluated

at the top boundary. The right side is the atmo-

sphere’s ambient pressure, which is the sum of the

static background atmospheric pressure patm and the

dynamic blast wave overpressure peðx; tÞ.
For static solutions (pe ¼ 0, u ¼ w ¼ 0), the

nonlinear Eq. (30) reduce to the hydrostatic balance

condition

dp0

dz
¼ �gq0ðzÞ : ð34Þ

Let the water density qw be the density at the water

surface. If the density differences are small (as they

turn out to be), we may use a linear approximation to

the equation of state,

pðqÞ ¼ pðqwÞ þ c2aðq� qwÞ ;

where ca is the acoustic sound speed in water at

density qw, c2a ¼ dp
dq ðqwÞ : The behavior of q0ðzÞ is

found by substituting this into (34): dp0
dz

¼ c2a
dq0
dz

¼
� gq0 : Therefore, for any two heights z1 and z2, we

have

q0ðz2Þ ¼ q0ðz1Þe
� g

c2a

ðz2�z1Þ
:

If z2 � z1 ¼ 4 km , and ca ¼ 1500 m/s, then g
c2a
ðz2 �

z1Þ\:02 : Therefore, the density varies by less than

about 2% between the water surface and bottom.

We denote small disturbance quantities with a

tilde, except for the wave height response hr, which

we use for continuity with the previous sections. For

example, the water density is q0ðzÞ þ eqðx; z; tÞ. These
disturbances are driven by the atmospheric over-

pressure peðx; tÞ. We substitute the expressions

q ¼ q0 þ eq, u ¼ eu, w ¼ ew (since the velocities are

linearized around zero), and p ¼ p0 þ c2aeq into the

Euler Eq. (30) and calculate up to linear terms in the
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disturbance variables. Using the hydrostatic balance

condition (34), this gives

eqt þ q0eux þ q0ewz ¼ 0;

q0eut þ c2aeqx ¼ 0;

q0ewt þ c2aeqz ¼� eqg :

Finally, we replace the (slightly) variable q0ðzÞ with
the constant qw. The resulting equations, which we

use for analysis, are

eqt þ qweux þ qwewz ¼ 0;

qweut þ c2aeqx ¼ 0;

qwewt þ c2aeqz ¼� eqg

: ð35Þ

The bottom boundary condition (31) is already linear.

For the top boundary conditions, we express the

water height as the sum of the background height h0

and the disturbance height hr:

hðx; tÞ ¼ h0 þ hrðx; tÞ :

To leading order in hr, eu and ew, the linear approxi-

mation to the kinematic boundary condition (32) is

ohr

ot
ðx; tÞ ¼ ewðx; h0; tÞ : ð36Þ

For the dynamic boundary condition (33), which was

pðx; hðx; tÞ; tÞ ¼ patm þ pe, we use the Taylor expan-

sion and the perturbation approximation

pðx; hðx; tÞ; tÞ � pðh0Þ þ p0;zðh0Þ hrðx; tÞ
� p0ðh0Þ þ epðx; h0; tÞ þ p0;zðh0Þ hrðx; tÞ
� p0ðh0Þ þ c2aeqðx; h0; tÞ þ p0;zðh0Þ hrðx; tÞ

:

For the undisturbed quantities, the pressure at the top

is pðh0Þ ¼ patm. The hydrostatic balance relation (34)

in the water (applied at the top) is p0;zðh0Þ ¼ �gqw.

Making these substitutions gives

p0ðh0Þ þ c2aeq þ p0;zhr ¼ patm þ pe ; ð37Þ

giving the result

c2aeqðx; h0; tÞ � qwg hrðx; tÞ ¼ peðx; tÞ : ð38Þ

Summarizing, the linearized Euler equations are (35),

with linearized boundary conditions (31), (36) and

(38).
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