CSCI-GA.3033-107: Cryptography of Blockchains Spring 2024

Homework #2

Due: 11:59pm on Sunday, 3/10, 2024
Submit via Brightspace

Problem 1. Distributed Randomness Beacons using VDFs A distributed randomness beacon
(DRB) allows mutually untrusted parties to engage in a protocol and derive a random value w
that is not biased by any party. Consider the verifiable delay function VDF(z) : G — G = 22
Let g be a generator of the group G and let h = VDF(g). Consider the following one-round
protocol DRB;1:

Round 1: Each party reveals a random value 7;.

Suppose n parties participate in Round 1. The DRB output is obtained as w = ([[;", ri)?.

a. Show that this protocol is not secure and can be biased. That is, describe an attack an
adversary acting as of the parties can perform that lets them set the DRB output to any
value they want. (Note the adversary can get preparation time before the protocol starts.)

b. Suggest a solution to this attack based on the solution used to prevent the rogue-key attack
when aggregating BLS signatures. (You need not prove your answer. A brief justification is
enough.)

c. An issue with the VDF-based DRBs is that they always require a costly VDF computation
to be done. Consider the following protocol DRB,:

Round 1: Commit Round: Each party i samples a random nonce «; and shares ¢; = g“:.
Round 2: Reveal Round: After all parties share their commitments, each party reveals «;. (If
¢i # g then this «; is ignored).

Suppose n parties participate in Round 1. There are two scenarios here, based on the behavior
of the n parties in Round 2. The optimistic scenario allows all the parties to compute the
output quickly while the pessimistic one resorts to the costly VDF computation.

e Optimistic case: If all n parties reveal a valid nonce in Round 2, then the DRB output
w is quickly obtained as w = VDF(]}_; h*).
e Pessimistic case: If any party skips Round 2, then the DRB output is obtained as w =
VDF(IT7,; 9)*
d. This scheme also suffers from a biasing attack similar to the one in part (a). Show how.

e. Asin part (b), write out a solution that prevents the above attack. (Again, it’s based on the
technique used in BLS signature aggregation. And you need not formally prove security.)

f. Even after this fix, there is an inherent weakness associated with any DRB that has an
“optimistic” fast case and a “pessimistic” slow case. Show how the a party participating in
the protocol can learn w much faster than all the other parties. (Note that they don’t bias
the value. They only learn it much faster than the others.)



Problem 2. Certificates of Correctness

In class, we so far have seen ways to obtain quorum certificates where each signature has equal
weight. What if we want to extend this to a scenario where different nodes have different weights?
This may be the scenario in a Proof-of-Stake blockchain where the more stake you have, the more
your vote counts. Instead of needing 2/3rd of all miners for a quorum, you need 2/3rd of all the
weight (that is, stake).

a. Let node ¢ have weight w; for i = 1,...,n. Modify the Merkle tree construction for QC to
show that some fraction x of all stake is in the quorum.

Problem 3. More VDF's

a. Is Proof-of-Work a VDF? Why or why not? If it is, describe the VDF input, output, and
prove and verify functions. If not, describe what property of a VDF is not satisfied.

b. Can a VDF be used as a Proof-of-Work function? For a given challenge ch, the goal of the
miner to now produce a valid output and proof for a given VDF function on input ch.

c. A commonly used randomness beacon is the Bitcoin blockchain. Suppose random value r
is obtained by hashing the latest block header b as r = H(b). What is one issue with this
method? (Hint: think about which parties can bias the randomness.)

d. What if the randomness is obtained by hashing the VDF output on the header, instead? That
is, r = H(VDF(b)). Briefly explain (doesn’t have to be formal) how this is secure or insecure.

Problem 4. Batching Polynomial Commitments

In this question, we’ll build and efficient batch evaluation proofs from a linearly homomor-
phic polynomial commitment scheme. Here, a prover P and verifier V have input polynomials
fo,-- .y fo—1 € F<9[X]. The prover claims that f;(w;) = 0 for all i = 0,...,¢ — 1 and elements
wo, - - . ,wy_1. The interactive protocol with a non-succinct verifier to prove the following is:

1. V sends P a challenge p € F.

2. P sends V the polynomial ¢(X) = Ef;é P (X)) /(X — wy).

3. V sends P a challenge r € F.

4. Let z(X) = Hf:(l) and z(X) = 2(X)/(X —w;). V computes the polynomials g(X) =
(XiZo p'2ilr) - fi(X)) = 2(r) - a(X)

. V accepts if g(r) = 0.

ot

The verifier can be made succinct using polynomial commitments. In this setting, the input
additionally contains commitments Cy, ..., Cy_1 to the polynomials fy, ..., fr_1. In the questions
below, you will work out how the steps change when using polynomial commitment schemes.

a. In step 2 above, the prover will send a commitment C; to polynomial ¢(X). Using C,; and
all other inputs and challenges, show how the verifier can compute a commitment Cj to
polynomial g(X) in Step 4 efficiently.

b. How does step 5 change when using polynomial commitments? (Note the succinct verifier
only has commitment to ¢(X) and g(X).)



We'll generalize the protocol to prove the claim f;(w) = v; for i =0,...,¢ — 1.

c. What is the new ¢ in this scenario? And how does V compute Cy(X)? Short one-line answers
are sufficient. (Hint: reduce this to the original case by modifying the polynomials sent as
input.)

Problem 5. Security of Wesolowski VDF

This question will analyze the role of the prime challenge ¢ in Wesolowski VDFs. To establish
notation, the input is (G, g, h,t), w here g,h € G and the prover claim is that h = gzt. The
verifier sends a challenge ¢, which is a prime. The prover responds ™ where 7 = g9 and 2¢ = ¢/+r
and r < £. The

a. What goes wrong when ¢ is not a prime? Show how an adversary can either produce the
VDF output without performing ¢ sequential steps, or produce a convincing proof of an invalid
output.

c. Show that the scheme isn’t secure when ¢ is the product of small primes each less than k (for
some constant k), by describing an attack that runs in time O(k - £) group operations.



